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Abstract

We characterize the optimal mortgage contract in a continuous time setting with a risky borrower who

needs to be given incentives to repay his debt, costly foreclosure and stochastic house appreciation. We

show that many features of subprime lending observed in practice are consistent with rational behavior

of both borrowers and lenders. In particular, when house prices are expected to grow, it is optimal to

provide the risky borrowers with a lower initial rate, which is to increase over time, and to increase the

borrowers�access to credit. The housing slump results in the tightening of the borrowers�access to credit

and default clustering among the least creditworthy ones. We also �nd that house appreciation makes

it pro�table to give loans to less creditworthy borrowers who otherwise would be excluded from the

housing market, and that these loans could generate substantial ex-ante utility gains for these borrowers.

Bailing out the most distressed borrowers in the slump phase is not incentive compatible, as it encourages

irresponsible �nancial behavior in the boom phase. On the other hand, it makes sense to help borrowers

who were in good standing before the crisis by reducing their mortgage balance and interest rate.

�We thank Lariece Brown, V.V. Chari, Narayana Kocherlakota, Tano Santos, Morten Sorensen, Neng Wang, and seminar
participants at UC Berkeley Haas, Duke Fuqua, NYU Stern, Columbia Business School, Federal Reserve Bank of Minneapolis,
3rd NYC Real Estate Meeting, 2008 Meeting of the American Real Estate and Urban Economics Association, 15th Mitsui Life
Symposium "Credit Risk: Implications for the Macro Economy and Financial Markets," and 2008 Meeting of the Society for
Economic Dynamics for helpful comments and suggestions.
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1 Introduction

The recent housing market crisis has brought attention to the subprime mortgage market, which experienced

exponential growth over the past few years. The share of subprime mortgages to total originations increased

from 6% in 2002 to 20% in 2006. As of 2006, the value of U.S. subprime mortgages was estimated at $1.5

trillion, or 15% of the $10 trillion residential mortgage market.1 Subprime mortgages account for a signi�cant

part of the recent increase in household mortgage debt in the United States, from about 60% of GDP in

2003 to above 75% of GDP in 2006.2 It is widely believed that subprime lending has played a major role in

the housing market meltdown of 2007.

Unlike traditional prime mortgages, subprime mortgages have been issued to higher-risk borrowers who

bought pricey houses relative to their income level and make little or no downpayment. Many of these

mortgages came with incentives including lower initial teaser rates, which were to be reset higher in the

future. The most common examples of this are the 2/28 and the 3/27 loans, which carry a lower introductory

rate for the �rst two or three years. After that, the interest rate resets to a higher level for the remaining 28

or 27 years of the loan.

Because of high default rates among subprime borrowers and big losses to subprime investors in the

declining housing market, subprime lending has lately caused a storm of controversy. Some critics accuse

subprime lenders of predatory lending to naive borrowers who do not fully understand mortgage terms.

Others say that subprime underwriters issued mortgages to people who could not a¤ord to pay them back,

and then quickly sold the mortgages to outside investors in the form of mortgage-backed securities. Most

critics agree that subprime loans do not make economic sense and should have not been originated in the

�rst place. On the other hand, other experts argue that during the housing boom many homes were bought

with little or no money down because both buyers and lenders bet on additional home-price appreciation to

create equity. These bets, while risky, gave less creditworthy borrowers a chance at homeownership.

A related controversy concerns how mortgage lenders should react to defaults and foreclosures when house

prices decline. Federal Reserve Chairman Ben Bernanke called on lenders to aid struggling homeowners by

reducing their principal �the sum of money they borrowed �to lessen the likelihood of foreclosure.3 Similarly,

the House of Representatives passed legislation in May 2008 encouraging mortgage companies to reduce the

principal on troubled loans.4 On the other hand, many mortgage lenders and investors are reluctant to help

borrowers with troubled loans. They emphasize that the risk of distorting the borrower�s incentives adds to

the complexity of the issue as once the borrowers anticipate to be bailed out they might stop paying back

1See, for example, Agarwal and Ho (August 2007).
2The mortgage debt data are from Flow of Funds Accounts of the United States, Federal Reserve Board, and the GDP data

are from Bureau of Economic Analysis.
3See Bernanke (2008).
4See House of Representatives (2008). See also Hubbard and Mayer (2008) for a recent outline of the mortgage modi�cation

program featuring mortgage balance and interest rate reduction.
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their debt.

Despite the economic signi�cance of subprime lending and the extent of the surrounding controversy,

there has been thus far no attempt at formal analysis of e¢ cient lending in a stochastic house appreciation

environment. Such an analysis would allow addressing a number of questions. Could a housing boom followed

by a housing slump explain certain features of subprime lending and its subsequent meltdown if both lenders

and borrowers have rational expectations about the future states of the housing market? Could subprime

mortgages improve bene�ts to borrowers and lenders relative to traditional mortgages when house prices

are expected to grow? What is a lender�s optimal response when house prices start to decline, taking into

account the borrowers�incentives to repay their debt?

In this paper, we formally approach this issue by addressing a more general normative question. Assuming

rational behavior of borrowers and lenders, what is the best possible mortgage contract between a home buyer

and a �nancial institution when house prices are expected to grow but also there is risk of housing crisis?

Instead of considering a particular class of mortgages, we derive an optimal mortgage contract as a solution to

a general dynamic contracting problem without imposing restrictive assumptions on the payments between

the borrower and the lender or the circumstances under which the home is repossessed. We then compare

features of existing mortgage contracts with the derived best possible contract.

We focus our attention on a simple setting that nevertheless allows us to capture three aspects that we

believe are central to subprime lending. These are: (i) a risky borrower who needs to be given incentives to

repay his debt, (ii) costly foreclosure and (iii) stochastic house price appreciation. This setting allows us to

focus on the fundamental feature of the borrowing-lending relationship with collateral in a stochastic house

price environment, which is how to e¢ ciently provide a borrower with incentives to repay his debt using a

threat of a costly liquidation taking into account a possibility of house appreciation and a risk of price fall.

We adopt a two-step approach. First, assuming rational behavior, we derive an optimal mortgage contract

in the stochastic house appreciation environment, i.e., the best possible incentive-compatible contract that

maximizes a total surplus of the relationship between the borrower and the lender, as a solution to a general

dynamic contracting problem. Then we examine whether main features of existing mortgage contracts are

consistent with the properties of the optimal contract. As the optimal contract contains provisions of what

should be done in the housing slump, we can address this question as well.

Speci�cally, we consider a continuous-time setting in which a borrower with limited liability needs outside

�nancial support from a risk-neutral lender in order to purchase a house. Home ownership generates for

the borrower a public and deterministic utility stream. The distribution of the "excess" income, which the

borrower can use to pay back his debt, is publicly known, although its realizations are privately observable

by the borrower. The moral hazard problem is that the borrower can conceal a part of his income and then

divert it for personal consumption rather than repay debt.

We assume that the housing market at time zero is in the boom phase, during which time a home
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appreciates at a constant rate. At any time, however, a boom can turn into a slump with a certain probability,

in which case a home loses its value and the housing market becomes illiquid. The price process is exogenous,

and the borrower and the lender have rational expectations.5 We assume that the borrower and the lender

are su¢ ciently small so that their actions have no e¤ect on macroeconomic variables such as the market

price of the home.

Before the purchase of the house, the borrower and the lender sign a contract that will govern their rela-

tionship in the future. The contract speci�es transfers between the borrower and the lender, conditional on

the history of the borrower�s income reports and the state of the housing market, as well as the circumstances

under which the lender would foreclose the loan and seize the home. The borrower has limited liability and

can default on the mortgage contract at any time. The borrower has also the option to sell the home. We

assume that selling the home in the boom phase is more e¢ cient than liquidating it through the repossession

process due to associated dead-weight losses.

We characterize the optimal contract, i.e. the arrangement between the borrower and the lender that

maximizes their combined total surplus, using three state variables: the state of the housing market (i.e., the

boom or slump), the market home price, and the borrower�s continuation utility (i.e., the expected payo¤

to the borrower provided he acts optimally given the terms of his contract with the lender). We then show

that the optimal contract can be implemented using a mortgage in the form of a home equity loan (HEL)

with embedded access to credit (or negative amortization limit). The features of the optimal contract do not

depend on the competitive structure of the lending industry. However, a lender with more bargaining power

extracts a bigger surplus by charging a higher underwriting fee. For demonstration purposes, we consider

numerical examples in which the lender breaks even.

When house prices are expected to grow, the optimal mortgage provides the borrowers with a lower initial

rate, which is to increase over time. The least creditworthy borrowers are given an additional reduction in

the rate during the boom, while the more creditworthy borrowers are charged an insurance premium, which

allows them to participate in the loan modi�cation program when house prices start to decline. It is also

optimal to increase the borrower�s access to credit in the boom phase (by increasing the credit line limit or

negative amortization limit). The housing slump results in the tightening of the borrowers�access to credit

and default clustering among the least creditworthy borrowers. The more creditworthy borrowers (those with

lower debt levels) are partially insured against the slump through their participation in a loan modi�cation

program featuring a balance reduction.

The features of the optimal mortgage contract can be explained by the incentive-compatibility constraints

and the dual-optimization objective of the contracting problem: minimization of liquidation ine¢ ciencies and

5Such a process can be derived in a general equilibrium framework. For example, Kahn (2008) introduces a Markov regime-
switching speci�cation for productivity growth in the non-housing sector, and shows that such regime switches are a plausible
candidate for explaining�both qualitatively and quantitatively�the large low-frequency changes in housing price trends.
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maximization of the value of the option to sell the home in the future at a higher price.

The interest rate goes up with time during the housing boom because the lender has to make money on

the loan in the good states, as he is likely to lose money in the bad states. Hence, the lender increases the

interest rate as the home appreciates. On the other hand, the borrower can a¤ord to pay higher interest

rates and is less likely to default in the good states, since he can borrow more as the home appreciates.

The access to credit provides �exibility for the borrower to cover possible low income realizations, which in

turn lowers chances of default ine¢ ciencies. The credit limit, which is determined by incentive compatibility

constraints, takes into account the value of the option to sell. The option value increases with the home price

and so does the credit limit. During the slump, the option to sell the home loses its value, which results in

the credit limit reduction.

The additional interest rate reduction of the least creditworthy borrowers during the boom is driven by

the maximization of the option value, while the default clustering during the slump happens because of

the borrower�s limited liability and the incentive-compatibility constraints. Bailing out the most distressed

borrowers in the slump phase is not incentive compatible, as it would encourage irresponsible �nancial

behavior in the boom phase. The insurance of more creditworthy borrowers is explained by the fact that

these borrowers are not likely to default during the boom, but are more vulnerable during the slump.

The features of the optimal mortgage are parallel to some key aspects of subprime lending. In particular,

during the boom it is optimal to increase the interest rates over time. This �nding is in line with the fact

that many subprime mortgages originated in the US had teaser rates, which were to be reset to higher rates.

