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Abstract

Using a long time series of stock index data from twelve emerging
markets, this study compares the performances of ten different market
risk models by predicting one day ahead Value-at-Risk and backtest-
ing these predictions. In addition to simple benchmark models and
well known models from the existing literature, such as the GARCH-
EVT model of McNeil and Frey (2000), a new two step methodology
is proposed. This method involves estimation of a GARCH model for
returns with quasi maximum likelihood estimation in the first step
and subsequent modeling of filtered returns using Azzalini and Capi-
tanio (2003) type skewed t distribution in the second step (GARCH-St
model). Previous studies employing GARCH models with skewed t
distributed errors preferred to estimate all model parameters jointly
in a single step using maximum likelihood estimation. However, this
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approach produces biased parameter estimates if the model is misspec-
ified. Also, it is not directly comparable to the GARCH-EVT model.
Therefore, two-step estimation is preferred in this study, which en-
sures unbiased parameter estimates for the GARCH process. Also,
the model becomes directly comparable to GARCH-EVT model since
their first steps are exactly the same. The classical single step joint
estimation is also implemented and it is shown that the two-step
methodology provides better backtesting performance. Overall, de-
pending on the choice of estimation window size, either the GARCH-
EVT model or the GARCH-St model outperforms all other models.

1 Introduction

Financial markets have frequently experienced very high volatility and
extreme price movements in the last two decades. Both the introduc-
tion of VaR as a market risk measure and the use of models that
incorporate fat tails in its estimation were motivated by this high
volatility and extreme market movements. Economically, VaR pro-
vides a single number that the loss of a portfolio cannot exceed at a
certain confidence level within a specified time. Statistically, it is just
a high quantile of the loss distribution.

VaR became the prominent market risk measure in the financial
industry mostly due to the amendment made to Basel I guidelines for
banking supervision and regulation in 1996. Until this amendment,
banks were required to hold regulatory capital only against their credit
risk. Additional regulatory capital against market risk was added with
this amendment. Moreover, this additional capital has to cover the
losses of a bank’s portfolio 99 percent of the time. More specifically,
the Basel Committee suggested the following formula

MRC = k ×max(V aRt,0.99,
1

60

60∑
i=1

V aRt−i,0.99) (1)

for the calculation of market risk capital (MRC) where k is a con-
stant to be chosen by the national supervision agencies based on the
backtesting performance of bank models. The Basel Committee also
allowed the financial institutions to choose their market risk models,
subject to review of regulators. Subsequently, the choice of a market
risk model with high accuracy in out-of-sample VaR prediction be-
came an important subject of study both for banks and regulators.
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A model that underestimates the VaR results in less capital holdings
than required, which in turn increases the insolvency risk in case of an
extreme loss. On the other hand, a model that overestimates the VaR
causes more capital holdings than required which creates inefficiency
in the banking system.

This study compares the backtesting performance of ten different
market risk models using data from twelve emerging market stock
indices. Accurate measurement of market risk for stock positions re-
quires modeling of the stylized facts observed in financial time series
including fat tails, skewness, and dynamic volatility. Fat tail model-
ing is particularly important since VaR is a measure of tail risk. It
was a known fact that asset return distributions had fat tails during
the 1960s as shown by Mandelbrot (1963) and Fama (1965). How-
ever, with the introduction of mathematical finance literature in the
1970s, this fact was ignored for a long time, and most risk management
methodologies were developed based on the assumption of geometric
Brownian motion (GBM) for asset prices. Upon the observation of
catastrophic market events during the 1990s, the weaknesses of these
models were uncovered. Awareness of rare but devastating market
events led more researchers to point out the need to go back and
study the implications of fat tails1.

Basically, GBM implies normally distributed logarithmic returns,
but empirical data show that the probability of extreme losses is much
larger than implied by a normal distribution. Also, the normal distri-
bution cannot capture the skewness in asset returns. As a solution,
historical simulation that uses the empirical distribution function was
suggested. Although it can account for the skewness, it still cannot
capture the fat tails fully because it assigns zero probability to losses
larger than those observed in the sample.

The most successful methods in modeling fat tails and skewness
together have been the Extreme Value Theory (EVT) methods and
the skewed t distributions. Embrechts (2000), McNeil and Frey (2000),
and Gencay and Selcuk (2004), among others, showed that EVT meth-
ods fit the tails of heavy-tailed financial time series better than more
conventional distributional approaches. Gencay et. al, (2003) provides
an excellent overview of the EVT and its practical use in producing
quantile estimates. Technically, EVT is a limit law for extremes just
like central limit theory is a limit law for the mean. Using these laws,

1See for example Longin (2000), Gencay and Selcuk (2004), McNeil (1999), Bali (2003).
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it is possible to find limiting distributions to model only the tails of
the sample instead of imposing a distribution to the entire sample.
Also, since EVT methods are implemented separately to the two tails,
the skewness is implicitly accounted for.

In order to model dynamic volatility and fat tails together, McNeil
and Frey (2000) developed a two-step procedure for VaR estimation
known as the GARCH-EVT model. In the first step, a GARCH model
is fit to the return data. In the second step, the EVT method is ap-
plied to the implied residuals extracted from this fit. GARCH models
are very strong in incorporating the dynamic nature of volatility and
its persistence in a parsimonious way, contributing to the accuracy of
VaR measurement. If dynamic volatility is not accounted for, VaR pre-
dictions would be very loose during tranquil periods and they would
be unnecessarily conservative during periods of turmoil. In a com-
prehensive review of VaR prediction methods, Kuester, Paolella and
Mittnick (2006) found that the GARCH-EVT model performs best
based on backtesting analysis.

The skewed t distribution is another good candidate for modeling
skewness and fat tails simultaneously. There are two basic methods to
generate skewed t distributions from a baseline symmetric student’s
t distribution. The first method is to split a baseline symmetric t
distribution into semi-halves around its mean and then scale them
differently with scaling factors based on indicator functions. Skewed
t distributions of Hansen (1994), Fernandez and Steel (1998), and
Paolella (1997) are among this first class. They appeared in several
comparative VaR prediction studies including Kuester, Paolella and
Mittnick (2006) and Giot and Laurent (2004). The second method in-
volves perturbation of a symmetric student’s t density as in Azzalini
and Capitanio (2003). In this case, instead of indicator functions, the
cumulative distribution function of the baseline symmetric t distribu-
tion is used to generate scaling factors. This approach has the poten-
tial to make the generated skewed t distribution smoother and more
flexible for financial applications. Therefore, I will use the skewed
t distribution of Azzalini and Capitanio (2003) in this study. Also,
this distribution is not used in large scale comparative VaR prediction
studies before.

The new model suggested in this study (GARCH-St) combines the
GARCH model with the skewed t distribution of Azzalini and Cap-
itanio (2003) in a two step methodology following the same spirit of
the GARCH-EVT model employed by McNeil and Frey (2000). In
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the first step, the GARCH model is estimated with quasi maximum
likelihood method and in the second step a skewed t distribution is fit
to the implied residuals from the GARCH fit. In fact, it is possible to
estimate the GARCH model parameters and the skewed t distribution
parameters jointly in a single step. Previous studies using GARCH
models with different forms of skewed t distributions preferred this
classical approach2. However, the joint estimation approach puts a lot
of structure on the data generating process; the model becomes very
sensitive to misspecification and loses its flexibility. In particular, if
the residuals of GARCH process are not really skewed t distributed,
then the parameter estimates would be biased. On the other hand, it
is theoretically shown that the quasi maximum likelihood estimation
of a GARCH model which relies on normal distribution assumption
for the residuals is shown to produce unbiased and consistent param-
eter estimates3. Also, the GARCH-St model with joint estimation of
all parameters is not directly comparable to the GARCH-EVT model
since the latter adopts a two step procedure with quasi maximum
likelihood estimation. On the other hand, GARCH-St model with a
two-step estimation method is directly comparable to the GARCH-
EVT model, because with this approach the first steps of both models
are the same. Any difference in performance is entirely attributable
to the choice of the EVT method or skewed t distribution in the sec-
ond step. Therefore, two step estimation of the GARCH-St model
is preferred in this study. The classical single step joint estimation
method is also implemented and shown to underperform compared to
the two-step methodology.

