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1. Introduction

As stated in the Federal Reserve Act, the Federal Reserve System shall maintain

moderate long-term interest rates, as one of the monetary policy objectives. A number

of research papers show importance of long-term interest rates for the real economy and

study the relationship between the short-term interest rate - the Fed’s monetary policy

instrument and long-term interest rates. Goodfriend (1991) argues that variations in

long-term interest rates are more important determinants for the aggregate output and

prices than the short-term interest rate fluctuations. Cook and Hahn (1989), Rudebusch

(1985), and Goodhart (1996) provide evidences that changes in monetary policy targets

for the short-term interest rate affect long-term interest rates. Also, it is believed that the

monetary policy stance has changed in terms of the response to the output and inflation

gap in the last four decades (e.g. Clarida et al. (2000) and Boivin and Giannoni (2006)).

Therefore, the effects of the monetary policy changes on the yield curve is an interesting

and important area for examination.

While a number of empirical studies (e.g. Clarida et al. (2000); Cogley and Sargent

(2005)) focus mainly on the response of the macroeconomic fundamentals to the changes

in monetary policy stance, however only a few studies (e.g. Bikbov and Chernov (2008)

and Ang et al. (2010) hereafter ABDL(2010)) look at the implications of monetary policy

changes for the term structure of interest rates.

As discussed in ABDL(2010), the entire term structure of interest rates may respond

to the changes in short-term interest rate in two main ways. First, the inflation and

output fluctuations caused by the short-term interest rate changes may influence term

premia. This effect is supported by many recent studies which provide evidence of the

impact of macroeconomic factors on the term structure of interest rates (e.g. Ang and

Piazzesi (2003); Ang et al. (2008); and Bikbov and Chernov (2010)). Second, according

to the no-arbitrage condition, long-term interest rates should be affected by changes in

the short-term interest rate.

Similarly, the way monetary policy is conducted can have two potential implications

for long-term interest rates. First, the monetary authority may reduce inflation risk

premia for long-term interest rates through aggressively changing the short rate in re-
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sponse to macroeconomic fluctuations. Second, for a given expected inflation, a more

sensitive short rate in response to macroeconomic fluctuations may cause expectations of

a more volatile future short rate, which could result in higher risk premia for long-term

interest rates. Thus, the monetary authority may face a trade-off between these two op-

posite effects on long-term interest rates in their choice of how aggressively to respond

to macroeconomic fluctuations. In addition, as discussed in Bikbov and Chernov (2008),

if long-term interest rates respond to the changes in monetary policy stance, then the

term structure of interest rates may contain more useful information for identifying the

monetary policy regimes as compared to only considering the short rate.

The main objective of this paper is to analyze effects of monetary policy regime

changes on the entire term structure of interest rates. Specifically, we aim to identify

which of the two above-described effects on long-term rates dominates when the mone-

tary authority responds aggressively to macroeconomic fluctuations. For this analysis,

we propose an affine no-arbitrage term structure model with regime shifts in monetary

policy, volatility of yield factors, and the market price of risk governed by three sepa-

rate Markov-switching processes. This framework enables us to identify the effects of

monetary policy regime shifts on long-term interest rates. In our model, the short-term

interest rate, which is considered as the monetary policy instrument, is set by a Tay-

lor (1993) rule with coefficients switching between two monetary policy regimes. These

regimes are labeled as “more active” and “less active” regimes, depending on how ag-

gressively the monetary authority changes the short rate in response to inflation and

output gap fluctuations. Similar to previous studies, the regime-switching processes are

assumed to be exogenous in our model, and therefore we do not aim to study why the

monetary policy stance change over time.

Our results can be summarized as follows. First, our results indicate that even

during “the Great Moderation” period of the past quarter century, the Fed’s reaction to

inflation has varied over time, switching between “more active” and “less active” regimes.

This result concurs with Sims and Zha (2006), Bianchi (2009), and ABDL(2010), who

conclude that regime shifts of monetary policy should be considered probabilistically

rather than by only a single break in the early 1980s.
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Second, monetary policy regime shifts have quantitatively important effects on the

term spread and the volatility of the yield curve. For the sample of U.S. data from

1985:Q4 to 2008:Q4, the short-term interest rate was considerably more volatile in the

“more active” regime than in the “less active” regime, while the average short-term

interest rates in the two monetary policy regimes were close to each other. The long-

term interest rate, defined as the 10-year maturity yield, was on average 129 basis points

higher in the “more active” regime than in the “less active” regime, resulting in a steeper

slope of the yield curve, on average, in the “more active” regime. In general, the yield

curve was more volatile in the “more active” regime than in the “less active” regime.

These results can be explained by a more sensitive response of the short rate to inflation

fluctuations in the “more active” regime creating higher risk for the future short rate

fluctuations. This risk drives up long-term yields. Thus, the Fed appears to face a

policy trade-off between a “more active” reaction to the macroeconomic fluctuations

and higher long-term interest rates as well as a more volatile yield curve caused by this

reaction. This argument is consistent with Woodford (1999), who claims that it may

be more optimal for the monetary authority to conduct policies that do not require the

short rate to be too volatile.

Our study is distinguished in several dimensions from Bikbov and Chernov (2008)

and ABDL(2010), who also investigate the interaction between the term structure of

interest rates and monetary policy. In particular, our model employs discrete-time

regime-switching processes in contrast to ABDL(2010), who describe monetary policy

shifts as continuously changing Taylor rule coefficients. Also, our model is differentiated

from ABDL(2010) by incorporating volatility regime shifts, which, as indicated by Sims

and Zha (2006), is important for evaluating the impact of monetary policy changes on

macroeconomic behavior. Unlike Bikbov and Chernov (2008), who also apply discrete

regimes, our model accounts for the regime shifts in the price of risk that are indepen-

dent of volatility changes. Duffee (2002) reports that it is essential to allow for variation

in the price of risk independent of factor volatility for fitting the yield curve and model-

ing plausible term premium. Through model comparisons, we confirm that accounting

for the regime shifts in volatility and the price of risk considerably improves fitting of

4



the model. Also, as we show in our analysis, these two regime-switching processes sub-

stantially help the model to produce a plausible variation in the term premium, and

therefore provide necessary flexibility for the monetary policy regimes to be identified

by the policy response to macroeconomic fluctuations in greater extend than by the term

premium.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 discusses the estimation method. Section 4 presents the empirical results. Section 5

concludes. The Appendices provide details for the model derivation and the estimation

method.

2. Model

In this section, we present our model used to quantify effects of monetary policy

regime shifts on the term structure of interest rates. In particular, we develop a three-

factor affine no-arbitrage term structure model with regime shifts in monetary policy

response to macroeconomic fluctuations. The model also accounts for changes in volatil-

ity of yield factors and the market price of risk, governed by two other regime-switching

processes. This modeling choice allows us to separate the identification of monetary

policy changes from changes in volatility of yield factors and the market price of risk.

To derive bond prices that account for the effects of monetary policy regime shifts and

satisfy no-arbitrage condition, we make assumptions about a monetary policy response

function, evolutions of regime processes, dynamics of factor process, and a stochastic

discount factor, described in the following subsections.

2.1. Short-Term Interest Rate and the Monetary Policy Rule

We assume that the monetary authority use the short-term interest rate as their

policy instrument and set it according to the Taylor rule (1993) with coefficients subject

to regime shifts:

rmtt = rmt + αmt (πt − πmt) + βmtgt + ut , (2.1)

where rmtt is the short rate, πt is inflation, πmt is the inflation target, gt is the output gap,

rmt is the target level of the nominal short rate for the case when inflation and output
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gaps are zero, αmt and βmt are policy response coefficients to inflation and output gaps,

respectively, and ut captures all other determinants of the short rate, including monetary

policy inertia and the monetary policy shock, that are not related to the current output

and inflation gaps. Superscript mt denotes the monetary policy regime.

