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Abstract

This paper identifies a broad class of situations in which the contract is both

attainable in closed form and “detail-independent”. Its slope is independent of

firm risk; moreover, when the cost of effort is pecuniary, the contract is linear

regardless of the agent’s utility function. We thus extend the tractable contracts

of Holmstrom and Milgrom (1987) to settings that do not require exponential

utility, Gaussian noise or continuous time. In particular, the optimal continuous

time contract is also efficient in a discrete model. Our results are consistent with

the simplicity of real-life contracts, and suggest that incentive schemes need not

depend on complex details of the particular setting (e.g. agent’s risk aversion),

which are difficult for the principal to observe. For CEOs, the contract can be

implemented with securities in a simple manner. The CEO is given an “Incen-

tive Account”: a portfolio that is continuously rebalanced so that the fraction

invested in the firm’s stock remains above a certain threshold. This threshold is
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also independent of noise and utility. Finally, the proof techniques use the no-

tion of relative dispersion and subdifferentials to avoid relying on the first-order

approach, and may be of methodological interest.

Keywords: Contract theory, executive compensation, incentives, principal-

agent problem, dispersive order, subderivative. (JEL: D2, D3, G34, J3)
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1 Introduction

This paper identifies and analyzes a class of contracting situations in which the op-

timal incentive scheme is both attainable in closed form and “detail-independent.”

The contract slope is independent of the noise distribution and the agent’s reserva-

tion utility. Moreover, if the cost of effort is in monetary terms (e.g. it represents

an opportunity cost of working elsewhere), the contract is linear — regardless of the

agent’s utility function. The model thus extends the tractable contracts of Holmstrom

and Milgrom (1987)1 to settings that do not require exponential utility, Gaussian noise

or continuous time. Our structure may be useful for future contracting models, as it

allows tractability to be achieved in a wide range of settings. Moreover, it suggests

why real-life contracts are typically simple and do not depend on specific details of the

contracting situation.

We commence by assuming a deterministic (but possibly time-varying) path of

target effort levels, and analyze the cheapest incentive scheme that implements this

path. We consider a discrete-time, multiperiod model where, in each period, the agent

first observes noise and then exerts effort, before observing the noise in the next period.

The contract is both tractable and detail-independent: the contract slope depends only

on how the agent trades off the benefits of cash against the cost of providing effort,

and not on any other factors.2 The irrelevance of the noise distribution occurs even

though each action, except the final one, is followed by noise and so the agent faces

uncertainty when deciding his effort level. Moreover, if the timing is reversed, so that

actions precede noise in each period, the contract still implements the target action,

although it may no longer be optimal. We then use recent advances in continuous

time contracting (Sannikov (2008)) to show that the optimal contract is the same in a

continuous-time model where noise and effort occur simultaneously.

We next endogenize the target effort path and, in particular, allow it to depend on

1Throughout this paper, unless otherwise stated, “Holmstrom and Milgrom (1987)” refers to the
continuous-time, closed form linear contract derived in Section 4 of their paper.

2For brevity, we call such a contract “detail-independent.” This term emphasizes that certain
details of the contracting situation do not matter (in contrast to earlier theories). However, it does
not mean that all parameters are irrelevant.
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the noise outcomes. The optimal contract is still attainable in closed form. In classical

agency models, the action chosen by the principal is the result of a trade-off between

the benefits of effort (which are increasing in firm size) and its costs (direct disutility

plus the risk imposed by incentives). We show that, if the output under the agent’s

control is sufficiently large (e.g. the agent is a CEO who affects total firm value), these

trade-off considerations are of second-order importance: the benefits of effort swamp

the costs. Thus, maximum effort is optimal in each period for a wide range of utility

functions and noise outcomes. By contrast, if output is small, maximum effort may

not be optimal for some noise realizations. We show that the optimal effort level can

still be solved for if the cost function is affine.

In sum, for a given target effort level, the optimal implementation is detail-independent.

Moreover, if output is sufficiently large, the optimal action itself does not depend on

model parameters, and so the overall contract is also detail-independent. All of the

above results are derived under a general contracting framework, where the contract

may depend on messages sent by the agent to the principal, and also be stochastic.

The “maximum effort principle”3, when applicable, significantly increases tractabil-

ity, since it removes the need to solve the trade-off required to derive an interior op-

timum. Indeed, jointly deriving the optimal effort level and the efficient contract that

implements it can be extremely complex. Thus, papers that analyze the second (im-

plementation) problem typically assume a fixed target effort level (e.g. Grossman and

Hart (1983), Dittmann and Maug (2007) and Dittmann, Maug and Spalt (2008)). Our

result rationalizes this approach: if maximum effort is always optimal, the first prob-

lem has a simple solution — there is no trade-off to be simultaneously tackled and the

analysis can focus on the implementing contract.

We demonstrate how the model can be applied to the design of CEO incentives.

Since CEOs affect overall firm value, the contract can be implemented using firm secu-

rities. If CEO preferences are multiplicative in cash and effort (which Edmans, Gabaix

and Landier (2009) show to be necessary for empirically consistent predictions), the

3We allow for the agent to exert effort that does not benefit the principal. The “maximum ef-
fort principle” refers to the maximum productive effort that the agent can undertake to benefit the
principal.
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implementation with securities takes a simple form. At the start, the CEO is given

an “Incentive Account”: a portfolio for which a given fraction is invested in the firm’s

stock and the remainder in cash. As time evolves, this portfolio is continuously rebal-

anced, so that the fraction in the firm’s stock remains above a given threshold, and the

CEO is paid the final portfolio value in the last period. This threshold fraction depends

only on the unit cost of effort and not on noise or utility. The Incentive Account resem-

bles restricted stock and long-vesting options frequently granted in practice. Existing

justifications of long-term compensation are typically based on myopia or manipula-

tion concerns, in which case the optimal vesting point is time-dependent. By contrast,

in this paper, restricted compensation is desirable to maintain effort incentives in a

dynamic model. In this case, the optimal vesting point is state-dependent: the CEO

should only be allowed to cash out if the fraction is sufficiently higher than the thresh-

old, which in turn requires the stock price to have increased. On the other hand, if the

stock price falls, the requirement to maintain a minimum incentive level may justify

the repricing of out-of-the-money options.

In addition to executive compensation, our framework may also be applicable to

theoretical contracting models in general, as it shows that tractability can be achieved

in quite broad settings. For example, certain models may require decreasing relative

risk aversion to calibrate to the data and/or discrete time for clarity. In addition, the

results also have implications for empirical researchers and compensation practitioners,

such as boards. In many classical principal-agent models (such as Grossman and Hart

(1983) and the discrete-time version of Holmstrom and Milgrom (1987)), the optimal

contract cannot be solved for in closed form, which poses difficulties for real-life contract

design. Moreover, the incentive scheme is contingent upon many specific features of the

contracting situation, such as the agent’s utility function and noise distribution. This

dependence presents further challenges for practitioners, since these parameters likely

vary considerably across settings, but many are difficult for the principal to measure

and use to guide the contract design. However, observed contracts are typically quite

simple and do not depend on the above features.4 For example, Prendergast’s (2002)

4Murphy’s (1999) survey finds that compensation typically comprises cash, bonuses, stock and

5



review of the evidence finds that incentives show little correlation with risk. Our paper

offers a simple potential explanation — these details in fact do not matter, and so the

contract is robust to such parametric uncertainty.

In addition to its results, the paper’s proofs import and extend some mathematical

techniques that are relatively rare in economic theory and may be of use in future

models. We use the notion of “relative dispersion” for random variables to prove that

the incentive compatibility constraints bind, i.e. the principal imposes the minimum

incentive slope that induces the target effort level. We show that the binding contract

is less dispersed than alternative solutions, constituting efficient risk sharing.5 Lands-

berger and Meilijson (1994) is an economic theory that uses this notion. We also use

the subderivative, a generalization of the derivative that allows for quasi first-order

conditions even if the objective function is not everywhere differentiable. This con-

cept is related to Krishna and Maenner’s (2001) use of the subgradient, although the

applications are quite different. These notions also allow us to avoid the first-order

approach, and so may be useful for future models where sufficient conditions for the

first-order approach cannot be verified.6

This paper builds on a rich literature on the principal-agent problem. Grossman

and Hart (1983) demonstrate how the problem can be solved in discrete time using a

dynamic programming methodology that avoids the need for the first-order approach.

Holmstrom and Milgrom (1987) show that optimal contracts are linear in profits in

continuous time (where noise is automatically Gaussian) if the agent has exponential

utility and controls only the drift of the process; they show that this result does not

hold in discrete time. A number of papers have extended their result to more general

settings, although all continue to require exponential utility. In Sung (1995) and Ou-

Yang (2003), the agent also controls the diffusion of the process; Schaettler and Sung

options. Even mildly complex compensation instruments such as indexed options are rare.
5With separable utility, it is straightforward to show that the constraints bind: the principal should

offer the least risky contract that induces incentive compatibility. However, with non-separable utility,
introducing additional randomization by giving the agent a riskier contract than necessary may be
desirable (Arnott and Stiglitz (1988)) — an example of the theory of second best. We use the concept
of relative dispersion to prove that constraints bind.

6See Rogerson (1985) for sufficient conditions for the first-order approach to be valid under a single
signal, and Jewitt (1988) for situations in which the principal can observe multiple signals.
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(1993) derive sufficient conditions for the first-order approach to be valid in a larger

class of principal-agent problems, of which Holmstrom and Milgrom (1987) is a special

case. While these three papers are in continuous time, Hellwig and Schmidt (2002)

show that linearity can be achieved in a discrete time multiperiod model, under the

additional assumptions that the agent can destroy profits before reporting them to

the principal, and that the principal can only observe output in the final period. By

contrast, our multiperiod model yields linear contracts while allowing the principal

to observe signals at each interim stage. Mueller (2000) shows that linear contracts

are not optimal in Holmstrom and Milgrom if the agent can only change the drift at

discrete points, even if these points are numerous and so the model closely approximates

continuous time.

A number of other papers have studied aspects of the principal-agent problem aside

from linearity. Matthews (2001) examines the effect of limited liability and monotonic-

ity constraints. DeMarzo and Fishman (2007), He (2008), Sannikov (2008) and Tchistyi

(2006) extend the principal-agent model to a dynamic setting. Hall and Murphy (2002),

Dittmann and Maug (2007), and Dittmann, Maug and Spalt (2008) analyze its impli-

cations for the optimal mix of stock and options. Wang (2007) derives the optimal

contract under uncertainty and finds the limit of this contract as uncertainty dimin-

ishes. The limit contract depends on the agent’s risk aversion and the characteristics

of the risk environment.

This paper proceeds as follows. In Section 2 we demonstrate that tractability and

detail independence obtain in discrete time, where the noise is observed before the

agent’s action in each period, and in continuous time when these events are simultane-

ous. While this section holds the target effort level fixed, Section 3 allows it to depend

on the noise realization and derives conditions under which the maximum productive

effort level is optimal for all noise outcomes. Section 4 concludes. Appendix A re-

views the mathematical techniques required for the proofs, which are in Appendix B.

While the paper considers a unidimensional action and signal, the Online Appendix

shows that the contract is robust to multidimensional actions and signals, and contains

further extensions and mathematical proofs.
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2 The Core Model

Section 2.1 introduces the concept of detail-independence in a multiperiod, discrete

time model. In Section 2.2, we show that the optimal contract retains the same func-

tional form in continuous time. Section 2.3 considers a specific application of the

model to CEO compensation, where the contract can be implemented using the firm’s

securities.

2.1 Discrete Time

We consider a T -period model; its key parameters are summarized in Table 1. In each

period t, the agent takes an unobservable action at. The action space A has interval

support, bounded below and above by a and a. (We allow for both open and closed

action sets and for the bounds to be infinite.) a is the maximum feasible effort level.

After the action is taken, a verifiable signal

rt = at + ηt. (1)

is publicly observed. We assume that noises η1, ..., ηT are independent with open in-

terval support
¡
ηt, ηt

¢
, where the bounds may be infinite, and that η2, ..., ηt have log-

concave densities.7 We require no other distributional assumption for ηt; in particular,

it need not be Gaussian.

