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Abstract

We propose a new approach to stress testing risk models of financial institutions. In
this approach, a scenario is fully defined by the frequency of scenario occurrence and
lower bound of anticipated loss severity. All available scenarios are ordered by their
frequency and severity to identify worst-case scenarios and only worst-case scenarios
augment the loss distribution in a risk model. By doing that, we ensure that while
the information in all scenarios is considered, only those that negatively affect the tail
of the loss distribution are taken into account for the purpose of stress testing the risk
model. The proposed approach has several advantages: (i) it has a built-in feature which
ensures that a stressed risk model cannot produce a risk estimate that is lower than the
one derived from the historical data based model; (ii) it does not require assumptions
on scenario loss distributions, thereby simplifying the scenario generation process; and
(iii) the approach can be applied to various types of risk, such as market or operational
risk.
(JEL G32, G21, G20)
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1. Introduction

Stress testing is an important risk-management tool that enables risk managers to

assess the impact of adverse events on their institution’s financial positions and business

model. By providing insight about prospective losses that might occur under adverse

circumstances, stress tests allow risk managers to assess the vulnerabilities of portfolios

IThe views expressed in this paper are those of the authors and do not necessarily reflect the position
of the Federal Reserve Bank of Richmond or the Federal Reserve System. We thank Marshal Auron,
Evan Sekeris, Jeremy Caldwell, and Nathan Suwalski for many helpful comments and suggestions.



and institutions, and evaluate how much capital would be required to ensure their vi-

ability. The Basel Committee on Banking Supervision (2009) recommends that “stress

testing should form an integral part of the overall governance and risk management cul-

ture of the bank”, while leaving principles of stress-test implementation to be developed

by financial institutions. The 2007-9 crisis clearly demonstrated the need for sound

principles for stress testing practices.

Since financial institutions increasingly use risk models to quantify their risk, it has

become a common practice to conduct stress tests by stressing risk models. The Value-

at-Risk (VaR) measure of risk, for example, provides a reasonable tool for measuring

and managing risk under a base model of risk (i.e., the model that fits to historically

observed losses), but is of limited value under extreme financial circumstances that are

not well represented or not observed in the data. Stress tests, on the contrary, are

designed to focus on disruptions to the normal business environment in which the bank

operates through the consideration of severe yet plausible scenarios. Stress scenarios are

typically generated exogenously to the probabilistic estimates of risk produced by the

base risk model. Therefore, the integration of stress scenarios into the base risk model

to derive a stress measure of risk presents a challenge.

In this paper, we offer a minimalistic approach to integrating stress scenarios into

VaR based risk models. The proposed methodology elicits minimal expert input in a

simple and accessible manner. To implement it, scenario experts only need to assign

each scenario a frequency and a lower bound on the anticipated loss amount. Among all

stress scenarios proposed by scenario experts, only “worst-case scenarios” are selected to

stress the base model. For a given frequency, the worst-case scenario is the scenario with

the highest lower bound on the loss amount. If a worst-case scenario is more severe than

the loss amount predicted by the base model at the quantile level corresponding to the

scenario frequency, the loss distribution is shifted to the right to match the loss amount

of the worst-case scenario.1 Otherwise, we assume that the information content of that

1Throughout the paper we work with loss distributions to make sure that the approach is applied to
various risk areas in the same manner. For example, we treat a negative return on a portfolio as being
a loss. Under this convention negative losses correspond to gains (i.e., positive returns).
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scenario is already implicitly incorporated in the base model. Thus, our methodology

has a built-in feature which ensures that the stress model indeed represents more adverse

conditions than the base model, thereby ruling out “stressed” models that reflect a more

optimistic outlook than the base model. Also, the approach is general and can be applied

for stress testing risk models in various risk areas, such as market or operational risk.

Our approach to integrating the stress scenario information into a risk model is

distinguished from those proposed in the existing literature. The distinctions are in

principles of how scenarios are defined as well as how scenarios are integrated into a risk

model. One of the conceptual approaches to incorporating stress scenarios into a VaR

model is proposed in Berkowitz (2000) in the context of market risk. In this approach,

each scenario is defined in terms of a scenario loss distribution and the probability of

loss events being generated from that distribution. The author proposes to integrate the

scenario information into a risk model as a mixture of the historical and scenario loss

distributions. In contrast to this method, our approach does not require assumptions

on scenario loss distributions and mixture parameters. Our approach also differs from

the Monte Carlo simulation method proposed in the literature on scenario selection. A

number of papers (e.g., Studer (1997, 1999); Breuer et al. (2009); Breuer et al. (2010);

and Flood and Korenko (2010)) propose statistical criteria for the selection of stress

scenarios among those that are generated by a Monte Carlo simulation of underlining

risk factors. While this simulation method allows modelers to generate a large number

of scenarios, in contrast to our approach, it does not take into account plausible extreme

scenarios that scenario experts may be particularly interested. Also, these studies focus

on scenario selection criteria, leaving the incorporation of scenarios into a risk model an

open issue.