There are several contributions of this study to the existing lit-
erature on VaR prediction. Azzalini and Capitanio’s (2003) skewed
t distribution is used in a large scale VaR prediction study for the
first time. In addition to simple benchmark models and well known
models from the existing literature, such as the GARCH-EVT model
of McNeil and Frey (2000), a new model is proposed that involves
volatility modeling via a GARCH process and subsequent modeling
of the filtered returns with Azzalini and Capitanio’s (2003) skewed
t distribution. The stock index data covers a comprehensive set of
emerging markets over long time including the global financial melt-
down of 2008-2010. For each of the 12 emerging countries the data
extends from June 30, 1995 to March 18, 2011. Finally, the models’

2See Kuester et. al. (2006), Giot and Laurent (2004) and Mittnick and Paolella (2000).
3See Gourieroux (1997).
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backtesting performances of models are evaluated by scoring them
across all countries and several quantiles without going into country
level details. Models are chosen in a systematic way so that these
scores enable attribution analysis regarding the relative importance of
the skewness, fat tail and dynamic volatility modeling.

The remaining sections of the paper are organized as follows. In
section 2, the statistical analysis of the data is presented, and credi-
bility of the geometric Brownian motion assumption is determined by
Jarque Bera normality tests and Ljung Box serial independence tests.
In section 3, out of sample prediction methodology is presented. Some
background knowledge on extreme value theory and skewed t distri-
bution is provided and all market risk models used in VaR prediction
are reviewed. In section 4, the performance of models in VaR predic-
tion are compared by backtesting methods suggested by Christoffersen
(1998). In section 5, conclusions are discussed.

2 Data and Statistical Analysis

Standard & Poors and International Financial Corporation Investable
(S&P/IFCI) equity price index data with daily frequency are obtained
from Bloomberg for 12 emerging markets: Turkey, Malaysia, Indone-
sia, Philippines, Korea, China, Taiwan, Thailand, Mexico, Brazil,
Chile, and Peru. Stock index data for all countries are dollar de-
nominated prices. The S&P/IFCI indices are market capitalization
weighted averages of only those equities that can be traded by inter-
national investors. The dataset runs from June 30, 19954 to March
18, 2011 for all countries. This time span covers the period of the
Asian financial crisis in 1997, the Russian default in 1998, the Turk-
ish banking crisis in 2001, the Brazilian crisis of 2002 and the global
financial meltdown of 2008-2010.

The daily percentage logarithmic returns are calculated as

rt,i = 100 log(
St,i
St−1,i

), (2)

where St,i is the level of the equity price index at the end of the day
t for country i.

4June 30, 1995 is the beginning of SP/IFCI series when IFC started to collect and
report stock price index data from emerging markets.
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Working with logarithmic returns is a standard approach in the
financial literature, because they are normally distributed and serially
independent under the geometric Brownian motion (GBM) assump-
tion for the asset price. Most risk management methodologies that are
widely used by the financial industry relied on the GBM assumption
for a long time. In this section, the logarithmic returns are analyzed
to check the plausibility of normality and serial independence assump-
tions. For ease of exposition, the logarithmic returns and logarithmic
losses are referred to simply as “returns” and “losses” throughout the
paper.

The results of Jarque Bera normality tests and Ljung Box serial
independence tests are presented in table 1 together with other ba-
sic statistics. Some countries exhibit negative skewness while others
display positive skewness. The fat tail phenomenon is evident from
the excess kurtosis statistics. The loss distributions for all countries
exhibit higher kurtosis than implied by a normal distribution5. Also,
the Jarque-Bera test statistic (JBTS) and associated probability val-
ues inside parentheses indicate that the null hypothesis of normality
is rejected for all countries at all reasonable significance levels. Fi-
nally, the Ljung-Box test is administered at the first lag, for both raw
(LBQ(1) column) and squared returns(sqr.LBQ(1) column). The re-
sults indicate that there is strong autocorrelation, especially for the
squared returns, and the serial independence hypothesis is rejected for
all countries.

Numerical data analysis shows that alternative tools are needed
other than the conventional risk models assuming normality and se-
rial independence. To address these issues, EVT method, skewed t
distribution, and GARCH model are used in this study. Section 3
summarizes out-of-sample forecasting methodology and all the mod-
els used for VaR prediction.

3 VaR Estimation

VaR is a high quantile of the loss distribution. More formally,

V aRα = inf{x ∈ < : FX(x) ≥ α} = F←(α), (3)

5The kurtosis statistics reported in table 1 are the excess kurtosis over three, the
kurtosis for a normal distribution.
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Turkey

Indonesia

Malaysia

Philippines

Korea

China

Taiwan

Thailand

Brazil

Chile

Mexico

Peru

mean median Stdev Skewness Kurtosis JBTS LBQ(1) sqr.LBQ(1)

0.036 0 3.149 −0.06 6.12 6409 6.359 326.248

0.008 0.025 2.875 −0.95 24.838 106102 88.153 186.809

0 0 1.687 0.682 34.52 204055 51.563 734.108

−0.011 0 1.723 0.47 12.712 27784 132.853 123.036

0.017 0.01 2.527 0.135 12.784 27960 35.096 67.046

0.02 0.017 2.088 −0.113 6.023 6214 38.198 278.553

0.006 0 1.735 −0.056 2.515 1084 6.956 37.437

−0.015 0 2.096 0.169 8.085 11199 53.513 338.064

0.048 0.101 2.35 −0.308 6.878 8155 35.158 161.881

0.021 0.008 1.257 −0.239 11.001 20736 105.18 268.828

0.045 0.064 1.828 0.108 9.994 17088 46.63 205.001

0.055 0.04 1.586 −0.262 6.504 7281 30.269 98.324

(0) (0.012) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0.008) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

(0) (0) (0)

Table 1: Summary Statistics for S&P/IFCI Returns

where X denotes the loss, FX is the distribution function of losses,
and α is the quantile at which VaR is calculated. F← is known as
the generalized inverse of FX , or the quantile function associated with
FX . If FX is a monotonically increasing function, then F← reduces to
the regular inverse function.

Loss data are calculated by negating the returns given in (2). For
out-of-sample VaR prediction, sliding samples of 500 and 1000 obser-
vations are used6. For example, when the window size is 500 observa-
tions, only the loss observations {`t−1, `t−2, ...`t−500} are used in order

6In GARCH literature, at least 500 observations are suggested in order to have stable
parameter estimates. I choose to follow this minimum requirement in order to have a
longer backtesting period; I check the results’ robustness by using the 1000 observations
window size as well.
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to make a prediction for day t where t ∈ {501, 502, ..., T}. In the sam-
ple period used in this study, there are T = 4, 099 daily observations
for each country. This results in an out-of-sample test period of 3,599
(3,099) days when a window with 500 (1000) observations is used.
VaR predictions are made at the 0.95th, 0.975th, 0.99th and 0.995th

quantiles. In what follows, the methods used for VaR estimation are
presented briefly.