It is also optimal to provide the borrowers with increasing access to credit over time as long as house prices

continue to grow. This result is consistent with the increasing indebtness of households during the housing

boom. We also �nd that house appreciation makes it pro�table to give loans to less creditworthy borrowers

who otherwise would be shut out of the housing market. This is consistent with an observed extension of

mortgage credit to less creditworthy borrowers during the housing boom.6 According to the parametrized

example we consider, the extension of credit to less creditworthy borrowers could generate substantial ex-

ante utility gains for these borrowers. The e¢ cient lending also implies default clustering among the least

creditworthy borrowers during the slump, which is consistent with an observed rapid increase in defaults

among the borrowers with the highest loan-to-value ratios once house prices started to decline.7

We conclude that many features of subprime lending are consistent with rational behavior of both bor-

rowers and lenders in a stochastic house appreciation environment. Thus our model may help to explain the

emergence of this market in recent years. It is important, however, to stress one limitation of our e¢ ciency

results. The features of mortgage lending that are optimal at the individual level may have negative con-

6See Mayer and Pence (2008).
7Demyank and Van Hemert (2008) �nd that in 2006 the increases in the adjusted delinquency and foreclosure rates are

almost exclusively caused by the worsening performance of loans with a combined LTV of 80 percent or more.
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sequences at the aggregate level, since the borrower and the lender do not take into account the potential

negative externalities that their optimal contract might impose.

In terms of policy implications, our model suggests that bailing out the most distressed borrowers in the

slump phase is not incentive compatible, as it encourages irresponsible �nancial behavior in the boom phase.

On the other hand, it makes sense to help borrowers who were in good standing before the crisis by reducing

their debt balance and interest rates.

Related Literature

This paper belongs to the growing literature on dynamic optimal security design, which is a part of the

literature on dynamic optimal contracting models using recursive techniques that began with Green (1987),

Spear and Srivastava (1987), Abreu, Pearce and Stacchetti (1990) and Phelan and Townsend (1991), among

many others.8 To the best of our knowledge our paper is a �rst study in the optimal �nancing literature

that considers a dynamic environment with stochastic asset appreciation and an option to sell the asset.

The most closely related paper to ours is Piskorski and Tchistyi (2007) who study the optimal mortgage

design in a stationary continuous time setting with volatile and privately observable income of the borrower

and a stochastic market interest rate. They show that the optimal mortgage takes the form of an option

ARM, and that default rates and interest rates correlate positively with the market interest rate. In this

paper, we assume a constant interest rate and focus on a stochastic house price environment where the

borrower has the option to sell the home. The �ndings of this study are complementary to those of Piskorski

and Tchistyi (2007).

The two other studies closely related to ours are DeMarzo and Fishman (2007a) and its continuous-

time formulation by DeMarzo and Sannikov (2006). These papers study long-term �nancial contracting

in a setting with privately observed cash �ows, and show that the implementation of the optimal contract

involves a credit line with a constant interest rate and credit limit, long-term debt, and equity.9

There is a sizeable real estate �nance literature that addresses the design of mortgages.10 . In terms of

this literature, to our knowledge, our paper is the �rst study of optimal mortgage design in a dynamic moral

hazard environment, and the �rst study that addresses the optimality of alternative mortgage products. Our

paper is distinct from this literature, as we do not impose any exogenous restrictions on the type of contracts

the lender can o¤er, and instead derive an optimal mortgage in our environment.

There is also a number of studies that address the optimal strategy of the mortgage borrower in envi-

ronments with stochastic house prices (see for example Kau, Keenan, Mueller, and Epperson (1992) and

Deng, Quigley, and Van Order (2000), Campbell and Cocco (2007)). This literature restricts its attention to

8Sannikov (2006) provides a recent treatment of continuous-time techniques for a principal-agent problem.
9See also related papers by Biais et al. (2006), Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007b), DeMarzo

and Sannikov (2008), Tchistyi (2006), He (2007), DeMarzo, Fishman, He and Wang (2008), Philippon and Sannikov (2007).
10See for example Dunn and Spatt (1985), Chari and Jagannathan (1989), LeRoy (1996), Stanton and Wallace (1998).
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a speci�c class of contracts, however, and thus, unlike this paper, does not address the question of optimal

lending. Lustig and Van Nieuwerburgh (2005) study consumption insurance and risk premia in a model

with housing collateral and limited commitment of the households. Unlike this paper they do not consider

a moral hazard problem and their model does not feature default in equilibrium.

The paper is organized as follows. Section 2 presents the continuous-time model with stochastic house

appreciation. Section 3 describes the dynamic contracting problem. Section 4 derives the optimal contract

using the three state variables: the state of the housing market, the market home price and the borrower�s

continuation utility. Section 5 presents the implementations of the optimal contract using �nancial arrange-

ments that resemble the ones used in the residential mortgage market. Section 6 concludes.

2 The Model

Time is continuous and in�nite. There is one borrower (a homebuyer) and one lender (a large �nancial

institution).11 The lender is risk neutral, has unlimited capital, and values a stochastic cumulative cash �ow

fftg as

E

�Z 1

0

e�rdft

�
;

where r is the discount rate.

The borrower�s consumption consists of two categories. The �rst is "necessary" consumption, which

includes grocery food, medicine, transportation, and other goods and services essential for the survival. The

cumulative minimum level of necessary consumption is given by an exogenous stochastic process f�tg that

incorporates shocks such as medical bills, auto repair costs, �uctuations of food and gasoline prices, and so

on. The second is discretionary consumption, which, among many other things, may include such items as

restaurant dining, vacation trips, buying a new car, et cetera. We assume that the borrower must use his

available funds to �rst cover the necessary expenses �t before spending on "discretionary" consumption or

potential debt repayment.12

The borrower values cumulative discretionary consumption �ow fCtg as

E

24 1Z
0

e�rtdCt

35 ;
11Without loss of generality, we can think about the lender as a group of investors who maximize their combined payo¤ from

the relationship with the borrower. How the investors divide proceeds among themselves is not relevant for the purpose of
designing an optimal contract between the borrower and the investors.
12This speci�cation is similar in �avor to the one used by Ait-Sahalia, Parker and Yogo (2004), who propose a partial

resolution of the equity premium puzzle by distinguishing between the consumption of basic goods and that of luxury goods. In
their model, households are much more risk averse with respect to the consumption of basic goods, of which a certain amount is
required in every period, which is consistent with the subsistence aspect of basic goods and the discretionary aspect of luxuries.
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where dCt � 0. The zero consumption (dCt = 0) means that the borrower consumes only necessities.

Let �Yt � 0 denote the borrower�s total income up to time t. We will focus on the borrower�s "excess"

income Yt � �Yt� �t, which represents a better measure of the borrower�s ability to pay for a house than the

total income. A standard Brownian motion Z = fZt;F2;t; 0 � t <1g on (
2;F2;m2) drives the borrower�s

income process, where fF2;t; 0 � t <1g is an augmented �ltration generated by the Brownian motion. The

borrower�s income up to time t, denoted by Yt, evolves according to

dYt = �dt+ �dZt; (1)

where � is the drift of the borrower�s disposable income and � is the sensitivity of the borrower�s income

to its Brownian motion component. The excess income is negative when the necessary expense shock �t is

greater than the total income �Yt. In this case, the borrower has to cover the de�cit by drawing on his saving

account or by borrowing more, and if he is no able to do so he will declare bankruptcy. From now on, we

will refer to Yt and Ct simply as the borrower�s income and borrower�s consumption.

We assume that the lender knows � and �, but does not know realizations the borrower�s excess income

shocks Zt, so the borrower has the ability to misrepresent his income. Thus, realizations of the borrower�s

income are not contractible. These assumptions are motivated by the observation that lenders use a variety of

methods13 to determine a type of the borrower (represented here by (�; �) pair) before the loan is approved,

but henceforth do not condition the terms of the contract on the realizations of the borrower�s income, likely

because the borrower�s necessary spending shocks and possibly his total income as well are too costly or

impossible to monitor.

The borrower is allowed to maintain a private savings account. The private savings account balance S

grows at the interest rate �, where � � r. The borrower must maintain a non-negative balance in his account.

The borrower wants to buy a home at date t = 0. Home ownership would generate him the public and

deterministic utility stream �. We assume that this utility streams remains constant as long as the borrower

stays in the same house.14 The price P0 of the home is greater than the borrower�s initial wealth Y0, i.e.,

0 � Y0 < P0.15 Thus, the borrower must obtain funds from the lender to �nance the house purchase.

We assume that the borrower and the lender are su¢ ciently small so that their actions have no e¤ect on

macroeconomic variables such as the market interest rate.16

13Like credit score, current job status and so on.
14For simplicity, we do not consider a possibility that the borrower can make modi�cations that can either increase or decrease

the quality of the house.
15The price P0 is considered as a macroeconomic variable, which is not a¤ected by actions of the borrower and the lender. It

is reasonable to expect that the home price P0 is increasing in its utility �, and the borrower optimizes over the set of available
(�; P0) pairs. This optimization is not considered in the paper. This clearly does not lead to a loss of generality, since our
analysis applies to any (�; P0) pair.
16 In a general equilibrium framework, actions of mortgage lenders and homebuyers on the aggregate level can a¤ect macro-

economic variables. However, as long as the economic agents on the individual level have no market power, they should regard
macroeconomic variables as exogenous in equilibrium.
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The housing market is expected to go through two phases. The initial phase, housing boom, is character-

ized by fast housing appreciation. Housing slump is the absorbing state, characterized by a housing market

recession and price stabilization. Let the process fNtg denote the phase of the housing market in the period

t:

N0 = 0;

P [Nt+s = 0 for all s 2 [t; t+�) jNt = 0] = e���;

P [Nt+s = 1 for all s 2 [t; t+�) jNt = 0] = 1� e���;

P [Nt+s = 0 for all s 2 [t; t+�) jNt = 1] = 0:

where Nt = 0 means the housing boom continues in period t, and Nt = 1 means the housing slump phase in

period t. Formally, the process N = fNt;F2;t; 0 � t <1g is a standard compound Poisson process with an

intensity �(Nt) on a probability space (
2;F2;m2), such that N0 = 0 and

�(Nt) =

8<: � if Nt is even

0 if Nt is odd
:

The stopping time �h = infft � 0 : Nt = 1g denotes the arrival time of the housing slump phase. The

market price of the home grows at the rate g > 0 per year during the boom, while it remains constant during

the slump:

Pt =

8<: P0e
gt for all 0 � t < �h

P�h(1� �) for all t � �h
;

where � 2 [0; 1] measures the extent of house price depreciation.

Before purchase of the house, the borrower and the lender sign a contract that will govern their relation-

ship after the purchase is made. The contract obligates the borrow to report his income realizations to the

lender. Conditional on the history of house prices and the borrower�s income reports, the contract speci�es

transfers between the borrower and the lender and the circumstances under which the lender repossesses the

home and the circumstances under which the borrower becomes a full homeowner.

Default Option

If the borrower violates the terms of the contract or defaults at time t, he loses the home and receives his

reservation value equal to A, which for simplicity we assume to be equal to the expected present value of

the borrower�s future income, �r plus any private savings he might have.
17 We assume � � � and so A � �

r :

The lender sells the repossessed house at a foreclosure auction and receives the payo¤ Lt = (1� l)Pt, where

17This assumption is made for expositional clarity and it does not a¤ect any of our results.
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l 2 (0; 1) measures the liquidation costs.

Option to Sell

In each period t, the borrower can put the home on the market. If he does so, the probability of �nding a

buyer at time t equals �(Nt). For simplicity, we assume that the home can be sold immediately during the

boom � (0) = 1, while it is impossible to �nd a buyer during the slump � (1) = 0. The house sale generates

Pt. The selling is more e¢ cient than liquidation (as l < 1).

De�nition 1 Let vt be the value of full homeownership at time t (e.g., the borrower�s continuation utility

at time t provided the borrower has no debt). If the housing market is in the boom phase we set vt = v0t and

if the housing market is in the slump phase vt = v1 = �+�
r .