In this paper, we define a scenario by a lower bound of the anticipated loss amount

and a frequency of occurrence. Nevertheless, the approach is flexible enough to allow the

use of different scenario generation methods provided that it is possible to translate risk-

specific definitions of scenarios into scenario loss amounts. For example, scenarios for the

market risk of an asset portfolio can be defined in terms of shocks to a particular pricing

factor, as proposed in Kupiec (1998). We demonstrate this feature of our methodology
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while applying it to the interest rate risk in Section 4.1.

Our approach expands and generalizes the theoretical framework in Ergashev (2011)

which is proposed in the context of incorporating scenarios into operational risk mod-

eling. We derive several new theoretical results that explain the integration of stress

scenarios into risk models and provide insights for the practical implementations of the

approach in a variety of risk areas. In line with conventional practice, we calculate the

base and stress risks using the VaR measure of risk. Artzner et al. (1999) show that

VaR is not a coherent measure, because it is not always subadditive. Therefore, we also

calculate and report expected tail loss (ETL) as a coherent alternative to VaR.

The rest of the paper is organized as follows. Section 2 provides a detailed description

of our approach and some new theoretical results. In Section 3 we describe how our

approach to stress testing risk models can be implemented using different risk measures.

In Section 4 we present examples of applying the approach to stress testing interest rate

risk and operational risk. Section 5 concludes.

2. The worst-case scenarios approach

Indisputably, the unknown stress loss distribution should incorporate more stressful

events than those that are historically observed. We assume that the base model’s loss

distribution and the stress scenarios constitute two valuable pieces of information about

this unknown distribution. More specifically, the base loss distribution aggregates the

information about stress events that occurred in the past, whereas scenarios capture

unrealized hypothetical stress events that have a potential of becoming a part of future

loss observations. Because a risk measure (such as VaR) has to be applied to a certain

distribution, one needs to define a distribution that integrates both pieces of information

and approximates the stress distribution.

One approach to deriving this proxy distribution is to assume that each scenario has

its own distribution and its own probability of occurrence (Berkowitz (2000)). Thus,

the resulting proxy distribution for the stress model is a mixture of the historical distri-

bution and the scenario distributions. This approach requires assumptions on scenario

distributions and the parameters of the mixture of the base and scenario loss distribu-
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tions. Although theoretically it is reasonable to define scenarios as hypothetical events

with certain probabilities of occurrence and associated loss distributions, to make as-

sumptions on scenario distributions and their mixture is a challenging task due to a

limited knowledge about scenarios. Not surprisingly, scenario experts, who are responsi-

ble for generating scenarios, commonly express the frequency of occurrence of a scenario

in terms of the number of periods involved (i.e., days, months, or years, etc.), and the

loss severity through minimum or maximum possible loss amounts, or both, as a loss

interval. Attempting to extract a finer information structure from scenarios increases

the odds of obtaining biased final results. Therefore, we take a minimalistic approach

by extracting only two pieces of information from each scenario: a lower bound on the

loss amount and a frequency of occurrence.

When incorporating scenarios in a mixture framework for the purpose of stress testing

a risk model, it is not always obvious how each scenario affects the risk measure. Some

scenarios might increase the original risk measure, thereby justifying the main purpose of

stress testing, while some may even reduce it.2 Our methodology has a built-in protection

against this type of counter-intuitive outcome. Namely, we impose a constraint to make

sure that the stressed values of the risk measure are not lower than the corresponding

values derived from the base risk model. This constraint ensures that the scenarios under

consideration would indeed “stress test” the capital estimates, rather than potentially

downsize them.

In the following subsections we describe our approach starting with an introduction

of the concept of worst-case scenarios. Then, we theoretically show how worst-case

scenarios can be integrated into the base model. Finally, we propose a definition of

stress loss distribution and describe a practical method of obtaining its proxy.

2For example, assuming that the risk measure is the VaR at, say, 99.9th percentile level, augmenting
the risk model with a scenario whose loss range falls below the 99.9th percentile might actually lower
the original VaR estimate by redistributing the mass of the loss distribution in favor of the loss range
falling below the 99.9th percentile.
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2.1. Worst-case scenarios

Scenarios generated by scenario experts may not always be consistent with the notion

of probability distribution function (cdf) which is used to describe loss distributions. The

concept of worst-case scenarios that we introduce in this subsection proxies different

percentiles of the unknown stress loss distribution and allows us to select only those

scenarios that are compatible with the notion of cdf. To explain the worst-case scenario

concept, consider two scenarios, s1 and s2, where s2 has a higher loss and a higher

frequency of occurrence than s1. Since s2 is “worse” than s1, it should have a larger

effect on the risk measure. Generalizing this logic, we introduce the following definition.

