
        

Unit Roots in
Macroeconomic Time
Series: Some Critical Issues

Bennett T. McCallum

A n enormous amount of analytical literature has recently appeared on
the topic of “unit roots” in macroeconomic time series. Indeed, tests
for the presence of unit roots and techniques for dealing with them

have together comprised one of the most active areas, over the past decade, in
the entire field of macroeconomics. The issues at hand have involved substan-
tive questions about the nature of macroeconomic growth and fluctuations in
developed economies and technical questions about model formulation and es-
timation in systems that include unit-root variables. The present paper attempts
to describe several of the main issues and to evaluate alternative positions. It
does not pretend to be a comprehensive survey of the literature or to provide
an “even-handed” treatment of issues, however.1 Instead, it attempts to develop
a convincing perspective on the topic, one that is consistent with the views of
many active researchers in the area but that may nevertheless be somewhat
idiosyncratic.

The exposition that is presented below is designed to be predominantly
nontechnical in nature. Indeed, it takes a rather old-fashioned approach to

This paper has been prepared for the Research Department of the Federal Reserve Bank of
Richmond. The author, H. J. Heinz Professor of Economics at Carnegie Mellon University
and research associate at the National Bureau of Economic Research, is indebted to John
Campbell, David DeJong, Marvin Goodfriend, Robert King, Peter Schmidt, and Mark Wat-
son for suggestions and useful criticism. The views expressed do not necessarily reflect those
of the Federal Reserve Bank of Richmond or the Federal Reserve System.

1 For other recent survey articles, see Stock and Watson (1988) and Campbell and Perron
(1991).
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econometric issues and uses recently developed concepts only sparingly. It
does, however, rely extensively on notational conventions involving the time
series “lag operator,”L. Under these conventions the symbolL may be manip-
ulated as if it were an algebraic symbol while its effect, when applied to a time
series variable, is to shift the variable’s date back in time by one period. Thus
Lxt = xt−1 while bLLxt = bL2xt = bxt−2, etc. In addition, the notationα(L)
will denote a polynomial expression in the lag operator as follows:α(L) =
α0 +α1L +α2L2 +α3L3 + .̇.. Therefore,α(L)xt = α0xt +α1xt−1 +α2xt−2 + .̇..
Using this notation, then, a distributed-lag regression relation ofyt on cur-
rent and lagged values ofxt could be written asyt = α(L)xt + εt, with εt a
stochastic disturbance term. Furthermore, polynomials inL, which are often
restricted to have only a finite number of terms, may be “multiplied” as in the
following example:2 if α(L) = α0 + α1L + α2L2 andβ(L) = β0 + β1L, then
α(L)β(L) = β0α0 + β0α1L + β0α2L2 + α0β1L + α1β1L2 + α2β1L3. Finally,
“division” by a lag polynomial means that the implied inverse,α−1(L), is a
polynomial such thatα−1(L)α(L) = 1. Thusα(L)β−1(L) yields a polynomial
γ(L) such thatβ(L)γ(L) = α(L). It should be mentioned that the first coefficient
of a lag polynomial, such asα0, is often normalized so as to equal one.

A brief outline of our discussion is as follows. In Section 1, the distinction
between trend stationarity and difference stationarity of time series is intro-
duced. That distinction is then related to the “unit root” concept in Section
2, which is primarily devoted to a description of attempts by researchers to
determine whether the time series of real GNP values for the United States
is difference or trend stationary (i.e., does or does not have an autoregressive
unit root). Two approaches, involving different strategies for the specification
of maintained and tested hypotheses, are discussed. Then in Section 3 a third
approach, which presumes that the real GNP series is a sum of trend-stationary
and difference-stationary components, is considered. From the discussion in
Sections 2 and 3 together, it is concluded that the relevant question is not
whether the GNP series is difference stationary, but what is the relative contri-
bution of the two components. It is also concluded that an accurate answer is
not obtainable with the amount of data available.

In Section 4 the topic changes to the question of how to process trending
data before conducting regression studies relating two or more variables. The
answer that is developed is that the choice between differencing and determin-
istic trend removal is normally of secondary importance, the principal relevant
consideration being the serial correlation properties of the regression residuals.
This regression context is continued in Section 5, which concerns the topic of
cointegration. It is argued that strict cointegration is probably rather rare, since
relationship disturbances will usually be—like shocks to univariate series—

2 The proper term is “convolution.” Any reader who desires a more rigorous description of
lag operators may consult Dhrymes (1971).
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a sum of stationary and difference-stationary processes. Examples relating to
money demand and purchasing-power-parity studies are provided. In Section
6, finally, some conclusions are tentatively put forth.

1. STOCHASTIC VS. DETERMINISTIC TRENDS

As most readers are well aware, many macroeconomic data series display up-
ward tendencies or “trends” when observations are plotted against time. For
many purposes it is useful and/or conventional to work with detrended val-
ues of these variables—i.e., versions from which trend components have been
removed. Traditionally, most researchers would effect this detrending step by
subtracting from the raw numbers (or their logs) a deterministic3 trend ex-
pression such asα0 + α1t, where t is a time index. For various reasons it
is often useful to express the basic series in terms of logarithms of the raw
data, in which caseα1 becomes a measure of the per-period growth rate of the
variable in question. Thus ifyt is the basic variable, the traditional detrending
procedure implicitly splitsyt into two components, one representing the trend
and the other a cyclical or non-trend component.4 With yt the basic variable
andεt a white-noise5 disturbance, we have

yt = α0 + α1t + γ(L)εt, (1)

whereα0 + α1t is the trend component andγ(L)εt is the non-trend component
(or the detrended series). In this traditional decomposition, it is assumed that
the detrended seriesγ(L)εt is a stationary stochastic process, which requires
(among other things) that the population meansE[γ(L)εt], variancesE[γ(L)εt]2,
and autocovariancesE[γ(L)εtγ(L)εt−j] are the same for allt. (Here the vari-
ance and covariance expressions are written under the presumption that the
means equal zero.) Accordingly,yt is said to be atrend-stationary variable; it
may have a trend component but its deviations from a deterministic trend are
stationary. A variable’s status with regard to stationarity is of importance in
its own right, as we shall see in a moment, and also because there is a large
body of statistical techniques whose validity depends upon stationarity of the
variables being analyzed.

At least since 1982,6 however, many researchers have preferred an alter-
native model of the trend vs. non-trend decomposition. Instead of (1), they use

3 That is, non-stochastic.
4 Throughout, our discussion will ignoreseasonal components.
5 A white-noise random variable is one generated by a process that specifies that each period’s

value,εt, is drawn from a population with mean zero and finite varianceσ2
ε, and is not dependent

on previous values.
6 This was the year in which the article by Nelson and Plosser (1982) was published. The

popularity of differencing had been growing gradually, however, at least since the much earlier
publication of Box and Jenkins (1970).
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a formulation such as (2),

∆yt = β + A(L)εt, (2)

whereA(L)εt is stationary andβ represents the average per-period change (or
growth rate) of the variableyt (or the variable whose log isyt). In this formula-
tion yt is said to be adifference-stationary variable, i.e., one that is generated by
a difference-stationary time series. Such a variable cannot in general be made
stationary by the removal of a deterministic trend; instead, the series needs to
be first-differenced prior to processing.

The basic distinction between trend-stationary (TS) and difference-station-
ary (DS) variables is that the former do, and the latter do not, tend to return to
a fixed deterministic trend function. Since the non-trend componentγ(L)εt in
(1) is stationary with mean zero, the process is such thatyt tends to fluctuate
about the fixed trend functionα0 + α1t. In formulation (2), by contrast, the
tendency is foryt to grow at the rateβ from its current position, whatever
that might be. There is, except in a special limiting case, no tendency foryt to
return to any fixed trend path.

The distinction between TS and DS series was emphasized in a highly in-
fluential paper by Nelson and Plosser (1982). In this paper, the authors clearly
described the TS vs. DS distinction and also discussed the undesirable sta-
tistical consequences of detrending by the traditional technique of removing
a deterministic time function when in fact the series is generated by a DS
process. In addition, Nelson and Plosser (1982) presented evidence suggesting
that many important U.S. time series are of the DS class and went on to argue
that evidence indicates that U.S. business cycles are largely real as opposed
to monetary in nature, i.e., that real shocks have been the principal sources
of cyclical variability with the contribution of monetary shocks being entirely
of secondary importance. The last of these arguments was not found convinc-
ing by the macroeconomics profession—see, e.g., McCallum (1986) and West
(1988)—but the hypothesis that many important series (including real GNP)
reflect DS processes became quite widely accepted. More recently, opinion has
partially reversed itself—as we shall see below—but for the past eight to ten
years the idea that real GNP is not trend stationary has been viewed by a large
number of researchers as true (and important). It will be useful, consequently, to
devote some attention to the logic of the statistical tests that led researchers to
that position. In the process of presenting this logic, several relevant points of
importance will be brought out—including the meaning of the term “unit root.”