3.1 Fully Parametric Static Models

With static models, the loss data is assumed to be coming from a
fully parametric distribution, i.e, `t ∼ iid F (θ). The parameters θ
specifying the loss distribution are constant over time, hence these
methods are referred as static models. The only source of change in
distribution parameters is the rolling window forecasting approach.

Normal Distribution (The Benchmark): In this model, losses
are assumed to be normally distributed; that is, `t ∼ iid N(µ, σ2). Us-
ing the loss data in the sliding window {`t−1, `t−2, ..., `t−500}, MLE es-
timators of µ and σ are calculated and V aRα is estimated by V aRα =
µ̂ + σ̂ Φ−1(α) where Φ is the standard normal cdf function. Normal
distribution is included as the benchmark model.

Student’s t Distribution Model: In this model, the losses are
assumed to be student’s t distributed; that is, `t ∼ iid t(µ, σ2, ν). The
student’s t distribution can account for fat tails. Therefore, any in-
crease in the precision with respect to the benchmark model can be at-
tributed to fat-tail modeling. The parameters {µ, σ, ν} are estimated
by MLE methods, and V aRα is calculated by V aRα = µ̂+ σ̂ T−1

ν̂ (α),
where Tν̂ is the cdf function of standard t-distribution with ν̂ degrees
of freedom.

Skewed Normal Distribution Model: In this model, the losses
are assumed to be coming from the skewed normal distribution of
Azzalini (1985); that is, `t ∼ iid Sn(ξ, δ, λ) where ξ is the location, δ
is the scale and λ is the skewness parameter. The density function is
given by

fx(x) = 2
1

δ
φ

(
x− ξ
δ

)
Φ

(
λ(
x− ξ
δ

)

)
(4)

where φ and Φ are the standard normal density and cdf functions
respectively. If λ > 0, the distribution is right skewed. Otherwise it
is left skewed. As it increases, the skewness also increases and when
λ = 0 the distribution reduces to symmetric normal distribution.
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The skewed normal model can account only for the skewness of
loss distribution. Therefore, any increase in precision compared to
the benchmark model can be attributed to skewness modeling. The
empirical procedure is to estimate {ξ, δ, λ} with MLE methods and cal-
culate the VaR with numerical methods as V aRα = F−1

ξ̂,δ̂,λ̂
(α), where

Fξ̂,δ̂,λ̂ is the cdf function of the skewed normal distribution associated
with the estimated MLE parameters.

Skewed t Distribution Model: In this model, the losses are
assumed to be coming from the skewed t-distribution of Azzalini and
Capitanio (2003); that is, `t ∼ iid St(ξ, δ, λ, ν) where ξ is the location,
δ is the scale, λ is the skewness and ν is the shape parameter, i.e.
degree of freedom. The density function is given by

fx(x) = 2
1

δ
tν

(
x− ξ
δ

)
Tν+1

(
λ

(
x− ξ
δ

)√
ν + 1

(x−ξδ )2 + ν

)
(5)

where tν and Tν+1 are the density and cdf functions of standard sym-
metric student’s t distributions with ν and ν + 1 degrees of freedom
respectively. When λ = 0, the above density reduces to the density of
a symmetric student’s t distribution.

This model can account for both skewness and the fat tails of
loss distributions. Therefore, any gain in precision with respect to
student’s t distribution can be attributed to skewness modeling on top
of the fat-tail modeling. On the other hand, any gain in precision with
respect to skewed normal can be attributed to fat-tail modeling on top
of the skewness modeling. The empirical procedure is to estimate the
parameters {ξ, δ, λ, ν} by MLE methods and calculate the VaR by
numerical methods as V aRα = F−1

ξ̂,δ̂,λ̂,ν̂
(α), where Fξ̂,δ̂,λ̂,ν̂ is the cdf

function of the skewed t distribution associated with the estimated
MLE parameters.

3.2 EVT Model

EVT is a strong method to study the tail behavior of loss distribu-
tions. Instead of imposing a single distribution on the entire sample,
threshold exceedances methodology models only the tail region of the
distribution. More specifically, it is a method of estimating the dis-
tribution of exceedances above a high threshold. Let X be the loss
variable, FX its distribution function, u a high threshold, and xo the
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right endpoint of the support of X7. Then, the distribution of ex-
ceedances is defined as

Fu(y) = Pr(X − u ≤ y|X > u) for 0 < y < xo − u . (6)

The following result on the limiting distribution of exceedances
Fu(y) is the key point in EVT.

lim
u→xo

sup
0≤y≤xo

|Fu(y)−Gξ,β(u)(y)| = 0 , (7)

where Gξ,β(u) is the distribution function for the generalized pareto
distribution (GPD) and is given by:

Gξ,β(y) =

{
1− (1 + ξy

β )
−1
ξ if ξ 6= 0,

1− exp (−yβ ) if ξ = 0
(8)

where β > 0 and (1 +
ξy

β
) > 0.

where β is the scale and ξ is the shape parameter of GPD respec-
tively. The limit expression (7) basically reveals that the distribution
of exceedances uniformly converges to GPD as the threshold converges
to the right end point of the support of X regardless of what the origi-
nal distribution of X was. This limit result can be exploited and it can
be assumed that the exceedances over a high threshold are distributed
as GPD.

In order to use the theory in practice, a high threshold is chosen,
and the observations that are larger than the threshold are filtered
from the data. Let Nu observations exist over the threshold u, and
they are labeled as X1, X2, ...XNu . Then, the exceedances are cal-
culated as Yj = Xj − u, and GPD is fit to this exceedance data by
maximizing the following likelihood function

LogL(ξ, β, Y ) = −Nu log(β)− (1 +
1

β
)
j=Nu∑
j=1

log(1 + ξ
Yj
β

) ,

subject to the parameter constraints β > 0 and (1 + ξ
Yj
β ) > 0.

The choice of the threshold is an important step in this procedure.
The assumption of GPD holds in the limit as the threshold approaches

7If there is no finite right endpoint for the support of X, then xo = ∞, which is the
case for most distributions of financial data.
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infinity and therefore, a low threshold results in bias. On the other
hand, a very high threshold results in very few observations exceed-
ing the threshold which results in high standard errors for parameter
estimates. Since it is not practical to decide on an appropriate thresh-
old for each of the 3,599 day-ahead out-of-sample forecasts, the 95th
quantile of the sample data is used as a high threshold. Sensitivity
to threshold is checked by doing the analysis again using the 90th
quantile as the threshold and results are found robust8.

MLE estimates of the GPD fit can be used to calculate VaR at
higher quantiles than the threshold. Note that for a loss observation
greater than the threshold, x > u, we have

Pr(` > x) = Pr(` > u) Pr(` > x|` > u)

= Pr(` > u) Pr(`− u > x− u|` > u)

= (1− Pr(` ≤ u)) (1− Pr(`− u ≤ x− u|` ≥ u))

= (1− F`(u)) (1− Fu(x− u)).

By exploiting the limit expression (7), Fu can be assumed as a
GPD distribution function. Then,

Pr(` > x) = (1− F`(u))
(
1 + ξ̂

x− u
β̂

)−1/ξ̂
.

Also, if x = V aRα, Pr(` > x) = 1− α by definition. Then,

1− α = (1− F`(u))
(
1 + ξ̂

V aRα − u
β̂

)−1/ξ̂
.

V aRα can be obtained by arranging the terms as:

V aRα = u+
β̂

ξ̂

(
(

1− α
1− F`(u)

)−ξ − 1
)
.

Lastly, with the threshold chosen at 95th quantile of the sample,
F`(u) = Pr(x ≤ u) can be estimated non-parametrically as 0.95.