In this specification of the policy rule, similarly to ABDL(2010), the monetary au-

thority is assumed to respond to contemporaneous inflation and output gap, in contrast

to expected inflation and output gap used in some studies on the Taylor rule (e.g. Clar-

ida et al. (2000)). Sims and Zha (2006) argue that using expected inflation in the policy

rule may result in distorted conclusions because expected inflation will be measured as

a set of all influences on monetary policy and also it has less variation than current

nominal variables, potentially causing spuriously scaled up response coefficients.

In our specification of the policy rule, the response coefficients to inflation and output

gaps switch between two monetary policy regimes. These monetary policy regimes mt

are governed by a two-state Markov chain with transition matrix

Πm ≡
[

1− p12
m p12

m

p21
m 1− p21

m

]
, (2.2)

where pjkm = Pr[mt = k|mt−1 = j] ∈ [0, 1].

As pointed out by ABDL(2010), if ut is correlated with inflation and output, then

estimation of the standard Taylor rule equation (i.e. equation (2.1) with single regime)

does not produce consistent estimates of the response coefficients. This correlation

may be caused by contemporaneous effect of the monetary shocks on macroeconomic

variables. However, Ang et al. (2007b), Bikbov and Chernov (2008), and ABDL(2010)

show that ut can be identified by utilizing the information in the entire term structure

of interest rates through a no-arbitrage restriction. Also, Bikbov and Chernov (2008)

empirically show that with the information in the short rate only the monetary policy

regimes are not identified well.

2.2. Factor Dynamics

Similarly to many studies on the term structure of interest rates in the macro-finance

literature (e.g., Ang and Piazzesi (2003); Ang et al. (2007b); and Bikbov and Chernov

(2008)), we describe the dynamics of bond prices by three factors ft = (ut , πt, gt)
′
, two
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of which are observable macro variables (πt, gt) and one is a latent variable ut . The fac-

tor dynamics are assumed to follow a regime-dependent Gaussian vector autoregressive

process and can be described by

ft+1 − dmt+1 = G (ft − dmt) + Lvt+1εt+1, εt+1 ∼ N3×1(0, I) , (2.3)

where G is 3 × 3 matrix; Lvt+1 is the lower-triangular Cholesky decomposition of Ωvt+1

matrix that denotes the variance-covariance matrix of the factor shocks, dmt is the mean

of factors within each monetary policy regime.1 We assume that the factors volatilities

can change their values between “low” and“high” volatility regimes denoted by vt and

governed by a two-state Markov-switching process with transition probability matrix

Πv ≡
[

1− p12
v p12

v

p21
v 1− p21

v

]
. (2.4)

In this setting, similar to Bikbov and Chernov (2008) and ABDL(2010), the factors

are assumed to be exogenous, and therefore we analyze effects of monetary policy regime

shifts on the yield curve for a given expected inflation and output gap.2 Also, by setting

the persistence parameter matrix G to be regime-independent we avoid having potential

changes in persistence influence the identification of the monetary policy regimes.3

2.3. Market Price of Risk

To model risk premia for long rates, we specify the market price of risk to have a

time-varying form. Similarly to Ang et al. (2008), the market price of risk is assumed

1We describe the model more generally with regime-switching dmt , while for the estimation we
assume this parameter to be regime-independent. As we described in subsection (3.2), this assumption
helps identify the regimes.

2The interaction between the real economy and the bond markets can be modeled endogenously in
the general equilibrium framework (e.g., Wu (2006), Wachter (2006), Rudebusch and Swanson (2008),
and Bekaert et al. (2010)). Despite this advantage, the general equilibrium modeling approach does
not have flexibility for incorporating all regime-switching processes described in our work because of
difficulties of model solutions.

3The persistence of latent factor and inflation could be assumed to be policy dependent. Watson
(1999) finds that persistence of the short rate increased over the two sample periods: 1965-1978 and
1985-1998. For the sample period considered in our study, preliminary estimates of the model with
regime-switches in persistence parameters indicates that the estimates of these parameters are close to
each other in the two identified monetary policy regimes.
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to have the regime-switching and essentially affine in the factors form:

Λlt+1
t = λlt+1

0 + λf ft , (2.5)

where λf is a 3× 3 matrix and λlt+1

0 is 3× 1 vector, which switches between “high” and

“low” price of risk regimes denoted by lt and governed by a two-state Markov-switching

process with transition matrix

Πl ≡
[

1− p12
l p12

l

p21
l 1− p21

l

]
. (2.6)

In the context of the general equilibrium framework, the market price of risk is

mainly determined by the consumer’s preference as well as the monetary policy reaction

coefficients. Thus, in our model, allowing for regime shifts in the market price of risk

helps accommodate potential changes in the agents’ preference. On the empirical side, as

we show in Section 4, accounting for the regime-switching in λlt+1

0 considerably improves

the model fitting. It provides grater flexibility for the model to generate plausible time-

variation in risk premium in contrast to the time-variation in the price of risk that is

originated only from the factors. This feature distinguishes our work from Bikbov and

Chernov (2008). For tractability we assume that the matrix λf is regime independent.

2.4. Bond Prices

We follow Davig and Doh (2009) and assume that the monetary policy (mt), volatil-

ity (vt), and price of risk (lt) regime processes are independent from each other.4 Because

each regime process has two regimes, the aggregate regime process, denoted as st, be-

comes a first-order eight-state Markov process and its transition probability matrix is

given by Π = Πl ⊗ Πv ⊗ Πm.

Bond pricing with a no-arbitrage restriction is derived by assuming the existence of

a stochastic discount factor κt,t+1 = κ(ft, st; ft+1, st+1) that establishes a recursion for

4The monetary policy regime changes can presumably depend on other two regime-processes, there-
fore it would be more desirable that the regimes are assumed to be dependent. However, computationally
this specification is difficult to implement in our high dimensional case with eight regimes.
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pricing bonds of different maturities:

P st
τ,t = E

[
κt,t+1P

st+1

τ−1,t+1|ft, st
]
, (2.7)

where P st
t,τ denotes the price of bond at time t in regime st that matures at period (t + τ)

and E is an expectation operator. Note that this expectation is conditional on the

current factors and regimes since they are assumed to be known to agents. Meanwhile,

the future values of the factors and regimes are unknown and follow the stochastic

processes described in the previous subsections, and thus the expectation is over the

future uncertainties. However, the whole time path of the factors and regimes (even the

past values of the latent factor and regimes) are not observable to econometricians and

to be estimated.

In order to impose the no-arbitrage condition, we follow Ang et al. (2008) and assume

that the stochastic discount factor has the form5:

κt,t+1 = exp

(
−rstt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
, (2.8)

where Λst+1
t is given by equation (2.5).

The logarithms of bond prices are assumed to be affine in the factors and they depend

on three regime processes:

logP st
τ,t = −Astτ −Bst′

τ ft , (2.9)

where Astτ and Bst
τ are regime specific coefficients a the bond of maturity τ .

In order to represent the continuously-compounded short rate as an affine function

of the factors, the Taylor rule equation (2.1) is transformed to the form:

rstt = δst0 + δst′f ft , (2.10)

5In contrast to Dai et al. (2007) and Ang et al. (2010), our model specification does not allow us to
price the risk of regime shifts explicitly. Explicit pricing the regime-shift risk in our setting would require
assuming a factor process in which the next-period-regime uncertainty does not affect the conditional
distribution of factors ft+1. As discussed in Bansal and Zhou (2002), the implication of this assumption
is not consistent with the evidence reported by Hamilton (1988) and Gray (1996). These two studies
empirically show that the short-rate dynamics are successfully described as a mixture of conditional
Normal distributions.

