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1. Introduction

Learning-by-doing, the process by which current and past production experience permanently
increases productivity, has been portrayed as a prominent engine of growth in the literature.!
This paper questions some important conclusions implied by typical formulations of learning-
by-doing (LBD) in that literature, and shows that these implications are reversed under the
formulation proposed here. In existing models LBD has growth effects through externalities
which increase without bounds the effective productivity of factors of production or the range
of producable goods. Moreover, because these effects appear as pure externalities, producers
in these models do not take into account the impact of their own current production levels on
future LBD-induced benefits. Such models imply that the steady state growth rate increases
with the level of resources in the economy, (“scale effects”), and with the speed of learning.

While there is substantial evidence that LBD increases productivity, that same evidence
shows that its potential for enhancing growth is of a completely different nature than that
assumed in the literature. First, measured productivity improvements due to LBD for any
particular good are bounded. Second, these productivity improvements are mostly limited
to the firm producing the product and are internalized by the firm. Third, there is no
strong evidence that production experience with existing products is directly transferable to
new types of products. Accordingly, the impact of LBD on new products cannot be simply
described by way of reduced unit production cost. We show that in a growth model, which
incorporates a richer version of LBD based on these observed features, the standard results

are overturned. In particular, for an empirically plausible parameterization of the model

!See, for instance, Romer (1986), Stokey (1988), Lucas (1993), and Young (1993).



the growth rate declines when productivity is more sensitive to experience, and when the
resource base of the economy increases.

The benefits associated with LBD can be classified into two broad categories. Although
distinct, both depend on cumulative experience with existing goods and production practices.
First, through repetitive and routine production experience, LBD reduces production costs
and generates minor product improvements. These efficiency gains are bounded and are
relevant for the production of a new good in a particular production site. Such gains are well
documented in the management literature on LBD.? Because this mechanism implies only
bounded productivity improvements it cannot generate sustained growth. A second benefit
attributed to LBD, which is capable of sustaining growth, is associated with the research
for and the development of new products and production technologies. As bottle necks in
current production practices are identified, the ways in which customers use the product
become known, and the product’s main limitations and deficiencies are revealed, innovators
are better able to come up with new products and better production technologies. However,
since re-engineering, labor mobility, and public discussions of customers’ needs are permanent
features of market economies, the knowhow which turns up to be useful for developing new
products can hardly be appropriated by current producers.?

The fact that potentially proprietary efficiency gains from increased production levels are

inseparably bundled with the creation of R&D opportunities which cannot be appropriated

creates a complicated interaction between LBD, R&D, and production decisions. We study

2See, for instance, Argeote, Backman, Epple (1990), Bahk and Gort (1993), and references therein.

3Note that this externality is very different from the usual assumption that LBD directly expands the
range of products which can be produced. In particular the second LBD benefit described implies that the
potential for successful R&D increases as more experience cumulates with existing goods, but not that the
cumulated experience directly determines the rate of new product introduction.



this problem in a modified version of the quality ladder growth model of Grossman and
Helpman (1991) and Aghion and Howitt (1992). The modification takes the form of adding
an experience measure of quality to each product, which is tied to its production volume.
Specifically, there are two levels of effective quality associated with each product. New goods
start with the low-experience quality, and move up to the higher level of quality only after
enough experience has been accumulated with them. The high-experience status of a good is
more profitable to its producer due to greater consumer demand or reduced unit cost. R&D
for new products can only be performed in those industries whose products have already
attained the high-experience status. This description captures the two distinct types of
LBD benefits, while maintaining their inseparable bundling.

The R&D-enabling benefit of a high experience status attained by any product is modeled
as an externality which cannot be appropriated by the current producer of that good. We
consider three alternative assumptions concerning the externalities associated with efficiency
gains generated by LBD. Specifically, the “learning rate”, the rate at which existing products
attain the high-experience status, is described as: (i) completely exogenous, (ii) depending
on aggregate production level, (a production externality), (iii) an internalized production
benefit, the rate of which depends only the production level of that particular good. Profit
maximizing production and R&D decisions jointly determine the distribution of experience
across goods in the economy and the extent of R&D activities for developing new goods.
Growth, arising from the introduction of new types of goods, is affected by both.

The key role of the endogenous distribution of experience across goods in the economy
in determining the growth rate, and the considerations that enter producers’ decision about

the pace of their own experience accumulation, set us apart from most of the literature on
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growth through R&D for new products. These models assume that firms do not internalize
the effects of LBD. That is, producers in those models fail to recognize that higher production
volume today implies lower production costs tomorrow, and also a greater likelihood of a
new product being introduced that might preclude them from enjoying those efficiency gains.

In the classic formulation of these externalities, general labor productivity increases over
time at a rate which is proportional to aggregate output. Most models that explicitly consider
the distinction between existing goods and goods to be developed also maintain the strict
externality associated with LBD. For instance, Stokey (1988) does not make a distinction
between the development of new goods and the improvement of existing goods. Rather, she
assumes that higher level of output today reduces the unit cost of both existing goods as
well as goods to be developed, and that this benefit is external to all firms. In Young (1993),
experience with existing goods reduces their unit cost, and that cost reduction is external
the firms. The potential impact of experience on R&D for new products is assumed away
altogether. Parente (1994) describes adoption decisions of new technologies by firms, but the
rate at which they gain experience and become more efficient in using those new technologies
is independent of their production volume. Lucas (1993) recognizes that LBD reduces both
the unit cost of existing goods and goods in development, but does not incorporate these
effects in firms’ production decision. Consequently, these models only partially capture the
forces at play when the learning technology improves, R&D costs decline, or the labor force
size increases.

It turns out that in our setup, the magnitudes or even the sign of the growth effects of such
changes in the environment are very sensitive to the benefits and the speed of acquiring the

high-experience status. The vast empirical literature on LBD is almost exclusively confined
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to the efficiency benefits that accrue from repetitive production of the same good, using
the same method, in the same facility. Very few works estimate the extent to which LBD
benefits spill over across production facilities and successive generations of products. When
we parametrize our model in light of the evidence in the latter and let producers internalize
the efficiency benefits of LBD, the increased risk of loosing future benefits from their current
LBD activities tends to dominate other growth enhancing influences of the exogenous changes
considered.