Definition 1. We define a scenario as the worst-in-an-m-period scenario if it has the

highest lower bound of loss and the highest frequency of occurrence among all scenarios

with the frequency of once in every m periods or higher.

Graph (a) of Figure 1 schematically demonstrates the areas where worst-case scenar-

ios lie in the scenario space relative to a scenario s = (vs,m). All scenarios located in

quadrant I would have higher losses and higher frequencies than scenario s. This implies

that if no scenario is located in quadrant I, then scenario s is the worst-in-an-m-period

scenario by the definition. Any scenarios located in quadrant III would be dominated by

scenario s, because scenario s would have a higher loss amount and higher frequency than

scenarios in that quadrant. Therefore, these scenarios cannot be worst-in-an-m-period

scenarios, conditional on the existence of scenario s. Each scenario falling in quadrants

II and IV either has a higher loss amount and lower frequency or a higher frequency

and lower loss amount relative to scenario s. Therefore, scenarios in these quadrants can

contain worst-case scenarios for different values of m. In the sequel, we use the terms

“worst-case scenario” and “worst-in-an-m-period scenario” interchangeably, especially

when we do not need to refer to the frequency of a scenario.

Graph (b) of Figure 1 illustrates an example of selecting the worst-case scenarios

among a number of scenarios. In this example, there are eight stress scenarios. A larger

m corresponds to a less frequent scenario and the frequency of a scenario that occurs

once every m periods on average is 1/m. By definition, scenario 1 is the worst-in-an-m1-

period scenario and scenarios 6 and 7 can be ignored from further consideration, because
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they both are less frequent and less sever than scenario 1. The shaded area denotes the

area where scenarios that are dominated by scenario 1 fall. Since no scenario has both

a higher loss and a higher frequency than scenario 2, it meets the requirements of the

worst-in-an-m2-period scenario’s definition. At the same time, scenario 8 can also be

excluded from the stress test because it has a lower loss amount and lower frequency

than scenario 2. In this example, we note that scenarios 1, 2, 3, 4, and 5 are all worst-

in-an-m-period scenarios for different values of m.
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Figure 1: Worst-case scenarios

Graph (a) plots a scenario s = (vs,m) in the (loss, frequency) plane. Graph (b) captures the

separation of worst-case scenarios from the set of all scenarios.

2.2. Linking worst-case scenarios to the base VaR

In this subsection, we show that the above defined worst-case scenarios are compatible

with the probabilistic notion of cdf, and therefore can be compared with the loss amounts

suggested by the base model. To establish the link between worst-case scenarios and

relevant quantiles of the base loss distribution, we beging with the following definition.

Definition 2. For a random loss X of the base model with the cdf Fb, the lower bound

of the loss caused by the worst-in-an-m-period event, v, is defined as

Pr [X > v] = 1− Fb(v) = 1/m, (2.1)

where 1/m is the frequency of the event in units of time i.e., periods.

An intuitive explanation of the above definition is as follows. According to the law of
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large numbers, an event with probability p occurs on average mp times in m periods.

Since p = 1/m in Definition 2, X exceeds v on average only once in every m periods,

which makes v the lower bound for the worst-in-an-m-period event’s loss amount. The

amount v is also known as the value at risk (VaR) at the 1 − 1
m

th quantile. Thus,

we have two comparable units of information, the worst-in-an-m-period scenarios and

the worst-in-an-m-period events, originated from scenarios and the base risk model,

respectively.

The definitions of worst-in-an-m-period scenario and worst-in-an-m-period event al-

low us to establish the connection between scenarios and the base model’s corresponding

values at risk (VaRs). The following proposition shows that worst-case scenarios are

compatible with the cdf notion and provides insight into the nature of the connection

between worst-case scenarios and the base cdf.

Proposition 1. There exists a monotonic order among worst-case scenarios that is

similar to a monotonic order among the corresponding VaRs of the historical loss dis-

tribution: the lower the frequency the higher the severity.

Proof. Suppose that random losses come from a continuous and monotonically increas-

ing cdf Fb. First, we prove the following assertion: if m2 > m1 and vbi is the VaR at the

1− 1
mi

th quantile for i = 1, 2, then vb2 > vb1. We note from equation (2.1) that

Pr
[
X > vb1

]
= 1− Fb(v

b
1) = 1/m1

Pr
[
X > vb2

]
= 1− Fb(v

b
2) = 1/m2.