It is unclear from intuition whether it is more realistic to assume that ηt occurs

before or after at. We thus adopt the assumption that maximizes tractability — that

the agent observes ηt before taking at in each period. Indeed, we show that this

assumption leads to detail-independent contracts. While our assumption is also made

in Harris and Raviv (1979), Laffont and Tirole (1986) and Baker (1992), most models

7A random variable is log-concave if it has a density with respect to the Lebesgue measure, and
the log of this density is a concave function. Many standard density functions are log-concave, in
particular the Gaussian, uniform, exponential, Laplace, Dirichlet, Weibull, and beta distributions
(see, e.g., Caplin and Nalebuff (1991)). On the other hand, most fat-tailed distributions are not
log-concave, such as the Pareto distribution.
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feature noise occurring after the action.8 Note that this timing assumption does not

make the agent immune to risk — in every period, except the final one, his action is

followed by noise.9

In period T , the principal pays the agent cash of c.10 The agent’s utility function is

E

"
u

Ã
v (c)−

TX
t=1

g (at)

!#
. (2)

g represents the cost of effort, which is increasing and weakly convex. u is the utility

function and v is the felicity function which denotes the agent’s utility from cash; both

are increasing and weakly concave. g, u and v are all twice continuously differentiable.

We specify functions for both utility and felicity to maximize the generality of the

setup. For example, u(x) = x denotes additively separable preferences; v(c) = ln c

generates multiplicative preferences, which we will later consider in more detail when

applying the model to CEOs. If v(c) = c, the cost of effort is expressed as a subtraction

to cash pay. This is appropriate if effort represents an opportunity cost of foregoing an

alternative income-generating activity (e.g. outside consulting), or involves a financial

expenditure. Holmstrom and Milgrom (1987) assume v(c) = c and u(x) = −e−αx,
i.e. a pecuniary cost of effort and exponential utility. We only assume that the utility

function exhibits nonincreasing absolute risk aversion (NIARA), which is sufficient to

rule out randomized contracts.

Assumption 1 (Nonincreasing absolute risk aversion) We assume that −u00 (x) /u0 (x)
is nonincreasing in x. This is equivalent to u0 (u−1 (x)) being weakly convex in x.

Many commonly used utility functions (e.g. constant absolute risk aversion u (x) =

−e−αx and constant relative risk aversion u (x) = x1−γ/ (1− γ)) exhibit NIARA.

8In a number of corporate finance papers, the state of nature is also revealed before the action is
taken. This is because the optimal action depends on the state of nature, and so it is necessary for
the state to be realized before the action. (Dewatripont and Tirole (1994) is an example). In models
where the optimal action is independent of noise, such as our core case, the common assumption is
for noise to follow the action. In Section 3.1 we allow the optimal action to depend on the noise.

9The contract is unchanged if noise follows the final action aT , as long as this noise is realized after
the agent receives his contracted payment.
10If the agent quits before time T , he receives a very low wage c.
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The agent’s reservation utility is given by u ∈ Imu, where Imu is the image of u,

i.e. the range of values taken by u. We also assume that Im v = R so that we can apply

the v−1 function to any real number, although this assumption could be weakened.11

We impose no restrictions on the contracting space available to the principal, so the

contract ec(·) can be stochastic, nonlinear in the signals rt, and depend on messagesMt

sent by the agent. We will prove that messages play no role and that optimal contracts

will be deterministic. The full timing is as follows:

1. The principal proposes a (possibly stochastic) contract ec (r1, ..., rT ,M1, ...,MT )

2. The agent agrees to the contract or receives his reservation utility u.

3. The agent observes noise η1.

4. The agent sends the principal a message M1.

5. The agent exerts effort a1.

6. The signal r1 = η1 + a1 is publicly observed.

7. Steps (3)-(6) are repeated for t = 2, ..., T .

8. The principal pays the agent ec (r1, ..., rT ,M1, ...,MT ).

In this section, we fix the path of effort levels that the principal wants to implement

at {a∗t}t=1,..,T , where a∗t > a and a∗t is allowed to be time-varying.
12 An admissible

contract gives the agent an expected utility of at least u and induces him to take

path {a∗t} and truthfully report noises {η∗t }t=1,..,T : by the revelation principle, we can
restrict our analysis to mechanisms that induce truth-telling. Since the principal is

risk-neutral, the optimal contract is the admissible contract with the lowest expected

cost E [ec].
11With K defined as in Theorem 1, it is sufficient to assume that there exists a value of K which

makes the participation constraint bind, and a “threat consumption” which deters the agent from
exerting very low effort, i.e. infc,(at) v (c)−

P
t g (at) ≤

P
t g
0 (a∗)

¡
ηt + a∗t

¢
+K.

12If a∗t = a, then a flat wage induces the optimal action.
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We now formally define the principal’s program. Let Ft be the filtration in-

duced by (η1, ..., ηt), the noise revealed up to time t. The agent’s policy is (a,M) =

(a1, ..., aT ,M1, ...,MT ), where at and Mt are Ft−measurable. at is the effort taken by
the agent if noise (η1, ..., ηt) has been realized, and Mt is message sent by the agent

upon observing (η1, ..., ηt). Let S denote the space of such policies, and ∆ (S) the set

of randomized policies. Define (a∗,M∗) = (a∗1, ..., a
∗
T ,M

∗
1 , ...,M

∗
T ) the policy of exerting

effort a∗t at time t, and sending message M
∗
t given (η1, ..., ηt). The program is given

below:

Program 1 Call a∗t is the target effort level in period t. The principal’s problem is to

choose a contract ec (r1, ..., rt,M1, ...,MT ), and a recommended Ft−measurable message
policy (M∗

t )t=1...,T , that minimizes expected cost:

min
c(·)

E [ec (a∗1 + η1, ..., a
∗
T + ηT ,M

∗
1 , ...,M

∗
T )] , (3)

subject to the following constraints:

IC: (a∗t ,M
∗
t )t=1...T ∈ arg max

(a,M)∈∆(S)
E

"
u

Ã
v (ec (a1 + η1, ..., aT + ηT ,M1, ...,MT ))−

TX
s=1

g (as)

!#
(4)

IR: E

"
u

Ã
v (ec (·))− TX

t=1

g (a∗t )

!#
≥ u. (5)

In particular, if the analysis is restricted to message-free contracts, (4) implies that

the time-t action a∗t is given by:

∀t, ∀η1, ..., ηt, a∗t ∈ argmax
at
E

"
u

Ã
v (ec (a∗1 + η1, ..., at + ηt, ..., a

∗
T + ηT ))− g (at)−

TX
s=1,s6=T

g (a∗s)

!
| η1, ...

(6)

Theorem 1 below describes our solution to Program 1.
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Theorem 1 (Optimal contract, discrete time). The following contract is optimal. The

CEO is paid:

c = v−1

Ã
TX
t=1

g0 (a∗t ) rt +K

!
, (7)

whereK is a constant that makes the participation constraint bind (E [u (
P

t g
0 (a∗t ) rt +K −

P
t g (a

∗
t ))] =

u). The functional form (7) is independent of the utility function u, the reservation

utility u, and the distribution of the noise η. These details affect only the scalar K.

The optimal contract is deterministic and does not require messages.

In particular, if the target action is time-independent (a∗t = a∗ ∀ t), the optimal

contract is given by:

c = v−1 (g0 (a∗) r +K) , (8)

where r =
PT

t=1 rt is the total signal.

Proof. (Heuristic). The Appendix presents a rigorous proof that rules out stochastic

contracts and messages, and does not assume that the contract is differentiable. Here,

we give a heuristic proof by induction that conveys the essence of the result for deter-

ministic contracts, using first-order conditions. We commence with T = 1. Since η1

is known, we can remove the expectations operator from the incentive compatibility

condition (6). Since u is an increasing function, it also drops out to yield:

a∗1 ∈ argmax
a1

v (c (a1 + η1))− g (a1) . (9)

The first-order condition is:

v0 (c (a∗1 + η1)) c
0(a∗1 + η1)− g0 (a∗1) = 0.

Therefore, for all r,

v0 (c (r1)) c
0 (r1) = g0 (a∗1) ,

which integrates to

v (c (r1)) = g0 (a∗1) r1 +K. (10)
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for some constant K.

Proceeding by induction, we now show that, if the result holds for T , it also holds

for T + 1. Let V (r1, ..., rT+1) ≡ v (c (r1, ..., rT+1)) denote the indirect felicity function,

i.e. the contract in terms of felicity rather than cash. At t = T + 1, the incentive

compatibility condition is:

a∗T+1 ∈ argmax
aT+1

V (r1, ..., rT , ηT+1 + aT+1)− g (aT+1)−
TX
t=1

g (a∗t ) . (11)

Applying the result for T = 1, to induce a∗T+1 at T + 1, the contract must be of the

form:

V (r1, ..., rT , rT+1) = g0
¡
a∗T+1

¢
rT+1 + k (r1, ..., rT ) , (12)

where the integration “constant” now depends on the past signals, i.e. k (r1, ..., rT ). In

turn, k (r1, ..., rT ) must be chosen to implement a∗1, ..., a
∗
T viewed from t = 0, when the

agent’s utility is:

E

"
u

Ã
k (r1, ..., rT ) + g0

¡
a∗T+1

¢
rT+1 − g

¡
a∗T+1

¢
−

TX
t=1

g (at)

!#
.

Defining bu (x) = E £u ¡x+ g0
¡
a∗T+1

¢
rT+1 − g

¡
a∗T+1

¢¢¤
, (13)

the principal’s problem is to implement a∗1, ..., a
∗
T with a contract k (r1, ..., rT ), given a

utility function

E

"buÃk (r1, ..., rT )− TX
t=1

g (at)

!#
.

Applying the result for T = 1, the contract must have the form k (r1, ..., rT ) =PT
t=1 g

0 (a∗t ) rt +K for some constant K. Combining this with (10), the only incentive

compatible contract is:

V (r1, ..., rT , rT+1) =
T+1X
t=1

g0 (a∗t ) rt +K.
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The associated pay is c = v−1
³PT+1

t=1 g0 (a∗t ) rt +K
´
, as in (7).

The main applications of Theorem 1 are likely to be for T = 1 or for a constant

a∗t ; Section 3.2 derives conditions under which the maximum productive effort level is

optimal for all t. In such cases, the contract is particularly simple and only depends on

the total signal, as shown in equation (8). Even with time-varying a∗t , the optimal con-

tract in Theorem 1 can be derived in closed form, which contrasts with the complexity

of many classical contracting models.13

The timing assumption is key to achieving tractability, and its effect can be seen by

examining the heuristic proof. In the final period T + 1, ηT+1 is known and so we can

remove the expectations operator and in turn the utility function u from equation (6),

to obtain (11) and then (12). (These removals would not be possible if ηT+1 followed

aT+1.) Before T +1, ηT+1 is unknown. However, (12) shows that the component of the

contract that solves the T+1 problem (g0
¡
a∗T+1

¢
rT+1) is separate from that which solves

the t = 1, ..., T problems (k (r1, ..., rT )). Hence, the unknown ηT+1 enters additively

and does not affect the functional form of the t = 1, ..., T problems.14 In short, our

timing assumption allows us to reduce the multi-period problem into a succession of

one-period problems, each of which can be solved separately.

In addition to deriving the incentive scheme in closed form, Theorem 1 also clarifies

the parameters that do and do not matter for the functional for of the optimal contract.

The utility function u, the reservation utility u, and the distribution of the noise η are

all irrelevant (they affect only the value of K, but not the functional form (7)). The

contract’s slope only depends on the felicity function v and the cost of effort g, i.e.

how the agent trades off the benefits of cash against the costs of providing effort. For

brevity, we call such a contract “detail-independent.” This term aims to highlight that

certain details of the contracting situation do not matter; it does not imply that all

parameters are irrelevant.

13Theorem 1 characterizes a contract that is optimal, i.e. solution of Program 1. Other contracts
might be optimal, e.g. they could take many arbitrary values (for instance, very low ones) for returns
that are not observed on the equilibrium path.
14This can be most clearly seen in the definition of the new utility function (13), which “absorbs”

the final period problem.
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If v(c) = c (i.e. the cost of effort is pecuniary) as assumed by Holmstrom and

Milgrom (1987), the contract is linear — regardless of u. This result extends the linear

contracts of Holmstrom and Milgrom to settings that do not require exponential utility,

Gaussian noise or continuous time. Another common specification is v(c) = ln c, in

which case the optimal contract is log-linear. This is considered in more detail in

Section 2.3.