3.3 Dynamic Models

All of the static models explained above assume that the returns
are independent and identically distributed. The model parameters

8These results are available upon request from the author.

12



therefore stay constant within the sample period. However, financial
returns exhibit strong serial dependence, especially in their second
moment. GARCH models are very strong in incorporating volatility
persistence of returns. Without such models, spikes in volatility can-
not be captured quickly and VaR predictions may not reflect sudden
changes in volatility.

The following model, which allows a first order autoregressive mean
component in addition to Bollerslev’s (1986) GARCH(1,1) structure
for conditional variance, is estimated for all of the methods described
below.

rt = µt + σtzt

µt = c1 + c2rt−1

σ2
t = w + α(rt−1 − µt−1)2 + βσ2

t−1,

where rt is the return and zt is the shock to the data generating process
for day t .

Gaussian GARCH Model: The main assumption in this model
is that of conditional normality. The return on day t is normally
distributed conditional on the information on day t − 1. Therefore,
the shocks zt ∼ iid N(0, 1).

The model parameters, θ̂ = {ĉ1, ĉ2, ŵ, α̂, β̂}, are estimated by MLE
methods first. Once, µ̂t and σ̂t are obtained by substituting the MLE
parameter estimates into the conditional mean and variance equations,
the VaR can be calculated as:

V aRα(`t) = −µ̂t + σ̂t Φ−1(α),

where Φ is the standard normal cdf. The mean has a negative sign
because the GARCH model is fit to the returns not to the losses.

GARCH-EVT Model: In this model, no distributional assump-
tion is specified for the shocks zt. The GARCH-EVT model first pro-
posed by McNeil and Frey (2000) follows a two-step methodology to
estimate the VaR. First, the model parameters θ̂ = {ĉ1, ĉ2, ŵ, α̂, β̂} are
estimated by quasi maximum likelihood estimation (QMLE). QMLE
refers to fitting a Gaussian GARCH model, although the shocks zt
are not assumed to be Gaussian. This may seem unreasonable but,
Gourieroux (1997) showed that the QMLE still delivers consistent and
asymptotically normal parameter estimates. The only loss is the effi-
ciency of the parameter estimates. The output of the first step is the
conditional mean and conditional variance predictions, µ̂t, σ̂t.
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In the second step, shocks are extracted from the fit and the EVT
methodology is applied to the shocks as described in section 3.2. The
output of the second step is a quantile estimate for the distribution of
shocks, zt given by

V aRα(zt) = uz +
β̂z

ξ̂z

(
(

1− α
1− F`(uz)

)ξ̂z − 1
)
,

Finally, the VaR can be calculated using the results of both steps as

V aRα(`t) = −µ̂t + σ̂tV aRα(zt).

GARCH-t Model: The standard method to estimate a GARCH-
t model would be the maximization of likelihood function obtained by
assuming the shocks zt are student’s t distributed with zero mean and
unit variance. In that case, the distributional parameters for the stu-
dent’s t distribution would be estimated jointly with the parameters
governing the mean and volatility dynamics of the GARCH process.
However, I advocate a two-step estimation methodology in this study
in order to make the model directly comparable to the GARCH-EVT
model and get rid of too much restrictive structure which may result
in misspecification problems. For example, if the error distribution
is misspecified as student’s t distribution, then the parameter esti-
mates for the GARCH process would possibly be corrupted. How-
ever, QMLE estimation of the GARCH model parameters in a two-
step method methodology provides unbiased and consisntent estimates
even if the error distribution is misspecified as Gaussian (Gourieroux,
1997). Therefore, GARCH model is estimated with QMLE in the first
step and then, in the second step, student’s t distribution is fit to the
implied residuals extracted from the GARCH fit. Therefore, the first
step and the extracted residuals which are the inputs for the second
step are exactly the same with the GARCH-EVT model. Any differ-
ence in forecasting performance is only attributable to the choice of
EVT method or t distribution in the second step. With the two-step
approach, VaR can be calculated as

V aRα(`t) = −µ̂t + σ̂tV aRα(zt).

where V aRα(zt) is the quantile of the student’s t distribution fit to
the implied residuals.

In order to check the sensitivity of the model to estimation method-
ology, the standard single step GARCH-t estimation is also imple-
mented. In this approach, the distributional parameters µ, σ, ν for the
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student’s t distribution are also part of the likelihood function and are
estimated jointly with the parameters governing the GARCH process.
In order to make sure the distribution of the shocks have zero mean
and unit variance, it is assumed that

µ = 0,

σ =
ν − 2

ν
.

Then VaR is calculated as

V aRα(`t) = −µ̂t +

(√
ν − 2

ν

)
σ̂t T

−1
ν (α),

where Tν is the cdf function for the standard student’s t distribution
with ν degrees of freedom.

GARCH-Sn Model: The standard method for joint estimation
of the parameters of a GARCH-Sn model would be the maximiza-
tion of likelihood function obtained by assuming the shocks zt are
skewed normal distributed with zero mean and unit variance. How-
ever, in this study, the model parameters are estimated following the
same two step methodology as in GARCH-EVT and GARCH-t mod-
els. The only difference is that a skewed normal distribution is fit
to the extracted residuals in the second step. Therefore, any differ-
ence in performance is attributable to the choice of skewed normal
distribution in the second step.

VaR is calculated using the property that linear transformations
of skewed normal variables are also distributed as skewed normal. For
example, if zt ∼ iid Sn(ξ, δ, λ) and the loss variable is given by
`t = −µt − σtzt, then we have `t ∼ Sn(−µt − σtξ, σtδ,−λ).

In order to check the sensitivity of the model to estimation method-
ology, the standard single step GARCH-Sn estimation is also imple-
mented. In this approach, the distributional parameters ξ, δ, λ for the
skewed normal distribution are also part of the likelihood function
and are estimated jointly with the parameters governing the GARCH
process. In order to make sure the distribution of the shocks have zero
mean and unit variance, it is assumed that

ξ = −δ
√

2

Π

λ√
1 + λ2

(9)

δ =

√√√√ 1

1− 2
Π

λ2

1+λ2

(10)
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Once, the MLE estimates are calculated, VaR can be obtained as
V aRα(`t) = −µ̂t + σ̂t F

−1

ξ̂,δ̂,λ̂
(α) where Fξ̂,δ̂,λ̂ is the cdf function for

the skewed normal distribution associated with the estimated MLE
parameters.

GARCH-St Model: The standard method to estimate the pa-
rameters of a GARCH-St model jointly would be the maximization of
likelihood function obtained by assuming the shocks zt are skewed t
distributed with zero mean and unit variance. However, to make all
models uniformly comparable, model parameters are estimated in two
steps as in the GARCH-EVT, GARCH-t and GARCH-Sn models. In
the first step, the parameters of the GARCH process are estimated
with QMLE. In the second step, the standardized residuals zt are
extracted from the fit and Azzalini and Capitanio’s (2003) skewed t
distribution is fit to these residuals.

VaR is calculated using the property that linear transformations
of skewed t distributed variables are also skewed t distributed. For
example, zt ∼ iid St(ξ, δ, λ, ν) and loss is given by `t = −µt − σtzt,
then we have `t ∼ St(−µt − σtξ, σtδ,−λ, ν).