2. A UNIT ROOT IN U.S. GNP?

Consider now the TS representation (1) with the lag polynomialγ(L) written
as the ratio of two other polynomialsθ(L) andφ(L), both assumed with little
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loss of generality to be finite7 of orderq andp, respectively. Thus we have

yt = α0 + α1t + θ(L)φ−1(L)εt. (3)

Now suppose that 1/ρ is the smallest root of the polynomialφ(L), i.e., is the
smallest number8 that satisfies the equation 1+ φ1z + · · · + φpzp = 0.9 Then
φ(L) could be written as (1− ρL)φ̃(L) and multiplication of (3) by (1− ρL)
would give10

(1− ρL)yt = α0(1− ρ) + ρα1 + α1(1− ρ)t + θ(L)φ̃−1(L)εt. (4)

And in the special case in whichρ = 1, the latter collapses to

(1− L)yt = α1 + θ(L)φ̃−1(L)εt. (5)

Since (1− L)yt equals∆yt, then, the latter is of the same form as (2). Con-
sequently, when there is a unit root toφ(L)—when 1/ρ = 1.0—representation
(1) yields, as a special case, the DS formulation (2).11

In light of the foregoing result, a natural test procedure is suggested for
determining whether “yt has a unit root”—i.e., whether the AR polynomial
φ(L) has a unit root so thatyt is DS. What is involved is that the researcher
maintains the hypothesis that (1) is true, represents it as in equation (4), and
then tests the (“null”) hypothesis thatρ in (4) is equal to one. If the latter
hypothesis is rejected, then one concludes thatyt is not a DS series. But if
the hypothesisρ = 1.0 is not rejected, then one can in a sense conclude that
yt is a DS variable—or that the behavior ofyt is not significantly different
from that of a DS variable. Because ordinary asymptotic distribution theory
breaks down in the case in whichρ is precisely equal to one, a consistent test
requires that the relevant “t-statistic” on the coefficient ofyt−1 be compared
with a critical value taken from a nonstandard distribution. But this can readily
be done, since Dickey and Fuller (1979) have provided the profession with the
pertinent tables.

The foregoing procedure was in fact employed by Nelson and Plosser
(1982) to test for unit roots in over a dozen important U.S. time series. In
only one of these could the tested hypothesis thatρ = 1.0 be rejected at a

7 That is, to include only a finite number of terms with nonzero coefficients. Any stationary
stochastic process can be closely approximated by an expression of the formθ(L)φ−1(L)εt.

8 Perhaps a complex number.
9 Consider, for example, the second-order case. Then 1+φ1z+φ2z2 = 0 could equivalently

be written as (1− α1z)(1− α2z) = 0, whereφ1 = −(α1 + α2) andφ2 = α1α2. But the latter
equation is satisfied by the two valuesz1 = 1/α1 and z2 = 1/α2. So the lag polynomial 1+
φ1L +φ2L2

1 could as well be expressed as (1−α1L)(1−α2L). The roots of the polynomialφ(L)
are said to be 1/α1 and 1/α2.

10 Here (1− ρL)(α0 +α1t) = α0 − ρα0L +α1t − ρα1(t − 1) = α0(1− ρ) +α1t − ρα1t +
ρα1 = α0(1− ρ) + α1(1− ρ)t + ρα1.

11 If ρ > 1.0, thenyt will have explosive behavior of a type that seems unlikely and that
will become easily detectable after a few years.
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conventional significance level (i.e., 0.01 or 0.05), so the authors’ tentative
conclusion was that most U.S. macroeconomic data series are of the DS class,
i.e., are unit-root variables.

There was, however, one rather obvious difficulty with this tentative conclu-
sion,12 as follows: while it was not possible to reject the hypothesis that the
series’ roots likeρ were equal to one, it would also have been impossible to
reject hypotheses asserting that these roots equaled 0.99, for example, or even
0.95. But withρ equal to 0.99 or 0.95, the model would be one of the TS class.
Continuing with this perspective, it might be argued that it is highly implausible
that the tested hypothesis ofρ equal to unity would holdprecisely, as opposed
to approximately. The data, that is, could do no more than show that the value
of ρ is close to one. Consequently, this entire testing approach, which begins
with a TS representation and posits the DS model as a special case, seemed
highly unconvincing to a number of analysts.13

An alternative approach would be to begin with a maintained hypothesis
implying difference stationarity and then express trend stationarity—the ab-
sence of an AR unit root—as a special case. Thus the time series process for
yt could be written as in (2) but withA(L) = θ(L)φ−1(L):

∆yt = β + θ(L)φ−1(L)εt. (6)

Then if the moving-average lag polynomialθ(L) were to have a unit root so
that θ(L) = (1− L)θ̃(L), expression (6) could be operated on by (1− L)−1 to
yield

yt = β0 + βt + θ̃(L)φ−1(L)εt. (7)

(That [1−L]−1β equalsβ0+βt can be justified by multiplying each by [1−L].)
Consequently, it would be possible to express (6) as

φ(L)∆yt = βφ(L) + (1− γL)θ̃(L)εt, (8)

estimate the latter, and test the hypothesis thatγ = 1. If it were possible tore-
ject the latter, then the outcome might be viewed as providing more convincing
evidence in favor of the DS view.14

In fact, the influential paper by Campbell and Mankiw (November 1987)
proceeded in precisely this fashion, using quarterly postwar data for the United
States, 1947–1985. So what did these authors find? As it happens, the answer
is not straightforward because it is unclear how many terms should be included
in estimation of theφ(L) andθ(L) polynomials in (8). In their paper, Campbell
and Mankiw reported results for 16 different cases representing all possible

12 The difficulty was recognized, but not emphasized, by Nelson and Plosser (1982).
13 See, e.g., McCallum (1986, pp. 405–6).
14 It would, however, be possible to object that expressing trend stationarity as a zero-measure

special case effectively biases the procedure in favor of a DS finding. Note, incidentally, that a
unit root in the MA polynomial does not imply a process of the “unit root” type.
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Table 1 Test Statistics from Campbell and Mankiw (November 1987,
Table I)

Number of MA Parameters
Number of AR
Parameters 1 2 3

1 22.96* 11.73* 0.00
2 2.06 4.02* 0.00
3 0.95 1.31 0.00

Notes: Tabulated entries are values of 2 log (SSE0/SSE), whereSSE denotes the sum of squared
residuals andSSE0 indicates imposition of the constraint that makesA(1) = 0. The ARMA models
are estimated for∆yt whereyt is the log of U.S. real GNP, seasonally adjusted, quarterly for
1947:1–1985:4. Asterisks indicate values that are significantly different from zero (0.05 signifi-
cance level) under the usual test, but this test is inappropriate (as discussed in the text).

combinations of zero to three AR parameters and zero to three MA parameters.
Of these, it is arguable that only those with at least one AR and one MA term
should be seriously entertained. The usual test statistics for those nine cases
are given in Table 1. For each case, the reported number is the likelihood ratio
statistic for a test of the hypothesis thatθ(L) has a unit root—i.e., that the TS
hypothesis is true. In most cases this statistic has asymptotically,15 under the
null hypothesis, a chi-square distribution with one degree of freedom, so that
the critical value is 3.84 for a test with significance level 0.05 (or 6.63 for a
0.01 level). Based on these values, the table indicates that in three of the nine
cases—i.e., for three of the nine specifications—the null TS hypothesis can be
rejected at the 0.05 level. Described in this fashion, then, the Campbell and
Mankiw (November 1987) results did not provide strong evidence against the
TS hypothesis (or, in favor of the unit root hypothesis). But under the particular
hypothesis of concern in this case, thatθ(L) has a unit root, the usual asymptotic
distribution theory breaks down—as it does when testing for a unit root in the
AR polynominalφ(L). This breakdown tends to reduce the critical level for
the likelihood ratio statistics and to produce an excessive number of extreme
values such as those in the final column of Table 1. Thus the figures in that
table are actually more unfavorable for the TS hypothesis than they appear to
be at first glance.