9



where it can easily be seen that δst0 = rst − αstπst and δstf =
(

1 αst βst
)′
.

To solve for Ajτ and Bj
τ , we substitute for P st

t,τ and P st+1

t,τ−1 in equation (2.7) and,

following Bansal and Zhou (2002), we use the law of iterated expectations, the method

of undetermined coefficients, and log-linearization as discussed in Appendix A. The

solution has a form of recursive system:

Ajτ = δj0 +
S∑
k=1

pjk
(
Akτ−1 +

(
dk −Gdj − Lkλk0

)′
Bk
τ−1

−1

2
Bk′
τ−1L

kLk′Bk
τ−1

)
(2.11)

Bj
τ = δjf +

S∑
k=1

pjk
(
G− Lkλf

)′
Bk
τ−1 (2.12)

with the initial conditions given by Aj1 = δj0 and Bj
1 = δjf . Given this recursion, the

continuously-compounded yield for a τ -maturity zero-coupon bond is determined by

Rst
τ,t = −1

τ
log
(
P st
τ,t

)
= astτ + bst′τ ft , (2.13)

where astτ = A
st
τ

τ
, bstτ = B

st
τ

τ
, and Rst

1,t = rstt . This equation and the solution for astτ and bstτ

provide a basis for estimating the model and analyzing the effects of monetary policy

regime shifts on the term structure of interest rates.

In each time period, the sequence of bond pricing by agents can be described as

follows:

Stage 1 At the beginning of time t, agents learn regime st, where the realization of st

depends on st−1 and the transition probabilities;

Stage 2 The regime st determines the corresponding model parameters θst ;

Stage 3 Given θst , the factors ft are generated by regime-specific autoregressive process

ft = ff (θst , ft−1) in equation (2.3);

Stage 4 Next, given parameters θst , one can calculate the values of Astτ and Bst
τ recursively

for all maturities τ based on the recursions in equations (2.11) and (2.12);

Stage 5 Finally using ft , Astτ , and Bst
τ the agents price bonds P st

t,τ = fP (ft, A
st
τ , B

st
τ ) as in

equation (2.9).
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2.5. Expected Excess Return and Term Premium

This subsection presents the solution for expected excess return and term premium

implied by our model. As is well-known, the term spread, which is a difference between

long-term and short-term yields, can be decomposed into expectation hypothesis and

term premium components:

Rst
τ,t − rstt =

[
1

τ

τ−1∑
i=0

Et [rt+i]− rstt

]
︸ ︷︷ ︸

Expectation Hypothesis Component

+
1

τ

τ−1∑
i=1

ERst
τ+1−i,t︸ ︷︷ ︸

Term Premium

, (2.14)

where Et denotes an expectation operator conditional on st and ft; ERst
τ+1−i,t denotes

one-period expected excess return for the (τ + 1− i)-period bond in regime st.

The expected excess returns is derived following the approach of Dai et al. (2007). A

risk-neutral agent should be indifferent between two strategies: i) holding a bond at time

t, which matures at time period (t + 1 + τ − 1) and ii) holding one-period bond at time

t and purchasing a bond at time (t + 1) that matures at time period (t + 1 + τ − 1).

After accounting for the risk, the difference between these two strategies represents

the expected excess return; and therefore the one-period expected excess return on the

τ -period bond in regime st = j is given by

ERj
τ,t = E[pτ−1,t+1|st = j, ft] + pj1,t − p

j
τ,t , (2.15)

where pj1,t ≡ logP j
τ,t. Appendix B provides details of the solution for the expected excess

return which has the form:

ERj
τ,t = −

S∑
k=1

pjk
(
Bk′

τ−1L
kΛkt +

1

2
Bk′

τ−1L
kLk′Bk

τ−1

)
. (2.16)

The term premium for τ -period holding is simply the average of the expected excess

returns over all maturities from 2 to τ−periods.

3. Estimation

3.1. Data

We use quarterly data on yields of zero-coupon bonds and macroeconomic variables

for the sample period of 1985:Q4 to 2008:Q4. The term structure data on eight yields
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of 1, 4, 8, 12, 16, 24, 36, and 40 quarter maturities are obtained from Gurkaynak et al.

(2007). The yield for one-quarter Treasury bills is our measure of the short rate. The

measure of inflation is the year on year log difference in the CPI. We follow Rudebusch

and Swanson (2002) and ABDL(2010) and express the output gap as a percentage of

the potential output as

gt =
1

4

RGDPt −RGDP p
t

RGDP p
t

, (3.1)

where RGDPt is real GDP in 2005 constant prices obtained from the St. Louis FED

database and RGDP p
t is potential GDP computed similarly to Ang et al. (2007b) by

applying the Hodrick and Prescott (1997) filter.6 The gap is factored by 1/4 to make

estimated coefficients interpretable as coefficients for annualized interest rates.

3.2. Identification Restrictions

Our study focuses on the interaction between monetary policy and term structure

dynamics in the post-1985 period. The estimation of the model over the post-1985 period

avoids identifying the monetary policy regimes with the major oil shocks in the 1970s,

the monetary policy “experiment” in 1979, and the structural break in the monetary

policy found by many studies (e.g. Fuhrer (1996) and Clarida et al. (2000)), which is

associated with the beginning of the “Volcker” disinflation policy.

The factor dynamics and Taylor rule equation (2.1) are linked through identification

restrictions πmt = dmt2 and dmt3 = 0. The latter of the two restrictions is imposed because

the last factor is the output gap and one can reasonably assume that it has to be targeted

at zero independently of the monetary policy regimes. For identification of the latent

factor, dmt1 is restricted to zero in both regimes. The inflation target πmt and the

short rate target rmt are assumed to be regime-independent, which is a more reasonable

assumption for the sample period under consideration than if we had included the 1970s.

Setting these parameters to be regime-independent avoids identifying monetary policy

regimes by potential switching in the mean of inflation and/or the short rate rather

6We are not claiming that the HP filter actually captures potential output or the output gap.
However, we assume that it proxies for the Fed’s and the market’s perceptions of the output gap. This
approach is taken in other papers on Taylor rules, such as Cecchetti et al. (2008), which applies the HP
filter for real-time data.
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than switching in the policy reaction coefficients. It also avoids the monetary policy

regimes indirectly affecting the identification of the regime shifts in the market price of

risk through the factor dynamics. Indeed, by setting parameters π and r to be regime-

independent the factor dynamics is not effected by changes in the monetary policy, and

therefore the policy changes do not affect the identification of the market price of risk

through equation (2.5). We also set π and r to their sample average values, as in Dai

et al. (2007), Bikbov and Chernov (2008), and Ang et al. (2008). Clarida et al. (2000)

also restrict the real rate to its sample average to identify the inflation target.

To reduce the dimension of the parameter space, the variance-covariance matrix Ωvt is

constrained to be a diagonal. In this setting, interactions between factors are determined

by the G matrix. This constraint is not too restrictive given estimation results of many

studies that report statistically insignificant and, in most cases, relatively small off-

diagonal elements of the variance-covariance matrix (e.g. Ang et al. (2007b), Chib and

Kang (2009)).

It is well known that it is hard to estimate the risk parameters in small samples, and

therefore, similarly to Ang et al. (2007a), for tractability we also constrain λf to be a

diagonal matrix. This restriction is also in line with the empirical approach of Dai et al.

(2007), who constrained most of the off-diagonal elements of the λf matrix to zero based

on their preliminary estimation results.