In order to check the sensitivity of the model to estimation method-
ology, the standard single step GARCH-St estimation is also imple-
mented. In this approach, the distributional parameters ξ, δ, λ, ν for
the skewed t distribution are also part of the likelihood function and
are estimated jointly with the parameters governing the GARCH pro-
cess. In order to make sure the distribution of the shocks have zero
mean and unit variance, it is assumed that

ξ =

√
ν

Π

δ λ√
1 + λ2

Γ
(
ν−1

2

)
Γ
(
ν
2

) (11)

δ =

√√√√√√√
 ν − 2

ν

(
1− ν−2

Π
λ2

1+λ2

(
Γ( ν−1

2 )
Γ( ν2 )

))
 (12)

Once, the MLE estimates are calculated, VaR can be obtained as
V aRα(`t) = −µ̂t + σ̂t F

−1

ξ̂,δ̂,λ̂,ν̂
(α) where Fξ̂,δ̂,λ̂,ν̂ is the cdf function for

the skewed t distribution associated with the estimated MLE param-
eters.
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4 Backtesting Results

Measuring the performance of VaR predictions continuously over time
is known as backtesting. This can be done by monitoring the VaR
violations, i.e losses that are larger than the predicted VaR. The VaR
violation process can be thought of as a Bernoulli experiment because
each day there is a (1 − α) chance that the daily loss can be larger
than the predicted V aRα just by definition. Therefore, if a violation
variable Vt ∼ Bernoulli(p) is defined as

Vt =

{
1 if `t ≥ V aRt,α,
0 if `t < V aRt,α

(13)

we should have Ho : p = 1 − α. This can be tested against the
alternative H1 : p 6= 1− α using a two-sided likelihood ratio test.

4.1 Unconditional Coverage Ratio Test

Defining n1 as the total number of violations and n0 as the total
number of non-violation days

n1 =
t=4099∑
t=501

Vt; and n0 =
t=4099∑
t=501

(1− Vt)

the MLE estimator of the violation probability can be written as

p̂mle = n1/(n0 + n1)

Then, the likelihood ratio statistic is given by

LRuc = −2 (lnL(1− α, V )− lnL(p̂mle, V )) (14)

where L(p, V ) = (p)n1(1− p)n0 .
Under the null hypothesis, the LR statistic follows a chi-square

distribution with one degree of freedom. Detailed backtesting results
for all countries, models, and quantiles are provided in Table 2. The
expected number of violations for all quantiles is given in the first rows
of the tables. The number of VaR violations for all methods is also
presented in their respective rows. Probability values from two-sided
likelihood ratio tests of the null hypothesis are also provided inside
parentheses.
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Table 3 summarizes of hypothesis testing results without going into
country specific details. In columns associated with different quantiles,
the models are scored with the number of countries where the null
hypothesis can’t be rejected. A probability value of 0.05 is used as
the rejection criteria. The maximum score is 12 since there are 12
countries in the dataset. In the ”Score” column, the total across all 4
quantiles are given, so the maximum score can be 48. In the ”Rank”
column, models are ranked based on their scores. When there is a
tie between two models, the average probability values are used as tie
breakers. Table 4 presents exactly the same information as in Table 3
this time with 1000 observation window size.

Several comments are in order based on the information in Table 3.
For static models, if the evaluation is performed entirely based on the
total score, it seems that skewness and fat tail modeling are equally
important and modeling only one of them doesn’t improve the fore-
casting precision significantly. For example, both the skewed normal
model and the student’s t model improve the benchmark (normal)
model marginally, increasing the score from 12 to 15. On the other
hand, joint modeling of skewness and fat tails improves forecasting
precision significantly. For example, the skewed t model and the EVT
model improve the benchmark model significantly, increasing the score
to 29 and 30 respectively. However, this observation is not valid at
every quantile level. If we were to exclude the 95th quantile from this
attribution analysis, then the benchmark model score would be only 1.
The skewed normal model increases it to 3, whereas student’s t model
increases it to 13. Therefore, for the purposes of catastrophic risk
management at higher quantiles, fat tail modeling is much more im-
portant than skewness modeling. Excluding 95th quantile, the skewed
t distribution would increase the score of the student’s t distribution
from 13 to 23. Therefore, skewness modeling also improves the per-
formance at higher quantiles, but only if fat tails are accounted for
first.

The same conclusions can be made for dynamic models as well.
Incorporating dynamic volatility into the model significantly increases
the backtesting performance but only if the fat tails are taken into
account first. For example, GARCH-EVT increases the score of EVT
from 30 to 45, GARCH-St increases the score of skewed t from 29 to 42
and GARCH-t increases the score of the student’s t model from 15 to
28. However, Gaussian GARCH model didn’t improve the backtesting
performance of the normal model and Garch-Sn model performed only
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(a) Turkey

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 173 108 69 51(0.593) (0.062) (0) (0)

Student's t 201 103 47 23(0.114) (0.174) (0.078) (0.257)

Evt 190 84 41 22(0.446) (0.519) (0.412) (0.36)

Sn 162 106 65 53(0.163) (0.096) (0) (0)

St 197 101 47 23(0.199) (0.248) (0.078) (0.257)

Garch 180 112 66 43(0.997) (0.023) (0) (0)

Garch−t 190 98 42 26(0.446) (0.398) (0.327) (0.076)

Garch−Evt 190 91 40 28(0.446) (0.913) (0.509) (0.029)

Garch−Sn 163 97 58 45(0.188) (0.459) (0.001) (0)

Garch−St 193 98 44 28(0.324) (0.398) (0.195) (0.029)

(b) Indonesia

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 175 130 88 70(0.704) (0) (0) (0)

Student's t 221 127 55 26(0.002) (0) (0.003) (0.076)

Evt 193 103 54 34(0.324) (0.174) (0.005) (0.001)

Sn 162 115 80 67(0.163) (0.01) (0) (0)

St 204 110 49 24(0.071) (0.039) (0.039) (0.177)

Garch 181 120 75 56(0.936) (0.002) (0) (0)

Garch−t 201 109 49 21(0.114) (0.049) (0.039) (0.489)

Garch−Evt 179 85 39 23(0.942) (0.592) (0.619) (0.257)

Garch−Sn 160 103 66 47(0.12) (0.174) (0) (0)

Garch−St 184 101 40 19(0.758) (0.248) (0.509) (0.814)

(c) Malaysia

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 169 120 83 65(0.398) (0.002) (0) (0)

Student's t 211 119 49 26(0.021) (0.003) (0.039) (0.076)

Evt 202 103 53 30(0.098) (0.174) (0.008) (0.01)

Sn 167 121 81 67(0.316) (0.002) (0) (0)

St 203 108 48 25(0.084) (0.062) (0.056) (0.118)

Garch 154 98 57 47(0.042) (0.398) (0.001) (0)

Garch−t 164 90 40 18(0.216) (0.998) (0.509) (0.999)

Garch−Evt 172 79 38 20(0.54) (0.232) (0.739) (0.642)

Garch−Sn 158 102 55 42(0.087) (0.209) (0.003) (0)

Garch−St 170 94 41 21(0.443) (0.67) (0.412) (0.489)

(d) Philippines

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 187 128 82 59(0.592) (0) (0) (0)

Student's t 218 121 51 21(0.005) (0.002) (0.018) (0.489)

Evt 207 102 46 26(0.043) (0.209) (0.108) (0.076)

Sn 194 123 84 63(0.288) (0.001) (0) (0)

St 210 108 48 19(0.025) (0.062) (0.056) (0.814)

Garch 175 110 65 41(0.704) (0.039) (0) (0)

Garch−t 197 104 37 22(0.199) (0.144) (0.866) (0.36)

Garch−Evt 189 89 34 22(0.492) (0.917) (0.736) (0.36)

Garch−Sn 165 111 58 42(0.246) (0.03) (0.001) (0)

Garch−St 191 102 35 19(0.403) (0.209) (0.868) (0.814)