We note that as the housing slump is an absorbing state, the continuation utility of the borrower who

has no debt in the slump phase does not depend on t.

The sale of the home is not contractible. The borrower puts the home on the market at the time when

it maximizes his expected payo¤. We assume that if he sells the home the borrower has to pay to the lender

(vt � at), i.e., the di¤erence between the full homeownership utility v0t and his continuation utility at under

the existing mortgage contract. As we will verify in Section 5, the outstanding balance Bt is related to the

borrower�s continuation utility at under the optimal contract as follows:

Bt = vt � at.

Thus, this assumption means that the borrower pays the outstanding balance Bt to the lender when he sells

the home.

In the boom phase of the housing market we have vt = v0t . Thus, after the house sale the borrower�s

continuation payo¤ is given by

ASt (at) = A+ Pt � (v0t � at);

while the lender receives

LSt (at) = v0t � at:

Note that the borrower will want to sell whenever

ASt (at) � at;

which is equivalent to

A+ Pt � v0t : (2)
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The optimal selling time determined by equation (2) does not depend on the outstanding balance or the

continuation utility of the borrower. This is because the outstanding balance is linear in the borrower�s

continuation utility, and they cancel each other out. The optimal selling time also does not depend on the

liquidation value Lt of the home. This is due to the fact that the borrower does not take into account

dead-weight costs associated with liquidation. Equation (2) simply states that the borrower sells the home

whenever the value of his outside option A plus the proceeds from the sale exceed his continuation utility

under full homeownership.

Proposition 1 The optimal time for the borrower to sell the home is given by

t�s =
1

g
log

0@ �

r
�
1� g

r+�

�
P0

1A ; (3)

and the value of full homeownership at time t � t�s in the boom phase of the housing market is equal to

v0t = v1 + e�(r+�)(t
�
s�t)

�
Pt�s �

�

r

�
| {z }
value of option to sel l at t

:

Proof In the Appendix.

Note that v0t is increasing with time. This is because the borrower has the option to sell the home, and

this option becomes more valuable as the price of the home increases.

Full Homeownership

If the borrower becomes a full homeowner at time t (the borrower repays his debt) the contract is terminated

and the borrower receives the value of full homeownership equal to vt.

3 Dynamic Moral Hazard Problem

At time 0, the funds needed to purchase the home in the amount of P0�Y0 are transferred from the lender to

the borrower. A contract, (�f ; �d; I); speci�es a time at which the borrower becomes a full homeowner, �f , a

default time, �d; and transfers between the lender and the borrower, all of which are based on the borrower�s

report of his income and the realized house price process. Let (
;F ;m) := (
1 � 
2;F1 �F2;m1 �m2) be

the product space of (
1;F1;m1) and (
2;F2;m2). Let Ŷ =
n
Ŷt : t � 0

o
be the borrower�s report of his

income, where Ŷ is (Y; P )-measurable (Ft�measurable). The contract transfers the reported amount, Ŷt;

from the borrower to the lender, and It(Ŷ ; P ) from the lender to the borrower. Below we formally de�ne a

contract.
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De�nition 2 A contract � = (�f ; �d; I) speci�es a time at which the borrower becomes a full homeowner

�f , a default time �d; and transfers from the lender to the borrower I = fIt : 0 � t � �g ; that are based on

Ŷ and P (N). Formally, �f and �d are (Ŷ ; P )-measurable stopping times, and I is a (Ŷ ; P )-measurable

continuous-time process, such that the process

E

"Z min(�f ;�d)

0

e�rsdIs jFt

#

is square-integrable for 0 � t � min(�f ; �d) and Ŷ = Y:

De�nition 3 Let � = min(��s; �
f ; �d), be the expected time of termination of the relationship due to sale

(which happens at t�s provided that house boom last until s), full homeownership, or default, respectively,

implied by the contract (�f ; �d; I).

The borrower can misreport his income. Consequently, under the contract �; up to time t � � , the

borrower receives a total �ow of income equal to

(dYt � dŶt)| {z }
misreporting

+ dIt;

and his private savings account balance, S, grows according to

dSt = �Stdt+ (dYt � dŶt) + dIt � dCt; (4)

where dCt is the borrower�s consumption at time t; which must be non-negative. We recall that � � r:

In response to a contract � = (�f ; �d; I); the borrower chooses a feasible strategy that consists of his

consumption choice, the report of his income, and the selling time in order to maximize his expected utility.

Below we formally de�ne the feasible strategy of the borrower.

De�nition 4 Given a contract � = (�f ; �d; I); a feasible strategy for the borrower is a pair (C; Ŷ ) such that

(i) Ŷ is a continuous-time process adapted to (Y; P ),

(ii) C is a nondecreasing continuous-time process adapted to (Y; P );

(iii) the savings process de�ned by (4) stays non-negative.

We haven�t included explicitly the borrower�s selling decision in the de�nition of his strategy. As we

discussed in Section 2 the optimal selling time is determined by equation (2). Equation (2) simply states

that it is optimal for the borrower to sell the home whenever the value of his outside optionA plus the proceeds

12



from the sale exceed his continuation utility under full homeownership (which happens at t�s provided that

house boom last until s).

The borrower�s strategy is incentive compatible if it maximizes his lifetime expected utility in the class

of all feasible strategies given a contract � = (�f ; �d; I). As a result, we have the following de�nition.

De�nition 5 Given a contract � = (�f ; �d; I), the borrower�s strategy (C; Ŷ ) is incentive compatible if

(i) given a contract �; the borrower�s strategy (C; Ŷ ) is feasible,

(ii) given a contract �; the borrower�s strategy (C; Ŷ ) provides him with the highest expected utility among

all feasible strategies, that is

E
�R �
0
e�rt(dCt + �dt) + e

�r� (1�=��sA
S
� + 1�=�f v� + 1�=�dA+ S� ) jF0

�
�

E
�R �
0
e�rt(dC 0t + �dt) + e

�r� (1�=��sA
S
� + 1�=�f v� + 1�=�dA+ S

0
� ) jF0

�
for all the borrower�s feasible strategies (C 0; Ŷ 0); given a contract �:

The above de�nition does not explicitly include the participation constraint imposing the condition that

the borrower�s utility from the continuation of the contract should be at least as large as the borrower�s

outside option, A; which he can receive at any time by quitting. As the borrower can always under-report

and steal at rate rA until a termination time, any incentive compatible strategy would yield the borrower

utility of at least A.

The above de�nition of an incentive compatible strategy allows us to de�ne the incentive compatible

contract as follows.

De�nition 6 An incentive compatible contract is a contract � = (�f ; �d; I), together with the recommen-

dation to the borrower, (C; Ŷ ); where (C; Ŷ ) is a borrower�s incentive compatible strategy given a contract

�.

The contract is optimal if it provides the borrower with his initial expected utility a0 and maximizes the

expected pro�t of the lender in the class of all contracts that are incentive compatible. Below we provide a

formal de�nition of the optimal contract.

De�nition 7 Given the continuation utility to the borrower, a0, a contract � = (��f ; ��d; I�), together with

a recommendation to the borrower (C�; Ŷ �) is optimal if it maximizes the lender�s expected utility:

E

�Z �

0

e�rt(dŶt � dIt) + e�r� (1�=��sL
S
� + 1�=�dL� ) jF0

�
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in the class of all incentive-compatible contracts that satisfy the following promise keeping constraint:

a0 = E

�Z �

0

e�rt(dCt + �dt) + e
�r� (1�=��sA

S
� + 1�=�f v� + 1�=�dA+ S� ) jF0

�
:

We note that maximizing the lender�s expected utility is equivalent to maximizing the lender�s pro�t,

which equals the lender�s expected utility less the loan amount to the borrower [P0 � Y0], which we take as

given.

In the following lemma, we show that searching for optimal contracts, we can restrict our attention to

contracts in which truth-telling and zero savings are incentive compatible.

Lemma 1 There exists an optimal contract in which the borrower chooses to tell the truth and maintains

zero savings.

Proof In the Appendix.

The intuition for this result is straightforward. The �rst part of the result is due to the direct-revelation

principle. The second part follows from the fact that it is weakly ine¢ cient for the borrower to save on his

private account (� � r) as any such contract can be improved by having the lender save and make direct

transfers to the borrower. Therefore, we can look for an optimal contract in which truth-telling and zero

savings are incentive compatible.

4 Derivation of the Optimal Contract

In this subsection, we formulate recursively the dynamic moral hazard problem and determine the optimal

contract. First, we consider a problem in which the borrower is not allowed to save. We determine the

optimal contract18 in this environment, achieving this in two steps. First, we present and explain the

optimal contract after the house price slump occurred. Next, given the post-slump value function, we derive

the optimal contract in the boom environment.

We know from Lemma 1 that it is su¢ cient to look for optimal contracts in which the borrower reports

truthfully and maintains zero savings, and so the optimal contract of the problem with no private savings,

for a given continuation utility to the borrower, yields to the lender at least as much utility as the optimal

contract of the problem when the borrower is allowed to privately save. We will conclude by showing that

the optimal contract of the problem with no private savings is fully incentive compatible, even when the

borrower can maintain undisclosed savings, justifying our approach.

Methodologically, our approach is based on continuous-time techniques used by DeMarzo and Sannikov

(2006) and extended to a setting with a Lévy process by Piskorski and Tchistyi (2007).

18This is the allocation satisfying the properties of De�nition 7 and the additional constraint that S = 0.
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4.1 The Optimal Contract without Hidden Savings

Consider for a moment the dynamic moral hazard problem in which the borrower is not allowed to save.

First, we will �nd a convenient state space for the recursive representation of this problem. For this purpose,

we de�ne the borrower�s total expected utility received under the contract � = (�f ; �d; I) conditional on his

information at time t, from transfers and termination utility, if he tells the truth and follows the optimal

selling rule:

Vt = E

�Z �

0

e�rs [dIs + �ds] + e
�r� (1�=��sA

S
� + 1�=�f v� + 1�=�dA) jFt

�
:

Lemma 2 The process V = fVt;Ft; 0 � t < �g is a square-integrable Ft-martingale.

Proof follows directly from the de�nition of process V and the fact that this process is square-integrable,

which is implied by De�nition 2.

Below is a convenient representation of the borrower�s total expected utility received under the contract

� = (�f ; �d; I) conditional on his information at time t, from transfers and termination utility, if he tells the

truth. Let M = fMt = Nt � t�(Nt);F1;t; 0 � t <1g be a compensated compound Poisson process.

Proposition 2 There exists Ft-predictable processes (�;  ) = f(�t;  t); 0 � t � �g such that

Vt = V0 +

Z t

0

e�rs�sdZs +

Z t

0

e�rs sdMs =

V0 +

Z t

0

e�rs�s

�
dYs � �ds

�

�
| {z }

dZs

+

Z t

0

e�rs s(dNs � �(Ns)ds): (5)

Proof We note that the couple (Z;N) is a Brownian-Poisson process, and it is an independent increment

process, which is a Lévy processes, on the space (
;F ;m): Then, Theorem III.4.34 in Jacod and Shiryaev

(2003) gives us the above martingale representation for a square-integrable martingale adapted to Ft taking

values in a �nite dimensional space (the process V ).