We now explain the intuition behind the contract’s detail-independence. Inserting

the optimal contract (7) into the utility function (2) gives the agent’s time t maximiza-

tion problem as

max
at
Et

⎡⎣u
⎛⎝ g0 (a∗1) (a

∗
1 + η1)− g (a∗1) + ...+ g0 (a∗t ) (at + ηt)− g (at)

+...+ g0 (a∗T ) (aT + eηT )− g (aT ) +K

⎞⎠⎤⎦ . (14)

The agent’s choice of at affects his utility only through its effect on the term ψt =

g0 (a∗t ) (at + ηt)− g0 (at). This term is independent of u, K (and thus u) and all of the

other noise outcomes ηs, s 6= t. More explicitly, the agent’s first-order condition at

time t is

Et

∙
u0 (ψ1 + ...+ ψT +K)

∂ψt

∂at

¸
= 0

=⇒ Et [u
0 (ψ1 + ...+ ψT +K)] (g0 (a∗t )− g0 (at)) = 0.

The specific functional form of u, K, and the terms ψ1, ..., ψT (and thus ηs, s 6= t) only

determine the magnitude of the increment in utility, u0 (·), that results from optimizing
ψt. However, this magnitude is irrelevant — the only important property is that it is

always positive, and this is guaranteed by the monotonicity of u. Hence, regardless of

u0 (·), the agent will wish to choose the at that maximizes ψt (i.e. set at = a∗t ). Simply

put, since u is monotonic, it is maximized by maximizing its argument, regardless of

its functional form. Moreover, ψt enters the argument additively and is independent

of K and the other noise realizations. Hence, even though the agent faces residual

15



uncertainty as he does not know eηt+1, ..., eηT , these noise outcomes do not matter. The
irrelevance of unknown noise realizations also means that our contract (7) is incentive

compatible even if we reverse our timing assumption and instead allow ηt to follow at

in each period, as shown in Appendix C. However, we would not be able to prove that

contract (7) is optimal (see the above discussion).

Relatedly, the agent’s current effort choice is not distorted by past noise realizations.

In Mirrlees (1974), the contract involves punishing the agent severely if final output is

below a certain threshold: therefore, if he observes that interim output is high (because

of high past noise), he will reduce future effort. Holmstrom and Milgrom (1987) assume

exponential utility and a pecuniary cost of effort to remove the “wealth effects” caused

by past noise realizations. Here, past noise is irrelevant regardless of the parameters.

In sum, regardless of u0, u or η, the agent’s marginal felicity from increasing at is
∂V
∂rt
= g0 (a∗t ), and so always equals the marginal cost of effort at the target action level.

The final step is to explain how a contract constant in felicity V (r) translates into

a contract in terms of cash c (r). If the agent exhibits diminishing marginal felicity

(i.e. v is concave), the marginal felicity of a dollar v0 (c) falls if past noise outcomes or

reservation utility u (and thusK) are high. To offset this effect and maintain incentives,

the agent must be given a greater number of dollars for exerting effort. Indeed, the

v−1 transformation means that the contract is convex in cash: high past noise raises
∂c
∂rt
to exactly offset the lower v0(c) and maintain the marginal felicity from effort at

v0(c) ∂c
∂rt
= g0 (a∗t ).

15

In Holmstrom and Milgrom (1987), as in Grossman and Hart (1983), effort is mod-

eled as the selection of a probability distribution over states of nature. Since effort only

has a probabilistic effect on outcomes, the model already features uncertainty and so

there is no need to introduce additional noise — hence noise independence automati-

cally obtains. However, this formulation of effort requires exponential utility to remove

“wealth effects” and achieve independence of the reservation wage.16 By modeling ef-

15If the cost of effort is pecuniary (v(c) = c), v−1(c) = c and so no transformation is needed.
Since both the costs and benefits of effort are in monetary terms, high past noise K diminishes both
components of the trade-off equally. Thus, incentives are unchanged even with a linear contract.
16Specifically, the utility function is

P
j u (v(cj)− w − c(p, θj)) pj where w is the reservation
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fort as an increment to the signal (equation (1)), we achieve independence of u. This

modeling choice requires the specification of a noise process, else the effort decision

would become contractible. We then achieve noise independence through our timing

assumption. In sum, the combination of the effort and timing specifications achieves

independence of both utility u and noise η.

The Appendix proves that we can rule out randomized contracts. There are two

effects of randomization. First, it leads to inefficient risk-sharing, for any concave u.

Second, it alters the marginal cost of effort. If the utility function exhibits NIARA

(Assumption 1), this cost weakly increases with randomization. Thus, both effects of

randomization are undesirable, and deterministic contracts are unambiguously opti-

mal.17 The Appendix also shows that, even though the agent has information on ηt

before choosing at, there is no need for him to send a message to the principal regarding

ηt. Since a∗t is implemented for all ηt, there is a one-to-one correspondence between

rt and ηt on the equilibrium path. The principal can thus infer ηt from rt, rendering

messages redundant.

We conclude with two additional remarks.

Remark 1 (Risk averse principal). The proof of Theorem 1 gives an extension to the

case of a risk-averse principal. Suppose that the principal wants to minimize E [f (c)],

where f is an increasing function, rather than E [c]. Then, the above contract is optimal

if u (v (f−1 (·))−
P

t g (a
∗
t )) is concave. This holds, loosely speaking, the principal is not

too risk-averse.

Remark 2 (Deterministic contracts, interior actions). The proof of Theorem 1 shows

that, if a∗t < a ∀ t and only deterministic contracts are allowed, (7) is the only incentive
compatible contract (the value of K being the only degree of freedom for the principal)

wage and the summation is across states θj . Since pj is outside the u(·) function, u(·) does
not automatically drop out. Only if utility is exponential does the objective function simplify to
−u(−w)

P
j u (v(cj)− c(p, θj)) pj . Then the optimal contract under a reservation wage of w is ob-

tained by adding w in all states to the optimal contract under a reservation wage of 0, so the slope is
independent of w. This property will not hold with non-exponential utility.
17This result builds on Arnott and Stiglitz (1988), who derived conditions under which randomiza-

tion is suboptimal in a different setting of insurance.
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over the range of values taken by rt on the equilibrium path. This proof does not

require log-concavity of η2, ..., ηT nor that u satisfies NIARA. These assumptions are

only required for the full proof (which allows for the possibility of randomized contracts

or the possibility that a∗t = a for some t), where there exist other incentive compatible

contracts, to show that the contract in (7) is least costly.

2.2 Continuous Time

This section shows that the contract continues to be detail-independent in continuous

time, where actions and noise occur simultaneously. Hence, the timing assumption

in Section 2.1 leads to consistency between the discrete and continuous time settings.

Intuition offers limited guidance as to whether it is more realistic to assume that noise

occurs before or after the action in discrete time. The consistency of the incentive

scheme suggests that, if the underlying reality is continuous time, it is best mimicked

in discrete time by modeling noise before the effort decision in each period.

2.2.1 Optimal Contract

At every instant t, the agent takes action at and the principal observes signal rt, where:

rt =

Z t

0

asds+ ηt. (15)

where ηt =
R t
0
σsdZs +

R t
0
μtdt, where Zt is a standard Brownian motion, and σt and

μt are deterministic. The agent’s utility function is:

E

∙
u

µ
v (c)−

Z T

0

g (at) dt

¶¸
. (16)

The principal observes the path of (rt)t∈[0,T ] and wishes to implement a deterministic

action (a∗t )t∈[0,T ] at each instant. She solves Program 1 with utility function (16). The

optimal contract is detail-independent and of the same form as Theorem 1.

Theorem 2 (Optimal contract, continuous time). The following contract is optimal.
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The CEO is paid

c = v−1
µZ T

0

g0 (a∗t ) drt +K

¶
, (17)

whereK is a constant that makes the participation constraint bind (E
h
u
³R T

0
g0 (a∗t ) drt +K −

R T
0
g (a∗t ) dt

u).

In particular, if the target action is time-independent (a∗t = a∗ ∀ t), defining the

total signal to be r =
R T
0
rtdt, the contract is given by:

c = v−1 (g0 (a∗) r +K) . (18)

Proof. See Appendix.

To highlight the link with the discrete time case, consider the model of Section 2.1

and define rT =
PT

t=1 rt =
PT

t=1 at +
PT

t=1 ηt. Taking the continuous time limit of

Theorem 1 gives Theorem 2.

2.3 Application to CEO Incentives

The optimal incentive scheme in Theorems 1 and 2 can be implemented by any performance-

sensitive contract and for any informative signal r. For rank-and-file employees, the

stock price is unlikely to be a valuable signal since it will be only weakly affected by

their action a. Since CEOs are contracted to maximize shareholder value, and are able

to affect it significantly, the firm’s equity return is the natural choice of signal r. There-

fore, the optimal contract can be implemented using the firm’s securities. This section

demonstrates this implementation and a number of implications that follow from our

tractable contract form. For clarity, we use the discrete time model with T = 1 and

drop the time subscript.

The baseline firm value is S and the end-of-period stock price P1 is given by

P1 = Sea (1 + ε) , (19)

where ε is mean-zero noise bounded below by ε > −1 with open interval support.
Owing to rational expectations, the market anticipates that the CEO will take action
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a = a∗ and so the initial stock price is

P0 = E [P1] = Sea
∗
.

Let R = P1/P0 denote the firm’s gross return between periods 0 and 1; r = lnR is

the log return. We thus have

r = a+ η, (20)

where noise η = ln (1 + ε)− a∗.

We have previously shown that specifying v(c) = c achieves linear contracts, re-

gardless of u(·). Here, we consider another common assumption of v(c) = ln c, so

that the CEO’s utility function (2) now becomes, up to a monotonic (logarithmic)

transformation:

E
£
U
¡
ce−g(a)

¢¤
≥ U, (21)

where u (x) ≡ U (ex) and U ≡ lnu is the CEO’s reservation utility. Utility is now

multiplicative in effort and cash salary; Edmans, Gabaix and Landier (2009) show that

multiplicative preferences are necessary to generate empirically consistent predictions

for the scaling of various measures of CEO incentives with firm size.18 Note that we

retain the general utility function U(·).
The optimal contract is given by Proposition 1 below:

Proposition 1 (Optimal CEO contract, one-period model). The optimal contract is

given by:

c = kRg0(a∗), (22)

where R = P1/P0 is the gross firm return and k is a constant that makes the partici-

pation constraint bind (E
£
U
¡
kRg0(a∗)e−g(a

∗)
¢¤
= U).

Proof. This Proposition is a direct application of Theorem 1 with v (c) = ln c and

18For example, these preferences ensure that the incentive share of total pay is constant across firms,
a robust feature of the data. They also give rise an equilibrium pay that, as in Gabaix and Landier
(2008), is consistent with the scaling of pay with firm size.
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T = 1. The CEO’s utility is

U
¡
ce−g(a)

¢
= u (ln c− g (a)) ,

and so the optimal slope is g0 (a∗) as before. The optimal contract is c = v−1 (g0(a∗)r +K) =

exp (g0(a∗) lnR+K) = kRg0(a∗) where k = eK .

As before, the optimal contract (22) is detail-independent, as its shape Rg0(a∗) de-

pends only on the unit cost of effort g0(a∗). Noise and the utility function affect only

the specific value of k. In Appendix D, we prove that (22) is also optimal in contin-

uous time. Moreover, it has a simple practical implementation if firm returns follow

a continuous-time diffusion between period 0 and 1. For simplicity of exposition, we

normalize the firm’s expected return to zero. At time 0, the CEO is given an “Incentive

Account” of value E[c], of which a fraction g0(a∗) is invested in the firm’s stock and the

remainder in cash. This portfolio is continuously rebalanced between periods 0 and 1,

so that the fraction of wealth invested in the stock remains constant at g0(a∗). The

CEO’s final wealth therefore becomes (22).