In Section 2 we compile some of the empirical evidence on the characteristics of LBD, in
terms of types of benefits, their magnitude, and the extent to which they are external. In
section 3, we present our modified version of an R&D based growth model with endogenous
learning. In section 4 we show that while the usual growth implications of increased work
force, lower R&D costs, or faster learning rate obtain when learning is exogenous, (i.e.,
independent of output volume), it is no longer possible to determine analytically the impact
of those same changes with endogenous learning. Because the analysis with endogenous
learning is so complicated, we turn in section 5 to a numerical computation of the equilibrium
in a version of the model parametrized in light of the evidence compiled in section 2, which fits
the characteristics of experience spillovers across different products and production facilities.
The numerical solution shows that producers’ responses to improved learning technology,

reduced R&D costs, and larger work force size result in a lower steady state growth rate.

*Irwin and Klenow (1994), Bahk and Gort (1993), Argote, Backman and Epple (1990).



2. Characteristics of Learning-by-Doing

LBD refers mostly to the process by which unit production costs are reduced as experience
is accumulated. This reduction in production costs is present even after controlling for
changes in capital investment and other purchased inputs. Thus, in its original meaning,
LBD captures the enhanced efficiency attributed to increased familiarity with the routine
activities performed by the firm. The significance and magnitude of LBD effects in the
context of a specific production process has been noted in the engineering literature for
many decades: one of the earliest references is Wright (1936) on the labor costs of airplane
frames. Recently there is also a growing recognition that a distinction ought to be made
between LBD processes associated with a specific product, and those associated with the
plant or the organization. For example, Bahk and Gort (1993) decompose learning into three
types of LBD: labor learning which captures the increase in manual skills obtainable through
repetitive tasks; capital learning which refers to engineering information accumulated over
time in the use of particular capital equipment; and organizational learning, the most elusive
concept of the three, referring to managerial, marketing, and general types of knowledge that
accumulate in an organization over time. Most of the empirical work on LBD has focused
on the first kind, where it is measured as reduction in average unit production cost as a
function of cumulative production volume.’

The model we develop in this paper is too stylized to allow us a distinction between all
these different types of learning. Yet all three are important to the process of introducing

new goods and technologies, and all three create possible external and spillover influences.

®Some attempts to measure cumulative experience by cumulative past investment, or simply elapsed time,
have also been considered, (Sheshinski 1967).



From the point of view of our theory three characteristics of LBD are important: (i) the
learning rate, measuring the elasticity of unit cost, (equivalent in our model to product
quality), with respect to cumulative output; (ii) the learning scope, measuring the overall
efficiency gain to be attainable through LBD, and (iii) the extent to which externalities are
present in LBD.

A stylized fact of the empirical work on LBD is that the learning rate is about twenty
percent, that is a one percent increase in cumulative output reduces cost by about 0.2
percent. Learning elasticities of this magnitude on specific products have been found in
early empirical work by Searle (1945), Rapping (1965), Hirsch (1952), and Cole (1958).
Recently, Irwin and Klenow (1994) in their study of the production of DRAM chips in the
semi-conductor industry have found a similar learning rate. So pervasive is this phenomenon,
that it is referred to as the “learning curve”, or even the “80% curve”, reflecting the empirical
regularity in manufacturing industries where the unit costs of the 2n** unit are 80% of those of
the n'*, Alchian (1959). However the 80% learning curve is a stylized fact, and as such there
are other studies indicating some variation in observed learning elasticities across various
industries, or even within the same industry. Most of this empirical work is concerned with
cost reductions for a new product within an existing production unit, for example Alchian
(1963), Baloff (1966), Billon (1966). Learning elasticities of 50% or more are found by Argote,
Backman and Epple (1990) in a study of world war IT shipyards. At the other extreme Bahk
and Gort’s (1993) study of new manufacturing plants, (i.e. new production units), indicates
considerably lower learning rates.

While learning curves imply continuous cost reductions as the cumulative production

volume increases, there is ample evidence that these learning effects are bounded, or that
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learning eventually ceases, (Asher (1956), Conway and Schultz (1959), Baloff (1966, 1971),
Hall and Howell (1985)). We refer to the maximum potential quality improvement attainable
through LBD as the scope of learning. Empirical work on cost reductions for new products
within existing production units finds that the scope for learning is large. For example, Searle
(1945) documents a 50% reduction in man-hours input for the Liberty ships. However, the
possibilities for cost reductions through LBD within new production units appear to be much
smaller. For a panel of new manufacturing plants Bahk and Gort (1993) find that new plant
start with around 80% of their full potential productivity.

Most of the aforementioned learning rates have been estimated relative to a production
unit’s own cumulative production experience with the same specific product or process.
This type of learning, which can be thought of as internal learning, stands in sharp contrast
to the type of learning externality exploited by Stokey (1988) and Young (1993), where
economy-wide or industry aggregate cumulative experience determines the productivity of
an individual producer at a point in time. In contrast with the persuasive empirical evidence
on the presence and magnitude of internal learning, there is limited evidence for learning
externalities of the variety considered by Stokey (1988) and Young (1993), (Argote, Backman
and Epple (1990), Bahk and Gort (1993)).5 We do not dispute that there is an important
learning externality associated with LBD in the sense that new products are not introduced
before some experience with existing products has accumulated, (in fact we incorporate such
a feature in the model developed below). We claim, however, that the parameters governing

this learning process may be quite different from those characterizing the enhanced efficiency

¢ Irwin and Klenow (1994) find some evidence for external effects but internal LBD appears to be quan-
titatively much more important.



learning which has been studied thus far.

The general characteristics of LBD that emerge from the above survey are: (i) learning
has a significant effect on efficiency; (ii) learning increases as a function of production volume;
(iii) the scope of learning is bounded; (iv) there is an important component to learning which
is firm-specific, (v) the experience effect on the development of new goods is more modest

than its impact on efficiency.