In order to label monetary policy regime mt=1 to be “more active” with respect

to response to inflation than regime mt=2, we restrict α1 > α2. To label volatility

regime vt=1 to have higher volatility than in regime vt=2, we restrict Ω1
i,i > Ω2

i,i for each

diagonal element i. We also label market price of risk regime lt=1 to have higher price

of risk of inflation than in regime lt=2 by restricting λ1
0,2 < λ2

0,2 because more negative

value of λst0 is associated with higher price of risk.

The factor dynamics are assumed to be a stationary process by constraining all

eigenvalues of the G matrix to be less than unity in absolute value. The recursion for

Bst
τ is also restricted to be stationary to ensure that the implied yields for long-term

bonds are non-explosive.
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3.3. Estimation Method

No-arbitrage term-structure models are known to have a likelihood surface with many

local maxima. The problem becomes more severe in our high dimensional parameter

space. Our statistical inference is Bayesian, and to fit such models we use the tailored

randomized block Metropolis-Hasting (TaRB-MH) algorithm recently developed by Chib

and Ramamurthy (2010). The idea behind this implementation is to update parameters

in blocks where both the number of blocks and the members of the blocks are randomly

drawn within each MCMC cycle. The use of this MCMC method is essential to improve

the mixing of the draws in the context of term structure models in which there is

no natural way of grouping the parameters. For more details about the TaRB-MH

algorithm, see Chib and Ramamurthy (2010).

One important feature of our estimation method is that proposal densities are con-

structed from the output of simulated annealing, described in detail in Goffe (1996).

For our problem this stochastic optimization method is more reliable than the stan-

dard Newton-Raphson class of deterministic optimizers due to high irregularity of the

likelihood surface.

3.4. State Space Form

This subsection provides details for the state space form, which comprises the tran-

sition and measurement equations and is the basis for model estimation. The transition

equation of the state space form is given by equation (2.3). To derive the measurement

equation, we follow Dai et al. (2007) and assume that one yield, in particular the 12

quarter maturity yield (R12,t), is priced without error. This yield is entitled basis yield.

We choose the 12 quarter maturity yield to be priced without error based on the finding

in Chib and Kang (2009) that the yields in the middle of the yield curve have the lowest

variance of the measurement errors. As a result, the pricing equation for this yield has

the form:

R12,t = ast12 + bst′12 ft = ast12 + bstu,12ut + bst′m,12mt , (3.2)

where

bst12 =

(
bstu,12

bstm,12

)
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and mt denotes the vector of macro factors (πt, gt)
′. This assumption allows the latent

factor to be expressed in terms of observable yields and macro variables:

ut =
(
bstu,12

)−1 (
R12t − ast12 − bst′m,12mt

)
. (3.3)

Thus,

ft =

(
ut
mt

)
=

( (
bstu,12

)−1 (
R12t − ast12 − bst′m,12mt

)
mt

)
. (3.4)

By denoting the vector of all yields other than R12t by Rt and yt ≡ (Rt, ft)
′, the mea-

surement equation can be expressed as

yt =

(
ast

0

)
︸ ︷︷ ︸

A
st

+

(
b
st

I3

)
︸ ︷︷ ︸

B
st

ft +

(
I7

03×7

)
ε̃t , ε̃t ∼ iidN (0,Σ) , (3.5)

where Σ is the variance-covariance matrix for the measurement errors, which is assumed

to be a diagonal and regime independent, and ast and b
st

denote the vector and matrix

of all stacked astτ and bst′τ excluding ast12 and bstu,12.

3.5. Prior Distribution

We set the prior distributions of the model parameters based on the general observa-

tion that, on average, the yield curve is upward sloping. Following Chib and Ergashev

(2009) we simulate parameters and model-implied yield curves from the prior distribu-

tions to ensure that our prior produces, on average, a reasonably shaped yield curve.

At the same time we set the variances of key parameter distributions to be relatively

large so that the distributions cover economically reasonable values of parameters. The

prior for the diagonal elements of G is based on the fact that interest rates, inflation,

and the output gap are all persistent time series. Since λst0 and Ωst are key parameters

determining the term premium, their means are set based on the simulation outcomes

of the model-implied yield curve. Full details of the prior distributions are provided

in Appendix C. To see the prior implied outcomes, we sample the parameters 25,000

times from the prior distributions and simulate factor dynamics and yield curves. This

simulation exercise produces, on average, a slightly upward-sloping yield curves with

substantial variation between -3% and 15%.
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3.6. Posterior Distribution

The posterior distributions of parameters are simulated by Markov Chain Monte

Carlo (MCMC) methods. The joint posterior distribution to be simulated is described

by

π (θ,ST |y) ∝ f (y|θ,ST ) f (ST |θ)π (θ) , (3.6)

where f (y|θ,ST ) is the likelihood function for data, denoted by y comprising time

series of all yields and macro factors, given all parameters of interest θ and time series

of regimes ST = {st}t=0,1,..,T ; f (ST |θ) is the density function for regime-indicators given

the parameters; π (θ) is the prior density of the parameters.

The MCMC procedure is discussed in detail in Appendix D and summarized as

follows:

Step 1: Initialize (θ,uT ,ST ); where uT = {ut}t=0...T is the time series of the latent

factor and ST = {st}t=0...T is the time series of regimes;

Step 2: Sample θ conditional on (ST ,FT ,RT ), where FT = {ft}t=0...T is the time series

of factors and RT = {Rt}t=0...T is the time series of yields;

Step 3: Sample ST conditional on (θ,FT ,RT );

Step 4: Compute uT conditional on (θ,ST ,mT ,R12,T ) using equation (3.3), where mT =

{mt}t=0...T is the time series of macro factors and R12,T = {R12,t}t=0...T is the time

series of basis yield;

Step 5: Repeat Steps 2-4 (n0 + n) times, then disregard the first n0 iterations, which

are burn-in iterations, and save n draws of the parameters.

4. Empirical Results

4.1. Model Comparisons

To confirm an importance of accounting for regime shifts in the monetary policy,

volatility of yield factors, and market price of risk for fitting the data, we estimate mod-

els with different combinations of regime-processes and conduct model comparisons. We
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compare the model with the three regime-switching processes and models with all com-

bination of two regime-switching processes out of the three processes using the deviance

information criterion (DIC) proposed by Spiegelhalter et al. (2002).7 Table 1 confirms

that the model with the three regime-switching processes is the most supported by the

data.8 The pairwise comparison of the models with two regime-processes and the three

regime-processes support the importance of each regime-process for the model fitting.

Indeed, adding the volatility or the price of risk regime-switching processes to the model

considerably increases the likelihood of the model and improves the DIC value.

The following subsections discuss estimation results for the model with the three

regime-switching processes and analyze the effects of monetary policy regime shifts on

the term structure of interest rates.

Table 1: The deviance information criterion (DIC) and Log likelihood

Model DIC LnL

Regimes: mt, vt, lt -11618.7 5830.4
Regimes: mt, vt -11513.6 5675.8
Regimes: mt, lt -11115.7 5608.7
Regimes: vt, lt -11446.8 5696.6

mt, vt, and lt denote regimes of monetary policy, volatility, and the market price of risk, respectively.

The model with the smallest value of the DIC is the most supported by the data. LnL denotes log

likelihood evaluated at the mode of the posterior distribution.