Since 1
m2

< 1
m1
, we obtain Fb(v

b
2) > Fb(v

b
1). Therefore, vb2 > vb1. Next, we prove that

the same property holds for worst-case scenarios as well. Specifically, if s1 = (vs1,m1)

and s2 = (vs2,m2) are two distinct worst-case scenarios, then m2 > m1 implies vs2 > vs1.

We prove this assertion by contradiction. Suppose the opposite is true i.e., vs2 ≤ vs1.

Then, the severity of s2 is lower than the severity of s1, while at the same time the

frequency of s2 is lower than the frequency of s1 (i.e., 1
m2

< 1
m1

). Clearly, s2 can not be

a worst-case scenario by the definition, because it is dominated by s1. Therefore, for s2

to be a worst-case scenario it is necessary that vs2 > vs1. �

Proposition 1 shows that a given worst-case scenario s = (vs,m) is comparable with the
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base model’s worst-in-an-m-period event vb = F−1
b (1 − 1

m
) which is also the base VaR

at the 1− 1
m

th quantile.

Eventually, all possible worst-case scenarios are assumed to materialize and become

historical observations. Therefore, historical and scenario losses should originate from

some common, unknown loss distribution. The next proposition proves under broad

assumptions that, for a given m, the quantities vb and vs converge when the number of

observed losses and the number of scenarios increase.

Proposition 2. Suppose scenario lower bounds and historical losses are all independent

random variables sharing the same true but unknown continuous loss distribution. Also,

suppose scenario experts are capable of providing unbiased and consistent estimates of

scenario lower bounds and frequencies by revising old scenarios and generating new sce-

narios. Then for any given m > 1, the empirical VaR at the 1 − 1
m

th quantile and the

lower bound of the worst-in-an-m-period scenario converge as the number of observed

losses and the number of scenarios increase.

Proof. According to the Kolmogorov-Smirnov theorem, the cdf of the empirical loss

distribution converges to the cdf of the true loss distribution as the sample size increases.

Since this convergence occurs in any given quantile level, for any m > 1, the empirical

VaR at the 1 − 1
m

th quantile converges to the true VaR at the same quantile. What is

left to prove is that the lower bound of the worst-in-an-m-period scenario also converges

to the true VaR at the 1− 1
m

th quantile. Suppose vi1, v
i
2, ...., v

i
ki

are the lower bounds of

all available once-in-an-m-period scenarios after the i-th revision, where ki → ∞ with

i → ∞. Since scenario experts can generate unbiased and consistent estimates of sce-

nario lower bounds, after many revisions of the scenario lower bounds and addition of

new scenarios, dim(ki) = max{vi1, ..., viki} converge to the true VaR at the 1− 1
m

th quantile

as i→∞. Since this convergence occurs for all m > 1 and the true cdf is monotonically

increasing, max{dir(ki), r ≥ m} − dim(ki) → 0 as k → ∞, where max{dir(ki), r ≥ m}

is the worst-in-an-m-period scenario’s lower bound after the i-th revision. Therefore,

max{dir(ki), r ≥ m}, also should converge to the same VaR at the 1− 1
m
. �

Propositions 1 and 2 create the basis for comparing the quantities vs and vb corre-

sponding to the same period m. These propositions show that the concept of worst-case
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scenarios is consistent with probabilistic concepts. Therefore, these scenarios can be

used for stress testing risk models, while not requiring additional information about the

probability distribution of the scenario losses.

2.3. Derivation of stress loss distribution

In the top two graphs of Figure 2 we use the example of subsection 2.1 to visually

demonstrate the transformation of the frequencies of worst-case scenarios into cumu-

lative probabilities, which makes the transformed locations of the worst-case scenarios

comparable with the base model’s cdf. For example, scenario 2 has the loss amount vs2

as a lower bound, while the historical cdf suggests the loss amount of vb2 at the same

quantile level 1− 1
m2
. The main challenge now is that one needs to incorporate these two

potentially conflicting pieces of information to derive a combined stress loss distribution,

which is then used to calculate the stress VaR or any other measure of risk.

Thus, we define the stress distribution Fst(·) for the stress model as a solution to the

following constraint optimization problem:

D
{
Fst, Fb

}
−→ min (2.2)

Fst(x) ≥ Fb(x) for all x ≥ 0, (2.3)

F−1
st (1− 1

mi

) ≥ vi, for all worst-case scenarios si = (mi, vi). (2.4)

where D(F1, F2) is a measure of the distance between distributions F1 and F2. Inequality

(2.3) ensures that the stress loss cdf always first-order stochastically dominates the base

cdf, which means the stressed measure of risk never falls below the risk measure implied

by the base model. Inequality (2.4) ensures that the stressed loss cdf is consistent with

the scenario information.