3. A Simple Model of Learning-by-Doing and R&D

Growth may originate through the development of new products or the improvement of
existing products. We identify the first source of growth with R&D based growth, and the
second source with LBD. Although the growth effects of LBD may be bounded, LBD can
affect growth through its interaction with R&D. We model the interaction of LBD with
purposeful R&D in the “quality ladders” structure proposed by Grossman and Helpman
(1991). Consequently, we follow their presentation of the basic framework, appropriately
modified, in order to introduce our notation. The environment is one with an infinite horizon
and with a continuum of goods at each point in time. We will limit our analysis to the study
of balanced growth paths where all goods are treated symmetrically. Accordingly, we will
drop the time and goods’ index whenever confusion does not arise. We will first describe the
household’s dynamic optimization problem, then the production structure of the economy,

and conclude with a definition of the balanced growth path.



3.1. The Household

There is a representative agent with preferences over the continuum of goods indexed by
w € [0,1]

/Ooo e /01 log[z(w, t)q(w,t)]dw dt, (1)

where z (w,t) and ¢ (w,t) are, respectively the quantity and quality of good w consumed at
time ¢, and 6 > 0 is the rate of time preference. The household’s optimization problem can
be separated in two stages. First, the household maximizes flow utility subject to the flow

budget constraint

ma [ Noglz(w, )q(w, )]dw  s.t. /0 L (w, Oplw, )dw = B(?), @)

where p(w,t) is the price of a unit of good w at time ¢, and E(t) is total expenditures on

goods at time t. This implies a unit elastic demand function for each good

z(w,t) = E(t)/p(w,?). (3)

Secondly, the household chooses an expenditure path which maximizes lifetime utility (1)

subject to the life-time budget constraint

/0 T e BO B dt < A(0), (4)
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where A(0) is the agent’s initial wealth, and R(t) is the cumulative interest rate up to time

t. An optimal expenditure path satisfies the Euler equation

E(t)/E(t) =r(t) -6 (5)

and r(t) = R(t). On a balanced growth path the interest rate is constant r(t) = 6, so that

E(t) = E for all t > 0.

3.2. Production, Learning-by-Doing, and R&D

The quality of a good improves over time for two reasons. First, goods of new basic qualities
are introduced at each point in time via an R&D process, as in Grossman and Helpman
(1991). Second, once a producer introduces a new basic quality, that quality improves as
the producer becomes more experienced in the production of the good. We assume that this
improvement through learning is bounded, and that the basic quality of a good cannot be
upgraded before its producer has acquired some experience. We now describe the mechanism
by which LBD proceeds, how experience affects production, and how it interacts with R&D.

Production of goods is constant returns to scale with labor as the only input. In partic-
ular, x units of labor produce = units of any good, of any variety, regardless of experience.
Superior quality, embedded in higher generation of basic quality or more experience, is re-
flected in effective quality rather than direct production costs.”

Total or effective quality of any good is given by ¢ (w,t) = e (w,t) - A™“Y where the

" Although the empirical literature emphasizes reduced unit cost as the main benefit of LBD, we describe
that benefit as an improved quality in order to maintain the similarity with the quality ladder model of
Helpman and Grossman (1991). These two descriptions are completely equivalent in our model, (see section
3.4).
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integer m (w,t) is the basic quality of the good, and e(w,t) is the experience level with
that particular good. New basic qualities are introduced successively, and each new basic
quality is A times as good as the previous basic quality, A > 1. To capture the dynamics of
experience accumulation it suffices to assume that experience can take on two values, {e;, es},
where e; = € € (0,1), and e; = 1. The process by which the experience factor increases from
e1 to ey is learning. Learning is by doing in the sense that only firms which actually produce
and sell a product can benefit from experience enhancement. Each producer introducing a
new good begins with the low experience level, e;, and 1 — € denotes the scope of learning.
“Experience enhancement” from e; to e; follows a Poisson process with a learning rate o > 0
per unit of time. We consider three versions of the learning process: a firm’s learning rate
may be (1) exogenous, (2) endogenous, but independent of the firm’s production, and (3)
endogenous and dependent on the firm’s production.

For the first case, a firm learns only when it produces, but the rate at which it learns is
constant. Although this description is inconsistent with the evidence surveyed in section 2,
indicating that the rate of learning depends on the volume of production, this case allows
us to highlight the implications of endogenous learning. In the second case considered, we
assume that the learning rate increases with the total production volume by all inexperienced
firms X, @ = a(X;). This learning externality reflects the idea that inexperienced producers
work on similar problems, and solutions to these problems are partially transferable, see for

example Young (1993).® Finally, for the third case we assume that the learning rate of a firm

8 Alternatively we could have assumed that inexperienced firms learn from experienced firms and the
learning rate depends positively on the total production volume of all experienced firms. Such a modification
could be based on a tendency to “learn from those who do it right”. This alternative approach yields
essentially the same results for our analysis of the calibrated steady state in Section 5. Neither formulation
affects the definition and characterization of a steady state.
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depends on its own production volume, o = a (z1), and the learning rate is an increasing and
concave function of production x;. This last case allows a firm to increase current production
in order to enhance learning, thus trading off current for future profits.

Improved basic quality comes as a result of deliberate and costly R&D. The R&D tech-
nology is stochastic and displays constant returns to scale, and entry to the R&D sector
is free. If the current producer in an industry is experienced, (has already achieved e,), a
flow R&D investment of p > 0 units of labor generates a wnitary arrival rate of the next
basic quality. Thus, 6p units of labor are needed to produce an arrival rate 6 per time unit
of a one-step improvement of the basic quality of a good. The current producer enjoys no
inherent advantage over potential innovators in this R&D activity. Our assumption that a
basic quality improvement can only be achieved in industries that have already achieved the
high experience level reflects the spillover from production experience with existing goods to

developing new ones.’

3.3. The Balanced Growth Path

The description of the balanced growth path is analogous to Grossman and Helpman (1991)
with a minor modification for the third learning specification when the effect of production
on learning is internalized. In all cases considered only the highest basic quality of each
variety is actually produced and sold in equilibrium, since, with Bertrand price competition,

the producer with the highest basic quality can capture the entire market by under-pricing

9A less extreme assumption is that the same R&D investment is more likely to succeed in industries that
have already attained high-experience with the previous basic quality than it is in industries that have yet
to reach that state. This, however would considerably complicate the analysis without affecting the nature
of the results.
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all other producers of the same good.