According to the martingale representation (5), the total expected utility of the borrower under the

contract �, truth telling, and optimal option execution time conditional on his information at time t equals

its unconditional expectation plus two terms that represent the accumulated e¤ect on the total utility of,

respectively, the income uncertainty revealed up to time t (Brownian motion part), and the house price

uncertainty that has been revealed up to time t (compensated compound Poisson part).

According to Proposition 2, when the borrower reports truthfully, his total expected utility under the

contract � conditional on the termination time � equals

V� = V0 +

Z �

0

e�rs�s

�
dYs � �ds

�

�
+

Z �

0

e�rs sdMs:
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As I and (�f ; �d) depend exclusively on the borrower�s report Ŷ and the public house price process P , when

the borrower reports Ŷ ; by (5) he gets the expected utility, a0(Ŷ ), which equals

a0(Ŷ ) = E

26664V0 +
Z �

0

e�rt�t

 
dŶt � �dt

�

!
+

Z �

0

e�rt tdMt +

Z �

0

e�rt(dYt � dŶt)| {z }
utility from stealing

jF0

37775 =
E

�
V0 +

Z �

0

e�rt�t

�
dYt � �dt

�

�
+

Z �

0

e�rt
�
1� �t

�

��
dYt � dŶt

�
+

Z �

0

e�rt tdMt jF0
�
: (6)

Note that because the process (�;  ) = f(�t;  t); 0 � t � �g is Ft�predictable; as for any t � 0, s � 0;

E0 [Zt+s � Zt jF0 ] = E0 [Mt+s �Mt jF0 ] = 0; and given that E [V0 jF0 ] = V0; we have that

a0(Ŷ ) = V0 + E

�Z �

0

e�rt
�
1� �t

�

��
dYt � dŶt

�
jF0
�
: (7)

Representation (7) leads us to the following formulation of incentive compatibility.

Proposition 3 If the borrower cannot save, truth-telling is incentive compatible if and only if �t � �

(m� a:s:) for all t � � :

Proof Immediately follows from (7).

It is important to stress that in providing incentives for truth-telling one can neglect an impact of reporting

strategies on the magnitude of the adjustment,  ; in the borrower�s continuation utility that occurs when the

house price boom ends. It follows from (6) that, though in principle the reporting strategy of the borrower

does a¤ect the magnitude of these adjustments, from the perspective of the borrower such adjustments have

zero e¤ect on the borrower�s expected utility, whatever his reporting strategy. This property considerably

simpli�es the formulation of incentive compatibility.

To characterize the optimal contract recursively, we de�ne the borrower�s continuation utility at time t

if he tells the truth as

at = E

�Z �

t

e�r(s�t) [dIs + �ds] + e
�r(��t)[1�=��sA

S
� + 1�=�f v� + 1�=�dA] jFt

�
:

Note that for t � � we have that

Vt =

Z t

0

e�rs(dIs + �dt) + e
�rtat:

But this, together with (5), implies the following law of motion of the borrower�s continuation utility:

dat = ratdt� �dt� dIt + �tdZt +  tdMt = (rat � � �  t�(Nt)) dt� dIt + �tdZt +  tdNt: (8)
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Below we discuss informally, using the dynamic programming approach, how to �nd out the most e¢ cient

way to deliver to a borrower any continuation utility a � A. Proposition 4 and Proposition 5 will formalize

our discussion below.

The Optimal Contract in the House Slump Phase

Let b1(a; �h) be the highest expected utility of the lender that can be obtained from an incentive compatible

contract that provides the borrower with utility equal to a given that the house price slump started at �h. To

simplify our discussion we assume that the function b1 is concave and C2 in its �rst argument. Proposition

4 will establish these arguments formally. Let b01 and b
00
1 denote, respectively, the �rst and second derivative

of b1 with respect to the borrower�s continuation utility a.

We start by observing that transferring lump-sum dI from the lender to the borrower with continuation

utility a; moves a contract to that of the borrower�s continuation utility of a�dI: The e¢ ciency implies that

b1(a; �
h) � b1(a� dI; �h)� dI; (9)

which shows that for all a 2 [A;1) the marginal cost of delivering the borrower his continuation utility can

never exceed the cost of an immediate transfer in terms of the lender�s utility, that is

b01(a; �
h) � �1:

De�ne �a1�h as the lowest value of a such that b
0
1(a; �

h) = �1:

Lemma 3 For any �h 2 [0; t�s], we have that �a1�h = v1 = �+�
r .

Proof Since the borrower and lender have the same discount factors there is no loss of e¢ ciency in

delaying the transfers to the borrower. However paying early to the borrower is costly as long it a¤ects the

likelihood of costly liquidation. As long as at < v1, the borrower cannot be declared a full homeowner as

this would be inconsistent with the borrower�s continuation utility. But this implies that as long as at < v1,

due to incentive compatibility constraint, there is a positive chance of liquidation. Therefore no transfers

would be optimal to the borrower in this region as they would lower the borrower�s continuation utility and

thus increase the likelihood of liquidation. On the other hand, when at � v1 the borrower can be declared a

full homeowner (with accompanied transfer from the lender of at � v1). As there are no gains for the lender

(and for the borrower) from delaying full homeownership, we conclude that �a1�h = v1:

Then, conditional on a house price boom ending at �h; we have that �f = infft � �h : at = v1g: Full

ownership and the option to terminate keep the borrower�s continuation utility between A and v1: But this

and (8) imply that when a 2 [A; v1]; and when the borrower is telling the truth, his continuation utility
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evolves according to

dat = (rat � �) dt+ �tdZt; (10)

where we use the fact that dNt = 0 and �(Nt) = 0 for all t � �h.

We next characterize the optimal choice of process (�t); where
�t
� determines the sensitivity of the

borrower�s continuation utility with respect to his report. Using Ito�s lemma, we �nd that

db1(at; �
h) = (rat � �)b01(at; �h)dt+

1

2
�2t b

00
1(at; �

h)dt+ �tb
0
1(at; �

h)dZt:

Using the above equation, we �nd that the lender�s expected cash �ows and the change in the value he

assigns to the contract are given as follows:

E
�
dYt + db1(at; �

h) jFt
�
=

�
�+ (
at � �)b01(at; �h) +

1

2
�2t b

00
1(at; �

h)

�
dt:

From Proposition 3, we know that if �t � � for all t � � then the borrower�s best response strategy is

to report the truth, that is, Ŷ = Y: Because at the optimum, at any time t; the lender should earn an

instantaneous total return equal to the interest rate, r, we have the following Bellman equation for the value

function of the lender after the house price boom�s end at �h:

rb1(at; �
h) = max

�t��

�
�+ (rat � �)b01(at; �h) +

1

2
�2t b

00
1(at; �

h)

�
:

Given the concavity of the function b(�; �h), setting

�t = �

for all �h � t � � is optimal.

The lender�s value function therefore satis�es the following di¤erential equation

rb1(at; �
h) = �+ (rat � �)b01(at; �h) +

1

2
�2b001(at; �

h): (11)

We need some boundary conditions to pin down a solution to this equation. The �rst boundary condition

arises because the relationship must be terminated to hold the borrower�s value to A, so b1(A; �h) = L�h .

The second boundary condition comes from the fact that the lender should expect no transfers from the

borrower once he becomes a homeowner, that is b1(v1; �h) = 0: Finally we have that b01(v
1; �h) = �1.

The proposition below formalizes our �ndings.
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Proposition 4 Let b1(:; �h) be a function (in a) that solves:

rb1(a; �
h) = �+ (ra� �)b01(at; �h) +

1

2
�2b001(a; �

h); (12)

when a is in the interval [A; v1]; with boundary conditions b1(A; �h) = L�h , b1(v1; �h) = 0, and b01(v
1; �h) =

�1:

Then the optimal contract that delivers to the borrower the value a�h given that the housing slump occurred

at �h; takes the following form. If a�h 2 [A; v1]; at evolves for t > �h as

dat = (ratdt� �dt) + (dŶt � �dt): (13)

The default occurs at �rst time �d when at hits A. The borrower becomes a homeowner at �rst time �f when

at hits v1: The lender�s expected utility at any time t � �h is given by the function b1(at; �h) de�ned above,

which is strictly concave in at over [A; v1].

Proof Directly follows from DeMarzo and Sannikov (2006) and Bias et al. (2007) as the structure of

dynamic moral hazard problem after the house slump corresponds to the one studied in these papers.

The evolution of the continuation utility (13) implied by the optimal contract serves three objectives:

promise-keeping, incentives, and e¢ ciency. The �rst component of (13) accounts for promise-keeping. In

order for at to correctly describe the lender�s promise to the borrower, it should grow at the borrower�s

discount rate, r; less the payment, �dt, which he receives from owning the home, and less the �ow of

payments, dIt; from the lender.

The second term of (13) provides the borrower with incentives to report his true income to the lender.

Because of ine¢ ciencies resulting from liquidation, reducing the risk in the borrower�s continuation utility

lowers the probability that the borrower�s expected utility reaches A, and thus lowers the probability of

costly liquidation. Therefore, it is optimal to make the sensitivity of the borrower�s continuation utility with

respect to its report as small as possible provided that it does not erode his incentives to tell the truth.

The minimum volatility of the borrower�s continuation utility with respect to his report of income required

for truth-telling equals 1. To understand this, note that under this choice of volatility, underreporting

income by one unit would provide the borrower with one additional unit of current utility through increased

consumption, but would also reduce the borrower�s continuation utility by one unit, so that this volatility

provides the borrower with just enough incentives to report a true realization of income. Note that when

the borrower reports truthfully, the term
�
dŶt � �dt

�
is driftless and equals �dZt.
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The Optimal Contract in the House Price Boom

Let b0(a; t) be the highest expected utility of the lender that can be obtained from an incentive compatible

contract that provides the borrower with utility equal to a given that we have the house price boom at t

(t < �h). To simplify our discussion we assume that the function b is concave and C2 in its �rst argument.

Proposition 4 will establish these arguments formally. Let b00 and b
00
0 denote, respectively, the �rst and the

second derivative of b0 with respect to the borrower�s continuation utility a.

We start by observing that transferring lump-sum dI from the lender to the borrower with continuation

utility at moves a contract to that of the borrower�s continuation utility of at � dI: The e¢ ciency implies

that

b0(a; t) � b0(a� dI; t)� dI; (14)

which shows that for all a 2 [A;1) the marginal cost of delivering the borrower his continuation utility can

never exceed the cost of an immediate transfer in terms of the lender�s utility, that is

b00(a; t) � �1:

De�ne �a0t as the lowest value of a such that b
0
0(a; t) = �1:

Lemma 4 For any t 2 [0;min(�h; t�s)), we have that �a0t = v0t .