The Incentive Account resembles the restricted stock or long-vesting options com-

monly awarded in practice. One frequent justification for long-term compensation is to

reduce the CEO’s incentives to engage in manipulation or myopic behavior. Under this

motivation, the optimal vesting point should be time-dependent, i.e. the vesting period

should be sufficiently long to allow the effects of short-term actions to be reversed. By

contrast, in this model, restricting securities is valuable to maintain effort incentives in

a dynamic setting. The optimal vesting point is thus state-dependent: “cashing out”

should only be allowed when the fraction of the CEO’s wealth in the firm increases

sufficiently above g0(a∗), which, in turn, only occurs if the stock price rises. Indeed,

Fahlenbrach and Stulz (2008) find that decreases in CEO ownership typically occur

after good performance.19

19This state dependence is similar to the performance vesting that is widespread in the U.K. and
is becoming increasingly common in the U.S. It is also featured in the “Bonus Bank” advocated by
Stern Stewart, where the amount of the bonus that the executive can withdraw depends on the total
bonuses accumulated in the bank.
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The contract can also be implemented by granting the CEO options rather than

stock. One option has the same local incentive effect as ∆ shares, where ∆ is the

option’s delta. However, if the stock price falls, ∆ will decline, reducing the CEO’s

incentives. This may justify the repricing of out-of-the-money options frequently in-

terpreted as rent extraction (see, e.g., Bebchuk and Fried (2004)).20 More generally,

the model suggests that stock may be preferred to options as an incentive device, since

their deltas are constant and less rebalancing is required. Hall and Murphy (2002) and

Dittmann and Maug (2007) also advocate stock over options; their arguments focus

on the differential risk-incentive trade-off rather than the requirement to maintain a

minimum sensitivity.21

If the CEO has any initial wealth, g0 (a∗) now denotes the fraction of new and

existing wealth invested in the firm. Indeed, entrepreneurs and managers of leveraged

buyout firms frequently have to invest their existing wealth in their firm. Contract

(22) requires the remainder of the CEO’s wealth to be invested in cash, but in reality a

significant proportion is likely to be in market-sensitive assets such as their own house

and non-firm securities. This may justify not indexing the CEO’s wealth invested

in the firm. One frequent argument against non-indexed stock and options is that

they reward the CEO for luck when the market appreciates. However, such non-

indexation achieves efficient rebalancing: when the market rises, the CEO’s holdings of

firm securities appreciate along with his non-firm wealth, so that the fraction of wealth

invested in firm securities remains above g0 (a∗).

2.4 Discussion: Essential and Inessential Features in this Pa-

per

We now discuss which features are essential or inessential for our results.

Two assumptions are essential. First, we need to impose that, after the last action

20See Saly (1994) and Acharya, John and Sundaram (2000) for other justifications of repricing from
an optimal contracting perspective.
21Dittmann, Maug and Spalt (2007) show that options can be justified if the CEO is loss-averse

and has a low reference wage.
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of the CEO, there is no noise. Otherwise, as shown by Holmstrom (1979) and Grossman

Hart (1983), the contract is non-linear.22

Second, we assumed that the agent’s expected utility function was (2). We conjec-

ture that, when T = 1, indeed this functional form is the one that is required for the

contract.

The assumption of just one consumption may be less essential. In ongoing work, we

are developing the analog of Theorem 1 for repeated settings where the agent consumes

in multiple periods. A good deal of our results appear survive in that setup. However,

a full development of this issue is beyong the of the present paper.

The linearity of the signal, rt = at + ηt, is not essential. Remark 3 shows that with

signals rt = R (at, ηt), the optimal contract still does not feature the utility function u

nor the distribution of the noise ηt. Still, expressions are simpler with a linear signal.

Also inessential is our assumption of unidimensional actions and noises. The Online

Appendix shows that a close analog to our result obtains when the action a and the

noise η are multidimensional.

We also conjecture (from an inspection of first order conditions not reported here)

that, if the ηt were not independent, the contract in Theorem 1 would still remain

optimal. This requires technical assumption such as ηt, given (ηs)s<t, has open interval

support, and log concave density.

Also, to rule out randomized contracts we assumed that u exhibits NIARA and ηt is

log concave (t > 1). The proof suggests that those assumptions might be weakened.23

Also, the CEO could work for a random amount of periods T . That might be a

way to model the CEO being laid off with some probability. Then, it is easy to show

(along the lines of the proof of Theorem 1) that the optimal contract is the same.

Finally, instead of minimizing the expected cost of consumption, remark 1 shows

that a class of non-linear cost functions would lead to the same result. Also, the

22We conjecture that, in the limit where the noise after the last action is small, then the consumption
generated by optimal contract does converge to the consumption predicted by our contract.
23For instance, take the case T = 2. Instead of supposing that η2 is log concave, we might suppose

that bu (x) defined in (40) exhibits NIARA. Having η2 log concave is simply a sufficient condition for
that, and is easy to verify in many cases.
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firm could minimize a “risk-adjusted” cost of consumption. Indeed, Remark 2 shows

that, under some conditions, the only contract that can implement effort a∗ is the one

described by Theorem 1.

3 The Optimal Effort Level

We have thus far assumed that the principal wishes to implement an exogenous path of

effort levels (a∗t ). In Section 3.1 we allow the target effort level to depend on the noise.

Section 3.2 shows that, in a broad class of situations, the principal will wish to im-

plement the maximum productive effort level for all noise realizations (the “maximum

effort principle”).

3.1 Contingent Target Actions

Let At (ηt) denote the “action function”, which defines the target action for each noise

realization. Since it is possible that different noises ηt could lead to the same observed

signal rt = At (ηt) + ηt, the analysis must consider revelation mechanisms; indeed, we

find that the optimal contract now involves messages. If the agent announces noisesbη1, ..., bηT , he is paid c = C (bη1, ..., bηT ) if the observed signals areA1 (bη1)+bη1, ..., AT (bηT )+bηT , and a very low amount c otherwise.
As in the core model, we assume that At (ηt) > a ∀ ηt, else a flat contract would be

optimal for some noise realizations. We make three additional technical assumptions:

the action space A is open, At (ηt) is bounded within any compact subinterval of η,

and At (ηt) is almost everywhere continuous. The final assumption still allows for a

countable number of jumps in At (ηt). Given the complexity of the proof that random-

ized contracts are inferior in Theorem 1, we now restrict the analysis to deterministic

contracts. We conjecture that the same arguments in that proof continue to apply with

a noise-dependent target action.

The optimal contract induces both the target effort level (at = At (ηt)) and truth-

telling (bηt = ηt). It is given by the next Theorem:
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Theorem 3 (Optimal contract, noise-dependent action). The optimal contract is the

following. For each t, after noise ηt is realized, the agent communicates a value bηt to
the principal. If the subsequent signal is not At (bηt) + bηt in each period, he is paid a
very low value c. Otherwise he is paid C (bη1, ..., bηT ), where

C (η1, ..., ηT ) = v−1

Ã
TX
t=1

g (At (ηt)) +
TX
t=1

Z ηt

η∗

g0 (At (x)) dx+ k

!
, (23)

η∗ is an arbitrary constant and k is a constant that makes the participation constraint

bind (E
h
u
³PT

t=1

R ηt
η∗
g0 (A (x)) dx+ k

´i
= u.)

Proof. (Heuristic). The Appendix presents a rigorous proof that does not assume

differentiability of V and A. Here, we give a heuristic proof that conveys the essence

of the result using first-order conditions. We set T = 1 and drop the time subscript.

Instead of reporting η, the agent could report bη 6= η, in which case he receives c

unless r = A (bη)+bη. Therefore, the agent must take action a such that η+a = bη+A (bη),
i.e. a = A (bη) + bη − η. In this case, his utility is V (bη)− g (A (bη) + bη − η). The truth-

telling constraint is therefore:

η ∈ argmax
η

V (bη)− g (A (bη) + bη − η) ,

with first-order condition

V 0 (η) = g0 (A (η))A0 (η) + g0 (A (η)) .

Integrating gives the indirect felicity function

V (η) = g (A (η)) +

Z η

η∗

g0 (A (x)) dx+ k

for constants η∗ and k. The associated pay is given by (23).

The contract in Theorem 3 is still detail-independent, as its functional form does
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not depend on u (·) nor on the distribution of η.24 However, it is somewhat more

complex than the contracts in Section 2, as it involves calculating an integral. In the

particular case where A (η) = a∗ ∀ η, Theorem 3 reduces to Theorem 1.

Remark 3 (Extension of Theorem 3 to general signals). Suppose the signal is not

rt = at + ηt but a general function rt = R (at, ηt), where R is differentiable and has

positive derivatives in both arguments. The same analysis as in Theorem 3 derives the

optimal contract as:

C (η1, ..., ηT ) = v−1

Ã
k +

TX
t=1

g (At (η)) +

Z ηt

η∗

g0 (At (x))
R2 (At (x) , x)

R1 (At (x) , x)
dx

!
, (24)

where k is a constant that makes the participation constraint bind.

The heuristic proof is as follows (setting T = 1 and dropping the time subscript). If

η is observed and the agent reports bη 6= η, he has to take action a such that R (a, η) =

R (A (bη) , bη). Taking the derivative at bη = η yields R1∂a/∂bη = R1A
0 (η)+R2. The agent

solves maxη V (bη) − g (a (bη)), with first-order condition V 0 (η) − g0 (A (η)) ∂a/∂bη = 0.
Substituting for ∂a/∂bη from above and integrating yields equation (24).

3.2 Maximum Effort Principle for Large Firms

We now consider the optimal action function A (η), specializing to T = 1 for simplicity.

The principal chooses A (η) to maximize

S E
£
b
¡
min

¡
A (eη) , a¢ , eη¢¤− E £v−1 (V (eη))¤ . (25)

The second term is the expected cost of compensation. It captures both the direct

disutility from exerting effort A(η), as well as the risk imposed by the incentive contract

required to implement A (η). The first term captures the productivity of effort, which

is increasing in S, the baseline value of the output under the agent’s control. For

24Even though (23) features an integral over the support of η, it does not involve the distribution
of η.
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example, if the agent is a CEO, S is firm size; if he is a divisional manager, S is the

size of his division. We will refer to S as firm size for brevity. Effort increases firm

size to S E
£
b
¡
min

¡
A (eη) , a¢ , eη¢¤ where b(·) is the productivity function of effort and

a is the maximum productive effort level. We assume that b (a, η) is differentiable with

respect to a, with infa,η ∂b (a, η) /∂a > 0. For example, if effort has a linear effect on

the firm’s log return (as in Section 2.3), b (a, η) = ea+η and so effort affects firm value

multiplicatively. If a = a and b (a, η) = a + η, then the signal r is the principal’s

objective function (gross of pay).

The min
¡
A (eη) , a¢ function conveys the fact that, while the action space may be

unbounded (amay be infinite), there is a limit to the number of productive activities the

agent can undertake to benefit the principal. For example, if the agent is a CEO, there

is a finite number of positive-NPV projects available. In addition to being economically

realistic, this assumption is useful technically as it prevents the optimal action from

being infinite. Actions a > a do not benefit the principal, but improve the signal.

One interpretation is manipulation, described in detail in Appendix E. Clearly, the

principal will never wish to implement a > a.

The next Theorem gives conditions under which maximum productive effort is

optimal.

Theorem 4 (Optimality of maximum productive effort). Assume that sup(a,a) g
00 and

supx F (x) /f (x) are finite
25, where f is the probability density function of η, and F is

the complementary cumulative distribution (i.e. F (x) = Pr (η ≥ x)). Define

Λ =

⎡⎣µ1 + u0 (α)

u0 (β)

¶⎛⎝sup
(a,a)

g00

⎞⎠µsup F
f

¶
+ g0

¡
a
¢⎤⎦ ¡v−1¢0 ¡β + g

¡
a
¢¢

, (26)

where

α ≡ u−1 (u)−
¡
η − η

¢
g0
¡
a
¢
and β ≡ u−1 (u) +

¡
η − η

¢
g0
¡
a
¢
.

25A sufficient condition for supx F (x) /f (x) to be finite is to have f continuous, f(x) > 0 ∀
x ∈ [η, η), and f monotonic in a left neighborhood of η. This condition is satisfied for many usual
distributions.
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When baseline firm size S is above a threshold size S∗ = Λ/ infa,η
∂b
∂a
(a, η), imple-

menting A (η) = a is optimal for all η. Hence, the optimal unrestricted contract, also

allowing for contingent actions, is c = v−1
¡
g0
¡
a
¢
r +K

¢
, where K makes the agent’s

participation constraint bind.

Proof. See Appendix.