7The deviance information criterion (DIC) is defined as: DIC = 2 1
n

n∑
i=1

D(y, θ(i)) −D(y, θ), where

D(y, θ) = −2 log f(y|θ), θ(i) is the vector of parameters from the posterior distribution, and θ is the
mean of the posterior distribution of parameters. The model with the smallest value of DIC is the
most supported by the data. Alternative criterion for a model comparison, used widely in the Bayesian
literature, is the Bayes factor, which is based on the marginal likelihood. However, it was found that
the majority of methods to compute marginal likelihoods based on values of likelihoods cannot be used
for this study. For example, the harmonic mean estimator with different modifications is not reliable
enough due to its instability. The method for estimating the marginal log likelihood proposed by Chib
and Jeliazkov (2001), which seems more desirable, is computationally costly for our model due to the
high dimensionality with eight regimes.

8The results for the non-switching model, which is much less supported by the data, is not reported
for conciseness of the analysis.
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4.2. Parameter Estimates and Regimes

Table 2 reports the parameter estimates of the model. Specifically, the table reports

the posterior means of parameters and their standard deviations in parentheses based

on 15,000 iterations of the MCMC algorithm beyond a burin-in of 5,000 iterations. To

evaluate the efficiency of the MCMC-produced results, we use the acceptance rates in the

MH step of the sampler and the inefficiency factor as discussed in Chib (2001).9 These

parameters have, on average, values of 53.7 percent and 180.0 respectively indicating

good mixing.

We start the interpretation of the estimation results with analysis of the parameter

estimates in the two monetary policy regimes. The inflation coefficients α1 and α2,

which have values of 0.18 and 0.88, respectively, are considerably different in the two

monetary policy regimes. The output gap coefficients β1 =0.63 and β2 =0.75 are also

different in the two monetary policy regimes; however, this difference is not as strong

as for the inflation coefficients. Thus, the monetary policy regimes are mainly identified

by switching in the Fed’s reaction to inflation.

These coefficients are not directly comparable to those from a single-equation Taylor

rule that accounts for interest rate smoothing. The single-equation Taylor rule with

interest rate smoothing is specified as a linear combination of the target rate and past

value of the short rate as

rmtt = (1− ρ)
[
r̃mt + α̃mt (πt − πmt) + β̃mtgt

]
+ ρr

mt−1

t−1 + ξt , (4.1)

where ξt denotes monetary policy shocks for this specification of the policy rule. It is

easy to see that r̃mt = rmt

(1−ρ)
, α̃mt = αmt

(1−ρ)
, β̃mt = βmt

(1−ρ)
, ut = ρr

mt−1

t−1 + ξt, and it is easy to

show that ρ = G1,1.
10 After this transformation the coefficients α̃1 =3.30 and α̃2 =16.33

9The inefficiency factor is defined as 1+2
M∑
k=1

ρ(k), where ρ(k) is the k-order autocorrelation computed

from the sampled distribution and M is a large number, which we set to be 500. Thus, if the sampler did
not mix at all then the inefficiency factor would have a value of 500. Given this choice for M, empirically,
a value of the inefficiency factor of 250 is usually considered as an upper-bound for a reasonable level
of mixing.

10We do not use the specification of the Taylor with smoothing because, in our structure, the short
rate has an affine form in the factors and also the latent factor is identified from the VAR(1) dynamics
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Table 2: Parameter estimates

(a) Monetary Policy
α1 α2 β1 β2

0.178 0.882 0.628 0.750
(0.098) (0.164) (0.167) (0.226)

(b) G matrix
G

0.946 0.006 0.016
(0.030) (0.010) (0.026)
-0.039 0.958 0.041
(0.036) (0.023) (0.046)
0.133 0.014 0.838

(0.036) (0.030) (0.039)

(c) Factors’ Volatilities ×400
L1 L2

0.692 0.688 0.411 0.739 1.154 0.668
(0.065) (0.060) (0.053) (0.068) (0.164) (0.097)

(d) Measurement Errors’ Volatilities ×400
σ1 σ2 σ3 σ4 σ5 σ6 σ7

0.438 0.174 0.052 0.026 0.064 0.115 0.132
(0.038) (0.015) (0.004) (0.002) (0.006) (0.009) (0.011)

(e) Market Price of Risks

λ1
0 λ2

0 λf
0.237 -0.342 -0.374 0.193 -0.442 -0.498 0.314 0.733 0.251

(0.060) (0.086) (0.155) (0.076) (0.103) (0.176) (1.997) (1.974) (1.837)

(f) Transition Probabilities
p11
m p22

m p11
v p22

v p11
l p22

l

0.988 0.986 0.943 0.959 0.978 0.975
(0.004) (0.004) (0.016) (0.016) (0.007) (0.009)

The Table reports posterior means and their standard deviations in parentheses based on

15,000 posterior draws beyond 5,000 draws as a burn-in.

both have values grater than unity, and therefore they do not potentially create a risk of

rather than from the single short-rate equation.
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indeterminacy of the equilibrium based on the generalized Taylor principle, introduced

by Davig and Leeper (2007).11,12 Given this result, the regime with the smaller inflation

coefficient is entitled a “less active” monetary policy regime and the one with the bigger

coefficient, a “more active” regime. The transformed coefficients for the output gap β̃1

and β̃2 have values of 11.63 and 13.89, respectively. In our model structure, the policy

response coefficients are responsible for fitting the short-term interest rate as well as the

long-term interest rate through a no-arbitrage restriction rather than only the short rate

in the single-equation Taylor rule. Therefore, this model structure can lead to different

estimates of the coefficients than those from the single-equation model.13

Figure 1 displays the probabilities of regimes for all three regime processes. In

general, the monetary policy regimes are well-identified and very persistent throughout

the sample period with 99 percent probabilities of staying in the same regime from

quarter to quarter, as reported in Table 2. The period from 1986 through 1994 is

characterized by the “more active” monetary policy regime. In this period, inflation

was, on average, relatively high and the Fed was adjusting the short rate relatively close

to inflation and output gap dynamics. The period from 1995 through 2000, where the

“less active” monetary policy regime prevails, is characterized by the relatively stable

short rate and inflation, while the output gap was steadily increasing in magnitude. At

the beginning of 2001, when the recession hit the U.S. economy, the Fed responded to

the decline in output and inflation by reducing the short rate and switching to the “more

active” policy regime, which lasted until 2004. In the period from 2002 through 2004,

inflation remained, on average, relatively low and the Fed kept the short rate at a low

11As discussed in Clarida et al. (2000), if the inflation coefficients are below unity, then increase in
expected inflation causes a decline in the real interest rate. The decline in the real interest rate leads
to growth in aggregate consumption, which consequently leads to further increase in inflation.

12Davig and Leeper (2007) introduced the concept of the generalized Taylor principle to rule out
indeterminate equilibria in a version of the new-Keynesian dynamic general equilibrium model where
the parameters of the policy rule follow a Markov-switching process. According to the generalized
Taylor principle monetary policy can satisfy the Taylor principle in the long run, while deviating from
it substantially for relatively short periods or modestly for prolonged periods.

13Although the estimates of the policy response coefficients for inflation and output gap after trans-
formation are higher than those often reported from a single-equation Taylor rule model, they are of
the same magnitude as those reported by ABDL(2010) for their specification of a no-arbitrage model.
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level to accommodate the still low output gap. The identification of the monetary policy

regime in this period as “more active” is also affected by the increased term spread. As

we noted above, in the no-arbitrage framework, the Taylor rule coefficients are identified

by the short rate as well as the slope of the yield curve. Also, it is important to

note that this paper employs a different structure of regimes and time-varying volatility

specification from the previous literatures, which explains why our results for the timing

of the regime switches might differ from those in ABDL(2010), Bikbov and Chernov

(2008), and Davig and Doh (2009).

Identification of monetary policy as “less active” for the period from the middle of

2004 through 2005 is also affected by the slope of the yield curve. In this period, entitled

a “conundrum” by then-Fed Chairman Alan Greenspan, the long-term yields slightly

declined while the short rate was steadily increasing from 1 percent to around 4 percent.