Furthermore, Campbell and Mankiw did not describe the results as in the
previous paragraph. Instead, they suggested that the ARMA (2,2) model16—the
case with two autoregressive and two moving average parameters—commands
special attention because it is not significantly worse than the (2,3) or (3,2)

15 I.e., in the limit as the sample size grows without bound.
16 An ARMA model is one that admits both autoregressive and moving average polynomi-

als. The notation (p, q) indicates how many terms (p and q) are included in the AR and MA
polynomials. Sometimes the number of timesd that the basic variable has been differenced is
included in a (p, d, q) notation.
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models and is significantly better than the (2,1) model (and somewhat bet-
ter than the [1,2] specification).17 But in this case, the results (see Table 1)
call for rejection of the TS null hypothesis, even given the test’s bias toward
acceptance. The suggestion of Campbell and Mankiw, consequently, was that
postwar quarterly evidence supports the notion that real GNP for the U.S. is
not trend stationary, but instead is generated by a DS (or unit root) process.
We shall return to the persuasiveness of this suggestion below. But first it will
be useful to discuss a different aspect of the Campbell and Mankiw analysis,
which their discussion emphasized.

In particular, a notable feature of the Campbell-Mankiw (November 1987)
paper is its presentation of an attractive measure of the ultimate or “long-run”
response ofyt to a unit shock, i.e., a 1.0 realization of the disturbanceεt. To
define this measure, consider again the DS formulation (2),∆yt = β + A(L)εt,
and write it out as

yt = yt−1 + β + εt + A1εt−1 + A2εt−2 + · · · . (9)

From the latter expression, it can be seen that the per-unit effect ofεt on yt is
1.0 (in the sense that ifεt were to equal some positive value instead of its mean
zero, thenyt would be higher by the same amount.) But then the per-unit effect
of εt on yt+1 would be 1 +A1, with the partA1 occurring “directly” and the
remainder through its effect onyt. Continuing with this line of reasoning, it is
found that the (per-unit)18 effect onyt+k would be 1+A1+A2+ · · ·+Ak. In the
limit as k → ∞, then, we would have 1+A1+A2+ · · · , which may be denoted
A(1). (That expression arises from writingA(L) = 1 + A1L + A2L2 + · · · and
inserting 1 whereverL appears.) Thus the measureA(1) reflects the ultimate or
long-run effect ofεt on yt when the process generatingyt is of form (2).

An important property of the measureA(1) is that its value is zero for
any TS process. To see that, writeA(L) = θ(L)φ−1(L) and recall that for a TS
variable the MA polynomial can be written asθ(L) = (1 − L)θ̃(L). Thus we
have

A(L) = (1− L)θ̃(L)φ−1(L) ≡ (1− L)a(L) = a(L) − La(L), (10)

wherea(L) ≡ θ̃(L)φ−1(L). But then we obtain

A(1) = a(1)− La(1) = a(1)− a(1) = 0 (11)

sinceLa(1) = L(1 + a1 + a2 + · · ·) = 1 + a1 + a2 + · · · . Thus if θ(L) can be
written as (1− L)θ̃(L), as it can when the process at hand is TS, it is true that
A(1) = 0.

17 Here the meaning of “model A is better than B” is that B is nested in A and can be
rejected with a significance level of 0.05.

18 Henceforth the words “per unit” will typically be omitted.
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Table 2 Estimates of A(1) from Campbell and Mankiw (November
1987, Table IV)

Number of MA Parameters
Number of AR
Parameters 1 2 3

1 1.72 1.73 0.03
2 1.77* 1.52 0.00
3 1.36* 1.60* 0.00

Notes: See Table 1.

What about the values ofA(1) implied by various DS processes? For each
of theseA(1) will be nonzero, but will take on various values depending on the
response pattern. In particular,A(1) will exceed one if the ultimate impact on
yt of a shock is greater than the first-period impact. An important special case
is provided by the random-walk process in which∆yt = β + εt. In this case
A(L) = 1+ 0L + 0L2 + · · · = 1 soA(1) = 1. Next, the first-order MA case has
∆yt = β + εt + θεt−1 so A(L) = 1+ θL andA(1) = 1+ θ. ThenA(1) is greater
than or smaller than one depending on whetherθ is positive or negative.

A somewhat more general process is the ARMA (1,1) model for∆yt,
namely,

(1− φL)∆yt = (1 + θL)εt. (12)

In this caseA(L) = (1+θL)(1−φL)−1 soA(1) = (1+θ)/(1−φ). An example ap-
plication is provided by the Campbell-Mankiw (November 1987) estimates with
the U.S. GNP series. Their point estimates ofφ andθ are 0.522 and−0.179,
respectively, so thatA(1) = (1− .179)/(1− .522)= 0.821/0.478= 1.717. Thus
the ARMA (1,1) model for∆yt suggests that the long-run response ofyt (log
of GNP) to a shock will be about 1.7 times as large as the immediate (within
one quarter) response.

In sum we see that the measureA(1) provides an attractive way of ex-
pressing the magnitude of the “long-run response” of a variable (yt) to a unit
shock (εt).19 And in their study of postwar U.S. GNP, Campbell and Mankiw
(November 1987) find that for all but three of their nine cases20 A(1) is sub-
stantially larger than one, implying that the impact of shocks is to cumulate,
rather than dissipate, as time passes. Their values are reported in Table 2, where
it may be noted that for the ARMA (2,1), (3,1) and (3,2) cases (marked with
asterisks), the point estimates ofA(1) are large even though theA(L) polyno-
mials are not significantly different from ones withA(1) = 0 according to the

19 Another useful measure has been featured in the work of Cochrane (1988). It is described
below in text attached to footnote 26.

20 Recall that they actually reported 16 cases, but that we are focusing on 9.
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usual test (compare Table 1). Consequently, although they are guarded in their
statements, Campbell and Mankiw seem to conclude that there are grounds for
being reasonably confident that the long-run response of a unit shock to U.S.
GNP is substantially greater than one. In this sense, shocks to GNP have no
trend-reversion tendency at all.21

This conclusion has not, however, held up to subsequent criticism. One ma-
jor reason for skepticism was provided in a study by Christiano and Eichenbaum
(1990). Basically, their study emphasized that the different ARMA specifica-
tions considered by Campbell and Mankiw give rise to quite different values of
A(1)—as is evident in Table 2—and that there is very little reason to conclude
that any one of them is appropriate—or even that one of those withA(1) > 1 is.
The Christiano-Eichenbaum argument is that relevant inferences are sensitive
to the choice of ARMA specification employed, even within the set of those
that provide approximately equally good fits to the data.

One of the experiments conducted by Christiano and Eichenbaum will
illustrate their results. In this experiment they conducted simulations with a
model with parameters matching those estimated by Campbell and Mankiw in
the ARMA (3,3) case. In other words, they pretended that this case—which
implies A(1) = 0—is true, and then considered what would happen if it were
studied under the assumption that the ARMA (2,2) specification were correct.
For each simulation they would generate 150 “data” points using the (3,3)
parameters, then estimate a (2,2) model and test the hypothesis thatA(1) = 0.
They conducted 2,000 such simulations and found that the hypothesisA(1) = 0,
which was true in the process studied, was nevertheless rejected in 74 percent
of the simulations.22 Similarly, in 2,000 more simulations, based on the ARMA
(1,3) parameter estimates from Campbell and Mankiw, it was found that the
true hypothesisA(1) = 0 was rejected in 38 percent of the simulations.

The conclusion reached by Christiano and Eichenbaum was as follows: on
the basis of 150 observations, about the number of quarterly postwar data peri-
ods, it is not possible to make accurate inferences about the long-run response
measureA(1). Equivalently, it is not possible to determine with high reliability
whether the stochastic process generating real GNP observations is of the TS
or DS class.

During the last few years, numerous additional papers on the topic have ap-
peared; only a few can be mentioned. Sims (1988) has suggested that Bayesian
techniques of statistical inference are more appropriate than classical in this
particular context and DeJong and Whiteman (1989, 1991) have presented
Bayesian results that provide support for the view that the U.S. GNP process
is actually of the TS class. That conclusion has been strongly challenged by
Phillips (1991), in a paper that provided the basis for a symposium occupying an

21 It is sometimes said that they are highly “persistent,” but that terminology is inappropriate
for reasons clearly described by Cochrane (“Comments,” 1991, pp. 206–7).