(e) South Korea

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 194 130 86 66(0.288) (0) (0) (0)

Student's t 230 127 56 34(0) (0) (0.002) (0.001)

Evt 189 97 54 38(0.492) (0.459) (0.005) (0)

Sn 174 117 79 60(0.647) (0.006) (0) (0)

St 203 105 48 32(0.084) (0.118) (0.056) (0.003)

Garch 217 139 68 46(0.006) (0) (0) (0)

Garch−t 226 121 47 21(0.001) (0.002) (0.078) (0.489)

Garch−Evt 183 84 39 26(0.816) (0.519) (0.619) (0.076)

Garch−Sn 186 109 58 39(0.645) (0.049) (0.001) (0)

Garch−St 206 98 35 14(0.051) (0.398) (0.868) (0.326)

(f) China

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 190 130 86 66(0.446) (0) (0) (0)

Student's t 222 113 46 21(0.002) (0.018) (0.108) (0.489)

Evt 197 104 46 30(0.199) (0.144) (0.108) (0.01)

Sn 168 115 83 57(0.356) (0.01) (0) (0)

St 213 111 39 26(0.014) (0.03) (0.619) (0.076)

Garch 215 127 73 50(0.009) (0) (0) (0)

Garch−t 227 115 44 21(0.001) (0.01) (0.195) (0.489)

Garch−Evt 197 108 47 24(0.199) (0.062) (0.078) (0.177)

Garch−Sn 187 116 69 44(0.592) (0.008) (0) (0)

Garch−St 220 114 44 19(0.003) (0.014) (0.195) (0.814)
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(g) Taiwan

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 194 122 90 58(0.288) (0.001) (0) (0)

Student's t 228 112 47 17(0) (0.023) (0.078) (0.812)

Evt 202 102 46 24(0.098) (0.209) (0.108) (0.177)

Sn 188 121 80 58(0.541) (0.002) (0) (0)

St 215 113 43 18(0.009) (0.018) (0.255) (0.999)

Garch 214 138 73 51(0.011) (0) (0) (0)

Garch−t 221 119 44 25(0.002) (0.003) (0.195) (0.118)

Garch−Evt 210 107 45 28(0.025) (0.077) (0.146) (0.029)

Garch−Sn 206 131 66 47(0.051) (0) (0) (0)

Garch−St 226 121 45 21(0.001) (0.002) (0.146) (0.489)

(h) Thailand

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 168 110 62 45(0.356) (0.039) (0) (0)

Student's t 196 105 34 16(0.226) (0.118) (0.736) (0.631)

Evt 187 103 37 21(0.592) (0.174) (0.866) (0.489)

Sn 169 105 64 49(0.398) (0.118) (0) (0)

St 199 109 33 15(0.152) (0.049) (0.611) (0.466)

Garch 160 102 60 39(0.12) (0.209) (0) (0)

Garch−t 177 94 35 17(0.821) (0.67) (0.868) (0.812)

Garch−Evt 185 93 38 21(0.701) (0.748) (0.739) (0.489)

Garch−Sn 161 100 59 40(0.14) (0.293) (0) (0)

Garch−St 183 98 40 17(0.816) (0.398) (0.509) (0.812)

(i) Brazil

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 213 153 89 66(0.014) (0) (0) (0)

Student's t 255 150 60 34(0) (0) (0) (0.001)

Evt 211 105 49 31(0.021) (0.118) (0.039) (0.005)

Sn 190 125 78 63(0.446) (0) (0) (0)

St 215 111 45 28(0.009) (0.03) (0.146) (0.029)

Garch 212 136 80 54(0.017) (0) (0) (0)

Garch−t 221 126 60 36(0.002) (0) (0) (0)

Garch−Evt 192 94 43 23(0.362) (0.67) (0.255) (0.257)

Garch−Sn 165 103 67 46(0.246) (0.174) (0) (0)

Garch−St 193 100 47 23(0.324) (0.293) (0.078) (0.257)

(j) Chile

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 197 133 87 64(0.199) (0) (0) (0)

Student's t 230 131 69 35(0) (0) (0) (0)

Evt 198 114 49 26(0.174) (0.014) (0.039) (0.076)

Sn 168 118 82 58(0.356) (0.004) (0) (0)

St 209 119 58 28(0.03) (0.003) (0.001) (0.029)

Garch 201 124 63 46(0.114) (0.001) (0) (0)

Garch−t 207 112 52 26(0.043) (0.023) (0.012) (0.076)

Garch−Evt 196 101 48 23(0.226) (0.248) (0.056) (0.257)

Garch−Sn 169 102 55 39(0.398) (0.209) (0.003) (0)

Garch−St 194 103 45 26(0.288) (0.174) (0.146) (0.076)

(k) Mexico

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 179 123 76 60(0.942) (0.001) (0) (0)

Student's t 218 119 54 35(0.005) (0.003) (0.005) (0)

Evt 196 106 47 35(0.226) (0.096) (0.078) (0)

Sn 167 108 74 54(0.316) (0.062) (0) (0)

St 192 102 43 26(0.362) (0.209) (0.255) (0.076)

Garch 204 128 74 50(0.071) (0) (0) (0)

Garch−t 207 120 54 27(0.043) (0.002) (0.005) (0.048)

Garch−Evt 188 98 45 23(0.541) (0.398) (0.146) (0.257)

Garch−Sn 176 110 62 44(0.762) (0.039) (0) (0)

Garch−St 196 105 44 20(0.226) (0.118) (0.195) (0.642)

(l) Peru

α = 0.95 α = 0.975 α = 0.99 α = 0.995
Target 180 90 36 18
Normal 184 124 85 64(0.758) (0.001) (0) (0)

Student's t 228 123 53 28(0) (0.001) (0.008) (0.029)

Evt 207 110 49 30(0.043) (0.039) (0.039) (0.01)

Sn 166 118 79 59(0.28) (0.004) (0) (0)

St 216 109 47 28(0.007) (0.049) (0.078) (0.029)

Garch 191 117 70 48(0.403) (0.006) (0) (0)

Garch−t 213 104 44 23(0.014) (0.144) (0.195) (0.257)

Garch−Evt 193 97 40 25(0.324) (0.459) (0.509) (0.118)

Garch−Sn 183 110 63 46(0.816) (0.039) (0) (0)

Garch−St 210 105 40 21(0.025) (0.118) (0.509) (0.489)

Table 2: Detailed Country Level Backtesting Results
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Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 11 1 0 0 12 (9) 11.8
Student’s t 2 2 4 7 15 (7) 9.7
Evt 9 10 6 5 30 (3) 16.9
Sn 12 3 0 0 15 (8) 9.6
St 6 5 10 8 29 (4) 15.2
Garch 7 2 0 0 9 (10) 8.6
Garch-t 5 5 8 10 28 (5) 24.7
Garch-Evt 11 12 12 10 45 (1) 40.7
Garch-Sn 12 6 0 0 18 (6) 12.5
Garch-St 9 10 12 11 42 (2) 36.2

Table 3: Scoring based on unconditional coverage test with window size=500

Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 7 6 1 0 14 (10) 12.8
Student’s t 6 8 8 11 33 (6) 32.9
Evt 9 11 9 10 39 (4) 34.9
Sn 7 9 2 1 19 (8) 10.6
St 8 10 11 11 40 (3) 41.8
Garch 9 7 0 0 16 (9) 12.5
Garch-t 7 8 10 12 37 (5) 41.1
Garch-Evt 11 12 12 12 47 (2) 56.2
Garch-Sn 7 11 2 0 20 (7) 18.1
Garch-St 11 12 12 12 47 (1) 59.5

Table 4: Scoring based on unconditional coverage test with window size=1000
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slightly better than its static counterpart.
Also note that the conventional risk measurement methods that

rely on some sort of normality assumption – the normal, skewed nor-
mal, Gaussian GARCH and GARCH-Sn– result in significant under-
estimation of the risk. This is because none of these models address
fat tail modeling.