Let m be the highest available basic quality of a particular good, and let e; be the
experience level associated with the basic quality level. We refer to the producer of the
highest basic quality of any good as the leader or incumbent. At any instant and for any
good, the leader’s experience can be either e; if she is inexperienced, or ey if she has already
benefited from experience enhancement. The producer of the previous basic quality, m — 1,
is by assumption experienced, and is referred to as the follower. A leader with experience e;
will choose a price p; such that producers of lower basic qualities are excluded. We obtain
this price by considering the price per effective quality. Specifically, since the follower always
has the high experience, (e; = 1), and her marginal production cost is unity, a leader will

choose a price which satisfies the constraint

; 1 .
eg\m < NS or p; < Aej, t=1,2, (6)

and the limit price Ae; does not depend on the basic quality m.!* The flow profit for an

incumbent with experience e; is:
T =zi(pi— 1) = E —a, (7)

where z; = F/p; is the quantity demanded of the good.
All incumbents enjoy continuously their flow profits, while inexperienced ones also stand

the chance of experience enhancement, whereas experienced ones face the danger of being

10Tf the follower could be of either high- or low-experience, the leader’s price would depend on both
experience levels.
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displaced.!! Let V; be the capital value of an incumbent with experience e;,. The Bellman
equations which define the capital values of incumbents on a balanced growth path are given

by:
rVi = max, {F—z1+a(Vo—W)}

constant if LBD is exogenous

st. 21 > E/Aeand @ =4 ¢(X;)  if LBD is external

a(z) if LBD is internal
rVo = max,, {E£ — 1z — 0V5}
st xy > E/X

where X is the total quantity produced of all goods with experience level e;. Note that since
demand is unit-elastic profit is declining with higher production. When the learning rate «
is independent of his own production an incumbent will therefore set the price equal to the
limit price; this applies to the exogenous, and external LBD cases above.

Successful R&D generates temporary monopoly profits, and R&D will take place as long
as the cost of R&D is equal to the expected capital value of the monopoly profits. The
gain from devoting 6p units of labor to R&D is the capital value V; and it follows a Poisson

process with arrival rate #. The expected gain is #V;, and free entry into R&D implies

Vi <p, 9)

HIncumbents are not engaged in R&D because they do not have a particular advantage in R&D and they
benefit less from an additional quality improvement. We assume free entry into R&D attempts to discover
the next basic quality. To see that this implies no R&D by the current incumbent, note that with many
potential enterants the probability of the next basic quality being found by one of the attempting enterants
is unaffected by the incumbent’s own R&D efforts. Moreover, free entry and constant returns to scale in
R&D imply that potential entrants are at best breaking even on their R&D expenditures. Finally, since the
incumbent gains less from discovering the next basic quality than a potential enterant does, we conclude
that incumbents do not invest in R&D.
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with equality if R&D is done.

An important part of the equilibrium involves how many leaders are (in)experienced.
Let p; be the measure of industries with an e;-incumbent, p; + gy = 1. This measure
changes because of LBD, and because of R&D activities. The measure of inexperienced
incumbents declines because some incumbents become experienced, and it increases because
some experienced incumbents are replaced by inexperienced entrants. The rate of change of

the measure of inexperienced incumbents is then:

fip = —apy + Op,. (10)

On a balanced growth path i, = 0, so that p, = /(6 + ).

To close the model, we need to clear the labor market. This requires that aggregate labor
demand equals the exogenous labor supply. Labor is used for R&D, and for production.
Production in industries in which the incumbent has experience e; is X; = p,x;, so that
aggregate production demand for labor is 3 p,x;. R&D demand for labor is ji5p0 since R&D
is done only against high experience incumbents. With L denoting the exogenously fixed
labor supply, we have

1+ py (22 + p0) = L. (11)
We are now in a position to define a balanced growth path for our economy.

Definition 1. A balanced growth path is a set of endogenous variables, {E, 0, u;, x;, 7;, Vi },

satisfying equations (3), (6), (7), (8), (9), (11), and (10) with j1;, = 0.

Growth in the utility index u can only stem from basic quality improvements, since labor
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supply and labor productivity are constant. The contribution of good w to the utility index
is

log[z(w, t)q(w,t)] = log[E(t)] + m(w,t) log()) (12)

where we have used the definition of the limit price (6) and the demand function, (3). The

utility flow index evolves according to

log u(t) = log() | () + log [B(2)] (13)

On a balanced growth path E(t) = E. Thus growth in the utility index stems solely from
basic quality upgrading, the first term in (13). Since the evolution of basic quality upgrading
for each good w is an independent stochastic process, the average quality index of basic
quality across all goods at time ¢ is the cumulative number of basic quality increments in
each good during the time interval [0, t], m(w,t), averaged across all goods. Assuming a law
of large numbers applies, the cumulative number of basic quality upgrades in each good is
given by the length of the period times the expected number of basic quality discoveries per

unit of time. Consequently,

/01 m(w, )dw = t - (O1,) (14)

It follows that the growth rate of u(t) on a balanced growth path is

g =0y - log(A) (15)
Note that bounded learning has no direct effect on the growth rate, although it does affect
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it through its impact on the endogenous R&D rate 6, and the measure of experienced firms,

-

3.4. Cost Reduction vs. Experience Enhancement

We have described a simple model of LBD where more experience means that a firm’s
product is of higher quality. In our discussion of empirical evidence on LBD, more experience
means that a firm produces the same product at a lower cost. In our framework these two
formulations are almost equivalent. Assume that the effective quality of a product is always
equal to the basic quality of the product, but that the production costs of producers differ.
In particular assume that a producer is either inexperienced with labor input requirement
7, or experienced with input requirement v,, 7; > 7,. Normalize 7, = 1 and 7y, = 1/e > 1.
The analysis now proceeds as before, and the only difference between the two formulations
is that now all producers set the same price and sell the same quantity, independent of their

experience.