22 With a test statistic designed to have a 0.05 significance level.
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entire issue of theJournal of Applied Econometrics. The symposium includes
rejoinders by Sims and DeJong-Whiteman; it would be difficult to identify any
clear outcome. Others, including Stock (1991), Cochrane (April 1991), Sowell
(1992) and Rudebusch (1993), have reached the Christiano-Eichenbaum (1990)
conclusion—i.e., that it is not possible with existing data to settle the issue—by
alternative means. In my opinion, this last conclusion seems generally appro-
priate, but there is another way of approaching the issue that is conceptually
rather simple and perhaps illuminating.

3. THE UNOBSERVED COMPONENTS APPROACH

In the previous section two approaches were mentioned, based on equations
(3) and (6). In the first of these, the maintained hypothesis is trend stationarity
with difference stationarity viewed as a zero-measure23 special case, whereas
in (6) the DS hypothesis is maintained and TS is treated as the (zero-measure)
special case. Let us now consider an alternative approach that proceeds within
a framework in which both TS and DS components are presumed to play a role,
the implied statistical problem being to determine how much weight to give to
each. Aspects of this “unobserved components” approach have been developed
by Harvey (1985), Watson (1986), Clark (1987), and Cochrane (1988).

The analysis presented by Clark (1987) provides a useful introduction and
perspective. It begins by writing the observable variable under study,yt, as the
sum of a DS “trend” termzt and a stationary “cycle” termxt :

yt = zt + xt. (13)

Although a more general specification would be possible, Clark assumes that
the cyclical component is a pure AR process so thatφ(L)xt = vt, with vt

white noise. Indeed, in his empirical implementation with U.S. GNP data Clark
makesφ(L) a second-order polynomial, so thatxt is an ARMA (2,0). The trend
component is assumed to obey

zt = zt−1 + d + wt, (14)

wherewt is white noise, independent ofvt. Actually Clark takes the drift term
d to be itself a random walk:dt = dt−1 + ut with ut white. But empirically he
finds the variability ofut to be very small, so we shall for simplicity viewdt

as a constant, as in (14). The model at hand foryt is therefore

yt = (1− φ1L − φ2L2)−1vt + (1− L)−1(d + wt). (15)

Let us consider, then, how (15) fits the U.S. quarterly postwar GNP data.

23 I.e., a case represented by parameter values that would be graphically represented as a
point (with zero area) in a region depicting all possible parameter values.
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Table 3 Estimates of ARMA (2,2) Models from Clark (1987)

Parameters
and Statistics Constrained Unconstrained

φ1 1.548 0.658
φ2 −0.601 −0.420
θ1 −1.214 −0.335
θ2 0.248 0.529
SE 0.0103 0.0103
Q(10) 7.9 4.8
A(1) 0.64 1.57

Notes: ARMA models estimated for∆yt (see Table 1) for 1948:1–1985:4. Q(10) denotes the
Box-Pierce Q-statistic for ten autocorrelations of the residuals; under the null hypothesis of white
noise it has asymptotically a chi-square distribution with ten degrees of freedom.

As a preliminary, it will be instructive to consider a comparison that begins
by expressing (15) as

(1− φ1L − φ2L2)∆yt = (1− L)vt + (1− φ1L − φ2L2)(d + wt). (16)

Here the right-hand side is the sum of two independent MA processes, with
the higher-order one being an ARMA (0,2). Using Granger’s Lemma,24 then,
we can write (16) as

(1− φ1L − φ2L2)∆yt = δ + (1 + θ1L + θ2L2)εt, (17)

where εt is an implied, constructed white-noise disturbance and whereδ =
d(1−φ1−φ2). But the representation in (17) has six parameters (φ1,φ2,θ1,θ2,
σ2
ε , andδ) whereas the basic model (15) has only five (φ1,φ2,σ2

v ,σ2
w, andd).

So the particular components model at hand, which sums an AR (2) component
and a random-walk component, can be viewed as aconstrained version of an
ARMA (2,2) model for∆yt.

It is of course true that the unconstrained model (17) must fit the data at
least slightly better than the constrained version (15). But Clark’s estimates,
reported in Table 3, indicate that in the case at hand there is almost no dif-
ference, i.e., almost no deterioration in fit, from imposing the constraint. In
particular, the estimated residual variance for (15) is essentially the same as with
(17) and the Box-Pierce Q(10) statistic is not much worse. So the constrained
version—the components model (15)—could as well be the preferred choice.25

24 Granger’s Lemma says that the sum of two independent ARMA processes, one ARMA
( p1, q1) and the other ARMA (p2, q2), is an ARMA (p∗, q∗) wherep∗ ≤ p1 + p2 and q∗ ≤
max(p1 + q2, p2 + q1). For pure MA processes, then,q∗ ≤ max(q1, q2).

25 Both Clark (1988) and Cochrane (1988) have developed arguments suggesting that uncon-
strained ARMA models with difference series tend to be poor at the job of estimating long-run
properties such asA(1).
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But although the constrained and unconstrained ARMA models fit the data
about the same, they yield very differentA(1) measures. Whereas the uncon-
strained version giveŝA(1) = 1.57, virtually the same as estimated by Campbell
and Mankiw, for the (unconstrained) components model the estimate is 0.64.

In two diagrams, Clark (1987) presented evidence apparently suggesting
that for U.S. quarterly GNP the unobserved components model may provide a
better estimate than the unconstrained ARMA of the long-run response statistic
A(1). The first of these, denoted Figure V in Clark’s paper, plots the implied
autocorrelations at various lags for the two models (plus one more, an ARMA
[0,2]) and for the∆yt sample. In that plot it will be seen that the uncon-
strained ARMA (denoted ARIMA 212) matches the sample somewhat better
at short lags (e.g., 1–5 quarters) but that the components model provides a
better match at lags of 5-20 quarters. More striking are the related results
shown in Clark’s Figure VI, which plots the variance ratiosVk/V1, where
Vk ≡ (1/k) Var(yt − yt−k), for lag lengthsk up to 60 quarters.26 In this case,
the apparent superiority of the components model’s match to the sample data
is striking. But, as Campbell and Mankiw (May 1987) point out, sample values
of Vk provide biased estimates of their population counterparts. Accordingly,
Campbell and Mankiw suggest that the sample values should be multiplied by
T/(T − k), whereT is the sample size. HereT = 148, so the adjusted sample
values ofVk are considerably larger than the unadjusted values fork ≥ 20.

With this bias adjustment incorporated, the match between sample and
components-model values ofVk would continue to be somewhat better than
between sample and unconstrained ARMA values, but not nearly to the same
extent as in Clark’s Figure VI. The same point applies, but with less force, to
his Figure V.

More generally, the unobserved components approach to modeling the trend
vs. cyclical decomposition seems conceptually attractive, in part because it does
not treat either TS or DS processes as (zero-measure) special cases. The implied
question is not whether one of these two possibilities can be rejected, but instead
is “How important quantitatively is thezt as opposed to thext component?” That
question cannot be answered in precisely the stated form, since the variance of
the DS componentzt depends on the horizon considered and goes to infinity
in the limit. But one type of answer is provided by theA(1) measure itself and
another by a comparison of the variances ofvt andwt, i.e., the shocks toxt and
zt. In the case at hand, Clark’s estimates are ˆσv = 0.0072 and ˆσw = 0.0066.

An objection to the components approach as implemented by Clark (1987)
and Watson (1986) was expressed by Campbell and Mankiw (May 1987, p.
115). This objection is that with the DS componentzt modeled as a random
walk, the estimated value ofA(1) must lie between zero and one; thus values

26 As k → ∞, the limit V of the Vk sequence is the long-run response measure proposed
by Cochrane (1988) mentioned above in footnote 19. Its relation toA(1) is V = (1− R2)[A(1)]2,
whereR2 is 1− (σ2

ε/Var∆yt).
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greater than one are ruled out a priori. But while this important objection is
applicable to the Clark and Watson studies, it is not applicable to the approach
in general, for the latter can accommodate other DS processes forzt. Instead of
a random walk, for example, thezt process could be specified as a first-order
MA: ∆zt = d +wt +θwt−1. For thezt component alone,A(1) would then equal
1+θ so values in excess of one will be obtained ifθ > 0. And if the variability
of zt is large in relation to that forxt, then theA(1) value foryt could easily
exceed one.27

Another objection is that it is unreasonable to assume thatxt andzt compo-
nents are independent, as the approach presumes. There is undoubtedly some
merit to this point, since technology shocks will presumably have both cyclical
and long-lasting effects. But the Campbell-Mankiw ARMA approach amounts
to use of an unobserved components model in which the shocks (likevt andwt

in [15]) areperfectly correlated,28 which property seems even less desirable.
Perhaps the most important objection to the unobserved components mod-

eling of trend vs. cycle is that it is computationally much more difficult than
estimation of ARMA models, the necessary steps involving application of
Kalman filter techniques. For a discussion of such techniques, the reader is
referred to Harvey (1981).