The intuition is as follows. The productivity of effort is increasing in firm size and

also depend on the noise outcome (via the function b (a, eη)). If the firm is sufficiently

large (S > S∗), the benefits of effort outweigh the costs (summarized by Λ) for all

noise outcomes, and so dominate the trade-off. Therefore, maximum productive effort

is optimal (A (η) = a ∀ η.)
The comparative statics on the threshold firm size S∗ are intuitive. First, S∗ is

increasing in noise dispersion, because the firm must be large enough for maximum

effort to be optimal for all noise realizations. Indeed, a rise in η − η increases β,

lowers α, and raises sup F
f
. (For example, if the noise is uniformly distributed, then

sup F
f
= η − η). Second, it is increasing in the agent’s risk aversion and thus the risk

imposed by incentives. For small noises, u0(α)
u0(β) − 1 is proportional to the absolute risk

aversion of u (when u ' u). Third, it is increasing in the disutility of effort, and thus

the marginal cost of effort g0
¡
a
¢
and the convexity of the cost function sup g00. Fourth,

it is decreasing in the marginal benefit of effort (infa,η ∂b
∂a
(a, η)).

Considering Theorem 4 from another angle, for every firm size S, there is a range

of cost functions g, noise distributions f , and utility/felicity functions u and v (sum-

marized by Λ) for which these details do not matter — maximum effort is optimal for

all functions within this range. The larger S is, the wider this range; for very high

values of S, A (η) = a is optimal for all plausible cost parameters and so the target

effort level is also detail-independent. Then, combined with the results of Section 2, the

optimal contract is detail-independent in two dimensions — both the target effort level

and the efficient implementation of this target. The irrelevance of risk is consistent

with the empirical evidence surveyed by Prendergast (2002): a number of studies find

that incentives are independent of risk, with the remainder equally divided between

finding positive and negative correlations.
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We conjecture that a “maximum effort principle” holds under more general condi-

tions than the above. For instance, it is likely that it holds if the principal’s objective

function is S E [b (A (eη) , eη)]−E [v−1 (V (eη))], and the action space is bounded above by
a — i.e. a (the maximum feasible effort level) equals a (the maximum productive effort

level). This slight variant is economically very similar, since the principal never wishes

to implement A (η) > a in our setting, but rather more complicated mathematically,

because the agent’s action space now has boundaries and so the incentive constraints

become inequalities. We leave the extension of this principle to future research.

3.3 Optimal Effort for Small Firms and Linear Cost of Effort

While Theorem 4 shows that A(η) = a is optimal when S > S∗, we now show that A(η)

can be exactly derived even if S < S∗, when the cost function is linear — i.e. g (a) = θa

for θ > 0.26

Proposition 2 (Optimal contract with linear cost of effort) Let g (a) = θa for θ > 0 .

The optimal contract is given by:

c = v−1 (θr +K) , (27)

whereK is a constant that makes the participation constraint bind (E [u (θη +K)] = u).

For each η, the optimal effort A (η) is determined by the following pointwise maximiza-

tion:

A (η) ∈ argmax
a≤a

Sb (a, η)− v−1 (θ (a+ η) +K) (28)

When the agent is indifferent between an action a and A (η), we assume that he chooses

action A (η) .

Proof. From Theorem 3, if the agent announces η, he should receive a felicity of

V (η) = g (A (η)) +
R η
η∗
θdx + k = θ (A (η) + η) + K. Since r = A (η) + η on the

26Note that the linearity of g(a) is still compatible with u (v (c)− g (a)) being strictly concave in
(c, a). Also, by a simple change of notation, the results extend to g (a) affine rather than linear.
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equilibrium path, a contract c = v−1 (θr +K) will implement A (η). To find the

optimal action, the principal’s problem is:

max
A(η)

E
£
Sb
¡
min

¡
A (η) , a

¢
, η
¢¤
− E

£
v−1 (θ (A (η) + η) +K)

¤
which is solved by pointwise maximization, as in (28).

The main advantage of the above contract is that it can be exactly solved regardless

of S and so it is applicable even for small firms (or rank-and-file employees who affect

a small output). The main disadvantage is that, with a linear rather than strictly

convex cost function, the agent is indifferent between all actions. His decision problem

ismaxa v (c (r))−g (a), i.e. maxa θ (η + a)+K−(θa+ b), which is independent of a and

thus has a continuum of solutions. Proposition 2 therefore assumes that indeterminacies

are resolved by the agent following the principal’s recommended action, A (η).

For instance, take a benefit function b (a, η) = b0 + aeη, for some b0 > 0, so

that the marginal productivity of effort is increasing in the noise, and utility func-

tion u (ln c− θa) with θ ∈ (0, 1). Then, the solution of (28) is:

A (η) = min

µ
1− θ

θ
η + lnS −K − ln θ, a

¶
The optimal effort increases linearly with the noise, up to the point where it reaches

maximal effort. The effort is weakly increasing in firm size.

4 Conclusion

This paper has identified and analyzed a class of situations in which the optimal con-

tract is both tractable and detail-independent. The contract can be solved in closed

form, and its functional form is independent of a number of parameters of the agency

problem, such as the utility function, reservation utility, and the distribution of noise.

In particular, when the cost of effort can be expressed in financial terms, the optimal

contract is linear, regardless of the utility function.

Holding the target effort level constant, detail independence obtains in a multi-
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period discrete time model, where noise precedes effort in each period. The optimal

contract is also the same in continuous time, where noise and actions occur simulta-

neously. Hence, if the underlying reality is continuous time, it is best mimicked in

discrete time under our timing assumption. Moreover, if the firm is sufficiently large,

the target effort level is itself detail-independent: the maximum effort level is optimal

for a wide range of cost and effort functions and noise distributions. Since the benefits

of effort are a function of total output, trade-off concerns are second-order in a large

firm, so maximum effort is efficient.

The model extends the tractable contracts of Holmstrom and Milgrom (1987) to

settings that do not require exponential utility nor continuous time. Moreover, it

may explain why real-life incentive schemes are typically simple, even though utility

functions and noise distributions vary considerably across settings and are difficult to

observe — simply put, these details do not matter.

Our paper suggests several avenues for future research. The Holmstrom and Mil-

grom (1987) framework has proven valuable in many areas of applied contract theory

owing to its tractability. Our tractable contracts may similarly be used in any context

that embeds a contracting situation. While we considered the specific application of

executive compensation, other possibilities include bank regulation, team production,

or insurance. In particular, our contracts are valid in situations where time is discrete,

utility cannot be modeled as exponential (e.g. in calibrated models where it is nec-

essary to capture decreasing absolute risk aversion), or noise is not Gaussian (e.g. is

bounded).

In addition, while our model has relaxed a number of assumptions required for

tractability, our setup continues to require a number of restrictions. These are mostly

technical rather than economic. For example, we have assumed a continuum of actions

rather than a discrete set; our multiperiod model requires independent noises with

log-concave density functions; and our extension to noise-dependent target actions

assumes an open action space and a maximal productive effort level. Some of these

assumptions may not be valid in certain situations, limiting the applicability of our

framework. Whether our setup can be further generalized is an open question for
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future research.
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a Effort (also referred to as “action”)
a Maximum effort
a Maximum productive effort
a∗ Target effort
b Benefit function for effort, defined over a
c Cash compensation
f Density of the noise distribution
g Cost of effort, defined over a
r Signal (or “return”), typically r = a+ η
u Agent’s utility function, defined over v (c)− g (a)
u Agent’s reservation utility
v Agent’s felicity function, defined over c
η Noise
A Action function, defined over η
C Consumption (wage) provided by contract
C Expected cost of contract
F Complementary cumulative distribution function for noise
M Message sent by agent to the principal
S Baseline size of output under agent’s control
T Number of periods
V Felicity provided by contract, V ≡ v (C)

Table 1: Key Variables in the Model.

A Mathematical Preliminaries

This section derives some mathematical results that we use for the main proofs.

A.1 Dispersion of Random Variables

We repeatedly use the “dispersive order” for random variables to show that incentive

compatibility constraints bind. Shaked and Shanthikumar (2007, section 3.B) provide

an excellent summary of known facts about this concept. This section provides a self-

contained guide of the relevant results for our paper, as well as proving some new

results.
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We commence by defining the notion of relative dispersion. LetX and Y denote two

random variables with cumulative distribution functions F and G and corresponding

right continuous inverses F−1 and G−1. X is said to be less dispersed than Y if and

only if F−1 (β)− F−1 (α) ≤ G−1 (β)−G−1 (α) whenever 0 < α ≤ β < 1. This concept

is location-free: X is less dispersed than Y if and only if it is less dispersed than Y +z,

for any real constant z. In addition, if E [X] = E [Y ], relative dispersion implies that X

second-order stochastically dominates Y (see Lemma 2 below). Hence, it is a stronger

concept than second-order stochastic dominance.

A basic property is the following result (Shaked and Shanthikumar (2007), p.151):

Lemma 1 Let X be a random variable and f , h be functions such that 0 ≤ f (y) −
f (x) ≤ h (y)− h (x) whenever x ≤ y. Then f (X) is less dispersed than h (X).

This result is intuitive: h magnifies differences to a greater extent than f , leading

to more dispersion. We will also use the next two comparison lemmas.

Lemma 2 Assume that X is less dispersed than Y and let f denote a weakly increasing

function, h a weakly increasing concave function, and φ a weakly increasing convex

function. Then:

E [f (X)] ≥ E [f (Y )]⇒ E [h (f (X))] ≥ E [h (f (Y ))]

E [f (X)] ≤ E [f (Y )]⇒ E [φ (f (X))] ≤ E [φ (f (Y ))] .

Proof. The first statement comes directly from Shaked and Shanthikumar (2007), The-

orem 3.B.2, which itself is taken from Landsberger and Meilijson (1994). The second

statement is derived from the first, applied to bX = −X, bY = −Y , bf (x) = −f (−x),
h (x) = −φ (−x). It can be verified directly (or via consulting Shaked and Shan-
thikumar (2007), Theorem 3.B.6) that bX is less dispersed than bY . In addition,

E
h bf ³ bX´i ≥ E

h bf ³bY ´i. Thus, E
h
h
³ bf ³ bX´´i ≥ E

h
h
³ bf ³bY ´´i. Substituting

h
³ bf ³ bX´´ = −φ (f (X)) yields E [−φ (f (X))] ≥ E [−φ (f (Y ))].
Lemma 2 is intuitive: if E [f (X)] ≥ E [f (Y )], applying a concave function h should

maintain the inequality. Conversely, if E [f (X)] ≤ E [f (Y )], applying a convex function
φ should maintain the inequality.
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Lemma 2 allows us to prove Lemma 3 below, which states that the NIARA prop-

erty of a utility function is preserved by adding a log-concave random variable to its

argument.

Lemma 3 Let u denote a utility function with NIARA and Y a random variable with

a log-concave distribution. Then, the utility function bu defined by bu (x) ≡ E [u (x+ Y )]

exhibits NIARA.

Proof. Consider two constants a < b and a lottery Z independent from Y . Let Ca and

Cb be the certainty equivalents of Z with respect to utility function bu and evaluated
at points a and b respectively, i.e. defined by

bu (a+ Ca) = E [u (a+ Z)] , bu (b+ Cb) = E [u (b+ Z)] .

bu has NIARA if and only if Ca ≤ Cb, i.e. the certainty equivalent increases with

wealth. To prove that Ca ≤ Cb, we start with three observations. First, since u ex-

hibits NIARA, there exists an increasing concave function h such that u (a+ x) =

h (u (b+ x)) for all x. Second, because Y is log-concave, Y + Cb is less dispersed than

Y + Z by Theorem 3.B.7 of Shaked and Shanthikumar (2007). Third, by definition

of Cb and the independence of Y and Z, we have E [u (b+ Y + Cb)] = E [u (b+ Y + Z)].

Hence, we can apply Lemma 2, which yields E [h (u (b+ Y + Cb))] ≥ E [h (u (b+ Y + Z))],

i.e.

E [u (a+ Y + Cb)] ≥ E [u (a+ Y + Z)] = E [u (a+ Y + Ca)] by definition of Ca.

Thus we have Cb ≥ Ca as required.

A.2 Subderivatives

Since we cannot assume that the optimal contract is differentiable, we use the notion

of subderivatives to allow for quasi first-order conditions in all cases.