4. Balanced Growth With R&D and Learning-by-Doing

From the analysis in the previous section, the balanced growth rate in our model is given

by:

o

+0

g = Opzlog(A) = ——log(})

With exogenous learning, (o being a fixed parameter), the growth rate increases with R&D
intensity 6. Moreover, because R&D can improve basic quality only of goods that have

already attained high experience, the growth rate increases less than proportionately with
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990

0. < 1.12 Likewise, holding R&D intensity fixed, similar
g

the increase in 6, so that 0 <
growth implications are generated by changes in the learning rate. However, these monotone
relationships become more involved when both sources for quality improvement are jointly
determined in equilibrium. In particular, if equilibrium learning through experience accumu-

lation declines with factors that stimulate R&D then the impact of such factors on growth

depends on relative magnitudes of opposing forces.

4.1. Exogenous Learning-by-Doing

Following Grossman and Helpman (1991) we proceed to solve the equilibrium in the model
by obtaining two relationships in terms of the level of real expenditures F and the R&D rate
6. The first relation (FE) is based on the free entry condition (9), and the second relation
(LL) is based on the labor market clearing condition (11). We focus on solutions to these
two equations, (E*,0%), given the exogenous learning rate «, the scope of learning ¢, and the
resource base, L.

In Figure 1 we graph the free entry condition and the labor market clearing condition.

E < p@+a)/|(1-%)+55(1-1)] and’="if0>0 (FE)

E = A|&5L - 255 (LL)

The (LL) curve is downward sloping: as the research intensity 6 increases, total demand for
labor increases, requiring a reduction in the level of real expenditures F to bring the labor

demand back to the given supply. The demand for labor increases for two reasons. First,

12In the model absent learning-by-doing, R&D applies to all goods in the economy and one gets the
proportionality of the growth rate and R&D intensity, %g =1, as in Grossman and Helpman (1991).

19



manufacturing labor demand increases because the share of inexperienced firms increases,
and these firms produce more due to limit pricing, (lower quality implies lower price and
larger quantity supplied). Second, although the share of experienced firms declines, the in-
crease in research intensity is sufficient to raise total R&D demand for labor. The (FE) curve
is upward sloping: as research intensity increases, the capital value of being an incumbent
declines, so that the level of real expenditures has to increase to allow V] to satisfy the free
entry condition. Note that in the limit when learning is instantaneous, (o = o0), the labor
market clearing and the free entry condition coincide with Grossman and Helpman (1991)
equilibrium conditions. It is immediate that slower exogenous learning, (lower «), makes it

more likely that the equilibrium does not involve positive growth.!?

FIGURE 1 HERE

In the simple model with exogenous LBD the interaction between learning and R&D is
limited: we can only study how learning affects R&D, but not vice versa. An analysis of the
balanced growth path, however, reveals that even in such a simple environment the effects
of learning on R&D can be ambiguous. For example, even though one would expect slower
learning to reduce incentives to do R&D, (since experience enhancement following a success
in R&D is further postponed into the future), total R&D efforts in the economy may actually
increase with slower learning.

To see that, consider the effect of an increase in the learning rate on the demand for

labor and the incentives to do R&D. First, a faster learning rate increases the share of

13Consider the extreme case where a = 0, so that firms never learn, and both the FE and the LL curves
become horizontal in this case. The share of experienced firms converges to zero, and R&D activities aimed
only at experienced firms cease altogether.
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experienced incumbents. Consequently, manufacturing demand for labor declines, but R&D
demand for labor increases. If the research intensity is sufficiently high, then the second
effect will dominate and the demand for labor increases. One can show that in Figure 1,
an increase in the learning rate will turn the (LL) curve clockwise around the point (6 =
0., E = XelL), where 0, = (1 — €) L/p. Second, a faster learning rate makes the profit flow
less important relative to the capital gain for an inexperienced incumbent. Although profits
for an inexperienced incumbent are lower than for an experienced incumbent, inexperienced
incumbents are not subject to R&D competition. Thus for sufficiently high research intensity,
the capital value of an inexperienced incumbent may actually fall following an increase in the
learning rate. In terms of Figure 1, one can show that an increase in the learning rate will
turn the (F'E) curve counter-clock wise around the point (6 = 0pp, E = pé/[1 — 1/ (eN))]),
where Opp = 6 (1 — €) / (Ae — 1). Since both curves rotate in opposite directions, the overall
effect on 6 is ambiguous.

The same ambiguity applies to the effect of faster learning on the growth rate. Never-
theless, the first order effect on the growth rate is positive, since faster learning increases
the share of experienced incumbents. In Section 5 we will calibrate the model economy, and
for reasonable parameter values we observe that an increase in the learning rate raises the
research intensity and the growth rate in the exogenous learning model.

The effects of changes in the remaining parameters on research intensity are intuitive
and are analogous to results of Grossman and Helpman (1991). For example, an increase in
the effective labor force L/p, shifts the (LL) curve up and the research intensity increases.
Higher research intensity decreases the share of experienced, (new producers start with low

experience), but total R&D efforts, (6u,), increases, and so does the growth rate. Because
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inexperienced incumbents produce more and have lower profits than experienced incumbents,
total production increases and the profit rate declines. We can summarize the effects of

changes in parameters on research intensity for the exogenous learning case as follows:

00/00>0, 90/0L >0, 00/de > 0,

00/0X >0, 90/9p <0, 80/95>0.

4.2. Endogenous Learning-by-Doing: Qualitative Analysis

We now consider the two endogenous learning cases: for the first case (external LBD) the
learning rate for a good depends on aggregate output of inexperienced producers, and for
the second case (internal LBD) the learning rate for a good depends only on the output level
of that good. We will focus on the analysis of internal learning, since external learning is
essentially the same as exogenous learning. The endogeneity of the learning rate introduces
a second round effect, whereby (endogenous) changes in « affect 6. These secondary effects
may amplify or dampen the effects relative to the model with exogenous learning.