On the basis of the foregoing discussion, it would seem reasonable to
conclude that the postwar U.S. quarterly real GNP process is most likely of
the DS class, since a sum of DS and TS components is itself a DS process.29

But it is far from clear that the long-run impact of shocks exceeds that of the
random-walk case in whichA(1) = 1.0. Instead, a measure such as 0.6, which
attributes a substantial share of GNP variability to a stationary component, is
just as plausible. What does seem clear is that it is not possible, on the basis
of currently available data, to estimateA(1) with much accuracy or reliability.

Conceptually, the basic components-approach idea, of viewing a time series
as the sum of DS and TS processes, seems attractive as a framework for thinking
about the properties of univariate time series. In many cases, both components
would be presumed to be of non-negligible importance so many series will be
of the DS class. That does not imply, however, that any particular method can
be relied upon for trend vs. cyclical decomposition of time series data.

27 But with more parameters in the DS component, the components model may become
equivalent to an unconstrained ARMA.

28 See Watson (1986, p. 53).
29 Quite recently, Kwiatkowski, Phillips, Schmidt, and Shin (1992) have conducted tests of

the hypothesis that the DS component is of negligible importance in a components formulation.
For the real GNP series this hypothesis was found to be of borderline significance at the 0.05
level.
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4. DETRENDING PRIOR TO ECONOMETRIC ANALYSIS

In this section we switch our attention away from trend estimation, conducted
for the purpose of isolating trend and cyclical components of a series, and to-
ward trend removal (or “detrending”), conducted for the purpose of obtaining
series suitable for econometric analysis of relationships among variables. In this
context, then, the issue is whether to process variables prior to (say) regression
analysis by removal of an estimated deterministic trend30 or by differencing
of the series. A major reason for detrending is that the standard formulae
for standard errors, test statistics, etc., are in most cases based on asymptotic
distribution theory that assumes stationarity of the regressor variables.31 Belief
that some variable is generated by a process of the DS type—i.e., one with a
unit root—might then lead to the presumption that data differencing would be
preferable for that variable prior to its use in a regression study.

Other influential arguments for differencing of data prior to time series
econometric analysis were put forth by Granger and Newbold (1974) and
Nelson and Kang (1984). In the earlier of these papers it was shown that a
regression relatingyt to xt would spuriously tend to find a relationship when in
fact yt andxt are generated independently but by random-walk processes. The
Nelson-Kang piece emphasized a tendency for trendless random-walk variables
to be spuriously related to time trends in estimated regressions.

As a result of these and other studies, considerable support developed dur-
ing the mid-1980s for the position that differencing should routinely be carried
out prior to regression analysis involving time series data.32 The case for such
a practice was succinctly summarized by Plosser and Schwert (1978, p. 653)
as follows: “Ignoring the effects of underdifferencing can be a far more costly
error than ignoring the effects of overdifferencing.” More recently, there has
been significant counter-movement based on phenomena related to the concept
of “cointegration.” A consideration of that position will be presented below,
but it will be useful first to consider the merits of routine differencing, rather
than detrending, of variables with an apparent trend component.

30 In least-squares regression analysis the inclusion of a time trend among the regressors is
equivalent to the use of variables detrended by prior regression on the same time variable (i.e.,
using residuals, from these prior regressions on time, as the detrended variables).

31 The standard formulae do not rely on asymptotic distribution theory in cases in which
there are no lagged dependent variables in the system under study, but such cases are the exception
in applied macroeconomics.

32 A contrary argument is that differencing sacrifices information pertaining to levels or to
long-run relationships. Estimation of a levels relationship after differencing will not, of course,
provide any information about the constant term, but that is usually of little importance. The
argument developed below suggests that little is lost with regard to long-run multipliers unless
the variables are cointegrated, a topic that is taken up briefly in Section 6.
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The issues at hand can be usefully introduced and illustrated in an example
similar to that used by Plosser and Schwert (1978). Consider a linear regression
relationship that is (by assumption) correctly specified in first differences, viz.,

∆yt = β∆xt + εt, (18)

whereεt is a white-noise disturbance with varianceσ2
ε and wherext is exoge-

nous, generated by a process independent of the process generatingεt. Now, if
instead of (18) the investigator estimates by ordinary least squares (OLS) the
relationship betweenxt andyt in levels, he is in effect applying OLS to

yt = α + βxt + ηt, (19)

in which the disturbance termηt = εt +εt−1+ · · · is serially correlated and non-
stationary. In thisunderdifferenced case, as Plosser and Schwert point out, the
OLS estimator ofβ could be inconsistent, depending on the process generating
xt. In any event, whether or not the OLS estimator is consistent, its sampling
distribution does not have finite moments. Inferences based on the usual OLS
formulae are likely, accordingly, to be highly inappropriate.

Next, suppose that instead the investigator applies OLS to the second
differences ofyt andxt, estimating

∆(∆yt) = β∆(∆xt) + ∆εt. (20)

In this case withoverdifferencing the disturbance∆εt is again serially correlated
but now its distribution is stationary. The OLS estimator ofβ will be unbiased
and consistent, but will be inefficient and its sampling variance will (except in
special cases) not be consistently estimated by the usual formulae.

These foregoing considerations, discussed by Plosser and Schwert (1978),
are of some interest but are actually relevant only under the presumption that the
investigator is wrong about the appropriate degree of differencingand makes
use of OLS estimators even though the implied disturbances are serially cor-
related. Of considerably greater interest, it would seem, are the consequences
of estimatingβ with underdifferenced or overdifferenced data when the in-
vestigator recognizes the presence of serial correlation in the OLS residuals
and responds by utilizing an estimator designed to take account of autocorre-
lated disturbances in the appropriate manner. In the overdifferenced case, for
example, the true relation can be written as

∆(∆yt) = β∆(∆xt) + εt + θεt−1, (21)

with θ = −1.0. The interesting question, then, is whether the investigator will
be led seriously astray if he regresses∆(∆yt) on ∆(∆xt) using an estimation
procedure designed for cases in which the disturbance process is a first-order
MA.
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Now precisely this last question has been investigated via Monte Carlo
experimentation33 by Plosser and Schwert (1977). They find that even though
the absolute value ofθ tends to be somewhat underestimated—with a sample
size ofT = 100 the mean across 1,000 replications of the estimates ofθ is about
−0.94—the estimates ofβ are not appreciably biased and the experimental
sampling distribution is not such as to lead frequently to incorrect inference.
Specifically, the frequency of rejection of a true hypothesis with a nominal
significance level of 0.05 is 0.063 in one experiment and 0.081 in the other.
Plosser and Schwert conclude, appropriately, that “the cost associated with
overdifferencing may not be large when care is taken to analyze the properties
of regression disturbances” (1978, p. 643).

The corresponding case of an investigation with underdifferencing arises
if we write the true relation as

yt = α + βxt + (1− ρL)−1εt, (22)

with ρ = 1.0, and ask whether the investigator will be led seriously astray
(regardingβ) if he regressesyt on xt under the assumption that the disturbance
process is a first-order AR. With respect to this possibility, Plosser and Schwert
(1978, p. 643) recognize that “if the resulting estimate ofρ is close to one,
as it should be in this case, differencing would be indicated leading to the
correct model.̇..” They do not, however, consider the effects on the estimation
of β of concluding one’s investigation with the estimate provided by the levels
regression that takes account of AR disturbances—which is the situation corre-
sponding to the presumed behavior of the investigator in the overdifferencing
case. This asymmetry in discussion prevents them from giving a comparison
of the relative costs of underdifferencing vs. overdifferencing when the inves-
tigator is intelligently taking account of the serial correlation properties of the
disturbances.