These dynamics of the yield curve, as discussed by Rudebusch et al. (2006) in detail, are

perceived to be unusual given economic expansion, the falling unemployment rate, and

the increasing fiscal gap, which all normally correspond a higher long rate. Similar to

Kim and Wright (2005), our results suggest that the term premium, displayed in Figure

2, was low in this period. While this result suggests that part of the “conundrum” can

be related to a decline in the term premium, full assessment of its contribution to the

pricing anomaly is beyond the scope of this study.14

The volatility estimates of exogenous shocks to all factors, reported in Table 2 suggest

that identification of the volatility regimes is presumably driven by the volatility of

inflation shocks. The volatility estimates for the inflation shocks factored by 400 have

values of 0.69 and 1.15 - the values with the largest difference in the two volatility

regimes among all factors. The transition probabilities of staying in the same volatility

regime are estimated at 94 and 98 percent for the “low” and “high” volatility regimes,

respectively.

14Kim and Wright (2005) finds that the decline in term premium is a key factor explaining the
“conundrum”. In contrast, Rudebusch et al. (2006) find that no arbitrage macro-finance models are not
able to explain it. They consider macroeconomic factors other than those included in the macro-finance
models and find that declines in long-term bond volatility may explain a part of the “conundrum”.
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Figure 1: The Probabilities of monetary policy, volatility, and risk regimes

Graph (a) displays the time series of the short rate, inflation and the output gap; graphs (b),

(c), and (d) display probabilities of regimes in “more active” monetary policy, “high” volatility,

and “high” price of risk, respectively. Shaded areas correspond to NBER recession dates.
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The bottom graph of Figure 1 displays probabilities of the “high” price of risk regime

based on switching of risk parameters λst+1

0 . The probabilities of the ”high” price of risk

regime clearly and persistently change between 0 and 1 in most of the sample period,

indicating that the regimes are well identified. In the next section we analyze the role

of the price of risk regime process for modeling the term premium.

4.3. Term Premium and Regimes

Graph (a) of Figure 2 displays the model-implied term premium and the term spread

between the long-term and short-term interest rates. The highly correlated co-movement

between the term premium and the term spread indicates that the model implies a

plausible term premium. From equation (2.16) one can see that the time-variation in

the term premium theoretically depends on the regime-switching of all processes as well

as the continuous variation in the yield factors. The continuous variation is originated

from the functional form of risk parameter Λt,t+1 which comprises of the regime-switching

component as well as the continuously time-varying component as a function of the

factors. While the model theoretically allows both discrete and continuous variations in

the term premium, the discrete shape of the estimated term premium suggests that the

regime-switching processes play the considerably more important role in large variations

of the term premium than the factors.

Graphs (b) through (d) of Figure 2 display the probabilities of regimes and the

term premium, illustrating the relative role of each regime-process in the time-variation

of the term premium. One can see that the volatility and the price of risk regime-

processes are most closely related to the variation of the term premium, complementing

each other. In contrast, the monetary policy regimes highly persistent relative to the

term premium, indicating that the monetary policy regimes have less responsible for the

time-variation of the term premium, given the other two regime-processes. This result

suggests that the monetary policy regimes are identified by the correlation between the

short rate and the macroeconomic variables in larger extend than by the term premium.

In contrast to this result, the monetary regimes estimated in the models with only

two-regime processes, the regime-switching monetary policy and the regime-switching

volatility or market price of risk, are more affected by the term premium than in the
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Figure 2: The Term Premium, Term Spread, and Regimes

The figure displays the model-implied term premium, the term spread for 10-year bonds,

and probabilities of regimes. On the graphs (b) through (d) the solid line displays the term

premium and the dashed-lines display probabilities of regimes. Shaded areas corresponds to

NBER recession dates.
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model with the three-regime processes. For example, in the two-regime models, similar

to Bikbov and Chernov (2008), the monetary policy regime in the late 1980s is identified

as the less active regime when the term spread was low.15 Also, as we pointed earlier,

the model comparisons suggest that accounting for the regime-switching of all three

regime-switching processes considerably improves the data fitting by the model. Thus,

we conclude that the volatility and the price of risk regime-switching processes are

important components of the model for the monetary policy regimes identification.

4.4. Monetary Policy Regimes and the Yield Curve

Figure 3 displays the average realized yield curves in the two monetary policy regimes.

The left-hand-side graph demonstrates that the average yield curves in the two regimes

mainly differ in terms of their long rates and slopes. In particular, while the average

short rates in two regimes are close to each other, the long rate in the “more active”

regime is, on average, 129 basis points higher than in the “less active” regime, resulting

in a considerably steeper sloped yield curve, on average, in the “more active” regime.

This result suggests that long-term yields are more sensitive to monetary policy shifts

than the short-rate, which is in line with findings of ABDL(2010) and can be explained

as follows. Because the policy coefficients switch to higher values in response to greater

macroeconomic factor risk in the “more active” regime, they also magnify this risk for

the long-term yields through a no-arbitrage restriction. This effect can be seen from

equation (2.16), where term premia for the long-term yields increase with increase in

the coefficients for the macroeconomic factors in short rate equation (2.1). The middle-

and right-hand-side graphs of Figure 3 demonstrate that the short rate in the “more

active” regime was considerably more volatile than in the “less active” regime. The

sample standard deviation of the short rate in the “more active” regime is 2.48 percent

compared to 1.39 percent in the “less active” regime. In general, the yield curve in the

“more active” regime is more volatile than in the “less active” regime with the standard

deviations of the long-term yields of 1.65 and 1.10 percent in the “more active” and

15To conserve space we do not report results of the two-regime models, which are less supported by
the data.
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Figure 3: Average realized yield curves
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The graphs are constructed using the term structure of interest rates computed at each iteration

of the posterior distribution and then separately averaging them over the two monetary policy

regimes. Graphs (b) and (c) display the average and 2.5%, and 97.5% quantile yield curves in

the two monetary policy regimes. The X-axes display yield maturities in quarters.

“less active” regimes, respectively. In summary, these results can be explained by a

more sensitive response of the short rate to inflation in the “more active” regime that

creates higher risk for the future short rate fluctuations. This risk drives the higher

long-term rate relative to the short rate. Thus, the Fed faces a policy trade-off between

a “more active” reaction to macroeconomic fluctuations and higher long-term interest

rates as well as a more volatile yield curve caused by this reaction. This argument
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is consistent with Woodford (1999), who claims that it may be more optimal for the

monetary authority to conduct policies that do not require the short rate to be too

volatile.

To see what effect monetary policy would have had on the term structure of interest

rates if a single regime were maintained throughout the sample, we conduct a counterfac-

tual analysis. Figure 4 displays the short and long rates and the term spreads generated

by fixing parameters to one of the two monetary policy regimes. Throughout most of the

sample, the short rate in the “more active” regime would have been more volatile than

in the “less active” regime. The long rate and consequently the term spread would have

been higher than the actual ones in those periods when the regime was “less active”.

5. Conclusion

In this paper, we proposed a no-arbitrage affine term structure model with regime

shifts in monetary policy, factor volatilities, and the price of risk. This model allowed

us to quantitatively assess the influence of monetary policy regime shifts on the entire

term structure of interest rates.