Depending on how one defines the distance D, one might arrive in different solutions

to the above stated optimization problem. Ergashev (2011) discusses possible alter-

natives for solutions to this problem. In this paper, we use the stochastic dominance

method to derive the stress loss distribution. The derivation of the stress cdf under this

method is demonstrated in the bottom graph of Figure 2. The main idea is to shift the

base cdf piece by piece to the right so that the stress cdf satisfies inequalities (2.3) and
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Figure 2: Worst-case scenarios and loss distribution

The top two graphs capture the link between worst-case scenarios and the base model’s loss

cdf. The bottom graph shows the base cdf and the stress cdf which is generated using the

stochastic dominance method.
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(2.3) while still maintaining its continuity and monotonicity.

Formally, the stochastic dominance method works as follows. First, we remove all

scenarios that do not satisfy the constraint

∆i = vsi − F−1
b (qi) ≥ 0, (2.5)

where vsi denotes worst-in-an-m-period scenario i and Fb(.) denotes the base cdf. Given

this notation, F−1
b (qi) equals to the qi-quantile of the cdf corresponding to scenario i.

This constraint is equivalent to constraint (2.3).

Next, we derive the stress VaR model by augmenting the base VaR model by the

remaining worst-case scenarios using the functional form:

stressV aR(z) = F−1
b (z) + ∆1 if z ∈ (0, q1] (2.6)

= F−1
b (z) +

qi − z
qi − qi−1

∆i−1 +
z − qi−1

qi − qi−1
∆i if z ∈ (qi−1, qi], i = 2, ..., r

= F−1
b (z) + ∆r if z ∈ (qr, 1)

where stressV aR(z) denotes the scenario-augmented VaR evaluated at a given z; ∆i

denotes the difference between the scenario and base loss amounts defined in (2.5); qi

denotes the cumulative probability implied by scenario i; and r is a total number of the

worst-in-m-period scenarios which satisfy constraint (2.5). We note that the scenario

indices in this equation correspond to the re-ordered scenarios after removing those

which do not satisfy inequality (2.5).

3. Risk measures

A risk measure quantifies the level of risk of a financial institution (or, portfolio) and

is the main output of a risk model. Each of the risk measures that are currently available

for practitioners has its own strengths and weaknesses. For example, VaR is arguably the

most popular risk measure due to its conceptual and computational simplicity. However,

VaR is not a coherent risk measure (Artzner et al. (1999)). Although ETL is a coherent

alternative to VaR, it requires the full knowledge of the loss distribution’s tail behavior.

Therefore, it is computationally intense. In addition, the loss distribution’s first moment
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must be finite for ETL to exist. The last assumption means that ETL does not exist for

heavy-tailed loss distributions with an infinite first moment.

In this paper we use the above mentioned two measures of risk - VaR and ETL.

Mathematically, we define these measures of risk in terms of the cdf of the loss distribu-

tion, F. For a given 0 < q < 1, the VaR is the q−th quantile of the distribution F with

the probability density function (pdf) f :

V aRq = F−1(q),

where F−1 is the inverse of F. ETL is the expected loss amount, given that VaR is

exceeded:

ETLq = Ef [X|X > V aRq]. (3.1)

ETL is related to VaR by the following formula:

ETLq = V aRq + Ef [X − V aRq|X > V aRq]. (3.2)

Equation (3.1) hints to a simple method of calculating a numerical approximation to

ETL provided that VaR is known. Specifically, one has to randomly simulate a large

number of losses exceeding the VaR from the estimated loss function and find their

average value. However, simulating large losses form the tail may be time consuming,

especially when the VaR quantile is high and the loss distribution is heavy-tailed. If this

is the case, one might decide to use importance sampling or the Markov chain Monte

Carlo (MCMC) method to increase sampling efficiency (see, for example, Chib (2001)).

4. Applications

4.1. Stress testing interest rate risk models

In this subsection, we present the application of our stress testing approach to interest

rate risk (IRR). We define interest rate risk as the risk of changes in the net interest

income (NII) of a financial institution due to unexpected changes in the term structure

of interest rates. According to our approach, this risk is measured using a VaR model
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for the distribution of the NII changes, augmented by scenarios of yield curve changes.

The procedure for the IRR stress testing can be described in four steps as follows:

Step 1: Obtain the distribution of NII changes using the balance sheet structure of

a considered financial institution and the historical dynamics of a relevant yield

curve;

Step 2: Choose a parametric distribution that fits the empirical distribution of the NII

changes well, and estimate its parameters;

Step 3: Identify scenarios as yield curve changes and frequencies of occurrence; calcu-

late the lower bounds of the loss amounts implied by these scenarios;

Step 4: Determine the worst-case scenarios, augment the risk model using these sce-

narios, and calculate the stressed risk measures, such as the stress VaR and Stress

ETL.