Consider an increase in the size of the labor force L. With exogenous learning this will
increase the research intensity 6, the share of inexperienced incumbents 1, and the expendi-
ture level E. The last two effects will increase total production by inexperienced incumbents,
and thereby raise the learning rate a. The effect of higher « on € is ambiguous, as we have
seen in the previous section. Suppose that this effect is positive, so that faster learning raises
the research intensity. Then, the second round effect of higher L on 6 through « reinforces
the direct effect. The same analysis applies to changes in other parameters.

To evaluate the equilibrium responses under internal learning, assume that the limit
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price constraint is not binding, (i.e. an incumbent which maximizes profit selects a smaller
quantity, and higher price, than is needed to exclude the follower from the market). Note
that here, unlike the external learning case, an increase in research intensity lowers the rate
of learning, because it reduces the capital gain from becoming experienced. This effect will
dampen the response of the economy on a balanced growth path to parameter changes.

For the example of an increased labor force considered above, we have a positive first
round effect of L on 6, as in the exogenous learning case. Inexperienced incumbents will now
respond to the greater vulnerability of the profitable high-experience status by lowering their
production levels, thereby reducing their own learning rate. Assuming a positive relation
between the learning rate and research intensity, the reduction in the learning rate will
eliminate part of the increase in the research intensity which was generated by the increase
in L. Further results cannot be obtained through analytical methods only, and we proceed

with a numerical analysis of a calibrated version of the economy.

5. Endogenous Learning in a Calibrated Model

We now study the quantitative implications of the interaction between LBD and R&D in
an economy in which learning is endogenous. This analysis shows that the response of
the learning rate to changes in the learning function and the labor endowment critically
depends on whether producers take into account the effects of their production levels on
the learning rate. In addition, the numerical analysis reveals that parameter values for the
LBD technology also play a major role in determining the response of the growth rate to the

exogenous changes considered. For example, we find that an increase of the labor endowment
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will raise the growth rate in an economy with exogenous or external learning, but will have
the opposite effect in an economy with internal learning. Our study is based on a numerical
analysis of the economy. We select parameter values such that the balanced growth path

of the economy matches a selection of observations on average growth rates, interest rates,

R&D and LBD activities.

5.1. Calibration

Our economy’s balanced growth path is to replicate the growth experience of the post-war
U.S. economy. We are therefore interested in balanced growth paths with an annual growth
rate of two percent, g = 0.02, and an average interest rate of four percent, r = 0.04. The
crucial part of our calibration exercise is the characterization of the R&D and the LBD
process.

One can measure R&D competition through the rate at which the capital value of patents
depreciates. Schankerman and Pakes (1984, 1986) estimate capital value depreciation rates
using information on patent renewals. For a sample which includes the UK, Germany, France,
the Netherlands and Switzerland from 1930-1939, Schankerman and Pakes (1984) estimate
an annual depreciation rate for patent values of twenty five percent. For a post World War 11
sample, which includes three European countries, Schankerman and Pakes (1986) estimate
annual depreciation rates between ten percent (Germany) and twenty percent (UK, France).
In a related work, Caballero and Jaffe (1993) estimate the rate of decline in a firm’s value
which is attributable to a decline in its relative R&D position at an average of three and a

half percent a year.!* We interpret these depreciation rates in firms and patent values as the

14 Their estimates range from 0% to 25% per year.

24



average rate at which the value of a fixed sample of experienced firms in our model declines
over time, which is represented by the entry rate . For our parameterization we assume that
on the balanced growth path the capital value depreciation of an experienced incumbent is
ten percent, § = 0.1, a value which is between the lower bound set by Caballero and Jaffe
(1993) and the upper bound set by Schankerman and Pakes (1984, 1986).1

Our survey of empirical work on LBD in section 2 finds a wide range of estimates of
the unit cost reductions and its precise dependence on cumulative output. Two categories
of estimates can be identified in this literature, which we label by “narrow” and “wide”
learning cases. The “narrow learning” case covers short term labor cost reductions for one
product in a given production site. The empirical evidence on this case, which has been
intensively studied, suggests a learning rate of about 20%, a potential cost reduction factor

13

of 2, and a period of 3 to 5 years for achieving this efficiency gain. The “wide learning”
case covers increased total factor productivity for a variety of similar products over the life
cycle of a production site, and estimates of LBD benefits of this kind are more modest. For
instance, Bahk and Gort (1993) find that a new plant is about eighty percent as productive
as a mature plant, and that a plant attains maturity within six to ten years.

We believe that in order to assess the impact of learning on growth the “wide learning”
case is more relevant than the “narrow learning” case. As noted most of the evidence
on “narrow learning” refers to unit cost reductions for a product which is new for some

production facility, but the product is not necessarily new for the economy. For example,

under the “narrow learning” case we will observe that in a new pizza outlet the unit cost

15Note that 6 is an endogenous variable in our model. The results reported here are the value of (exogenous)
parameters needed so that in a steady state equilibrium the value of 6 is 0.1.
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of pizzas will initially decline. It is hard to see that the unit cost of production of a well-
known product in a new production site should affect the economy’s ability to develop new
products. On the other hand it appears more reasonable that a higher general experience with
production processes in plants with “wide learning” should increase the economy’s ability to
develop new products. We do, however, report the results for both parameter configurations,
since the models respond rather differently to the changes we consider, depending on the
configuration used.

We use these results from the empirical work on LBD to parametrize our economy as
follows. First, we identify the experience component of quality obtained by learning in our
model with the cost reductions due to learning in the empirical work on LBD. The scope
of learning in our model is directly analogous to the potential efficiency gain attributed to
LBD, yielding the alternative values for € of 0.5, and 0.8 for the narrow and wide learning
cases, respectively. We derive an estimate of the learning rate a by considering a collection
of firms of measure one, all of them inexperienced. With each firm shifting stochastically to
a high experience status at the rate «, the average experience of these firms after some time

t has elapsed is:!°

and the cumulative production of these firms up to time 7T is:

Q(T) — /OT <e‘”§ . eaf)g) dr
- EpamemE-e

16Note that we assume here that there is no R&D competition and experienced firms are not displaced by
inexperienced firms.
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For the narrow learning case, we plot the log of average experience against the log of cu-
mulative production for a time span of one to three years. We then select the speed of
learning « such that a straight line fitted to this curve based on OLS has slope 0.2, that is
yields a learning rate of 20%. This procedure implies a speed of learning of a = 1. In the
wide learning case, for which there is no available link between output and efficiency gain,
we simply assume that after ten years, average quality is within one percent of potential
quality, € (10) = 0.99, which yields a = 0.3. To summarize, for the narrow learning case we
have € = 0.5 and o = 1.0, and for the wide learning case we have ¢ = 0.8 and o = 0.3.