Proof Since the borrower and lender have the same discount factors there is no loss of e¢ ciency in

delaying the transfers to the borrower. However paying early to the borrower is costly as long it a¤ects the

likelihood of costly liquidation. As long as at < v0t , the borrower cannot be declared a full homeowner as

this would be inconsistent with the borrower�s continuation utility. But this implies that as long as at < v0t ,

due to incentive compatibility constraint, there is a positive chance of liquidation. Therefore no transfers

would be optimal to the borrower in this region as they would lower the borrower�s continuation utility and

thus increase the likelihood of liquidation. On the other hand, when at � v0t the borrower can be declared a

full homeowner (with accompanied transfer from the lender of at � v0t ). As there are no gains for the lender

(and for the borrower) from delaying full homeownership, we conclude that �a0t = v0t :

Then, we have that �f = infft � 0 : at = vtg: The full homeownership and the option to terminate keep

the borrower�s continuation utility between A and vt: But this and (8) imply that when a 2 [A; vt]; and when

the borrower is telling the truth, his continuation utility for t < �h evolves according to

dat = (rat � � �  t�) dt+ �tdZt +  tdNt; (15)

where we use the fact that �(Nt) = � for t < �h:
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We need to characterize the optimal choice of process (�t;  t); where
�t
� determines the sensitivity of the

borrower�s continuation utility with respect to his report, and  t determines the adjustment of the borrower�s

continuation utility when the house price boom ends. Using Ito�s lemma, we �nd that

db0(at; t) =
@b0(at; t)

@t
dt+ (rat � � �  t�)b00(at; t)dt

+
1

2
�2t b

00
0(at; t)dt+ �tb

0
0(at; t)dZt + [b1(at +  t; t)� b0(at; t)] dNt:

Using the above equation, we �nd that the lender�s expected cash �ows and the change in the value he

assigns to the contract are given as follows:

E [dYt + db0(at; t) jFt ] =�
@b0(at; t)

@t
+ �+ (rat � � �  t�)b00(at; t) +

1

2
�2t b

00
0(at; t) + � (b1(at +  t; t)� b0(at; t))

�
dt:

From Proposition 3, we know that if �t � � for all t � � then the borrower�s best response strategy is

to report the truth, that is, Ŷ = Y: Because at the optimum, at any time t; the lender should earn an

instantaneous total return equal to the interest rate, r, we have the following Bellman equation for the value

function of the lender

rb0(at; t) =

max
�t��,  t�A�at

�
@b0(at; t)

@t
+ �+ (rat � � �  t�)b00(at; t) +

1

2
�2t b

00
0(at; t) + � (b1(at +  t; t)� b0(at; t))

�
; (16)

where t 2 [0; t�s]:

Given the concavity of the function setting

�t = �

for all t � � is optimal. The concavity of the objective function in  t in the RHS of the Bellman equation

(16) also implies that the optimal choice of  t is given as a solution to

b00(at; t) = b01(at +  t; t); (17)

provided that  t > A � at; and otherwise  t = A � at. Note that the optimal jump can be expressed as

 (at; t):

The lender�s value function in the house price boom therefore satis�es the following di¤erential equation
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for at 2 [A; v0t ] :

rb0(at; t) =
@b0(at; t)

@t
+�+(rat��� (at; t)�)b00(at; t)+

1

2
�2b000(at; t)+� (b1(at +  (at; t); t)� b0(at; t)) (18)

with  speci�ed above.

We need some boundary conditions to pin down a solution to this equation. The �rst boundary condition

arises because the relationship must be terminated to hold the borrower�s value to A, so b0(A; t) = Lt. The

second boundary condition comes from the fact that the lender should expect no transfers from the borrower

once the borrower becomes a homeowner, that is b0(v0t ; t) = 0: Moreover b
0
0(v

0
t ; t) = �1. The �nal boundary

re�ects the payments to the lender at the selling time, that is b0(at; t�s) = v0t�s � at: The proposition below

formalizes our �ndings.

Proposition 5 Let b0 be a C2 function (in a) that solves:

rb0(at; t) =
@b0(at; t)

@t
+�+(rat��� (at; t)�)b00(at; t)+

1

2
�2b000(at; t)+� (b1(at +  (at; t); t)� b0(at; t)) (19)

when a is in the interval [A; v0t ] with boundary conditions

b0(A; t) = Lt;

b00(v
0
t ; t) = �1;

b0(at; t
�
s) = v0t�s � at;

where

 (a; r) =

8>>>>>><>>>>>>:

is a C1 (in a) solution to b00(a; t) = b01(a+  ; t) for all (a; t)

for which the solution is such that  (a; t) > A� a

otherwise it is equal to A� a

: (20)

Then the optimal contract that delivers to the borrower the value a0 takes the following form. If a0 2

[A; v00 ]; at evolves as

dat = (ratdt� �dt� dIt) + (dŶt � �dt) +  (at; t)(dNt � �(Nt)dt); (21)

The borrower becomes a homeowner at �rst t time �f when at hits vt, The borrower defaults at �rst t time �d

when at hits A. The borrower sells a house at time t�s, provides that t
�
s < min(�

d; �h): The lender�s expected

utility at any time t < �h is given by the function b0(at; t) de�ned above, which is strictly concave in at over

[A; v0t ]. The lender�s expected utility at any time t > �h for at 2 [A; v1] is given by the function b1(at; �h)

de�ned in Proposition 4.
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Proof In the Appendix.

The evolution of the continuation utility (21) implied by the optimal contract serves three objectives:

promise-keeping, incentives, and e¢ ciency. As in the equation (13), the �rst component of (21) accounts for

promise-keeping while the second term provides the borrower with incentives to report his true income to

the lender.

The last term of (21) captures the e¤ect of the stochastic house price appreciation on the borrower�s

continuation utility. The optimal adjustments,  , in the borrower�s continuation utility, which are applicable

a when house slump occurs, are such that the sensitivity of the lender�s expected utility, b, with respect to the

borrower�s continuation utility, a, is equalized just before and after an adjustment is made.19 This sensitivity

represents an instantaneous marginal cost of delivering to the borrower his continuation utility in terms of

the lender�s utility, and so the e¢ ciency calls for equalizing this cost across the states. We note that these

adjustments imply the compensating trend in the borrower�s continuation utility, ��(Nt) (at; t)dt, which

exactly o¤sets the expected e¤ect these adjustments have on the borrower�s expected utility.

4.2 The Optimal Contract with Hidden Savings

So far, we have characterized the optimal contract under the assumption that the borrower cannot save.

Now we show that, given the optimal contract of the problem with no hidden savings, the borrower has no

incentive to save at the solution, and thus the contract of Propositions 4-5 is also optimal in the environment

where the borrower can privately save.

Proposition 6 Suppose that the process at 2 [A; vt] solves

dat = ratdt� �dt� dIt + (dŶt � �dt) +  tdMt (22)

until stopping time � = min(�f ; �d; ��s); where �
f = infft > 0 : at = vtg and �d = infft > 0 : at = Ag,

and where  t is an Ft�predictable process. Then the borrower�s expected utility from any feasible strategy in

response to a contract (�f ; �d; I) is at most a0: Moreover, the borrower attains the expected utility a0 if the

borrower reports truthfully and maintains zero savings.

Proof In the Appendix.

The above proposition shows that the optimal contract of Proposition 5, remain incentive compatible

even if the borrower is allowed to privately save.

19Provided that the solution to (17) is interior.
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4.3 A Numerical Example

In this section we illustrate the features of the optimal contract in a parametrized example. Table 1 shows

the parameters of the model.

Table 1. Parameters of the model

Borrower�s type Home type Housing market Interest rate

� � Y0 A � P0 g � l � r

1 1 0 20 0.6 8 0.12 0.4 0.25 0.05 0.05

The left hand-side of Figure 1 shows the lender�s continuation payo¤ as a function of the borrower�s

continuation utility in the boom phase at time zero and the lender�s continuation payo¤ when the boom

turns into the slump at time zero. For a given continuation utility to the borrower, the lender�s payo¤ in the

boom phase is always greater than it would be in the slump phase. This is because the liquidation value of

the home is higher in the boom phase and keeps growing. In addition, the borrower is less likely to default

in the boom phase. The full homeownership utility for the borrower is also greater in the boom phase, since

it includes the option to sell the home in the future.

The right hand-side of Figure 1 shows the optimal adjustments in the borrower�s continuation utility,

 t, applicable if the boom turns into the slump at time t for t = 0. For t > 0, function  t has a similar

pro�le. For any t � 0, the adjustment is zero at termination, i.e., at = A, while for the full homeowner, i.e.,

at = v0t , the adjustment is negative and equal to the lost value of the the option to sell the home �
�
v0t � v1

�
.

The jump function  t is convex for smaller a�s and concave for bigger a�s. Our simulations for di¤erent

parameters and t � 0 show that the jump function  t always has a form similar to the one on Figure 1.

According to equation (21), the negative jump  (at; t) at the beginning of the slump phase translates into

a positive continuation utility trend "��(Nt) (at; t)dt" in the boom phase.

The optimal jump  t in the borrower�s continuation utility triggered by the slump can be partially

allocated to the loss of the option to sell the home. It is therefore natural to decompose the jump as follows:

 t (at) = �
v0t � v1
v0t �A

(at �A) +
�
 t(at) +

v0t � v1
v0t �A

(at �A)
�
; (23)

where the �rst term represents the reduction in the borrower�s continuation utility proportional to his stake

in the homeownership due to the loss of the option to sell the home. The solid line connecting points (A; 0)

and
�
v0t ;�(v0t � v1)

�
on Figure 2 represents the �rst term of (23).

The actual reduction in the continuation utility is bigger for borrowers with low continuation utility

(less creditworthy), and lower for borrowers with high continuation utility (more creditworthy), all relative

to their stake in homeownership (their continuation utility). Thus, the less creditworthy borrowers receive
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Figure 1: The lender�s value function and the optimal adjustments in the borrower�s continuation utility.

more preferential treatment, or subsidy, compared to more creditworthy ones during the boom phase, however

they receive a larger reduction of their continuation utility in the slump. The more creditworthy borrowers

receive a better treatment in the slump as their continuation utility declines less relative to their stake in

homownership, which can be interpreted as a form of partial insurance against the slump.

These adjustments can be explained by the incentive-compatibility constraints and the dual optimization

objective of the contracting problem: minimization of liquidation ine¢ ciencies and maximization of the value

of the option to sell the home in the future at a higher price.

It is e¢ cient to reduce the chances of costly termination when house prices grow, as the relationship

between the borrower and the lender is more valuable due to possibility of house appreciation (which increases

the future liquidation values and increases the value of option to sell). The preferential treatment of the

borrower during the housing boom, which manifests itself as a positive trend in the borrower�s continuation

utility, accomplishes this task by helping to push away the borrower�s continuation utility further away from

the liquidation boundary. However, the threat of repossession must be real enough in order for the borrower

to share his income with the lender. As a result, it is optimal to increase the chances of repossession during

the slump, by instantaneously decreasing the borrower�s continuation utility, in order to compensate for the

weakened threat of repossession in the boom
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Figure 2: Decomposition of the optimal utility jump  t

Borrower’s expected payoff at

0

­(v0(t)­v1)

A v0(t)

subsidy insurance

jump fÝa t, tÞ

The additional subsidy to the less creditworthy borrowers, relative to their stake in homewonership, is

optimal because it reduces the chances that they default during the boom, which, in turn, maximizes the

value of the option to sell the home in the future at a higher price and avoid ine¢ cient bankruptcy procedure.

On the other hand, a negative jump in the continuation utility at the beginning of the slump phase leads

to the default clustering among the least creditworthy borrowers. This happens because of the borrower�s

limited liability and the incentive-compatibility constraints. The lower subsidy, and thus e¤ectively a form

of insurance of the more creditworthy borrowers, is explained by the fact that more creditworthy borrowers

are not likely to default during the boom, but are more vulnerable during the slump.

Since less creditworthy receive more preferential treatment in the boom phase, bailing out distressed

subprime borrowers in the slump phase is not incentive compatible, as it would encourage irresponsible

�nancial behavior. Indeed, borrowers in good standing would prefer not to pay the mortgage in order to

qualify for the subsidy in the boom phase and then get help in the slump phase.