Definition 1 For a point x and function f defined in a left neighborhood of x, we
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define the subderivative of f at x as:

d

dx−
f ≡ f 0− (x) ≡ lim inf

y↑x

f (x)− f (y)

x− y

This notion will prove useful since f 0− (x) is well-defined for all functions f (with

perhaps infinite values). We take limits “from below,” because we will often apply

the concept of the subderivative at the maximum feasible effort level a. If f is left-

differentiable at x, then f 0− (x) = f 0 (x).

We use the following Lemma to allow us to integrate inequalities with subderiva-

tives. Its proof is in the Online Appendix.

Lemma 4 Assume that, over an interval I: (i) f 0− (x) ≥ j (x) ∀ x, for an continuous
function j (x) and (ii) there is a C1 function h such that f +h is nondecreasing. Then,

for two points a < b in I, f (b)− f (a) ≥
R b
a
j (x) dx.

Condition (ii) prevents f (x) from exhibiting discontinuous downwards jumps, which

would prevent integration.27

The following Lemma is the chain rule for subderivatives and is proved in the Online

Appendix.

Lemma 5 Let x be a real number and f be a function defined in a left neighborhood

of x. Suppose that function h is differentiable at f (x), with h0 (f (x)) > 0. Then,

(h ◦ f)0− (x) = h0 (f (x)) f 0− (x).

In general, subderivatives typically follow the usual rules of calculus, with inequal-

ities instead of equalities. For instance, the following Lemma is proved in the Online

Appendix.

Lemma 6 Let x be a real number and f , h be functions defined in a left neighbor-

hood of x. Then (f + h)0− (x) ≥ f 0− (x) + h0− (x). When h is differentiable at x, then

(f + h)0− (x) = f 0− (x) + h0 (x).

27For example, f (x) = 1 {x ≤ 0} satisfies condition (i) as f 0− (x) = 0 ∀ x, but violates both condition
(ii) and the conclusion of the Lemma, as f (−1) > f (1).
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B Detailed Proofs

Throughout these proofs, we use tildes to denote random variables. For example, eη is
the noise viewed as a random variable and η is a particular realization of that noise. In

particular, E [f (eη)] denotes the expectation over all realizations of eη. E h ef (eη)i denotes
the expectation over all realizations of both x and a stochastic function ef .
Proof of Theorem 1

Roadmap. We divide the proof in three parts. The first part shows that messages

are redundant, so that we can restrict the analysis to contracts without messages. The

second part proves the theorem considering only deterministic contracts and assuming

that the target effort levels are in the interior of the action space A. This case requires
weaker assumptions (see Remark 2), and is easy to generalize. The third part, which

is significantly more complex, rules out randomized contracts and allows for the target

effort to be the maximum a. Both these extensions require the concepts of subderiva-

tives and dispersion from Appendix A, and so the third part can be skipped at a first

reading.

1). Redundancy of Messages

Let r denote the vector (r1, ..., rT ) and define η and a analogously. Define g (a) =

g (a1) + ... + g (aT ). Under the revelation principle, we can restrict the analysis to

mechanisms that induce the agent to truthfully report the noise η. Let eVM (r,η) =
v (ec (r,η)) denote the felicity given by a message-dependent contract if the agent reports
η and the realized signals are r. The incentive compatibility (IC) constraint is that

the agent exerts effort a and reports bη = η:

∀η,∀bη,∀a, E hu³eVM (η + a, bη)− g (a)´i ≤ E hu³eVM (η + a∗,η)− g (a∗)´i . (29)

The principal’s problem is to minimize expected pay E
h
v−1

³eVM (eη + a∗, eη)´i, sub-
ject to the IC constraint (29), and the agent’s individual rationality (IR) constraint

E
h
u
³eVM (eη + a∗, eη)− g (a∗)´i ≥ u. (30)
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Since r = r∗ ≡ a∗+η on the equilibrium path, the message-dependent contract is

equivalent to eVM (r, r− a∗). We consider replacing this with a new contract eV (r),
which only depends on the realized signal and not on any messages, and yields the

same felicity as the corresponding message-dependent contract. Thus, the felicity it

gives is defined by: eV (r) = eVM (r, r− a∗) . (31)

The IC and IR constraints for the new contract are given by:

∀η,∀a, E
h
u
³eV (r)− g (a)

´i
≤ E

h
u
³eV (r∗)− g (a∗)

´i
, (32)

E
h
u
³eV (r∗)− g (a∗)

´i
≥ u. (33)

If the agent reports bη 6= η, the principal will expect to observe signal bη+a∗. He
must therefore take action a such that bη+a∗=η+a. Substituting bη = η+a− a∗ into
(29) and (30) indeed yields (32) and (33) above. Thus, the IC and IR constraints of the

new contract are satisfied. Moreover, the new contract costs exactly the same as the

old contract, since it yields the same felicity by definition (31). Hence, the new contracteV (r) induces incentive compatibility and participation at the same cost as the initial
contract eVM (r,η) with messages, and so messages are not useful. The intuition is that
a∗ is always exerted, so the principal can already infer η from the signal r without

requiring messages.

2). Deterministic Contracts, in the case a∗t < a ∀ t
We will prove the Theorem by induction on T .

2a). Case T = 1. Dropping the time subscript for brevity, the incentive compati-

bility (IC) constraint is:

∀η,∀a : V (η + a)− g (a) ≤ V (η + a∗)− g (a∗)

Defining r = η + a∗ and r0 = η + a, we have a = a∗ + r0 − r. The IC constraint can be
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rewritten:

g (a∗)− g (a∗ + r0 − r) ≤ V (r)− V (r0) .

Rewriting this inequality interchanging r and r0 yields g (a∗)−g (a∗ + r − r0) ≤ V (r0)−
V (r), and so:

g (a∗)− g (a∗ + r0 − r) ≤ V (r)− V (r0) ≤ g (a∗ + r − r0)− g (a∗) . (34)

We first consider r > r0. Dividing through by r − r0 yields:

g (a∗)− g (a∗ + r0 − r)

r − r0
≤ V (r)− V (r0)

r − r0
≤ g (a∗ + r − r0)− g (a∗)

r − r0
. (35)

Since a∗ is in the interior of the action space A and the support of η is open, there

exists r0 in the neighborhood of r. Taking the limit r0 ↑ r, the first and third terms of
(35) converge to g0 (a∗). Therefore, the left derivative V 0

left (r) exists, and equals g
0 (a∗).

Second, consider r < r0. Dividing (34) through by r − r0, and taking the limit r0 ↓ r
shows that the right derivative V 0

right (r) exists, and equals g
0 (a∗). Therefore,

V 0 (r) = g0 (a∗) . (36)

Since r has interval support28, we can integrate to obtain:

V (r) = g0 (a∗) r +K.

2b). If the Theorem holds for T , it holds for T + 1. This part is as in the main

text.

Note that the above proof (for deterministic contracts where a∗t < a) does not

require log-concavity of ηt, nor that u satisfies NIARA. This is because the contract

(7) is the only incentive compatible contract. These assumptions are only required

for the general proof, where other contracts (e.g. randomized ones) are also incentive

28The model could be extended to allowing non-interval support: if the domain of r was a union of
disjoint intervals, we would have a different integration constant K for each interval.
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compatible, to show that they are costlier than contract (7).

3). General Proof

We no longer restrict a∗t to be in the interior of A, and allow for randomized con-
tracts. We wish to prove the following statement ΣT by induction on integer T :

Statement ΣT . Consider a utility function u with NIARA, independent random

variables er1, ..., erT where er2, ..., erT are log-concave, and a sequence of nonnegative num-
bers g0 (a∗t ). Consider the set of (potentially randomized) contracts eV (r1, ..., rT ) such
that (i) E

h
u
³eV (er1, ..., erT )´i ≥ u; (ii) ∀ t = 1...T ,

d

dε−
E
h
u
³eV (er1, ..., ert + ε, ..., erT )´ | er1, .., erti

|ε=0
≥ g0 (a∗t ) E

h
u0
³eV (er1, ..., ert, ..., erT )´ | er1, .., erti

(37)

and (iii) ∀ t = 1..., T , E
h
u
³eV (er1, ..., ert, ..., erT )´ | er1, .., erti is nondecreasing in ert.

In this set, for any increasing and convex cost function φ, E [φ (V (er1, ..., erT ))] is
minimized with contract: V 0 (r1, ..., rT ) =

PT
t=1 g

0 (a∗t ) rt +K, where K is a constant

that makes the participation constraint (i) bind.

Condition (ii) is the local IC constraint, for deviations from below.

We first consider the case of deterministic contracts, and then show that randomized

contracts lead to a higher cost. We use the notation Et [·] = E [· | er1, ..., ert] to denote
the expectation based on time-t information.

3a). Deterministic Contracts

The key difference from the proof in 2) is that we now must allow for a∗t = a.

3ai). Proof of Statement ΣT when T = 1.

The contract is here assumed to be deterministic. Equation (37) reads: d
dε−u (V (r + ε)) ≥

g0 (a∗1)u (V (r)). By Lemma 5, applied to h = u−1, this yields:

V 0
− (r) ≥ g0 (a∗) . (38)

It is intuitive that (38) should bind, as this minimizes the variability in the agent’s

pay and thus constitutes efficient risk-sharing. We now prove mathematically that
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this is indeed the case; to simplify exposition, we normalize g (a∗) = 0 without loss of

generality.29 If constraint (38) binds, the contract is V 0 (r) = g0 (a∗) r +K, where K

satisfies E [u (g0 (a∗) r +K)] = u. We wish to show that any other contract V (r) that

satisfies (38) is weaklier costlier.

By assumption (iii) in Statement Σ1, V is nondecreasing. We can therefore can

apply Lemma 4 to equation (38), where condition (ii) of the Lemma is satisfied by

h (r) ≡ 0. This implies that for r ≤ r0, V (r0)−V (r) ≥ g0 (a∗) (r0 − r) = V 0 (r0)−V 0 (r).

Thus, using Lemma 1, V (er) is more dispersed than V 0 (er).
Since V must also satisfy the participation constraint, we have:

E [u (V (er))] ≥ u = E
£
u
¡
V 0 (er)¢¤ . (39)

Applying Lemma 2 to the convex function φ ◦ u−1 and inequality (39), we have:

E
£
φ ◦ u−1 ◦ u (V (er))¤ ≥ E £φ ◦ u−1 ◦ u ¡V 0 (er)¢¤ ,

i.e. E [φ (V (er))] ≥ E [φ (V 0 (er))]. The expected cost of V 0 is weakly less than for V .

Hence, the contract V 0 is cost-minimizing.

We note that this last part of the reasoning underpins Remark 1, the extension to

a risk-averse principal. Suppose that the principal wants to minimize E [f (c)], where

f is an increasing and concave function, rather than E [c]. Then, the above contract is

optimal if f ◦ v−1 ◦ u−1 is convex, i.e. u ◦ v ◦ f−1 is concave. This requires f to be “not
too concave,” i.e. the agent to be not too risk-averse.

Finally, we must verify that the contract V 0 satisfies the global IC constraint. This

is easy. The agent’s objective function becomes u (g0 (a∗) (a+ η)− g (a)). Since g (a)

is convex, the argument of u (·) is concave. Hence, the first-order condition gives the
global optimum.

3aii). Proof that if Statement ΣT holds for T , it holds for T + 1. We define a new

29Formally, this can be achieved by replacing the utility function u (x) by unew (x) = u (x− g (a∗))
and the cost function g (a) by gnew (a) = g (a)− g (a∗), so that u (x− g (a)) = unew (x− gnew (a)).
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utility function bu as follows:
bu (x) = E £u ¡x+ g0

¡
a∗T+1

¢ erT+1¢¤ . (40)

Since erT+1 is log-concave, g0 ¡a∗T+1¢ erT+1 is also log-concave. From Lemma 3, bu has the
same NIARA property as u.

For each er1, ..., erT , we define k (er1, ..., erT ) as the solution to equation (41) below:
bu (k (er1, ..., erT )) = ET [u (V (er1, ..., erT+1))] . (41)

k thus represents the expected felicity from contract V based on all noise realizations

up to and including time T .

The goal is to show that any other contract V 6= V 0 is weakly costlier. To do so,

we wish to apply Statement ΣT for utility function bu and contract k, The first step is
to show that, if Conditions (i)-(iii) hold for utility function u and contract V at time

T + 1, they also hold for bu and k at time T , thus allowing us to apply the Statement

for these functions.