We found that, in the “more active” monetary policy regime, the slope of the yield

curve was steeper than in the “less active” regime. Also, the short rate and the entire

yield curve in general were more volatile in the “more active” regime than in the “less

active” regime. The explanation for these results is that a higher sensitivity of the

short rate in response to inflation fluctuations in the “more active” regime leads to a

higher term premium in anticipation of a more volatile future short rate. These results

also suggest that the Fed faces a policy trade-off between a “more active” reaction to

macroeconomic fluctuations and a more volatile yield curve caused by this reaction.
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Figure 4: Counterfactual short rates, long rates, and term spreads

87:4 91:4 95:4 99:4 03:4 07:4

−4

−2

0

2

4

6

8

10
A

nn
ua

l %

a) Short Rate

Actual Short Rate
Counterfactual Short Rate in "More Active" MP
Counterfactual Short Rate in "Less Active" MP

87:4 91:4 95:4 99:4 03:4 07:4

−4

−2

0

2

4

6

8

10

A
nn

ua
l %

b) Yields for 10−year bonds

Actual yields
Counterfactual yields in "More Active" MP
Counterfactual yields in "Less Active" MP

87:4 91:4 95:4 99:4 03:4 07:4

−4

−2

0

2

4

6

8

10

A
nn

ua
l %
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The time series of counterfactual interest rates are simulated by fixing parameters to one of

the two monetary policy regimes.
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Appendices

Appendix A. Bond Pricing

We solve for Ajτ and Bj
τ using the law of iterated expectatios, method of undetermined

coefficients, and log-linearization:

P st
t,τ = E

[
exp

(
−rstt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
P st+1

τ−1,t+1|ft, st
]

1 = E

[
exp

(
−rjt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
P st+1

τ−1,t+1

P j
τ,t

|ft, st = j

]

=
S∑
k=1

pjkE

[
exp

(
−rjt −

1

2
Λk′t Λkt − Λk′t εt+1

)
P k
τ−1,t+1

P j
τ,t

|ft, st = j, st+1 = k

]

=
S∑
k=1

pjkE
[

exp

(
−rjt − 1

2
Λk′t Λkt − Λk′t εt+1

+Ajτ + Bj′
τ ft − Akτ−1 −Bk′

τ−1ft+1

)
|ft, st = j, st+1 = k

]

=
S∑
k=1

pjk

{
exp
(
−rjt − 1

2
Λk′t Λkt + Ajτ − Akτ−1 + Bj′

τ ft −Bk′
τ−1µ

j,k
t

)
×E

[
exp
(
−
(
Λk′t + Bk′

τ−1L
k
)
εt+1

)
|ft, st = j, st+1 = k

] } (A.1)

=
S∑
k=1

pjk
{

exp

(
−rjt − 1

2
Λk′t Λkt + Ajτ − Akτ−1 + Bj′

τ ft −Bk′
τ−1µ

j,k
t

+ 1
2

(
Λk′t + Bk′

τ−1L
k
) (

Λk′t + Bk′
τ−1L

k
)′ )}

(A.2)

=
S∑
k=1

pjk exp

(
−rjt + Ajτ − Akτ−1 + Bj′

τ ft
−Bk′

τ−1µ
j,k
t + Bk′

τ−1L
kΛkt + 1

2
Bk′
τ−1L

kLk′Bk
τ−1

)
(A.3)

≈
S∑
k=1

pjk

 −δj0 − δ
j′
f ft + Ajτ − Akτ−1 + Bj′

τ ft
−Bk′

τ−1d
k −Bk′

τ−1G (ft − dj)
+Bk′

τ−1L
k
(
λk0 + λf ft

)
+ 1

2
Bk′
τ−1L

kLk′Bk
τ−1 + 1

 . (A.4)

(A.1) is transformed into (A.2) using the property of moment generating function for

Normally distributed εt+1:

ϕjkt (x) ≡ E [exp (x′εt+1) |ft, st = j, st+1 = k] = exp(
x′x

2
) , x ∈ R3

evaluated at x = −
(
Λk′t + Bk′

τ−1L
k
)′
. Following Bansal and Zhou (2002), (A.3) is trans-

formed into (A.4) using log-approximation exp (y) ≈ y + 1 for a sufficiently small y and

substituting for rjt using equation (2.10).
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Using above result for the bond pricing equation and collecting terms for ft:

0 =
S∑
k=1

{
pjkE

[
exp

(
−rjt −

1

2
Λk′t Λkt − Λk′t εt+1

)
P τ−1
t+1,k

P τ
t,j

|ft, st = j, st+1 = k

]}
− 1

≈
S∑
k=1

pjk
(
−δj0 − δ

j′
f ft + Ajτ − Akτ−1 + Bj′

τ ft −Bk′
τ−1d

k −Bk′
τ−1G (ft − dj)

+Bk′
τ−1L

k
(
λk0 + λf ft

)
+ 1

2
Bk′
τ−1L

kLk′Bk
τ−1

)

=
S∑
k=1

pjk
(
−δj0 + Ajτ − Akτ−1 −Bk′
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k + Bk′

τ−1Gd
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τ−1L

kλk0 + 1
2
Bk′
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kLk′Bk
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)

+
S∑
k=1

pjk
(
−δj′f + Bj′

τ −Bk′
τ−1G + Bk′

τ−1L
kλf
)
ft .

The above identity has to be true for every value of ft , which will be the case only if

the first and second terms are 0:

0 =
S∑
k=1

pjk
(
−δj0 + Ajτ − Akτ−1 −Bk′

τ−1d
k + Bk′

τ−1Gd
j

+Bk′
τ−1L

kλk0 + 1
2
Bk′
τ−1L

kLk′Bk
τ−1

)
and

0 =
S∑
k=1

pjk
(
−δj′f + Bj′

τ −Bk′
τ−1

(
G− Lkλf

))
.

This leads to the solution for Ajτ and Bj
τ in the form of recursive system:

Ajτ = δj0 +
S∑
k=1

pjk
(
Akτ−1 +

(
dk −Gdj − Lkλk0

)′
Bk
τ−1 −

1

2
Bk′
τ−1L

kLk′Bk
τ−1

)

Bj
τ = δjf +

S∑
k=1

pjk
(
G− Lkλf

)′
Bk
τ−1 .

To derive the initial conditions for Aj0 and Bj
0, we let τ = 0. Given P j

τ,t = exp(−τrjt ),
we have P j

0,t = exp(−0 × rjt ) = 1. From P τ
j,t = exp(−Ajτ − Bj′

τ ft) for τ = 0 : 1 = P j
0,t =

exp(−Aj0−B
j′
0 ft) has to be true for every ft, therefore Aj0 = 0 and Bj

0 = 0, consequently

Aj1 = δj0 and Bj
1 = δjf .
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Appendix B. Expected Excess Return

The one-period expected excess return on the n-period bond:

ERj
τ,t = E[pτ−1,t+1|ft, st = j] + pj1,t − p

j
τ,t ,

where pjτ,t and pj1,t are log prices of bonds derived in the following ways:
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τ,t = logE
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(
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(
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Then the expected value of the log price is given by

E[pτ−1,t+1|ft, st = j] =
S∑
k=1

pjkE[pkτ−1,t+1|ft, st = j, st+1 = k]
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)
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)
.

Next, the expected excess return is derived in the following way:

E[pτ−1,t+1|ft, st = j] + pj1,t − p
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τ,t
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pjkt
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To derive the above result, we applied log-linearization for exp (y) and log (x). The

argument of the exponent is a return, which is a sufficiently small number, therefore it

can be approximated as exp (y) ≈ y + 1.
∑S

k=1 p
jk (y + 1) ≡ x is a number sufficiently

close to 1, therefore it can be approximated as log (x) ≈ x− 1.

Appendix C. Details for the Prior Distributions

First, we describe the approach for estimating the transition probabilities.We es-

timate the transition probabilities separately for each regime process as functions of

Normally distributed parameters

pjkrg =
1

1 + exp
(
ηjkrg
) , j 6= k , (C.1)

which truncates the transition probability values to be within 0 and 1 bounds.