4.3.1 Utility Gains for the Risky Borrowers

First, we show that home appreciation leads to in�ow of less creditworthy home buyers into the housing

market. Then, we demonstrate that the home ownership generates substantial ex-ante utility gains for these

borrowers who otherwise would be shut out of the housing market. Our �ndings provide theoretical evidence

that the housing boom can cause a growth of the subprime market.

For the other parameters as in Table 1, Figure 3 shows the lowest expected income �, for which the lender
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Figure 3: The lowest expected income �, for which the lender breaks even, as a function of the home price
growth rate g.

breaks even, as a function of the home price growth rate g. Faster house appreciation makes it pro�table to

give loans to borrowers who otherwise would be shut out of the housing market. For example, with the zero

home appreciation (g = 0), only the borrower with � � 0:92 can take a mortgage and purchase the home.

On the other hand, fast home appreciation with g = 12% makes homeownership possible for the borrower

with the mean income � � 0:7.

For the parameters listed in Table 1 (with g = 12%), Figure 4 shows the net utility gain (a0 � A) from

homeownership as a function of the borrower�s mean income �. Borrowers with � < 0:7 cannot qualify to

take the mortgage and purchase the home. However, for borrowers with � > 0:7 buying the home results in

substantial expected utility gains.

Note that the gains are signi�cantly bigger than zero even for the borrower with the lowest qualifying

income due to incentive reasons. Only when the borrower�s expected utility is substantially above his

reservation payo¤ A, the borrower has a credible incentive not to default on the mortgage even when his

income realization is low. Borrowers who are shut out of the housing market cannot get a loan not only

because of their low income but also because of the moral hazard problem.
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Figure 4: Gains from homeownership

5 Implementation

So far, we have characterized the optimal contract in terms of the transfers between the borrower and the

lender and the timing of liquidation, full ownership and selling. In this section, we show that the optimal

contract can be implemented using �nancial arrangements that resemble the ones used in the residential

mortgage market. In particular, we consider an option mortgage with a credit line commitment (or a

negative amortization limit), which has no minimum payment, and comes with a mortgage modi�cation

plan. The de�nition below provides a formal description of this class of mortgage contracts.

De�nition 8 An optional payment mortgage with adjustable credit limit (or negative amortization limit)

consists of:

- Mortgage loan with a time-t credit line commitment CLt ,

- Interest rate rMt charged on the balance, Bt, of the loan,

- Initiation fee F0 charged by the lender at time zero,

- A mortgage modi�cation plan, which includes the percentage balance adjustment BAt and the adjust-

ment of interest rate, applicable at the beginning of the housing slump phase.
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- If the balance exceeds the credit line limit, default occurs, in which case the lender repossesses the home.

Given the de�nition of the mortgage, the balance in the boom phase evolves according to

dBt = rMt Btdt� dŶt + dIt +BAtBtdNt;

while the credit line limit is increased by CALt when the housing market switches from the boom to the

slump.

Since b00(a; 0) � �1 for a 2
�
A; v00

�
, it is optimal for the borrower to use all his initial wealth Y0 as the

downpayment, he has to borrow P0 � Y0 to buy the home at time zero. However, because of the initiation

fee F0, the initial balance will be B0 = P0� Y0+F0. We assume that the initiation fee is chosen so that the

lender breaks even.

The proposition below shows that the optimal contract can be implemented with an optional payment

mortgage with adjustable credit limit (or negative amortization limit).

Proposition 7 The optimal contract can be implemented using an optional payment mortgage with ad-

justable credit limit (or negative amortization limit) with the following parameters:

CLt = vt �A; (24)

CALt = �
�
v0t � v1

�
; (25)

rMt = r + (1�Nt) �
v0t � v1 +  t(v0t �Bt)

Bt
(26)

BAt =
�
�
v0t � v1

�
�  t(v0t �Bt)
Bt

: (27)

The initiation fee F0 solves

b0
�
v00 � P0 + Y0 � F0; 0

�
= P0 � Y0

Under the terms of this mortgage, for time t < �� , it is optimal for the borrower to use all available income

to pay down balance Bt, as long as Bt > 0, and the borrower�s continuation utility at is equal to

at = A+
�
CLt �Bt

�
= vt �Bt (28)

It is optimal to sell the home at time t�s given by equation (3).

Proof In the Appendix.

We will refer to the implementation of the optimal contract given in Proposition 7 as the optimal mort-

gage. The following remarks highlight the properties of the optimal mortgage.
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Remark 1 Credit limit CLt , interest rate �rt, and the mortgage modi�cation plan (BAt and CA
L
t ) do not

depend on the amount borrowed at time zero B0.

Remark 2 When default happens, the lender receives the liquidation value Lt of the home, and the borrower

obtains the value A of his outside option.

Remark 3 The interest rate rMt in the boom phase can be decomposed into two components:

rMt = r + �
v0t � v1
v0t �A| {z }
�rt

+
�( t(v

0
t �Bt) +

v0t�v
1

v0t�A
�
v0t �A�Bt

�
)

Bt| {z }
qt(Bt)

;

where �rt is the same for all borrowers, but depends on the price of the home, while qt (Bt) represents interest

rate adjustment based on the credit quality of the borrower.

Remark 4 The interest rate �rt captures the uncertainty of the housing market. It is increasing with time

in the boom phase. Figure 5 shows interest rate �rt for the parameters listed in Table 1.

Remark 5 The second component of the interest rate qt (Bt) is negative for the borrowers with high debt

balance Bt, i.e., the borrowers with continuation utility at in the subsidy region on Figure 2, and positive

for the borrowers with low debt balance Bt, i.e., the borrowers with continuation utility at in the insurance

region on Figure 2. Thus, more risky borrowers pay lower interest rates.

Remark 6 Proposition 7 says that during the boom it is optimal to increase the interest rates over time and

give more preferential interest rates to the borrowers with a lot of debt (less creditworthy). This �nding is

in line with the fact that many subprime mortgages originated in the US during the period of rapid housing

appreciation at the beginning of the 21st century had teaser rates, which were to be reset to higher rates.

Remark 7 The credit line limit is equal to the full ownership value of the home. It can be decomposed into

two components:

CLt = vt �A = (v1 �A) + (vt � v1);

where (vt � v1) represents the option value to sell the home in the boom phase, and
�
v1 �A

�
is the value of

the home to the borrower in the slump phase.

Remark 8 The credit limit is increasing with the price of the home in the boom phase. However, at the time

when the boom turns to the slump, the credit limit is reduced to v1 �A and stays constant. The reduction of

the credit limit is equal to the lost value of the option to sell the home (v0t � v1).

Remark 9 At the time when the borrower sells the home, the credit limit is equal to the price of the home:

CLt�s = v0t�s �A = Pt�s
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Figure 5: Interest rate �rt as a function of t:

Remark 10 The credit limit increases should not necessarily be automatic. Instead, the borrower may be

required to apply for extra credit whenever he experiences �nancial needs. In this case, CLt can be interpreted

as the upper bound on the credit limit at time t.

Remark 11 The default clustering happens because of the credit limit reduction. The borrowers whose

balance substantially exceeds the new credit limit will default immediately. However, the borrowers whose

balance moderately exceeds the new credit limit will be rescued through the balance reduction and the interest

rate reduction (�rt).

Remark 12 It is optimal for the lender and the borrower to commit to the mortgage modi�cation ex ante.

However, we can also think about it as an anticipated loan modi�cation imposed by the regulators at the time

of the crisis.

Remark 13 The optimal mortgage contract takes a very simple form in the slump phase: the home equity

line of credit (HELOC) with the �xed interest rate and credit limit. This contract is analogous to the optimal

contract in DeMarzo and Sannikov (2006).

Remark 14 The market value of debt Bt equals b0
�
v0t �Bt; t

�
in the boom phase and b1

�
v1 �Bt; �h

�
in

the slump phase.

How does the optimal mortgage implement the optimal contract? The debt balance works as a memory

device that summarizes all the relevant information regarding the borrower�s past income realizations revealed
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through his payments to the lender. The interest rates charged on the balance, along with the credit line

limit, are chosen so that equation (28) always holds. This ensures incentive compatibility of the mortgage

because, according to equation (28), for every dollar paid to the lender (borrowed from the lender) the

borrower�s continuation payo¤ at goes up (down) by the same amount. For example, at any time t the

borrower can consume all his available credit CLt � Bt and default immediately. However, equation (28)

implies that the payo¤ from this deviation is exactly equal to his equilibrium payo¤ at under the optimal

mortgage.

The optimal mortgage provides �nancial �exibility by allowing the borrower to draw on the credit line,

whenever his income is not su¢ cient to make the interest payment. There is no minimum payment require-

ment �a low payment from the borrower translates into a higher balance. As a result, the borrower does

not need to maintain precautionary savings, because the credit commitments by the lender provide a safety

net.

The interest rate rMt charged on the balance is higher in the good states of the housing market, i.e., the

states with high home prices during the housing boom. Although this result may seem counterintuitive, it

can be easily explained by the following argument. The lender is likely to lose money in the bad states, i.e.,

the states with the housing boom ending early. Therefore, in order to break even at time zero, the lender

has to make money in the good states. Hence, the lender increases the interest rate as the home appreciates

during the boom. On the other hand, the borrower can a¤ord to pay higher interest rates and is less likely

to default in the good states, since he can borrow more and more as the home appreciates.

The optimality of the interest rate reduction for the borrowers with a lot of debt is driven by the

maximization of the value of the option to sell the home in the future at a higher price. A lower interest

rate increases the chances that the distressed borrower survives long enough to sell the home and pay back

the loan.

The borrowers with low debt balance (more creditworthy) pay higher interest rate during the boom

and get higher balance reduction in the slump. This result is driven by the minimization of liquidation

ine¢ ciencies: the more creditworthy borrowers are not likely to default during the boom, but are more

vulnerable during the slump.

A peculiar feature of the optimal mortgage is that, in the boom phase, the credit line limit CLt is greater

than the market value of the home Pt, and is increasing with the price of the home. The borrower with

the balance greater than Pt nonetheless has utility gains from continuing to pay down the mortgage and

keeping the home rather than defaulting or selling the home early. Indeed, if the borrower defaults or sells

the home, his continuation utility is equal to his outside option A. On the other hand, if the borrower sticks

with the mortgage, he will keep the house and enjoy utility �ow �. In addition, if he avoids default in the

boom phase, the borrower will sell the home for pro�t at time t�s.
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It is also optimal for the lender to allow the borrower to borrow above the value of the home in the boom

phase. Of course, if the borrower defaults immediately due to either negative income shocks or the arrival

of the slump phase, a higher balance translates into higher losses for the lender. However, by increasing

the borrowing limit in the boom phase, the lender minimizes the chances of default due to negative income

shocks. Avoiding default in the boom phase, in turn, has three positive e¤ects on the value of the mortgage.

First, because the home price grows faster than the borrowing limit, default in the future will be less costly

for the lender. Second, avoiding default in boom phase increases the chance that the borrower will survive

long enough to sell the home at time t�s (at which time C
L
t�s
= Pt�s ) and fully repay the balance. A higher

balance today translates into a higher payo¤ for the lender when the borrower sells the home. Third, the

borrower can receive positive income shocks, fully repay the balance, and become full homeowner.