Some Monte Carlo results relevant to this type of procedure have, however,
been obtained by Harvey (1980) and Nelson and Kang (1984). The latter of
these papers is devoted primarily to emphasizing various ways in which in-
vestigators could be led to misleading results if they estimate underdifferenced
relationships and donot correct for serially correlated residuals, but it briefly
reports (on pp. 79–80) results of testing a true hypothesis analogous toβ = 0
in (22) withβ andρ estimated jointly. WithT = 100 and a significance level of
0.05, the frequency of rejection in 1,000 replications is 0.067, which compares
favorably with the Plosser-Schwert results for the case with overdifferencing.
The study by Harvey (1980) compares mean-squared-error (MSE) values34 for

33 This approach is used because the usual asymptotic distribution theory breaks down in
cases with unit roots in either the MA or AR polynomial.

34 Across 200 replications.
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estimates ofβ in (22) with ρ = 1.0 when estimated with first differences and
when estimated jointly withρ using levels data (i.e., with underdifferencing and
an autocorrelation correction). Two specifications regarding the behavior of the
exogenous variablext are considered by Harvey. In one of these thext process
is stationary; in that case the MSE value for the estimator ofβ is 0.310 with
the (correct) first-difference specification and 0.309 with underdifferencing (and
autocorrelation correction).35 In the other case, which features strongly trending
xt data, the analogous MSE figures are 0.061 and 0.078.36

Also of relevance, though not conforming to the symmetric contrast pro-
vided by our specifications (18) and (20), is evidence provided by Harvey
relating to the estimation of a relation like (22) but withρ = 0.9. The al-
ternative estimators are based on application of maximum likelihood to the
(correct) levels specification and OLS to the first-differenced specification, the
latter amounting to estimation withρ = 1.0 by constraint.37 The T = 100
MSE values are 0.263 and 0.262 for the two estimators with stationaryxt’s,
and 0.009 vs. 0.018 with trendingxt’s.

On the basis of the described Monte Carlo experiments, the appropri-
ate conclusion would seem to be that neither overdifferencing nor under-
differencing leads to serious estimation or testing mistakes in regression models
with exogenous regressors, provided that the investigator takes intelligent ac-
count of serial correlation present in the regression residuals. It is perhaps
worth noting, given the tenor of their discussion, that this conclusion is not
contradicted in the least by the four studies involving actual data (and unknown
specifications) that are explored by Plosser and Schwert (1978).

Specifically, in each of these four cases the authors conclude that first
differencing is probably appropriate, but the point estimates and standard er-
rors (for the parameter analogous toβ) that are provided by regressions with
undifferenced data are virtually the same when the Cochrane-Orcutt procedure
is used to account forρ �= 0. In their Table 1 regression of (log) income on
the (log) money stock, for example, the slope coefficient (and standard error)
values are 1.127 (0.122) for the Cochrane-Orcutt levels regression and 1.141
(0.126) in the differenced case. The OLS regressions with data that have been
differenced twice give estimates that do not agree as well, but in each of these
cases there is evidence ofuncorrected serial correlation in the residuals. In
Table 1, for example, the first residual autocorrelation is−0.36.

It is additionally worth noting that Plosser and Schwert (1978, p. 638)
also take the view that “the real issue is not differencing, but an appropriate
appreciation of the role of the error term in regression models.” Thus our

35 Actually the estimator “with autocorrelation correction” involves full maximum likelihood
estimation of (22).

36 These values are for sample size ofT = 100; Harvey also gives results forT = 20 and
T = 50.

37 In the levels formulation,ρ is estimated jointly withβ.
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disagreement with Plosser and Schwert seems to be whether the “representa-
tive investigator” will, or will not, recognize and take steps in response to the
presence of autocorrelated residuals.

The foregoing evidence relates, however, principally to relations with ex-
ogenous regressors. In practice, it is much more common for equations of
interest to include one or more lagged endogenous variables. But if∆yt−1

were to appear as an additional regressor in (18), then the situation regarding
estimation ofβ would be quite different. In order to obtain a bit of evidence as
to the validity of the suggestion—that the presence or absence of differencing
is not crucial when serial correlation corrections are applied—in situations in
which lagged endogenous variables are present, let us consider results pertain-
ing to two example relationships (that may be of some substantive interest).

Specifically, let us first consider estimation of the rudimentary single-
equation model of aggregate demand utilized in McCallum (1987), that is,
an equation relating growth of nominal GNP to growth rates of the monetary
base. Notationally, letxt and bt denote logarithms of nominal GNP and the
base, respectively, for periodt and consider quarterly observations, seasonally
adjusted, for the sample period 1954:1–1991:3.38

As a starting point, consider the following updated version of the specifi-
cation emphasized in McCallum (1987):

∆xt = 0.0078
(.002)

+ 0.3248
(.073)

∆xt−1 + 0.3190
(.104)

∆bt.

R2 = 0.196 SE= 0.0097 DW= 2.12 Q(10)= 8.3
(23)

Here parameter standard errors are shown in parentheses while the reported sta-
tistics are the unadjusted R2, the estimated standard deviation of the disturbance
term, the Durbin-Watson statistic, and the Box-Pierce Q-statistic based on the
first ten autocorrelation terms.39 These statistics give no evidence of residual
autocorrelation and it is the case that∆xt−2 would not provide additional ex-
planatory power. As it happens, however, inclusion of∆bt−1 would provide
additional explanatory power and would make∆bt insignificant. Accordingly,
let us switch our attention to the variant of (23) in which∆bt is replaced by
∆bt−1, a variant also used in McCallum (1987). The 1954:1–1991:3 estimates
are as follows:

∆xt = 0.0076
(.002)

+ 0.2845
(.075)

∆xt−1 + 0.3831
(.105)

∆bt−1.

R2 = 0.215 SE= 0.0096 DW= 2.07 Q(10)= 8.0
(24)

38 Data for 1953-1990 are taken from the Citibase data set, while 1991 values come from the
Survey of Current Business (GNP) and the Federal Reserve Bank of St. Louis (adjusted monetary
base). Calculations are performed with version 7.0 of Micro TSP.

39 Under the assumption that the disturbances are white noise, Q(10) has asymptotically a
chi-squared distribution with eight degrees of freedom; its critical value for a 0.05 significance
level is therefore 18.3.
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Here there is no evidence of residual autocorrelation and additional lagged
values of∆xt and∆bt would not enter significantly. The important properties
of the estimated relation are that∆xt is mildly autoregressive and is positively
related to∆bt, with a moderately large elasticity value that is not significantly
different from 0.5.

The first question to be answered, then, is “What would we have found
if we had estimated this same relation in (log) levels, using series with deter-
ministic trends removed?” To develop an answer, first consider equation (25),
where the detrending is effected by inclusion of time as an additional regressor:

xt = 0.0273
(.072)

+ 0.00021
(.0002)

t + 1.0160
(.020)

xt−1 − 0.0321
(.014)

bt−1.

R2 = 0.9999 SE= 0.0104 DW= 1.40 Q(10)= 23.1
(25)

Here the results are entirely different from those in (24), but there is distinct
evidence of residual autocorrelation. Re-estimation with the disturbance term
assumed to follow an AR(1) process yields

xt = 5.857
(34.1)

+ 0.0067
(.060)

t + 0.2763
(.081)

xt−1 + 0.592
(.150)

bt−1 + 0.996
(.023)

ut−1,

R2 = 0.9999 SE= 0.0095 DW= 2.14 Q(10)= 9.0
(26)

whereut is defined as (1− ρL)−1εt. Now, with the AR(1) disturbance spec-
ification, we estimate the autocorrelation parameter to be very close to one
and the magnitude of the coefficients attached toxt−1 and bt−1 revert to the
neighborhood of the corresponding values in the differenced relation (24).40

The trend term is insignificant, as was the constant in (24), and qualitatively
the relation in (26) is quite similar to the version estimated in differences.

Next, we move in the opposite direction by differencing the variables one
more time than in the reference case (24). Let∆∆xt ≡ ∆(∆xt) for brevity.
Then with the disturbance treated as white noise, the result is

∆∆xt = 0.0002
(.0009)

−0.3993
(.074)

∆∆xt−1 + 0.363
(.158)

∆∆bt−1.

R2 = 0.182 SE= 0.0110 DW= 2.12 Q(10)= 18.3
(27)

Here the estimated parameter on the lagged GNP variable is entirely unlike
that in (24), but the Q-statistic gives borderline evidence of serial correlation.
Estimated with a MA(1) specification for the disturbance, the results change
to:

∆∆xt = 0.00001
(.0008)

+ 0.1666
(.065)

∆∆xt−1 + 0.3571
(.139)

∆∆bt−1 − 0.946
(.032)

et−1.