We demonstrate the application of our stress testing approach using a hypothetical

bank. We assume the balance sheet for this hypothetical bank is as reported in Table 1.

At the first step of the procedure, the NII change distribution can be computed using

this balance sheet structure and the historical distribution of a relevant yield curve.

For the sake of simplicity, we assume that the balance sheet is static with variable

interest rates for all interest-bearing assets and liabilities. This implies that all principal

repayments are re-invested in the same assets or re-issued in forms of the same liabilities,

and therefore the interest-bearing assets and liabilities are not changing in their amounts

over time in the future. Table 1 also states the maturity for each item of the balance sheet

in parentheses. While both assets and liabilities comprise instruments with short- and

long-term maturities, the asset side of the balance sheet has a longer average maturity

than the liability side.

To obtain the distribution of the NII change, we use daily data on yields with ma-

turities from 1 month through 30 years for the period July 3, 2000 - March 28, 2011.

We obtained daily data on 1-, 3-, 6-, and 12-month LIBOR from Bloomberg. The yields

with 2-, 3-, 5-, and 30-year maturities are constructed using the swap rates from 3-month
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Table 1: Statement of Condition (billion USD)

Assets
Assets non-sensitive to interest rate 400
Investments 400

Short-term investments 100
Securities (3-month LIBOR) 50
Securities (12-month LIBOR) 50

Long-term investments 300
Mortgage-Backed Securities (5-year rate) 300

Loans 1,200
Consumer loans (3-year rate) 400
Commercial loans (5-year rate) 300
Mortgage loans (30-year rate) 500

Total Assets 2,000

Liabilities
Deposits 1,000

Noninterest-bearing 300
Interest-bearing 700

Certificate of Deposits (1-month CDs rate) 50
Certificate of Deposits (6-month CDS rate) 50
Long-term deposits (2-year rate) 600

Debt 700
Short-term debt (12-month LIBOR) 200
Long-term debt (5-year rate) 500

Total Liabilities 1,700

Equity 300

Total Liabilities and Equity 2,000

The Table reports the balance sheet for a hypothetical bank. Maturities of the asset and liability items

are reported in parentheses.

LIBOR to fixed rates for corresponding maturities, obtained from the Federal Reserve

Bank of Saint Louis FRED database.3 The 1- and 6-month interest rates for certificate

of deposits (CDs) are also obtained from FRED. Figure 3 displays the distribution of

the yield curve over the sample period, demonstrating a considerable variation in the

magnitudes of interest rates as well as the shape of the yield curve over time. Using these

yield curve data and the balance sheet we compute the distribution of the NII as a net

3Before applying these interest rates for the NII computations, we adjusted the rates to introduce an
interest rate premium for liabilities and to reduce interest rates for assets, assuming that the considered
hypothetical bank borrows under rates lower than LIBOR and lends under rates higher than LIBOR.
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Figure 3: The historical yield curve distribution

Graph (a) shows the dynamics of the yield curve over the period July 2007 through March 2011.

Graph (b) shows the 2.5%, 50%, and 97.5% quantiles of the historical yield curve distribution

over the same period.c

amount of the interest rate income and the interest rate payment. Following a common

practice, we model the NII change rather than the NII, because standard distributions fit

the NII change better than the NII. Thus, the distribution of the NII change represents

the daily annualized changes in the NII, such that a positive number corresponds to a

NII decrease (i.e., loss from interest rate changes). The histogram displayed in Figure

4 suggests that the distribution of the NII change is heavy tailed reflecting substantial

variation in the yield curve.

At the second step of the stress testing procedure, we need to choose a distribution

which would fit the empirical distribution of the NII change and estimate its parameters.

Given the shape of the histogram on Figure 4, we consider the Normal and Student’s

t- distributions for the NII change. Table 2 reports the first two sample moments, the

estimated parameters for both distributions, and the 99.7th percentile of the NII change

from the empirical distribution as well as the two parametric distributions. The large

value of the sample standard deviation relative to the sample mean suggests a substantial

variation in the NII change in the data. This variation causes imprecise estimates of the
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Figure 4: The histogram of the NII change

The histogram represents the empirical distribution of the annualized daily NII changes. Pos-

itive numbers correspond to losses in the NII from interest rate changes.

mean with considerable standard errors by both models. At the same time, the estimated

standard deviations from both models match the sample second moment reasonably

well. While the Normal distribution matches the standard deviation better than the

t-distribution, it does not fit the tail of the empirical distribution well. Table 2 reports

that the 99.7th quantile from the cdf of the estimated t-distribution fits the sample

quantile reasonably well and considerably better than the Normal distribution. Given

that the fit of the distribution tail is crucial for VaR models, we choose the t-distribution

for the VaR model of the IRR. This VaR model, which is based on the t-distribution

with the estimated parameters, represents the base VaR model in our example.