The information provided above is sufficient to parametrize the model with exogenous
learning. Given the R&D rate § = 0.1, and the learning rate a corresponding to each
learning case, we determine the share of experienced firms on the balanced growth path
py = a/ (a+60). The improvement factor A is then determined through the growth rate
of the economy g = p,0logA\. We then use the free-entry condition and the labor market
clearing condition to determine the values for the expenditure-labor force ratio E/L, and
the R&D cost-labor force ratio p/L. We normalize the labor force at one.

Flow profits when inexperienced are lower under narrow learning than under the wide
learning. This follows from the fact that the product improvement factor A turns out to be
similar for both cases, while the initial experience level is much lower for the narrow learning
case. In fact, initial experience in the narrow learning case is so low that a producer makes
losses under those parameters as long as she remains inexperienced. Another implication of
our parameterization is that in the wide learning case, about 12 percent of the labor force is
employed in R&D activities, and that in about 25 percent of all industries the producer is

inexperienced. For the narrow learning case, those shares are 7 and 9, respectively.
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To compute the equilibrium when the learning rate is endogenous, (external and internal),
we proceed as follows. For the case of external LBD we assume that the learning function
takes the form:

o = ap X7,

and we set a; = 0.5, and « is determined from «, which was separately derived above for
each of the two learning cases. For the internal LBD case, we assume a learning function of
the form:

a =max {0, qpz{! — as}

where «q, a1, as > 0. This functional form assumes that a certain amount of production
has to take place before learning actually occurs. Again we set a; = 0.5. We want that
inexperienced incumbents take advantage of the learning opportunities, and actually produce
more than they would produce without learning. In particular we assume that the optimal
production of an inexperienced incumbent is a multiple s of the output level implied by the
limit price when inexperienced. We select k = 1.1.

What will be important for our balanced growth path analysis is the elasticity of the
learning function with respect to changes in production, n = (0a/0x;) (x1/a). Simple

algebra shows that (for both external and internal learning) this elasticity is:

b

Note that this elasticity has already been determined by the previous calibration procedure,

and is independent of the parameter values of the learning function. The term in curly
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brackets represents the capital gain from becoming experienced. This capital gain is increas-
ing in the scope of learning, that is lower values of € imply lower elasticities of the learning
function. For example, in the narrow learning case the elasticity is n = 2.2, and in the wide
learning case it is n = 9.9.

We summarize the calibrated balanced growth paths for the two alternative parameter

configurations in Table 1 below.

TABLE 1 - HERE

5.2. Response to Exogenous Changes

A partial list of the results from the numerical analysis are presented in Tables 2 and 3.
These tables contain the elasticities of a subset of endogenous variables with respect to the
labor endowment (L), the learning technology parameters, (a for exogenous learning, and
ap for the two endogenous learning cases), and the learning scope represented by the initial
experience, (€). We list the effect of changes in these parameters on the growth rate g,
the research intensity 6, the share of experienced industries p,, the average profit rate in
manufacturing 7, and the learning rate o when it is endogenous. Table 2 contains the results
for the parametrization corresponding to the wide learning case, and Table 3 pertains to the
narrow learning case.

The first conclusion to emerge from the calibrated model is that although there are
some quantitative differences between the model with exogenous learning and the model
with endogenous but external learning, the qualitative features are very similar. In both
environments an increase in the labor endowment increases research intensity. The increase

in research intensity offsets the decline in the share of experienced firms, and the growth rate,
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which is the product of the two, increases. These results are robust across the two parametric
configurations, as can be seen by comparing the responses of g to L under exogenous and
external learning in both Tables 2 and 3. Our results under exogenous and external LBD
assumptions are also consistent with other works on LBD, which assume that firms do not
internalize the LBD effects of their current production decision on future cost, (Stokey (1988),

Young (1993), Lucas (1993) and Parente (1994)).

TABLE 2 HERE

In contrast to the above positive scale effects under exogenous and external LBD, the
effects of an increase in the labor endowment when learning is internalized depend on the
elasticity of the learning function. For the wide learning case with a high elasticity, an in-
crease in the labor endowment actually lowers the growth rate in an economy with internal
LBD, as can be seen in Table 2. This result obtains because the endogenous learning re-
sponds differently to a change in the research intensity, depending on whether producers’
future efficiency is affected by their own production experience or by economy wide aggre-
gates. With external LBD, the learning rate responds positively to the increased share of
inexperienced firms following an increase in research intensity, and this almost completely
offsets the initial reduction in the share of experienced firms. In contrast, when research
intensity increases under internal LBD, there is nothing to offset the reduced capital value of
being an experienced producer and learning becomes less attractive. Accordingly, producers
respond by cutting down on (indirect) learning costs, (by reducing output), and the decline

in the share of experienced firms is exacerbated, thus lowering the growth rate.

TABLE 3 HERE
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The effects of changes in the speed of learning display similar sensitivity to the nature
of the learning process. Under exogenous and external learning, an increase in the speed of
learning increases both the research intensity and the share of experienced producers and
thereby the growth rate. With internal learning the second round effects from the higher
research intensity reduce the speed of learning and lower the share of experienced producers.
Because the elasticity of the learning function is relatively high, the growth rate will decline,
see Table 2.7

Lastly, a smaller learning scope, represented here by higher value of ¢, will have no impact
on growth when learning is internal. This follows from our assumption that the output of
inexperienced producers exceeds the level implied by limit pricing: in order to enhance their
learning rate they produce so much that the price is even lower than the one required to just
keep producers of previous generations of the good out of the market. Consequently, a lower
quality gap between high and low experience goods, (which does not violate the non-binding
limit price assumption), does not result in any change in the price differential between these
goods, nor in any other endogenous variable.