Taking expectations of (41) over er1, ..., erT yields:
E [bu (k (er1, ..., erT ))] = E [u (V (er1, ..., erT+1))] ≥ u, (42)

where the inequality comes from Condition (i) for utility function u and contract V at

time T + 1. Hence, Condition (i) holds for utility function bu and contract k at time
t. In addition, it it immediate that E [bu (k (er1, ..., erT )) | er1, .., ert] is nondecreasing in ert.
(Condition (iii)). We thus need to show that Condition (ii) is satisfied.

Since equation (37) holds for t = T + 1, we have

d

dε−
u (V (er1, ..., erT , erT+1 + ε)) ≥ g0

¡
a∗T+1

¢
u0 [V (er1, ..., erT+1)] .
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Applying Lemma 5 with function u yields:

dV

drT+1−
(r1, ..., rT+1) ≥ g0

¡
a∗T+1

¢
. (43)

Hence, using Lemma 1 and Lemma 4, we see that conditional on er1, ..., erT , V (er1, ..., erT+1)
is more dispersed than k (er1, ..., erT ) + g0

¡
a∗T+1

¢ erT+1.
Using (40), we can rewrite equation (41) as

ET
£
u
¡
k (er1, ..., erT ) + g0

¡
a∗T+1

¢ erT+1¢¤ = ET [u (V (er1, ..., erT+1))] .
Since u exhibits NIARA (see Assumption 1), u0 ◦ u−1 is a convex function. We can
thus apply Lemma 2 to yield:

ET
£
u0 ◦ u−1 ◦ u (V (er1, ..., erT+1))¤ ≥ ET £u0 ◦ u−1 ◦ u ¡k (er1, ..., erT ) + g0

¡
a∗T+1

¢ erT+1¢¤ , i.e.
ET [u

0 (V (er1, ..., erT+1))] ≥ ET [bu0 (k (er1, ..., erT ))] . (44)

Applying definition (41) to the left-hand side of Condition (ii) for T +1 yields, with

t = 1...T ,

d

dε−
Et [bu (k (er1, ..., ert + ε, ..., erT ))]|ε=0 ≥ g0 (a∗t ) E [u

0 (V (er1, ..., ert, ..., erT+1)) | er1, .., ert]
Taking expectations of equation (44) at time t and substituting into the right-hand

side of the above equation yields:

d

dε−
Et [bu (k (er1, ..., ert + ε, ..., erT ))] = d

dε−
Et [u (V (er1, ..., ert + ε, ..., erT+1))]|ε=0

≥ g0 (a∗t ) Et [bu0 (k (er1, ..., erT ))] .
Hence the IC constraint holds for contract k (er1, ..., erT ) and utility function bu at

time T , and so Condition (ii) of Statement ΣT is satisfied. We can therefore apply

Statement ΣT at T to contract k (r1, ..., rT ), utility function bu and cost function bφ
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defined by: bφ (x) ≡ E [φ (x+ g0 (aT+1) erT+1)] . (45)

We observe that the contract V 0 =
PT+1

t=1 g0 (a∗t ) rt +K satisfies:

E

"buÃ TX
t=1

g0 (a∗t ) rt +K

!#
= E

"
u

Ã
T+1X
t=1

g0 (a∗t ) rt +K

!#
= u.

Therefore, applying Statement ΣT to k, bu and bφ implies:
Ck = E

hbφ (k (er1, ..., erT ))i ≥ CV 0 = E

"
φ

Ã
T+1X
t=1

g0 (a∗t ) ert +K

!#
. (46)

Using equation (45) yields:

Ck = E [φ (k (er1, ..., erT ) + g0 (aT+1) erT+1)] ≥ CV 0 = E

"
φ

Ã
T+1X
t=1

g0 (a∗t ) ert +K

!#
.

Finally, we compare the cost of contract k (r1, ..., rT ) + g0 (aT+1) erT+1 to the cost
of the original contract V (r1, ..., rT+1). Since equation (41) is satisfied, we can apply

Lemma 2 to the convex function φ ◦ u−1 and the random variable erT+1 to yield
Et [φ (V (er1, ..., erT+1))] ≥ Et £φ ¡k (er1, ..., erT ) + g0

¡
a∗T+1

¢ erT+1¢¤
E [φ (V (er1, ..., erT+1))] ≥ E £φ ¡k (er1, ..., erT ) + g0

¡
a∗T+1

¢ erT+1¢¤ = Ck ≥ CV 0 .

where the final inequality comes from (46). Hence the cost of contract k is weakly

greater than the cost of contract V 0. This concludes the proof for T + 1.

3b). Optimality of Deterministic Contracts

Consider a randomized contract eV (r1, ..., rT ) and define the “certainty equivalent”
contract V by:

u
¡
V (r1, ..., rT )

¢
≡ ET

h
u
³eV (r1, ..., rT )´i . (47)

We wish to apply Statement ΣT , which we have already proven for deterministic con-

tracts, to contract V , and so must verify that its three conditions are satisfied.
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From the above definition, we obtain

E
£
u
¡
V (er1, ..., erT )¢¤ = E hu³eV (er1, ..., erT )´i ≥ u,

i.e., V satisfies the participation constraint (30). Hence, Condition (i) holds. Also,

it is clear Condition (iii) holds for V , given it holds for eV . We thus need to show
that Condition (ii) is also satisfied. Applying Jensen’s inequality to equation (47) and

the function u0 ◦ u−1 (which is convex by Assumption 1) yields: u0
¡
V (r1, ..., rT )

¢
≤

ET
h
u0
³eV (r1, ..., rT )´i. We apply this to rt = ert for t = 1...T and taking expectations

to obtain

Et

h
u0
³eV (er1, ..., erT )´i ≥ Et £u0 ¡V (er1, ..., erT )¢¤ . (48)

Applying definition (47) to the left-hand side of (37) yields:

d

dε−
Et
£
u
¡
V (er1, ..., ert + ε, ..., erT )¢¤|ε=0 ≥ g0 (a∗t ) Et

h
u0
³eV (er1, ..., ert, ..., erT )´i .

and using (48) yields:

d

dε−
Et
£
u
¡
V (er1, ..., ert + ε, ..., erT )¢¤|ε=0 ≥ g0 (a∗t ) Et

£
u0
¡
V (er1, ..., ert, ..., erT )¢¤ .

Condition (ii) of Statement ΣT therefore holds for V . We can therefore apply

Statement ΣT to show that V 0 has a weakly lower cost than V . We next show that

the cost of V is weakly less than the cost of eV . Applying Jensen’s inequality to (47)
and the convex function φ ◦ u−1 yields: φ

¡
V (r1, ..., rT )

¢
≤ E

h
φ
³eV (r1, ..., rT )´i. We

apply this to rt = ert for t = 1...T and take expectations over the distribution of ert to
obtain:

φ
¡
V (er1, ..., erT )¢ ≤ E hφ³eV (er1, ..., erT )´i .

Hence V has a weakly lower cost than eV . Therefore, V 0 has a weakly lower cost thaneV . This proves the Statement for randomized contracts.
3c). Main Proof. Having proven Statement ΣT , we now turn to the main proof of
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Theorem 1. The value of the signal on the equilibrium path is given by ert ≡ a∗t + eηt.
We define

u (x) ≡ u

Ã
x−

TX
s=1

g (a∗s)

!
(49a)

We seek to use Statement ΣT applied to function u and random variable ert, and thus
must verify that its three conditions are satisfied. Since E

h
u
³eV (er1, ..., erT )´i ≥ u,

Condition (i) holds.

The IC constraint for time t is:

0 ∈ argmax
ε
Et u

ÃeV (a∗1 + eη1, ..., a∗t + eηt + ε, ..., a∗T + eηT )− g (a∗t + ε)−
X

s=1...T,s6=t
g (a∗s)

!
,

i.e.

0 ∈ argmax
ε
Et u

ÃeV (er1, ..., ert + ε, ..., erT )− g (a∗t + ε)−
X

s=1...T,s 6=t
g (a∗s)

!
. (50)

We note that, for a function f (ε), 0 ∈ argmaxε f (ε) implies that for all ε < 0,

(f (0)− f (ε)) / (−ε) ≥ 0, hence, taking the lim infy↑0, we obtain d
dε−

f 0− (ε)|ε=0 ≥ 0.

Call X (ε) the argument of u in equation (50). Applying this result to (50), we find:
d

dε−
Et u (X (ε))|ε=0 ≥ 0.
Using Lemma 5, we find Et

h
u0 (X (0))

³
d

dε−
X (ε)|ε=0

´i
≥ 0. Using Lemma 6,

d
dε−

X (ε)|ε=0 =
d

dε−
eV (er1, ..., ert + ε, ..., erT )− g0 (a∗t ), hence we get:

Et

∙
u0 (X (0))

µ
d

dε−
eV (er1, ..., ert + ε, ..., erT )− g0 (a∗t )

¶¸
≥ 0

Using again Lemma 5, this can be rewritten:

d

dε−
Et

"
u

ÃeV (er1, ..., ert + ε, ..., erT )− X
s=1...T

g (a∗s)

!#
|ε=0

≥ g0 (a∗t ) Et [u
0 (X (0))]
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i.e., using the notation (49a),

d

dε−
Et
h
u
³eV (er1, ..., ert + ε, ..., erT )´i

|ε=0
≥ g0 (a∗t ) Et

h
u0
³eV (er1, ..., ert, ..., erT )´i .

Therefore, Condition (ii) of Statement ΣT holds.

Finally, we verify Condition (iii). Apply (50) to signal rt and deviation ε < 0. We

obtain:

Et

"
u

ÃeV (er1, ..., ert + ε, ..., erT )− X
s=1...T

g (a∗s)

!#

≥ Et

"
u

ÃeV (er1, ..., ert + ε, ..., erT )− g (a∗t + ε)−
X

s=1...T,s6=t
g (a∗s)

!#

≥ Et

"
u

ÃeV (r1, ..., rt + ε, ..., rT )− g (a∗t )−
X

s=1...T,s6=t
g (a∗s)

!#

so Condition (iii) holds for contract eV and utility function u.

We can now apply Statement ΣT to contract eV and function u, to prove that

any globally IC contract is weakly costlier than contract V 0 =
PT

t=1 g
0 (a∗t ) rt + K.

Moreover, it is clear that V 0 satisfies the global IC conditions in equation (50). Thus,

V 0 is the cheapest contract that satisfies the global IC constraint.

Proof of Theorem 2

We shall use the following purely mathematical Lemma, proven (using Malliavin

calculus) in the Online Appendix.

Lemma 7 Consider a standard Brownian process Zt with filtration Ft, a deterministic

non-negative process αt, an Ft−adapted process βt, T ≥ 0, X =
R T
0
αtdZt, and Y =R T

0
βtdZt. Suppose that almost surely, ∀t ∈ [0, T ], αt ≤ βt. Then X second-order

stochastically dominates Y .

Lemma 7 is intuitive: since βt ≥ αt ≥ 0, it makes sense that Y is more volatile than
X.
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To derive the IC condition, we use the methodology introduced by Sannikov (2008).

Recall rt =
R t
0
(as + μs) ds+

R t
0
σsdZs. We define vT = v (c).On the equilibrium path, by

the martingale representation theorem (Karatzas and Shreve (1991), p. 182) applied

to process vt = Et [vT ] for t ∈ [0, T ], we can write: vT =
R T
0
θt (drt − (a∗t + μt) dt) + v0

for some constant v0 and an adapted process θt. The IC constraint implies, for all t:

a∗t ∈ argmax
at

θtat − g (at) ,

i.e. θt = g0 (a∗t ) if a
∗
t ∈ (a, a), and θt ≥ g0 (a∗) if a∗t = a.

The case where a∗t ∈ (a, a) ∀ t is straightforward: Call Rt =
R t
0
σsdZs, so that, on

the equilibrium path where the agent’s actions are at = a∗t for all t,Z T

0

g0 (a∗t ) drt =

Z T

0

g0 (a∗t ) dRt + k

where k =
R T
0
g0 (a∗t ) (a

∗
t + μt) is a constant. Since θt = g0 (a∗t ), we have vT =

R T
0
g0 (a∗t ) dRt+

v0, where v0 is a constant that satisfies E [u (g0 (a∗t )RT + v0)] = u.

The case where a∗t = a for some t is more complex, since the IC constraint is only an

inequality: θt ≥ θ∗t ≡ g0 (a∗t ). We must therefore prove this inequality binds. Consider

X =

Z T

0

θ∗t dRt, Y =

Z T

0

θtdRt.