When using 1000 observations as the window size, the backtesting
performance of all models increases. However, the other comments
made above are still valid. Skewness modeling and dynamic volatility
modeling can improve the results significantly but only when fat tails
are taken into account first. Fat tail modeling is still the most impor-
tant issue for robust risk management and its importance increases
with the quantile of interest.

Overall, when using a window size of 500 observations, the GARCH-
EVT model of McNeil and Frey (2000) outperforms all other models
with a score of 45 and the new GARCH-St model suggested in this
study follows it closely with a score of 42. When the window size is
increased to 1000 observations, both models have a score of 47 and
the new GARCH-St model ranks first based on the tie breaker average
probability value. The excellent performance of GARCH-EVT model
is consistent with earlier studies such as Kuester et al. (2006). How-
ever, in this study GARCH-St model provides a much better backtest-
ing performance compared to earlier studies. First, previous studies
mostly relied on Fernandez and Steel (1998) and Hansen (1994) skewed
t distributions. Azzalini and Capitanio’s (2003) skewed t distribution
was not used in large scale comparative studies of VaR prediction
methods before. Secondly, earlier studies estimated GARCH model
parameters and the distributional parameters jointly in a single step.
In this study, a two step methodology is proposed with QMLE esti-
mation of the GARCH parameters in the first step and subsequent
modeling of the error terms with a skewed t distribution. In fact,
the sensitivity of the proposed model is checked against a single step
joint estimation alternative and results are reported in Table 5(6) for
a window size of 500 (1,000) observations. Joint estimation in a single
step is achieved by maximization of the exact likelihood function with
MLE instead of the QMLE method used in the two-step methodology.
Results confirm that two-step estimation of the model outperforms the
joint estimation method. The only exception is the GARCH-t model
with 500 observations window.

The intuition behind this result is related to model misspecifica-
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Model 0.95 0.975 0.99 0.995 Score Avg.p.val
Garch-t (joint estimation) 4 6 8 11 29 24.9
Garch-t (2-step estimation) 5 5 8 10 28 24.7
Garch-Sn (joint estimation) 7 2 0 0 9 8.3
Garch-Sn (2-step estimation) 12 6 0 0 18 12.5
Garch-St (joint estimation) 7 7 11 11 36 26.5
Garch-St (2-step estimation) 9 10 12 11 42 36.2

Table 5: Sensitivity to estimation methodology; window size=500

Model 0.95 0.975 0.99 0.995 Score Avg.p.val
Garch-t (joint estimation) 4 8 10 11 33 38.1
Garch-t (2-step estimation) 7 8 10 12 37 41.1
Garch-Sn (joint estimation) 9 7 0 0 16 11.9
Garch-Sn (2-step estimation) 7 11 2 0 20 18.1
Garch-St (joint estimation) 9 11 12 12 44 53.4
Garch-St (2-step estimation) 11 12 12 12 47 59.5

Table 6: Sensitivity to estimation methodology; window size=1,000
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tion.Therefore, it makes sense to estimate a Gaussian GARCH model
with QMLE as the first step and model fat tails by fitting the skewed
t distribution to the implied residuals in the second step.

Note that joint estimation of too many parameters governing a
complicated data generating process is challenging and may require
a long history of data to arrive at reasonable parameter estimates.
Also, such estimation is not robust to model misspecification since
the likelihood function relies on too many restricting assumptions.
In particular, if the distribution of errors are misspecified as skewed
t distribution, then MLE estimation is corrupted and can’t provide
consistent and unbiased parameter estimates for the GARCH process.
However, if the error distribution is misspecified as Gaussian, then
unbiased and consistent parameter estimates can still be achieved from
the QMLE method.

In fact, the outstanding performance of the GARCH-EVT model
lies with the two step approach as well as the success of the EVT
in modeling fat tails. As shown in this study, the skewed t distribu-
tion of Azzalini and Capitanio (2003) is another good alternative if
implemented following the same two-step methodology.

4.2 Independence Test

Another desirable property of VaR predictions is that a violation of
VaR today shouldn’t have an impact on a violation of the VaR tomor-
row, i.e. the binary violation variable Vt should be serially independent
over time. Otherwise, the violations create clusters which imply that
during turmoil the VaR is underestimated and during tranquil times
it is needlessly conservative. The unconditional coverage ratio test
ignores this issue and evaluates only the average performance of mod-
els. To check for independence of the VaR violations, Christoffersen’s
(1998) independence test is employed. Let the violation process Vt be
a first order binary Markow chain process with the Markow switching
matrix given by

π =

[
π00 1− π00

π10 1− π10

]
, πij = Pr(Vt+1 = j|Vt = i)

In order to test for independence, it is required to test for the null
hypothesis of H0 : π00 = π10 against the alternative H1 : π00 6= π10.
Denoting nij as the empirical number of transitions from state i to
state j,
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nij =
T=4099∑
t=501

I(Vt+1 = j|Vt = i),

where I() is the indicator function, the maximum likelihood estimator
of the transition matrix can be given as

π̂00,mle =
n00

n00 + n01
and π̂10,mle =

n10

n10 + n11
.

Under the null hypothesis π00 = π10 and therefore they can be
estimated as in the unconditional coverage test by

π00,null = π10,null = (n0)/(n0 + n1)

Then the likelihood ratio statistic can be calculated as

LRind = −2 (lnL(πnull, V |V1)− lnL(πmle, V |V1)) .

where the likelihood function is given by

L(π, V |V1) = π̂n00
00 (1− π̂00)n01 π̂n10

10 (1− π̂10)n11

Under the null hypothesis, the LR statistic follows a chi-square dis-
tribution with one degree of freedom. A summary of the independence
test results is provided in Table 7 without going into country specific
details9. In columns associated with different quantiles, models are
scored using the number of countries for which the null hypothesis
can’t be rejected10. In the score column, the total score across all
quantiles is given.

The main strength of the GARCH models in market risk measure-
ment is revealed by independence test results in Table 7. Since they
capture the volatility spikes quickly and model the strong persistence
in volatility successfully, GARCH models can quickly adjust the level
of VaR up and down depending on market conditions. Therefore, they
are able to produce VaR predictions in such a way that violations do
not cluster over time. However, this doesn’t provide any information
regarding the precision of the VaR forecasts. The model might be
overestimating or underestimating the risk. Passing the independence

9Detailed country level tables similar to Table 2 are available upon request from the
author.

10A probability value of 0.05 is used as the rejection criteria.
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Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 0 0 0 1 1 (9) 0.2
Student’s t 0 0 1 7 8 (8) 4.2
Evt 0 0 2 6 8 (6) 6.1
Sn 0 0 0 1 1 (10) 0.2
St 0 0 2 6 8 (7) 6.1
Garch 7 10 12 11 40 (3) 33.3
Garch-t 9 8 12 12 41 (1) 34.3
Garch-Evt 7 9 12 12 40 (2) 36.3
Garch-Sn 6 8 12 12 38 (5) 34.5
Garch-St 7 8 12 11 38 (4) 36.3

Table 7: Scoring based on independence tests with window size=500

test means that the performance of the model is uniform over time.
Finally, minor differences between different GARCH models can be
considered noise. Independence test results with a window size of
1,000 observation are presented in Table 8. The same conclusion can
be made.

Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 0 1 0 1 2 (10) 1.1
Student’s t 0 1 2 7 10 (7) 5.4
Evt 0 0 2 6 8 (8) 5.7
Sn 0 1 0 2 3 (9) 1.2
St 0 1 3 7 11 (6) 8.9
Garch 10 10 12 10 42 (5) 35.5
Garch-t 11 11 10 11 43 (3) 37.2
Garch-Evt 11 9 11 12 43 (1) 38.8
Garch-Sn 12 9 11 11 43 (4) 33.4
Garch-St 12 9 11 11 43 (2) 38.1

Table 8: Scoring based on independence tests with window size=1000
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4.3 Conditional Coverage Ratio Test

While the unconditional coverage ratio test doesn’t check for indepen-
dence, the independence test doesn’t account for the correct coverage
ratio. Although the two parameters are set to be equal, i.e π00 = π10,
they are jointly unconstrained. To check for the correct coverage ratio
as in Christoffersen (1998), the same Markow switching matrix intro-
duced in the last section is assumed for the violation variable. Then,
the null hypothesis is that Ho : π00 = π10 = α. Under the alternative,
both parameters are unconstrained.

Note that the null is the null hypothesis of the unconditional cov-
erage ratio test and the alternative is the alternative hypothesis of the
independence test. Therefore, the LR statistic can be written as

LRcc = −2 (lnL(1− α, V )− lnL(πmle, V |V1))

Further, note that the null hypothesis of the independence test is
the same as the alternative hypothesis of the unconditional coverage
ratio test. Therefore, the likelihood ratio statistic can be written as
the sum of the LR statistics of the unconditional coverage ratio test
and the independence test.

LRcc = −2 (lnL(1− α, V )− lnL(πmle, V |V1))
LRcc = −2 (lnL(1− α, V )− lnL(p̂mle, V ) + lnL(πnull, V |V1)− lnL(πmle, V |V1))

= LRuc + LRind

and it is distributed as chi-squared with two degrees of freedom
since both parameters are constrained under the null hypothesis.

Summary results are presented in Table 9 for a window size of 500
observations and in Table 10 for a window size of 1000 observations.
Static models have the lowest scores due to their unacceptable per-
formance with respect to the independence component. Within the
dynamic models, again the GARCH-EVT model ranks first with a
window size of 500 observations and the GARCH-St model ranks first
with a window size of 1,000 observation window size.

The sensitivity of the two-step GARCH-St methodology is checked
against the alternative single step joint estimation with the conditional
coverage ratio test as well. The results are reported in Table 11 (12)
for window size of 500 (1000) observations. The previous finding with
the unconditional coverage ratio test is still valid. Two-step imple-
mentation of models outperforms their single step joint estimation
counterparts.
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Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 0 0 0 0 0 (10) 0.0
Student’s t 0 0 1 5 6 (7) 3.6
Evt 0 0 1 4 5 (8) 2.9
Sn 0 0 0 0 0 (9) 0.0
St 0 0 2 6 8 (5) 5.1
Garch 5 2 0 0 7 (6) 4.0
Garch-t 5 4 9 11 29 (3) 22.2
Garch-Evt 9 10 12 10 41 (1) 36.9
Garch-Sn 6 6 0 0 12 (4) 9.8
Garch-St 6 8 12 11 37 (2) 34.4

Table 9: Scoring based on conditional coverage ratio test with window
size=500

Model 0.95 0.975 0.99 0.995 Score Rank Avg.p.val
Normal 0 0 0 0 0 (10) 0.1
Student’s t 0 0 2 7 9 (8) 5.5
Evt 0 1 3 7 11 (7) 6.4
Sn 0 0 0 0 0 (9) 0.2
St 0 1 3 7 11 (6) 10.4
Garch 8 7 2 0 17 (5) 9.7
Garch-t 7 8 10 12 37 (3) 34.0
Garch-Evt 11 10 11 12 44 (2) 48.6
Garch-Sn 7 10 4 1 22 (4) 15.4
Garch-St 11 10 12 12 45 (1) 48.8

Table 10: Scoring based on conditional coverage ratio test with window
size=1000

5 Conclusion

Despite the criticism after the recent financial crisis, VaR remains the
main regulatory tool for estimation of market risk capital. Estimation
of VaR for banks’ trading books requires the choice of a market risk
model among numerous alternatives. This brings an additional risk
known as model risk. In this study, ten different market risk models
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Model 0.95 0.975 0.99 0.995 Score Avg.p.val
Garch-t (joint estimation) 3 5 8 11 27 22.7
Garch-t (2-step estimation) 5 4 9 11 29 22.2
Garch-Sn (joint estimation) 5 2 0 0 7 4.0
Garch-Sn (2-step estimation) 6 6 0 0 12 9.8
Garch-St (joint estimation) 4 8 11 11 34 25.4
Garch-St (2-step estimation) 6 8 12 11 37 34.4

Table 11: Sensitivity to estimation methodology using conditional covergae
ratio test; window size=500

Model 0.95 0.975 0.99 0.995 Score Avg.p.val
Garch-t (joint estimation) 3 8 10 12 33 31.3
Garch-t (2-step estimation) 7 8 10 12 37 34.0
Garch-Sn (joint estimation) 8 7 2 0 17 9.3
Garch-Sn (2-step estimation) 7 10 4 1 22 15.4
Garch-St (joint estimation) 10 11 12 12 45 42.7
Garch-St (2-step estimation) 11 10 12 12 45 48.8

Table 12: Sensitivity to estimation methodology using conditional covergae
ratio test; window size=1000
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in VaR prediction are compared using 12 emerging market stock in-
dices. Models are scored based on their backtesting performance using
Christoffersen (1998) tests.

Conventional risk measurement methods that rely on normality
assumptions, whether it be the normal model, the skewed normal
model, the Gaussian GARCH model or the GARCH-Sn model, result
in significant underestimation of VaR. This is because these models
fail to address fat tail distributions. These results are consistent with
the previous literature.

Backtesting of one-day-ahead VaR predictions in several quantiles
revealed that the most important issue in VaR prediction for stock
indices is the fat tail modeling. Skewness and dynamic volatility mod-
eling can also significantly improve the model performance but only
if the fat tails are taken into account first. Also, the importance of
fat tail modeling increases as the quantile at which VaR is estimated
increases.

Overall, when using a window size of 500 observations, the GARCH-
EVT model of McNeil and Frey (2000) outperforms all other models
and the GARCH-St model follows it closely. When the window size
is increased to 1000 observations, the GARCH-St model ranks first
outperforming all other models.

In this study, the GARCH-St model performs better than pre-
vious studies that used GARCH models with skewed t distributed
errors. This is due to the choice of Azzalini and Capitanio’s (2003)
skewed t distribution and, more importantly, the proposed two-step
implementation. It is shown that the two step GARCH-St method-
ology outperforms the single step alternative which jointly estimates
the GARCH model parameters and the distributional parameters for
the error term. Such an approach is too restrictive and very sensitive
to misspecification of the model. On the other hand, QMLE estima-
tion of the model in the first step provides consistent and unbiased
estimates for the parameters of the GARCH process even if the distri-
bution for the error term is misspecified. Then, fat tails and skewness
are accounted in the second step by fitting a skewed t distribution to
the extracted residuals of the GARCH fit.

In fact, the outstanding performance of the GARCH-EVT model
lies with the two step approach as well as the success of the EVT
in modeling fat tails. As shown in this study, the skewed t distribu-
tion of Azzalini and Capitanio (2003) is another good alternative if
implemented following the same two-step methodology.
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