In contrast, when learning is exogenous or external to producers, a higher quality of
the low-experience good increases the capital value V;, implying a higher R&D intensity,
higher share of inexperienced producers, and higher learning rate in the external learning
case, (despite the decrease in individual output by an inexperienced producer). Although
the decrease in p, works against the increase in 6 in terms of their growth implications, the

overall impact on growth is positive.

1"Parente (1994) in an economy with exogenous LBD, Young (1993) in an environment with external LBD,
and Lucas (1993) in an environment where firms do not take into account the effect of their production
decisions on learning, find that an improvement in the learning technology increases the growth rate.
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6. Conclusion

Although we maintain the assumption of constant returns to scale in R&D, the model we
have presented does not necessarily produce the positive “scale effects” of other R&D based
growth models. In particular, we may have negative ”scale effects” in that the growth rate
may decrease with the size of the economy. These results depend on the parameter values
of the learning technology, and are more likely when learning is internal.

Under internal learning, factors that increase the intensity of R&D competition against
individual producers might nevertheless reduce the growth rate in the economy. The po-
tentially negative growth impact of intensified R&D works as follows: a more intense R&D
competition against existing producers reduces their incentives to invest in LBD, the result-
ing lower average experience associated with slower LBD reduces the scope for R&D, thus
reducing the growth rate. The first of these two effects merely reflects the capital theoretic
nature of investment in LBD. In particular, it does not depend on the assumption that
experience with existing products facilitates R&D for better ones, which drives the second
effect. One could assume, instead, that R&D is equally likely to succeed with high as well as
low experience products. However, this would remove any spillover effects from technologi-
cal improvements. The assumption we have adopted seems like the easiest way to capture
experience externalities in the development of new products.

The fact that low experience producers choose to reduce their output in the face of
intensified R&D competition may also be interpreted as an attempt to prolong their low-
experience status, in which they are immune to R&D competition under our assumptions.

There is no easy way to disentangle this interpretation from the alternative one that we have
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provided, namely, that output is reduced because LBD becomes less profitable when R&D
competition becomes more intense. In our computed equilibrium, producers choose output
level well in excess of what is needed to capture 100% market share. This excess output
is produced only to expedite the experience accumulating process. The implication that
incentives to overproduce in this way diminish with the intensity of the R&D competition
is likely to emerge even in models in which R&D intensity is independent of the share of
experienced producers.

Modifying the specification of external learning, so that the learning rate depends on the
production volume of experienced, (rather than inexperienced), producers does not affect our
results in any quantitatively important way. For example following an increase in the labor
endowment, the growth rate of the economy increases less when inexperienced firms learn
from experienced firms. The intuition for this is fairly straightforward. An increase in the
labor endowment raises R&D efforts, thereby lowering the share of experienced producers.
This in turn tends to lower total production by experienced producers, thus reducing the
learning rate and exacerbating the decline in the share of experienced producers. Hence
the growth rate does not increase as much as when inexperienced firms learn from other
inexperienced firms.

A modification that could conceivably overturn our results involves internalizing the
beneficial R&D implications of LBD. If the spillover from experience with existing products
to the development of new ones is internalized this way, and if an incumbent can change
by his own R&D efforts his probability of winning the R&D race to the next basic quality,
then the optimal incumbent’s response to an intensified R&D competition might well be

to increase, rather than decrease, his output. This kind of an inherent R&D incumbent’s
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advantage considerably weakens free entry into R&D activities, and probably fits the nature
of R&D competition in industries which are highly concentrated to begin with.

We interpret our results as showing that reasonable modifications of the “linear” R&D
based endogenous growth model can overcome some of its empirical failings. What is demon-
strated in this paper is the need to study learning processes more closely in order to fully
understand their growth implications. At the micro level we need more reliable parameter
values for describing the learning and R&D technologies. At the aggregate or industry-wide

level, we have to measure the extent to which LBD benefits are external or internal.
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Figure 1. Equilibrium with Exogenous Learning-by-Doing

Table 1: Calibration

Discount Rate,
Growth Rate,
Research Intensity;,

Case 1: Wide Learning
Basic Improvement Rate,
Initial Experience,
Learning Intensity,
Measure of Experienced Incumbents,
Share of R&D employment in total employment,
Profit rate,

Case 2: Narrow Learning
Basic Improvement Rate,
Initial Experience,
Learning Intensity,
Measure of Experienced Incumbents,
Share of R&D employment in total employment,
Profit rate,

D>

Mo

w/E

0.04
0.02
0.10

1.31
0.80
0.30
0.75
0.12
0.18

1.25
0.50
1.00
0.91
0.07
0.12
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Table 2: Balanced Growth Path Analysis

Wide Learning Case: ¢ = 0.8 and o = 0.3

Elasticity of variable y with respect to changes in parameter x.

Variable Exogenous External Internal
Learning Learning Learning
Y € « L € g L Qg L
g 1.89 0.11 1.02 1.98 022 127 —54.24  —29.76
0 2.53 0.02 1.39 254 0.04 145 2.79 2.31
Lo —-0.63 0.09 —-0.37 —0.56 0.17 —0.18 —-57.01 —31.94
o 029 074  0.73 —217.79 —103.99
™ 0.80 0.07 —-0.29 0.85 0.13 —-0.14 —-36.89  —21.08
Table 3: Balanced Growth Path Analysis
Narrow Learning Case: ¢ = 0.5 and a = 1.0
Elasticity of variable y with respect to changes in parameter x.
Variable Exogenous External Internal
Learning Learning Learning
Y € « L € Qg L Qg L
g 1.40 0.85  0.68 1.50 0.55 1.16 1.92 1.64
0 1.54 083 0.75 1.63 0.52 1.20 313 194
5 —0.14 0.02 -0.08 —0.14 0.03 —-0.05 —-1.21 —-0.30
o) 0.14 0.84  0.70 —-10.15 —-2.81
™ 0.35 0.16 —0.42 0.38 0.17 —-0.27 —-0.29 —-0.43
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