We wish to show that a contract vT = Y + KY , with E [u (Y +KY )] ≥ u, has a

weakly greater expected cost than a contract v = X +KX , with E [u (X +KX)] = u.

Lemma 7 implies that E [u (X +KX)] ≥ E [u (Y +KX)], and so

E [u (Y +KX)] ≤ E [u (X +KX)] = u ≤ [u (Y +KY )] .

Thus, KX ≤ KY . Since v is increasing and concave, v−1 is convex and −v−1 is concave.
We can therefore apply Lemma 7 to function −v−1 to yield:

E
£
v−1 (X +KX)

¤
≤ E

£
v−1 (Y +KX)

¤
≤ E

£
v−1 (Y +KY )

¤
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where the second inequality follows from KX ≤ KY . Therefore, the expected cost

of v = X + KX is weakly less that of Y + KY , and so contract v = X + KX is

cost-minimizing.

Proof of Theorem 3

We prove the Theorem by induction.

Proof of Theorem 3 for T = 1. We remove time subscripts and let V (bη) = v (C (bη))
denote the felicity received by the agent if he announces bη and signal A (bη) + bη is
revealed.

If the agent reports η, the principal expects to see signal η + A (η). Therefore, if

the agent deviates to report bη 6= η, he must take action a such that η + a = bη +A (bη),
i.e. a = A (bη) + bη − η. Hence, the truth-telling constraint is: ∀η,∀bη,

V (bη)− g (A (bη) + bη − η) ≤ V (η)− g (A (η)) . (51)

Defining

ψ (η) ≡ V (η)− g (A (η)) ,

the truth-telling constraint (51) can be rewritten,

g (A (bη))− g (A (bη) + bη − η) ≤ ψ (η)− ψ (bη) (52)

Rewriting this inequality interchanging η and bη and combining with the original in-
equality (52) yields:

∀η,∀bη : g (A (bη))− g (A (bη) + bη − η) ≤ ψ (η)− ψ (bη) ≤ g (A (η) + η − bη)− g (A (η)) .

(53)

Consider a point η where A is continuous and take bη < η. Dividing (53) by η−bη > 0,

and taking the limit bη ↑ η yields ψ0left (η) = g0 (A (η)). Next, consider bη > η. Dividing

(53) by η − bη < 0, and taking the limit bη ↓ η yields ψ0right (η) = g0 (A (η)). Hence,

ψ0 (η) = g0 (A (η)) , (54)
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at all points η where A is continuous.

Equation (54) holds only almost everywhere, since we have only assumed that A is

almost everywhere continuous. To complete the proof, we need a regularity argument

about ψ (otherwise ψ might jump, for instance). We will show that ψ is absolutely

continuous (see, e.g., Rudin (1987), p.145). Consider a compact subinterval I, and

aI = sup {A (η) + η − bη | η, bη ∈ I}, which is finite because A is assumed to be bounded
in any compact subinterval of η. Then, equation (53) implies:

|ψ (η)− ψ (bη)| ≤ max {|g (A (bη))− g (A (bη) + bη − η)| , g (A (η) + η − bη)− g (A (η))} ≤ |η − bη| (sup g0)I .
This implies that ψ is absolutely continuous on I. Therefore, by the fundamen-

tal theorem of calculus for almost everywhere differentiable functions (Rudin (1987),

p.148), we have that for any η, η∗, ψ (η) = ψ (η∗) +
R η
η∗
ψ0 (x) dx. From (54), ψ (η) =

ψ (η∗) +
R η
η∗
g0 (A (x)) dx, i.e.

V (η) = g (A (η)) +

Z η

η∗

g0 (A (x)) dx+ k (55)

with k = ψ (η∗). This concludes the proof for T = 1.

Proof that if Theorem 3 holds for T , it holds for T +1. This part of the proof is as

the proof of Theorem 1 in the main text. At t = T + 1, if the agent reports bηT+1, he
must take action a = A (bηT+1) + bηT+1 − ηT+1 so that the signal a + ηT+1 is consistent

with declaring bηT+1. The IC constraint is therefore:
ηT+1 ∈ argmax

ηT+1
V (η1, ..., ηT , bηT+1)− g (A (bηT+1) + bηT+1 − ηT+1)−

TX
t=1

g (a∗t ) . (56)

Applying the result for T = 1, to induce bηT+1 = ηT+1, the contract must be of the

form:

V (η1, ..., ηT , bηT+1) =WT+1 (bηT+1) + k (η1, ..., ηT ) , (57)

where WT+1 (bηT+1) = g (A (bηT+1)) + R ηT+1η∗
g0 (A (x)) dx and k (η1, ..., ηT ) is the “con-

stant” viewed from period T + 1.
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In turn, k (η1, ..., ηT ) must be chosen to implement bη = ηt ∀t = 1...T , viewed from
time 0, when the agent’s utility is:

E

"
u

Ã
k (η1, ..., ηT ) +WT+1 (bηT+1)− TX

t=1

g (at)

!#
.

Defining bu (x) = E [u (x+WT+1 (eηT+1))] , (58)

the principal’s problem is to implement bη = ηt ∀t = 1...T , with a contract k (η1, ..., ηT ),
given a utility function E

hbu³k (η1, ..., ηT )−PT
t=1 g (at)

´i
. Applying the result for T ,

we see that k must be:

k (η1, ..., ηT ) =
TX
t=1

g (At (ηt)) +
TX
t=1

Z ηt

η∗

g0 (At (x)) dx+ k∗

for some constant k∗. Combining this with (55), the only incentive compatible contract

is:

V (η1, ..., ηT , ηT+1) =
T+1X
t=1

g (At (ηt)) +
T+1X
t=1

Z ηt

η∗

g0 (At (x)) dx+ k∗.

Proof of Theorem 4

First, it is clear we can restrict ourselves to A (η) ≤ a for all η. If for some η,

A (η) > a, the principal will be weakly better off by implementing A (η) = a instead,

since firm value S E
£
b
¡
min

¡
A (eη) , a¢ , eη¢¤ is unchanged, and the cost E [v−1 (V (eη))]

will weakly decrease.

Let C (A) denote the expected cost of implementingA (η), i.e. C (A) = E [v−1 (C (η))]
where C (η) is given by Theorem 3. The following Lemma states that the cost of ef-

fort is a Lipschitz-continuous function of the level of effort. Its proof is in the Online

Appendix.

Lemma 8 Suppose that g00 is bounded and that supx F (x) /f (x) < ∞. There is a
constant Λ , given by equation (26) such that, for any two contracts that implement
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actions A (η) and B (η) in (a,a], the difference in the implementation costs satisfies:

|C (A)− C (B)| ≤ ΛE |A (η)−B (η)|.

By Lemma 8, we have |C0 − C| ≤ ΛE
¯̄
a−A (η)

¯̄
. Next, let W 0 (respectively, W )

denote the value of the principal’s surplus (25) under the contract implementing a

(respectively, A (η)) and define m = infa,η
∂b
∂a
(a, η). The difference in total payoff to

the firm is:

W 0 −W = S E
£
b
¡
a, η
¢¤
− C0 − (S E [b (A (η) , η)]− C) = S E

£
b
¡
a, η
¢
− b (A (η) , η)

¤
−
¡
C0 − C

¢
≥ SmE

£
a−A (η)

¤
− ΛE

¯̄
a−A (η)

¯̄
= (Sm− Λ) E

¯̄
a−A (η)

¯̄
.

Therefore, when S > S∗ ≡ Λ/m, W 0 − W > 0 unless E
£¯̄
a−A (η)

¯̄¤
= 0. Hence,

maximal effort is implemented for all almost all noise realizations.

C Incentive Compatibility of Contract when Tim-

ing is Reversed

In the core model, noise ηt precedes the action at in each period. This section shows

that the optimal contract in Theorem 1 still induces the target path of actions, although

we can no longer prove that it is incentive compatible. For brevity, we consider T = 1

and give a heuristic proof that assumes validity of the first-order approach; the rigorous

proof is similar to Appendix B.

The agent chooses

a∗ ∈ argmax
a
E [u (v (c (a+ η))− g (a))] ,

where η is now unknown. The first-order condition is

E [u0 (v (c (a+ η))− g (a)) (v0 (c (a+ η)) c0 (a∗ + η)− g0 (a))] = 0. (59)

Under the contract in Theorem 1, v (c (r)) = g0 (a∗) r which yields:
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E [u0 (v (c (a+ η))− g (a))] (g0 (a∗)− g0 (a)) = 0

Since u0 (·) > 0, we must have g0 (a∗)− g0 (a) = 0, i.e. a = a∗ as required. However, we

can no longer prove from (59) that the contract in Theorem 1 is optimal. Since η is

unknown, u0 (v (c (a+ η))− g (a)) is not a constant and thus cannot be taken outside

the expectation term.

D Application to CEO Incentives, Continuous Time

In the core model, we derived the optimal CEO contract in discrete time (Proposition

1). Here, we show that the contract is also optimal in discrete time.

The baseline firm value is S and the end-of-period stock price P1 is given by

P1 = S exp

µZ 1

0

asds−
σ2s
2
ds+ σsdZs

¶
,

where Zt is a standard Brownian motion and σt is a deterministic (possibly non-

constant) volatility process. The principal wishes to implement action a∗ at each

instant. By rational expectations, the initial stock price is P0 = E [P1] = Sea
∗
and the

log return up to time t is

rt = lnPt/P0 =

Z t

0

∙
(as − a∗) ds+ σsdZs −

σ2sds

2

¸
.

By rational expectations, at increases the drift of rt by at−a∗, which on the equilibrium
path will be zero (up to the Jensen’s inequality term

R t
0
σ2sds/2).

As in Section 2.3, we use v (c) = ln c so that the CEO has multiplicative preferences.

His utility function becomes:

E

∙
U

µ
c exp

µ
−
Z T

0

g (at) dt

¶¶¸
. (60)

The optimal contract is given below.
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Proposition 3 (Optimal CEO contract, continuous time). The optimal contract is

given by:

c = kRg0(a∗). (61)

where R = P1/P0 is the gross firm return and k is a constant that makes the partici-

pation constraint bind (E
£
U
¡
kRg0(a∗)e−g(a

∗)T
¢¤
= U).

Proof. This Proposition is a direct application of Theorem 2 with u (x) ≡ U (ex) and

v(c) = ln c. The CEO’s utility is:

U

µ
c exp

µ
−
Z T

0

g (at) dt

¶¶
= u

µ
ln c−

Z T

0

g (at) dt

¶
.

In addition,

r1 = lnR =

Z 1

0

(as − a∗) ds+ σsdZs −
σ2sds

2

The optimal contract is thus

c = v−1 (g0 (a∗) r +K) = exp (g0(a∗) lnR+K) = eKRg0(a∗).

E A Microfoundation for the Principal’s Objective

We offer a microfoundation for the principal’s objective function (25). Suppose that

the agent can take two actions, a “fundamental” action aF ∈ (a, a] and a manipulative
action m ≥ 0. Firm value is a function of aF only, i.e. the benefit function is b

¡
aF , η

¢
.

The signal is increasing in both actions: r = aF + m + η. The agent’s utility is

v (c)−
£
gF (a) +G (m)

¤
, where g, G are increasing and convex, G (0) = 0, and G0 (0) ≥

g0
¡
a
¢
. The final assumption means that manipulation is costlier than fundamental

effort.

We define a = aF+m and the cost function g (a) = minaf ,M
©
gF (a) +G (m) | aF +m = a

ª
,

so that g (a) = gF (a) for a ∈ (a, a] and g (a) = gF (a) + g (m− a) for a ≥ a, which is
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increasing and convex. Then, firm value can be written b
¡
min

¡
a, a
¢
, eη¢, as in equation

(25).

This framework is consistent with rational expectations. Suppose b
¡
aF , η

¢
= eaF+η.

After observing the signal r, the market forms its expectation P1 of the firm value

b
¡
aF , η

¢
. The incentive contract described in Theorem 3 implements a ≤ a, so the

agent will not engage in manipulation. Therefore, the rational expectations price is

P1 = er.

In more technical terms, consider the game in which the agent takes action a and

the market sets price P1 after observing signal r. It is a Bayesian Nash equilibrium for

the agent to choose A (η) and for the market to set price P1 = er.
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