R2 = 0.370 SE= 0.0097 DW= 1.89 Q(10)= 9.5
(28)

40 The coefficient on the base variable is now somewhat larger than 0.5, rather than smaller,
but the difference is less than two standard errors.
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Now the figures are again quite close to those in the once-differenced specifica-
tion (24). Not only the estimated parameter values, but also the standard errors
are approximately the same—and there is no evidence of serial correlation.
Thus the results are similar for regressions using detrended levels, differences,
and second differences of thext andbt variables, provided that autocorrelation
corrections are used.

A second example concerns spot and forward exchange rates. In a recent
paper (McCallum 1992), I have summarized some empirical regularities for the
post-1973 floating rate period, focusing on $/£, $/DM, and $/Yen rates over the
time span 1978:01–1990:07. Lettingst and ft denote logs of the spot and 30-
day forward rates at the end of montht, one of the observed regularities is that
OLS regression ofst on ft−1 provides a tight fit with a slope coefficient very
close to one—see the estimates reported in the first panel of Table 4. When∆st

is regressed on∆ft−1, however, the relationship disappears and the estimated
slope coefficient becomes insignificantly different from zero—see the second
panel of Table 4. That contrast would seem to contradict the argument of the
preceding paragraphs since there is little indication of serial correlation in the
residuals in either case.

The results in panel three, however, support our previous argument. There
the levels equation relatingst andft−1 is reestimated with an AR(1) specification
for the disturbance process, even though the DW and Q-statistics in the top
panel do not clearly call for such a step. And for all three exchange rates the
result is the same—the AR parameterφ is estimated to be close to one with
the slope coefficient onft−1 becoming indistinguishable from zero. The results
in panel three, in other words, are essentially equivalent to those in panel two,
even though differenced data are used in the latter and not in the former.

In addition, the specification using second differences together with a
MA(1) disturbance is implemented in the fourth panel of Table 4. There the
DM case differs slightly from the previous results, the slope coefficient onft−1

being estimated as about 0.21 and significant, but for both the £ and Yen rates
the previous results are obtained again—the slope coefficient is close to zero
with the MA parameter being estimated in the vicinity of−1.0. For five out
of the six comparisons with the reference case of panel two, then, the results
are in strong agreement despite contrasting treatment in terms of differencing.
And even in the sixth case, the extent of disagreement is relatively minor.
Thus the evidence is again supportive of the general argument that the extent
of differencing is not crucial, in the context of detrending of variables prior
to econometric analysis, provided that residual autocorrelation corrections are
utilized.41

41 It should be said explicitly that this argument is not being made with regard to Granger
causality tests or variance decomposition statistics in vector-autoregression studies. It is my im-
pression that these results are rather sensitive to the detrending procedure. But such results are, I
believe, of less importance than impulse response patterns.
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Table 4 Spot on Forward Exchange Rate Regressions, Sample Period
1978:01–1990:07

Estimates (std. errors) Statistics
Rate Variables Const. Slope AR(1) MA(1) R2 SE DW Q(10)

$/DM st on ft−1 −0.009 0.990 0.963 0.0362 2.05 9.6
(.012) (.016)

$/£ '' '' 0.014 0.977 0.960 0.0359 1.82 5.9
(.009) (.016)

$/Yen '' '' −0.046 0.991 0.975 0.0380 1.84 7.7
(.067) (.013)

$/DM ∆st on ∆ft−1 0.002 −0.063 0.004 0.0358 1.96 7.5
(.003) (.081)

$/£ '' '' 0.000 0.024 0.000 0.0352 1.99 3.4
(.003) (.082)

$/Yen '' '' 0.003 0.038 0.001 0.0374 1.99 4.8
(.003) (.082)

$/DM st on ft−1 −0.575 −0.057 0.991 0.964 0.0359 1.96 8.1
(.510) (.083) (.015)

$/£ '' '' 0.509 0.035 0.979 0.962 0.0351 1.99 3.8
(.143) (.084) (.017)

$/Yen '' '' −4.743 0.046 0.989 0.976 0.0374 2.00 5.0
(.681) (.083) (.0l3)

$/DM ∆∆st on ∆∆ft−1 0.000 −0.206 −0.887 0.526 0.0361 1.86 4.1
(.003) (.057) (.039)

$/£ '' '' 0.000 −0.032 −0.933 0.472 0.0357 1.96 3.1
(.003) (.060) (.035)

$/Yen '' '' 0.000−0.010 −0.956 0.468 0.0379 1.94 4.0
(.003) (.060) (.027)

Data source: Bank for International Settlements.

5. COINTEGRATION

Now suppose thatxt and yt are two time series variables generated by DS
processes—i.e., their univariate series have AR unit roots—that are dynami-
cally related by a distributed-lag relation with a stationary disturbance. In (29),
for example, we assumeut to be stationary:42

yt = α + β(L)xt + ut. (29)

42 It is not being assumed thatxt is necessarily a predetermined variable, i.e., thatut is
uncorrelated withxt, xt−1, · · · .
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Under these conditionsyt and xt are said to becointegrated, the term aris-
ing because DS variables are referred to by many time series analysts as
“integrated.”43 Now it is a striking fact that whenyt andxt are cointegrated, then
an OLS regression ofyt onxt alone—with no lags—will yield a slope coefficient
b that is a consistent estimator of the “long-run” effectβ(1) = β0+β1+· · · . This
result would appear to be of practical importance, as it promises to provide a
simple way of discovering features of long-run relationships between variables.
To demonstrate the result, let us express the residualet = yt − bxt as

et = α + β(L)xt + ut − bxt = α + [β(L) − b]xt + ut. (30)

But with xt an integrated (DS) variable,et will then be integrated unlessβ(1)−
b = 0. And if et were integrated, then the sum of squaredet values would
increase without limit as the sample size goes to infinity, so the OLS criterion
of picking b to minimize this sum forcesb towardβ(1).

There are numerous additional theoretical results concerning cointegrated
variables including extension to multivariate settings44 and close connections
between cointegration and the existence of “error correction” forms of dynamic
models.45 For present purposes, however, the main item of interest concerns
the frequently expressed contention that if two (or more) DS variables are not
cointegrated, then there exists no long-run relationship between (or among)
them. On the basis of this notion, various researchers have concluded that
purchasing-power-parity fails even as a long-run tendency (see, e.g., Taylor
[1988] and McNown and Wallace [1989]) whereas others have drawn analogous
conclusions regarding traditional money demand relations—see, e.g., Engle and
Granger (1987).46 Cuthbertson and Taylor (1990, p. 295) have stated the matter
thusly: “If the concept of a stable, long-run money demand function is to have
any empirical content whatsoever, thenmt [log money].̇. must be cointegrated”
with log prices, log income, and interest rates.

Now clearly there is a technical sense in which these suggestions are cor-
rect: if yt andxt are both DS but not cointegrated, then the disturbance entering
any linear relationship between them must (by definition) be nonstationary. So
they can drift apart as time passes. I would argue, however, that it is highly
misleading to conclude that in any practical sense long-run relationships are

43 If a variable must be differencedd times to render it stationary, it is said to be integrated
of orderd, abbreviatedI(d). The term “integrated” was popularized by Box and Jenkins (1970),
its genesis being that a random-walk variable is at any time equal to the infinite sum (“integral”)
of all past disturbances. Cointegration analysis was developed by Granger (1983) and Engle and
Granger (1987).

44 See, for example, the expository piece by Dickey, Jansen, and Thornton (1991).
45 See Hendry (1986).
46 Other writers have apparently accepted this characterization prior to reaching the opposite

empirical conclusion. A few examples are Mehra (1989), Hoffman and Rasche (1991), Miller
(1991), Hafer and Jansen (1991), and Diebold, Husted, and Rush (1991).
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therefore nonexistent. My argument is entirely interpretive; it includes no sug-
gestion of technical error in the literature criticized. But its importance is not
thereby diminished.

To develop the argument at hand, let us take the example of a traditional
money demand function of the form

mt − pt = β0 + β1yt + β2Rt + ηt, (31)

wheremt−pt is the log of real money balances,yt the log of a real transactions
variable (such as GDP), andRt is an opportunity-cost variable relevant to the
measure of money being used. Let us suppose for the purpose of the argument
that mt − pt, yt, andRt are all DS variables. And let us suppose thatmt − pt,
yt, andRt have all been processed by removal of a deterministic trend.47 Then
the cointegration status of the relationship depends upon the properties of the
disturbanceηt—if its process is of the DS type, the variables in (31) will not
be cointegrated.