6 Concluding Remarks

Recent years have seen a rapid growth of the subprime mortgage market followed by the subprime crisis. Be-

cause of high default rates among subprime borrowers and big losses among subprime investors accompanied

by the crisis in the housing market, subprime mortgages have caused a storm of controversy. In this paper,

we show that key features of subprime lending observed in practice are consistent with rational behavior of

both borrowers and lenders. In particular, when house prices are expected to grow, it is optimal to provide

the risky borrowers with a lower initial rate, which is to increase over time, and to increase the borrowers

access to credit. The housing slump results in the tightening of the borrowers�access to credit and default

clustering among the least creditworthy ones. We also �nd that house appreciation makes it pro�table to

give loans to less creditworthy borrowers who otherwise would be excluded from the housing market, and

that these loans could generate substantial ex-ante utility gains for these borrowers.

In terms of policy implications, our model suggests that bailing out the most distressed borrowers in the

slump phase is not incentive compatible, as it encourages irresponsible �nancial behavior. On the other hand,

it makes sense to help borrowers who were in good standing before the crisis by reducing their mortgage

balance and interest rate.

Our analysis is based on the assumption of full rationality of borrowers and lenders. Thus, it cannot be

applied to a situation with irrational borrowers or lenders.

The optimal contracts do not allow borrowers to re�nance their mortgages with another lender. O¤ering

this option would limit the ability to provide the borrower incentives to repay debt, resulting in a decrease

of e¢ ciency of the contract. Therefore, our results lend support to prepayment penalties on re�nancing.20

For tractability we considered an environment with a constant interest rate. In a complementary study

Piskorski and Tchistyi (2007) study the optimal mortgage design in a constant house price setting with

20According to Standard & Poor�s, survey more than 80% of subprime mortgages carry prepayment penalties.
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volatile and privately observable income of the borrower and a stochastic market interest rate. They show

that the optimal mortgage takes form of either an option ARM, and that default rates and interest rates

correlate positively with the market interest rate. We believe that the results of both papers would be

preserved in an environment featuring, together, stochastic house prices and stochastic market interest rate.

This is because the forces and trade-o¤s that shape them would also be present in a richer environment.21

We also ignored in�ation, which is an important consideration for home buyers.22 However, as long as

in�ation a¤ects the borrower�s income and the liquidation value of the home equally, it would not change

the properties of the optimal mortgage in real terms. We also did not allow for contract renegotiations,

because a possibility of renegotiation would lead to a suboptimal contract. In practice, lenders should be

able to commit to the terms of a mortgage contract, as the competition among them would drive those who

are unable to do so out of the market.

There are a number of research directions one might pursue from here. One of them is to develop a

general equilibrium model of the "housing bubble." The �ndings of this study let us suggest that optimal

features of mortgage lending can contribute to the "housing bubble." During the housing boom, the in�ow

of subprime borrowers into the housing market may help sustain house appreciation, possibly driving home

prices above the equilibrium level. However, default clustering among risky borrowers during the housing

slump may exacerbate the crisis in the housing market. In such a model, features of lending that are optimal

at the individual level may have negative consequences at the aggregate level, since the borrower and the

lender might not take into account the potential negative externalities that their individual optimal contract

might impose. Such a model would allow addressing welfare consequences of risky mortgage lending and

social costs and bene�ts of its potential regulation.

21Studying formally an optimal mortgage design in such an environment would be challenging due to a number of state
variables involved.
22See, for example, Campbell and Cocco (2003).
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Appendix

Proof of Proposition 1

Let � be the length of the period. The optimal selling time ts under full homeownership conditional on

prices growing is the smallest t such that:

Pt(1� s) +A � e��r
�
�(�+ �) + e���(e�gPt +A) + (1� e���)

�
�(�+ �)

1� e��r

��
;

which yields:

e�r [Pt +A] � �(�+ �) + e���e�gPt + e���A+ (1� e���)
�
�(�+ �)

1� e��r

�
:

The above implies that

t�s = inf

�
t < � : (e�r � e�(g��))Pt + (e�r � e���)A �

(2� e��r � e���)�(�+ �)
1� e��r

�
;

that is

t�s = inf
n
t < � : (e

�r�e�(g��)�1 + e�(g���r))P t+(e
�r�e���)� � (2� e��r�e���)�(�+ �)

o
:

Taking limit as �! 0, we obtain:

(r + � � g)Pt�s + (r + �)A =
(r + �)(�+ �)

r
:

As A = �
r , we have that

Pt�s =
�

r
�
1� g

r+�

� :
This implies that the optimal selling time satis�es

t�s =
1

g
log

0@ �

r
�
1� g

r+�

�
P0

1A ;

provided that the solution exists. Therefore, a sale will occur at 0 < t�s <1; conditional on prices growing,

i¤:

1 <
�

r
�
1� g

r+�

�
P0

<1:
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We also note that the value of full homeownership for 0 � t < ts is given by:

v0t = A+

Z t�s

t

e�r(s�t)�ds+ e�r(t
�
s�t)Et

�
(1�Nt�s )e

gt�sP0 +Nt�s
�

r

�
;

which yields:

v0t = A+
h
1� e�(r+�)(t

�
s�t)

i �
r
+ e�(r+�)(t

�
s�t)egt

�
sP0:

We remember that the value of homeownership for any t � �h is equal to

v1 = A+
�

r
=
�+ �

r
:

Using this we note that for 0 � t � t�s :

v0t = v1 + e�(r+�)(t
�
s�t)

�
Pt�s �

�

r

�
| {z }
value of option to sel l at t

: �

Proof of Lemma 1

Consider any incentive compatible contract (�f ; �d; I; C; Ŷ ). We prove the lemma by showing the existence

of the new incentive-compatible contract that that has the following properties:

(i) the borrower gets the same expected utility as under the old contract (�f ; �d; I),

(ii) the borrower chooses to reveal the cash �ows truthfully,

(iii) the borrower maintains zero savings,

(iv) the lender gets the same or greater expected pro�t as under the old contract (�f ; �d; I).

We haven�t included explicitly the borrower�s selling decision in the de�nition of his strategy. As we

discussed in Section 2 the optimal selling time is determined by equation (2). Equation (2) simply states

that it is optimal for the borrower to sell the home whenever the value of his outside option A plus the

proceeds from the sale exceed his continuation utility under full homeownership (which happens at t�s).

Consider the candidate incentive compatible contract (� 0f ; � 0d; I 0; C; Y ) where

� 0f (Y; P ) = �f (Ŷ (Y; P ); P );

� 0d(Y; P ) = �d(Ŷ (Y; P ); P );

I 0(Y; P ) = C(Y; P ):
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We observe that the borrower�s consumption and the termination time under the new contract and the

proposed borrower�s response strategy, (C; Y ); are the same as under the old contract, so he earns the same

expected utility, which establishes property (i). Also, by construction, the proposed response of the borrower

to the contract (� 0f ; � 0d; I 0) involves truth-telling and zero savings, which establishes properties (ii) and (iii).

Now we will show that (C; Y ) is the borrower�s incentive compatible strategy under the contract (� 0f ; � 0d; I 0):

We note that the strategy (C; Y ) yields the same utility to the borrower under the contract (� 0f ; � 0d; I 0) as

the incentive compatible strategy associated with the contract (�f ; �d; I). Therefore, to show that (C; Y ) is

the borrower�s incentive compatible strategy under the contract (� 0f ; � 0d; I 0); it is enough to show that if any

alternative strategy (C 0; Y 0) is feasible under the contract (� 0f ; � 0d; I 0), then C 0 is also feasible under the old

contract (�f ; �d; I).

It follows that if C 0 is feasible under the new contract, then the borrower has nonnegative savings

if he reports Ŷ (Y 0(Y; P ); P ) and consumes C 0 under the old contract, and thus C 0 is also feasible un-

der the old contract (�f ; �d; I). To see this we note that that the borrower�s savings at any time t �

min(� 0f (Y 0(Y; P ); P ); � 0d(Y 0(Y; P ); P ); t�s) = min(�f (Ŷ (Y 0(Y; P ); P ); �d(Ŷ (Y 0(Y; P ); P ); t�s) under the old

contract (�f ; �d; I) and the borrower�s strategy (C 0; Ŷ (Y 0(Y; P ); P )) are equal to

Z t

0

e�(t�s)
h
dYs � dŶs(Y 0(Y; P ); P ) + dIs(Ŷ (Y 0(Y; P ); P )� dC 0s(Y; P )

i
| {z } =

Savings under the old contract, the borrower�s strategy (C0;Ŷ (Y 0(Y;P );P )), and the realized (Y; P )Z t

0

e�(t�s)
h
dY 0s (Y; P )� dŶs(Y 0(Y; P ); P ) + dIs(Ŷ (Y 0(Y; P ); P )� dCs(Y 0(Y; P ); P )

i
| {z }

(�0) Savings under the old contract given the borrower�s strategy (C;Ŷ (Y 0(Y;P );P )), and the realized (Y 0(Y;P );P )

+

Z t

0

e�(t�s)

264dYs � dY 0s (Y; P ) + dCs(Y 0(Y; P ); P )| {z }
=I0(Y 0(Y;P );P )

� dC 0s(Y; P )

375
| {z }

(�0) Savings under the new contract, the borrower�s strategy (C;Y 0(Y;P )), and the realized (Y; P )

� 0:

Finally, to complete the proof, we need to show that under the new contract (� 0f ; � 0d; I 0) the lender gets

the same or greater expected pro�t as under the contract (�f ; �d; I). Note that under the new contract the

lender does savings for the borrower. As by assumption the lender�s interest rate process is always greater

or equal from the saving�s interest rate available to the borrower (i.e. r � �); the lender�s expected pro�t

improves by

E0

�Z �

0

e�rt (r � �)Stdt
�
� 0;

where, � = min(� 0f (Y; P ); � 0d(Y; P ); t�s) = min(�
f (Ŷ (Y ); P ); �d(Ŷ (Ŷ (Y ); P ); t�s) which shows (iv). �
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Proof of Proposition 5

Let b0 be a C2 function (in a) that solves:

rb0(a; t) =
@b0(a; t)

@t
+ �+ (ra� � �  (a; t)�)b00(a; t) +

1

2
�2b000(a; t) + � (b1(a+  (a; t); t)� b0(a; t)) (29)

when a is in the interval [A; v0(t)]; and b00(a; r) = �1 when a > v0(t), with boundary conditions b0(A; t) = Lt

and b0(v0(t); t) = 0; where

 (a; r) =

8>>>>>><>>>>>>:

is a C1 (in a) solution to b00(a; t) = b01(a+  ; t) for all (a; t)

for which the solution is such that  (a; t) > A� a

otherwise it is equal to A� a

:

First, the concavity of function b0(�; t) can be established as in Piskorski and Tchistyi (2007) using the

fact that the function b1 is concave (Proposition 4).

Now for any incentive compatible contract (�f ; �d; I; C; Y ) and t � min(�h; �) we de�ne:

Gt =

Z t

0

e�rt(dYs � dIs) + e�rtb(at; t); (30)

where at evolves according to (8). We note that the process G is such that Gt is Ft�measurable.