At the third step, we assume scenarios are represented by pairs of yield curves and

frequencies of their occurrence. We consider five scenarios with yield curves displayed

in Figure 5 and frequencies of their occurrence reported in the third column of Table

3. This figure illustrates that the scenarios have a wide variation in the movement and

shape of the yield curve relative to the current yield curve.4 To see the effects of these

scenarios on the NII, we compute the changes in the NII implied by each yield curve

4We do not assume a scenario with a steep yield curve where the 30-year interest rate considerably
increases, because it would imply a substantial increase in the interest income, rather than increase in
losses, due to the assumed structure of the balance sheet. According to our stress testing approach,
this scenario would not effect the tail of the loss distribution, and therefore would not impact the VAR
estimates.
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Table 2: Parameter estimates and quantiles

Sample t-distribution Normal distribution

µ -0.3 -0.7 -0.7
(0.6) (0.7)

σ 33.6 34.0 33.6
(1.0) (0.5)

ν 4.0
(0.3)

0.997th quantile 126.6 128.0 91.8

Difference from
sample quantile 1.5 -34.8

µ, σ, and ν denote estimates of the mean, standard deviation, and degrees of freedom for the sample

and the relevant distributions. Standard errors of estimated parameters are reported in parentheses.

The last line reports the difference between the cdf-implied and the sample 99.7th quantiles.
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Figure 5: The scenario yield curves

The graph displays the scenario yield curves and the current actual yield curve.

scenario from the current NII value. These changes are reported in the second column

of Table 3.

At the last step of our procedure, we need to choose the worst-case scenarios and

augment the base VaR using these scenarios to derive the stress VaR. As Table 3 reports,

there are no two scenarios such that one has both a larger NII change and a lower
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Table 3: Scenarios and the cdf-implied NII change

Scenarios Scenario-implied Base-cdf-implied Difference in
NII change frequency cumulative NII change NII change

# (billion USD) (one-in-m years) probability (billion USD) (billion USD)
1 2 3 4 5 6
1 159.0 3 0.9987 160.3 -1.3
2 206.2 7 0.9994 200.7 5.6
3 288.9 8 0.9995 207.8 81.1
4 322.4 9 0.9996 214.2 108.2
5 338.9 10 0.9996 220.2 118.7

Column 2 reports the loss amounts implied by scenario yield curve changes. Column 3 reports the

values of m such that 1
m equals to the frequency of scenario occurrence in years. Column 4 reports

the cumulative probabilities computed according to equation (4.1). Column 5 reports loss amounts

from the base VaR model corresponding to the quantiles reported in column 4. Column 6 reports the

differences between amounts in columns 2 and 5. This difference is denoted by ∆i in inequality (2.5).

frequency than the other. Therefore, according to our definition, all scenarios are worst-

case scenarios. Next, we compute the cumulative probabilities for the NII change for

each of the scenarios as follows:

CP = 1− 1

253.25m
, (4.1)

where m is associated with a scenario frequency, defined as one-in-an-m-year; m is

factored by 253.25 to translate the scenario frequency into daily frequency in the data.

The results of this computation are reported in the fourth column of Table 3. For each of

these scenario-implied cumulative probabilities we obtain the corresponding NII change,

implied by the base VaR. The fifth column of Table 3 reports the base-cdf-implied NII

change, and the next column reports the differences between the scenario-implied and

the base-cdf-implied NII changes.

Thus, we obtained all of the elements which are required to apply the stochastic

dominance method described in subsection 2.3. As one can see, the difference between

the scenario-implied and the base-cdf-implied NII changes is negative for scenario 1,

indicating that the NII change implied by this scenario is lower than the corresponding

base-cdf-implied quantile. Therefore, according to our approach, scenario 1 should not

affect the stress VaR estimate, because this scenario does not satisfies constraint (2.5).
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After removing all scenarios which do not satisfy the above constraint, all remaining

scenarios are used to augment the VaR model and derive the stress VaR according to

equation (2.6).

The estimation result for the stress VaR(0.997) is reported in Table 4 in comparison

to the base VaR(0.997). One can notice that the difference between the VaRs equals to

the value of ∆2, reported in Table 3. This can be explained by the choice of z = 0.997,

which is lower than the cumulative probability implied by scenario 2 in Table 3, while

scenario 1 has been removed from the VaR augmentation. As an alternative, if we choose

z between 0.9994 and 0.9995, then the value of adjustment to the VaR would be between

the values of the differences in the NII change for scenarios 2 and 3 reported in column

6 of Table 3. Thus, the stress VaR estimate is effected by scenarios with frequencies

closest to the VaR quantile. In contrast to the stress VaR, the stress ETL, also reported

in Table 4, is effected by all scenarios satisfying constraint (2.5).