It is my contention that the traditional view of money demand theory,
represented for example by theNew Palgrave entry by McCallum and Good-
friend (1987), would actually suggest that the variables in (31) areunlikely
to be cointegrated. The reason is that the rationale for (31) depends upon the
transactions-facilitating function of money, but the technology for effecting
transactions is constantly changing. And since technical progress cannot be
well represented by measurable variables, the effects of technical change not
captured by a deterministic trend show up in the disturbance term,ηt. But the
nature of technological progress is such that changes (shocks) are typicallynot
reversed. Thus one would expect there to be an important permanent component
to theηt process, making it one of the DS type.

In such a situation, however, the “long-run” messages of traditional money
demand analysis may continue to apply. Provided that the magnitude of the
variance to the innovation inηt is not large in relation to potential magnitudes
of ∆mt values, it will still be true that inflation rates will be principally deter-
mined by money growth rates, that long-run monetary neutrality will prevail,
that superneutrality will be approximately but not precisely valid, etc. That
the disturbance term in the money demand relationship is of the DS class is
simply not a source of embarrassment or special concern for supporters of the
traditional theory of money demand.48

Much the same can be said, furthermore, in the context of PPP doctrine.
Nominal exchange rates are probably not cointegrated with relative price levels

47 This step should not be at issue; the existence of technological change in the payments
industry is widely accepted.

48 Many of these supporters have been willing to estimate money demand functions in first-
differenced form, thereby implicitly assuming a DS disturbance process.
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because technological and taste shocks affecting real exchange rates have per-
manent components.49 But major differences among nations in money growth
and inflation rates may nevertheless dominate other effects on nominal ex-
change rates over long spans of time, leaving the practical messages of the PPP
doctrine entirely valid as a long-run matter.50 That such is the case in actuality
is indicated by the evidence collected by Gailliot (1970) and Officer (1980).

In both of the preceding examples, it was argued that one should expect
the disturbance term in a relation among levels of economic variables to in-
clude both permanent and transitory components, and therefore to possess an
autoregressive unit root. This argument—which is an application to disturbance
terms of the unobserved-components perspective put forth in Section 3—would
seem to be applicable quite broadly; indeed, to the disturbances of most be-
havioral relations. That point of view implies, unfortunately, that cointegrating
relationships will be rare51 and so the potentially beneficial estimation result
mentioned in the first paragraph of this section will not be forthcoming.52

The argument of the present section has a natural counterpart, it might
be added, in the context of debates concerning non-trend stationarity of the
price level. Some commentators, including Barro (1986) and Haraf (1986),
have emphasized uncertainty concerning future values of the price level and
have accordingly suggested that it is highly undesirable forpt (log of the price
level) to be generated by a unit-root process. The point of view expressed here
emphasizes, by contrast, the relative unimportance ofpt nonstationarity per se,
given the existing magnitude of the disturbance variance for thept process, in
comparison with recent values of thetrend growth rate. One way to express
the point is to hypothesize that citizens and policymakers in the United States
would view price-level performance as highly satisfactory if it were generated
(in quarterly terms) as

pt = δ + pt−1 + εt (32)

if δ = 0 andεt were white noise withσ2
ε = 0.00002. (The latter figure approx-

imately equals the one-quarter forecast variance over 1954–1991.) Looking 20
years ahead, the forecast variance ofpt would be 80(0.00002)= 0.0016, so a
95 percent confidence interval would be the current value plus or minus 0.08

49 As suggested, for example, by Stockman (1987).
50 Here the interpretation of PPP is taken to agree with popular usage, although a good

case can be made for an alternative interpretation that expresses PPP as a form of a neutrality
proposition.

51 The st, ft example in Section 5 is, however, a case in which cointegration evidently does
obtain.

52 Campbell and Perron (1991, pp. 218-19) argues against this suggestion by means of a
reductio ad absurdum. The latter is not actually applicable, however, as my argument is directed
only toward variables that enter agents’ utility functions or budget constraints.
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(or ±8 percent in terms of the price level). That figure pales into insignificance
in comparison with theexpected change inpt over 20 years ifδ were nonzero
and equal to (e.g.) 0.011, a figure that corresponds to a 4.5 percent annual rate
of inflation.

6. CONCLUSIONS

In this final section we shall conclude the arguments. The discussion will not
be a summary of what has gone before—which is itself largely a condensation
of other work—but instead will attempt to reachconclusions in the sense of
“logical consequences” of what has gone before. In developing our arguments
it will be useful to distinguish the two different purposes of trend analysis
that were mentioned above: (i) isolating trend from cyclical components and
(ii) trend removal for the purpose of obtaining series suitable for econometric
analysis. We begin with subject (ii).

In the context of removing trends from time series so that relationships
among these series can be studied by conventional econometric methods, we
have seen that there is a tendency for similar results to be obtained from the two
methods, provided that serial correlation corrections are applied to the residuals
of the relationship being studied. This suggests that it is not crucial whether the
analyst differences the data or removes deterministic trends. The recommended
course of action would then be, evidently, to estimate the econometric model
both ways—with differenced and (deterministically) detrended data—and hope
that similar results will in fact be obtained. But emphasis in presentation will
usually be given to one set of results or the other, and in some cases the results
will not be similar. A natural basis for choice would then be to feature the
results that require the smaller amount of correction to remove autocorrelation
of the residuals. In the case of the GNP-monetary base example of Section 4,
for example, the preferred results would be those in equation (24), rather than
(26) or (28). And in the exchange rate example of Table 4, the results in the
second panel would be preferred, according to this criterion.

Now consider purpose (i), the estimation of trends so as to isolate trend
from cyclical components of a series. In Sections 2-4 above we have reviewed
various results all of which indicate that there is no reliable method for distin-
guishing among alternative trend/cycle decompositions even when these have
entirely different long-run response characteristics and different implications
about the relative importance of the two components. This seems, at first glance,
a discouraging conclusion.

Reflection on the issue suggests, however, that it actually makes very little
sense even to attempt to distinguish between trend and cycle on the basis
of a variable’s univariate time series properties alone. The reason is that the
separation of trend and cycle will in most cases be desired because the analyst
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believes that the two components have different economic properties or signifi-
cance. With regard to real GNP, for example, Nelson (1989, p. 74) emphasizes
that analysts “tend to think of the processes generating the two components as
quite different,” one being “due to growth in labor force and capital stock and
to technological change” and the other “arising largely from monetary [and
fiscal] disturbances.” But such components will be neither independent nor
perfectly correlated, as presumed by the two main trend estimation procedures
described above. And without knowledge of the extent of correlation, they are
not identified even under the assumption that the trend component is a random
walk. This latter assumption, moreover, is itself rather unsatisfactory.

More generally, the distinction between trend and cycle is by many econo-
mists viewed as pertaining to movements that are socially desirable and un-
desirable, respectively. But whether such is the case clearly depends upon the
economist’s theory of cyclical fluctuations, for some of these—the real business
cycle hypothesis, for example—will not view cyclical movements as something
that policy should attempt to mitigate. The nature of the cycle vs. trend distinc-
tion, in other words, depends upon the theory of macroeconomic fluctuations
adopted. But if that is the case, then it makes little sense to attempt to separate
out the cyclical component by means of a procedure that takes no account of
alternative theories but relies merely on a variable’s time series properties.53

The reader may have noticed that the remarks in this concluding section
have pertained exclusively to trend analysis, with the term “unit roots” failing
to appear. More generally, it may have been noted that there is no inevitable
connection between the two concepts—unit roots may be present in a series that
is entirely trendless (and vice versa). But the presence of trends is a constant
source of practical difficulties in the analysis of time series data, and the recent
interest in unit roots has stemmed largely from the notion of stochastic trends. It
is then for reasons of practicality that emphasis has here been given to the topic
of trends. Our principal messages regarding unit roots per se are implicit in our
conclusions regarding trends. But since those messages are somewhat negative
concerning the value of unit root testing, it needs to be mentioned explicitly
that introduction of the unit root concept, together with recognition that series
are likely to include DS components, has been a valuable corrective to the
earlier habit of presuming trend stationarity and has led to several analytical
insights.54

53 It should be noted that this argument does not imply that it is pointless to try to attempt
to reach substantive macroeconomic conclusions on the basis of analyses such as that of Blan-
chard and Quah (1989), which utilizes multiple time series and relies upon explicit substantive
assumptions for identification.

54 A recent example is provided by the related analyses of Fisher and Seater (1993) and
King and Watson (1992).
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