We remember that under an arbitrary incentive compatible contract, (�f ; �d; I; C; Y ), at evolves for

t � min(�h; �f ; �d) :

dat = (
at � � �  t�) dt� dIt + �tdZt +  tdNt:

where �t � � m-a.s. for any 0 � t � � . From Ito�s lemma we get that

db0(at; t) =
@b0(a; t)

@t
+

�
(
at � � �  t�)b00(at; t) +

1

2
�2t b

00
0(at; t)

�
dt� b00(at; t)dIt

+�tb
0
0(at; t)dZt + [b1(at +  t; t)� b0(at; t)] dNt: (31)

We note that (30) implies

ertdGt = dYt � dIt + db0(at; t)� rb0(at; t);

Substituting from (31) for db0(at; t) in the above and using dYt = �dt+ �dZt yields

ertdGt =
@b0(a; t)

@t
+

�
�+ (
at � � �  t�)b00(at; t) +

1

2
�2t b

00
0(at; rt)� rb00(at; t)

�
dt� rb0(at; t)

�(1 + b00(at; t))dIt + (� + �tb00(at; t)) dZt + [b1(at +  t; t)� b0(at; t)] dNt
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Substituting from (29) for rb0(at; t) in the above yields

ertdGt =

�
1

2

�
�2t � �2

�
b000(at; t) + �b

0
0(at; t) [ (at; t)�  t]

�
dt� (1 + b00(at; t))dIt

+(� + �tb
0
0(at; t)) dZt + [b1(at +  t; t)� b1(at +  (at; t); t)] dNt;

whenever a 2 [A; v0t ]: From the above we have that for any 0 � t < min(�h; �) :

ertdGt �
�
1

2

�
�2t � �2

�
b000(at; t)

�
| {z }

�0

dt�(1 + b00(at; t))dIt| {z }
�0

+� ([b1(at +  t; t)�  tb00(at; t)]� [b1(at +  (at; t); t)�  (at; t)b00(at; t)])| {z }
�0

dt

+(� + �tb
0
0(at; t)) dZt + [b1(at +  t; t)� b1(at +  (at; t); t)] dMt; (32)

where dMt = dNt � �dt: The �rst component of the RHS of the above inequality is less or equal to zero

because the function b0 is concave and �t � � for any t � min(�h; �): The second component is less or equal

to zero because b00 � �1 and dIt � 0: The third component is less or equal to zero because, by de�nition,

the function  is a solution to

max
 �A�a

[b1(a+  ; t)�  b00(a; t))] :

The condition (32) implies that the process G is an Ft�supermartingale up to time t = min(�h; �), where

we recall that Z and M are martingales. It will be an Ft�martingale if and only if, for t > 0; �t = � m-a.s.,

 t =  (at; t); and dIt = 0.

Let

b(a; t) =

8<: b0(a; t) for a 2 [A; v0t ] and t < �h

b1(a; �
h) for a 2 [A; v1] and t � �h

:

We now evaluate the lender�s expected utility for an arbitrary incentive compatible contract (�f ; �d; I; C; Y ),

which equals

E

�Z �

0

e�rs(dYs � dIs) + e�r� b(a� ; �)
�
:

We note that for � = ��s we have that b(a� ; �) = v0t�s � at�s , for � = �d we have that b(a�d ; �d) = L�d as

a�d = A; and for � = �f we have b(a�f ; �f ) = 0 as a�f = v�f . Using this, and the de�nition of process G;
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we have that under any arbitrary incentive compatible contract (�f ; �d; I; C; Y ) and any t 2 [0;1):

E

�Z �

0

e�rs(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]

�
=

E [Gt^� ] + E

�
1t��

�Z �

t

e�rs(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]� e�rtb(at; t)

��
�

b0(a0; 0) + E

�
1t��

�Z �

t

e�rs(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]� e�rtb(at; t)

��
=

b0(a0; 0) + e
�rtE

�
1t��

�
E

�Z �

t

er(t�s)(dYs � dIs) + er(t��)[1�=��sL
S
� + 1�=�dL� ] jFt

�
� b(at; t)

��
; (33)

where, the inequality follows from the fact that Gt^� is supermartingale and G0 = b0(a0; 0): We note that

in the above

E

�Z �

t

er(t�s)(dYs � dIs) + er(t��)[1�=��sL
S
� + 1�=�dL� ] jFt

�
<
�

r
+ Pt�s �

�
at �

�

r

�
;

as the RHS of the above inequality is the upper bound on the lender�s expected pro�t under the �rst-best

(public information) contract. Using the above inequality in (33) we have that

E

�Z �

0

e�rs(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]

�
� b0(a0; 0)+e

�rtE

�
1t��

�
�

r
+
�

r
+ Pt�s � at � b(at; t)

��
:

Using b0(a; t) � �1, we have that, for any a � A; �a � b(a; t) � �A � Lt. Applying this to the above

inequality yields

E

�Z �

0

e�ts(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]

�
� b0(a0; 0) + e

�rtE

�
1t��

�
�

r
+
�

r
+ Pt�s �A� L

��
:

Taking t!1 yields

E

�Z �

0

e�ts(dYs � dIs) + e�r� [1�=��sL
S
� + 1�=�dL� ]

�
� b0(a0; 0):

Let (�f�; �d�; I�; C�; Y ) be a contract satisfying the conditions of the proposition. We remember that this

contract is incentive compatible as it is feasible and �t = � � � for any t � � . Also under this contract the

process Gt is a martingale until time � (note that b0(a; t) is bounded). So we have that

E

"Z ��

0

e�Rs(dYs � dI�s ) + e�r�
�
[1�=��sL

S
� + 1�=��dL� ]

#
=

b0(a0; 0) + e
�rtE

"
1t���

 
E

"Z ��

t

er(t�s)(dYs � dI�s ) + er(t��
�)[1��=��sL

S
� + 1��=��dL� ] jFt

#
� b(at; t)

!#
:
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Taking t!1 and using

lim
t!1

e�rtE

"
1t���

 
E

"Z ��

t

er(t�s)(dYs � dI�s ) + er(t��
�)[1��=��sL

S
� + 1��=��dL� ] jFt

#
� b(at; t)

!#
= 0;

yields

E

"Z ��

0

e�rs(dYs � dI�s ) + e�r�
�
[1��=��sL

S
� + 1��=��dL� ]

#
= b(a0; 0): �

Proof of Proposition 6

Let (C; Ŷ ) be any borrower�s feasible strategy given the contract � = (�f ; �d; I). The borrower�s private

saving�s account balance, S, under the strategy (C; Ŷ ) and the contract � grows, for t 2 [0; � ]; according to

dSt = �Stdt+ (dYt � dŶt) + dIt � dCt; (34)

where we remember that � � r. De�ne the process V̂ as

V̂t =

Z t

0

e�rsdCs +

Z t

0

e�rs�ds+ e�rt(St + at);

From the above it follows that

ertdV̂t = dCt + �dt+ dSt � rStdt+ dat � ratdt

Using (22) and (34) yields

ertdV̂t = (�� r)Stdt+ (dYt � �dt)dt+  tdMt =

(�� r)Stdt+ �dZt +  tdMt: (35)

Noting that ert � 1 for any t � 0, so we have that

dV̂t � (�� r)Stdt+ �dZt +  tdMt:

Recall that Z and M are martingales, � � r, and that the process S is nonnegative. So it follows from the

above that the process V̂ is supermartingale up to time � (note that a is bounded from below). Using this

and the fact that by de�nition a�d = A; a�f = v�f ; a��s = ASt�s (at�s ) we have that for any feasible strategy of

the borrower,

a0 = V̂0 � E
h
V̂�

i
= E

�Z �

0

e�rsdCs +

Z �

0

e�rs�ds+ e�r� (S� + 1�=��sA
S
� + 1�=�f v� + 1�=�dA)

�
; (36)
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The right-hand-side of (36) represents the expected utility for the borrower under any feasible
�
C; Ŷ ; S

�
.

This utility is bounded by a0. If the borrower maintains zero savings, St = 0, reports cash �ows truthfully,

dŶt = dYt, then V̂ is a martingale up to time � , which means that (36) holds with equality and the borrower�s

expected utility is a0. Thus, this is the optimal strategy for the borrower. �

Proof of Proposition 7

Consider the candidate mortgage contract. Under this contract the borrower�s balance on the credit line

evolves according to

dBt = rMt Btdt� dŶt + dIt +BAtBtdNt; (37)

when Bt � CLt ; while the borrower�s savings evolve according to

dSt = �Stdt+ dIt +
�
dYt � dŶt

�
� dCt; (38)

where It represents cumulative withdrawal of money from the credit line by the borrower.

Let (C; Ŷ ; S) be any borrower�s feasible strategy under the proposed mortgage contract. For any feasible

borrower�s strategy (C; Ŷ ; S) de�ne a process V̂ as

V̂t =

Z t

0

e�rs(dCs + �ds) + e
�rt (~at + St) ; (39)

where

~at = vt �Bt (40)

It follows from (37), (40), and (24)-(27) that ~a evolves as

d~at = (r~at � � � �(Nt) (~at; t)) dt+ (dŶt � �dt)� dIt +  (~at; t)dNt (41)

Using (1), (38), (39), (41) yields

ertdV̂t = dCt + �dt+ d~at + dSt � r~atdt� rStdt

= �dZt +  (~at; t)dMt + (�� r)Stdt

Recall that Z and M are martingales, � < r, and that the process S is nonnegative. So it follows from the

above that the process V̂ is a supermartingale up to time �
�
C; Ŷ ; S

�
= min(��s; �

f (C; Ŷ ; S); �d(C; Ŷ ; S))

(note that ~a is bounded). Using this and the fact that by de�nition ~a�d = A and ~a�f = vt we have that for
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any feasible strategy of the borrower, (C; Ŷ ; S);

A+ CL0 �B0 = a0 = ~a0 = V̂0 � E
h
V̂�(C;Ŷ ;S)

i
= E

"Z �(C;Ŷ ;S)

0

e�rs(dCs + �ds) + e
�r� (S�(C;Ŷ ;S) + 1�(C;Ŷ ;S)=��s

AS� + 1�(C;Ŷ ;S)=�f v� + 1�(C;Ŷ ;S)=�dA)

#
(42)

The right-hand-side of (42) represents the expected utility for the borrower under any feasible strategy�
C; Ŷ ; S

�
, given the terms of the mortgage. This utility is bounded by A+CL0 �B0; where B0 is the initial

draw on the credit line. If the borrower maintains zero savings, St = 0, uses all its cash �ow for repayment

till his mortgage balance reaches zero, dŶt = dYt, so that dCt = dIt = dI�t = 0; then V̂ is a martingale,

which means that (42) holds with equality and the borrower�s expected utility is A + CL0 � B0. Thus, this

is the optimal strategy for the borrower.

Reproducing the above argument for the borrower�s optimal strategy, (C; Ŷ ; S) = (I�; Y; 0); and the

process V̂t0 , t0 � �(I�; Y; 0); de�ned as

V̂t0;t =

Z t

t0
e�r(s�t

0)(dCs + �ds) + e
�r(t�t0)~at; t � t0; (43)

yields that, for any 0 � t � �(I�; Y; 0); ~at is equal to the borrower�s continuation utility under the proposed

mortgage contract with the initial expected utility for the borrower given by a0 = A + CL0 � B0, which

establishes (28).

Under the proposed mortgage contract and the borrower�s optimal strategy, the lender�s expected utility

equals

E

"Z �(I�;Y;0)

0

e�rt(dYt � dI�t ) + e�r�(I
�;Y;0)[1�(I�;Y;0)=��sL

S
� + 1�(I�;Y;0)=�dL� ] jF0

#
;

where

�(I�; Y; 0) = ��;

as the borrower�s continuation utility, ~a, evolve according to the equations (21) in the boom and (13) in

the slump, e.g. as in the optimal contract. Therefore, we conclude that the proposed mortgage contract

implements the optimal contract. �
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