Table 4: Base and Stress risk measures: VaR and ETL (billion USD)

Risk measure Historical data based measure Stress measure Difference
V aR(0.997) 128.0 133.6 5.6
ETL(0.997) 174.5 199.1 24.6

ETL(0.997) denotes an ETL at the 99.7th percentile.

4.2. Stressing operational risk models

Basel II defines operational risk as the risk of loss resulting from inadequate or failed

internal processes, people and systems or from external events. This definition includes

legal risk, but excludes strategic and reputational risk. Basel II mandatory financial

institutions are required to hold enough capital to cover their operational risk to comply

with Basel II requirements. Both Basel II and the Final Rule (2007) – the adaptation

of Basel II by the U.S. national supervisory authorities through domestic rule-making

procedures – require that mandatory financial institutions incorporate scenario analysis

into their operational risk assessment and quantification systems. An important feature

of the proposed stress testing tool is that it allows for stress testing operational risk

models through the incorporation of scenarios.
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The loss distribution approach (LDA) to modeling operational risk is arguably be-

coming the most popular approach among practitioners. Therefore, we focus below on

stress testing operational risk models that are built under the LDA by means of model-

ing the distributions of the severity and the frequency of losses separately. The annual

total loss distribution is computed through the convolution of the two distributions un-

der the assumption that they are independent. The total loss distribution is not always

analytically tractable. Therefore, one usually calculates the regulatory capital as the

99.9th percentile of the total loss distribution through Monte-Carlo simulations. Since

the sources of operational risk are numerous, Basel II allows banks to model operational

risk separately in each risk cell, also known as “unit of measure.”

Because operational risk has two main components of randomness under the LDA,

severity and frequency of losses, the proposed stress testing tool needs to be adjusted to

cover both of these components. Suppose the cdf of a random individual loss (i.e., sever-

ity) Ub is a known continuous parametric distribution whose parameters have already

been estimated by fitting the distribution to the available historical losses. Let us also

assume that the annual frequency of losses is a Poisson variable with an estimated mean

parameter λ > 0. We apply the proposed stress testing tool to X = max{Z1, ..., ZN},

where Z1, ...., ZN , are random realizations of losses with the common cdf Ub, and N is a

random realization of the annual frequency. In other words, X is a random maximum

annual loss. Under the above described assumptions there exists an explicit mathemati-

cal relation between Ub and the cdf of X, Fb (see, for instance, Proposition 2 of Ergashev

(2011)):

Fb(v) = exp
{
− λ[1− Ub(v)]

}
, v ≥ 0. (4.2)

Based on (4.2), we suggest to stress test Fb to obtain Fst. Then, we find Ust from the

identity

Ust(v) = 1 +
1

λ
log

{
Fst(v)

}
, v ≥ 0.

Once the stress severity distribution is available, we convolute this distribution with
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the frequency distribution to arrive in the stress total loss distribution.5

5. Concluding remarks

In this paper, we propose a new approach to integrating stress scenario information

into a risk model. In our approach, a scenario is defined by a pair of numbers - the

lower bound on the scenario loss amount and the frequency of occurrence. Defining

scenarios as a pair of numbers allows us to build a general approach to stress testing

various types of risk in a uniform manner. Nevertheless, this simplistic definition does

not preclude the use of more specific definitions of scenarios in terms of economic or

business environment factors. Assigning a frequency of occurrence to a stress event,

rather than a probability distribution, simplifies scenario experts’ task of generating

severe yet plausible scenarios. Thus, we expect that the use of our methodology with this

minimalistic scenario definition will promote a better understanding and implementation

of stress testing in financial institutions.

Our approach for incorporating stress events into risk models has several other advan-

tages. It has a built-in feature that ensures “lenient” scenarios (suggesting, for example,

that the bank should hold less capital) do not reduce risk estimates. Worst-case scenar-

ios are incorporated into the risk model only if they result a more pessimistic outlook,

thereby implying that the bank should take on stricter loss-mitigating measures. Also,

as demonstrated by the examples presented in this paper, the proposed stress testing

approach can be applied to various risk areas, such as market and operational risk, and

covers various risk measures, such as VaR and ETL.

In this approach, scenario experts are responsible for generating scenarios. Since

we take scenarios as given, our approach does not account for the well known biases

of the scenario generation process. Also, the paper does not address the possibility

of multiple scenarios (such as, scenarios with the same underlying hypothetical event)

being dependent. Instead, we assume that all scenarios are independent, which is simply

the extension of a standard assumption about observed data.

5Without going into the details, we note that it is also possible to stress both severity and frequency
distributions simultaneously.
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