We assume that all parameters, denoted as θ, are distributed independently from

each other. Table C.3 provides detail for the prior distributions of the parameters.

We set the prior for all variances to be defuse to ensure that the prior implied yield
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curve and the factor processes have considerable variations. Parameters Ω1, Ω2, Σ are

reparameterized using coefficients

dΩ =
(

5× 105 5× 105 7× 104
)

(C.2)

and

dΣ =
(

7× 105 4× 106 3× 107 6× 107 107 107 107
)
. (C.3)

Table C.3: Prior distributions

Parameter density mean Std.

α1, α2 normal 0.40 0.40 1.00 1.00
β1, β2 normal 0.30 0.30 1.00 1.00
G normal 0.80 0.00 0.00 0.20 0.10 0.10

0.00 0.80 0.00 0.10 0.20 0.10
0.00 0.00 0.80 0.10 0.10 0.20

λ1
0 normal -0.10 -0.10 -0.10 0.30 0.30 0.30
λ2

0 normal -0.10 -0.10 -0.10 0.30 0.30 0.30
λf normal 1.00 1.00 1.00 2.00 2.00 2.00

η12
m , η

21
m normal 3.48 3.48 0.50 0.50

η12
v , η

21
v normal 3.48 3.48 0.50 0.50

η12
λ , η

21
λ normal 3.48 3.48 0.50 0.50

dΩ × Ω1, dΩ × Ω2 defuse prior 1.10 1.10 0.23 0.23
dΣ × Σ defuse prior 1.00 0.17

All elements of the reparameterized dΩ×Ω1, dΩ×Ω2, and dΣ×Σ matrices have the same prior

means and standard deviations within each matrix stated in the Table, where dΩ and dΣ are

defined by (C.2) and (C.3). The prior for η12
rg and η21

rg implies the prior for p12
rg and p21

rg with

means and standard deviations equal to 0.03 and 0.02, respectively.

Appendix D. MCMC Sampling

This Section provides details of the MCMC algorithm summarized in Section 3.6 and

the construction of the likelihood function.

Step 2: Sampling θ

Parameters θ conditional on (ST ,FT ,RT ) are sampled using the Metropolis-Hastings

(MH) algorithm. Because it is difficult to find an optimal parameter blocking scheme

due to the high dimension of parameter space of the model, we use the tailored random-

ized block M-H (TaRB-MH) method developed by Chib and Ramamurthy (2010). The
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general idea of this method is in setting a number and composition of blocks randomly

in each sampling iteration. We let the proposal density q (θi|θ−i,y) for parameters θi in

the ith block, conditional on the value of parameters in the remaining blocks θ−i to take

the form of a multivariate student t distribution with 15 degrees of freedom

q (θi|θ−i,y) = St
(
θi|θ̂i, Vθ̂i ,15

)
,

where

θ̂i = arg max
θi

ln{f(y|θi, θ−i,ST)π(θi)}

and Vθ̂i =

(
−∂

2 ln{f(y|θi, θ−i,ST)π(θi)

∂θi∂θ′i

)−1

|θi=θ̂i
.

Following Chib and Kang (2009) and Chib and Ergashev (2009), we solve numerical

optimization problem using the simulated annealing algorithm, which has better perfor-

mance in this problem than deterministic optimization routines due to high irregularity

of the likelihood surface.

Next, we draw a proposal value θ†i from the multivariate student t distribution with

15 degrees of freedom, mean θ̂i and variance Vθ̂i . If the proposed value does not satisfy

the model imposed constrains, then it is immediately rejected. The proposed value,

satisfying the constraints, is accepted as the next value in the Markov chain with prob-

ability

α
(
θ

(g−1)
i ,θ†i |θ−i,y

)
= min

 f
(
y|θ†i , θ−i,ST

)
π
(
θ†i

)
f
(
y|θ(g−1)

i , θ−i,ST

)
π
(
θ

(g−1)
i

) St
(
θ

(g−1)
i |θ̂i, Vθ̂i ,15

)
St
(
θ†i |θ̂i, Vθ̂i ,15

) , 1

 ,

where g is an index for the current iteration. The completed simulation of θ in the gth

iteration with hg blocks produces sequentially updated parameters in all blocks:

π (θ1|θ−1, y,ST ) , π (θ2|θ−2, y,ST ) , ..., π
(
θhg |θ−hg , y,ST

)
.

Now we derive the log-likelihood function conditional on θ and ST , which has the form:

log f (y|θ,ST ) =
T∑
t=1

log f(yt|It−1, θ,ST ) ,
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where It−1 = {yn}t−1
n=0 denotes the information set available for the econometricians at

time t-1. Given the model specification, yt conditional on st−1 = j, st = k, It−1, and θ is

distributed Normally with the mean and variance defined as

yjkt|t−1 ≡ E [yt|st−1 = j, st = k, It−1, θ] = A
k

+ B
k
µj,kt−1

V jk
t|t−1 ≡ V ar [yt|st−1 = j, st = k, It−1, θ] = B

k
LkLk

′
B
k′

+

(
Σ 0
0 0

)
︸ ︷︷ ︸

W

.

Thus, the conditional density of yt becomes

f (yt|st−1 = j, st = k, It−1, θ) =
1

(2π)
10/2 |V jk

t|t−1|1/2

(
−1

2

(
yt − yjkt|t−1

)′
[
V jk
t|t−1

]−1 (
yt − yjkt|t−1

))
. (D.1)

Step 3: Sampling regimes ST

Regimes ST are sampled from f (ST |IT , θ) in a single block in backward order. First,

the regime probabilities conditional on It and θ are obtained by applying the filtering

procedure developed by Hamilton (1989) as follows:

Step 1: Probabilities of regime s0 conditional on available information at time t = 0 and

parameters are initialized at unconditional probabilities of regimes denoted by

psteady−state:

Pr (s0|I0, θ) = psteady−state .

Step 2: The joint density of st−1 and st conditional on information at time t − 1 and

parameters is given by

Pr (st−1 = j, st = k|It−1, θ) = pjk Pr (st−1 = j|It−1, θ) . (D.2)

Step 3: Then, the density of yt conditional on information at time t− 1 and parameters is

given by

f (yt|It−1, θ) =
∑
j,k

f (yt|st−1 = j, st = k, It−1, θ) Pr (st−1 = j, st = k|It−1, θ) ,(D.3)

where the first and second terms are given by equations (D.1) and (D.2), respec-
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tively.

Step 4: The joint density of st−1 and st conditional on information at time t and parameters

is obtained by using the Bayes rule:

Pr (st−1 = j, st = k|It, θ) =
f (yt, st−1 = j, st = k|It−1, θ)

f (yt|It−1, θ)

=
f (yt|st−1 = j, st = k, It−1, θ) Pr (st−1 = j, st = k|It−1, θ)

f (yt|It−1, θ)
,

where the first and second terms of the nominator are given by equations (D.1)

and (D.2) and the denominator is given by equation (D.3).

Step 5: By integrating out regime st−1 we obtain the probabilities of regime st conditional

of information at time t and parameters:

Pr (st = k|It, θ) =
∑
j

Pr (st−1 = j, st = k|It, θ) .

Next, the regimes are drawn backward based on regime probabilities. In particular,

regime sT is sampled from Pr (sT |IT , θ) and then for t from T-1 to 1 regimes are sampled

from probabilities computed sequentially backward as

Pr (st = j|It, st+1 = k, θ) =
Pr (st+1 = k|st = j) Pr (st = j|It, θ)
n∑
j=1

Pr (st+1 = k|st = j) Pr (st = j|It, θ)
,

where n is the total number of regimes.
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