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Abstract

We study the problem of mortgage loan pricing in the presence of house
price changes and borrower default. We use an equilibrium model to show
how lenders vary both the loan price and the required loan-to-value ratio in
response to changes in assumptions about the sharing of deadweight default
costs. The model generates a set of testable predictions for risk and return
relationships in mortgage markets, as well as predictions for optimal default
by borrowers.

Until the last several years the problem of valuing mortgages and mortgage-
based securities was essentially that of pricing prepayment risk. Suboptimal ex-
ercise by borrowers of the call option embedded in mortgages (paying off the loan
when interest rates have risen or failing to do so when they have dropped) raises
the value of the contract to the lender (or to a subsequent purchaser of the loan)
relative to the value implied by optimal exercise. The problem for purchasers of
mortgages was to estimate the extent of the increase in value.

The other major option granted to borrowers in the mortgage contract, that
of defaulting, was largely ignored in such valuation exercises. This was so for
two reasons: first, most mortgages and mortgage-backed securities were insured
by government agencies, so investors could ignore default risk. Second, lenders

∗We are indebted to seminar particpants at UCLA and the China Economics and Manage-
ment Academy for comments.
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rarely financed more than 80% of home purchase prices. Accordingly, borrowers
in financial difficulty could almost always sell the home and recover the equity,
rendering default unnecessary.

In the current US financial crisis these priorities have been reversed. Fluctua-
tions in prepayment behavior are not a major issue now. However, the increasing
use of subprime mortgages, often with initial loan-to-value ratios around 100%,
combined with house price drops on the order of 15% or more, have left mil-
lions of homeowners with negative equity (here equity is temporarily identified
as house value less the book value of the mortgage; see the discussion below),
possibly creating a financial incentive to default. To the extent that the resulting
wave of defaults involved uninsured mortgages, it caused serious problems for fi-
nancial institutions around the world. It is true that many of the defaults have
been on mortgages insured by government-sponsored enterprises, in which case
the investors are not at risk. However, in these cases the government-sponsored
enterprises are very much at risk. At this writing high default rates have resulted
in the US government taking over Fannie Mae and Freddie Mac. The survival of
these agencies in their present form is questionable.

Financial institutions that invest in mortgage-backed securities use formal
models to value the impact of the prepayment and default options on mortgages.
Most Wall Street mortgage valuation models are “reduced-form” models: future
default rates are estimated by extrapolating past default rates, using regression
methods to correct for changes in the environment. Such methods are reliable
only when changes in the environment are minor, so that the past is a reliable
guide to the future. That condition has failed spectacularly over the last several
years: the current environment of high loan-to-value mortgages combined with
sharply declining collateral values is entirely new. There is no reason to presume
that reduced-form models will give accurate estimates of default risk under such
circumstances, and it appears that they have not done so. Using such models,
bond rating agencies assigned triple-A ratings to the senior tranches of many
mortgage-backed securities that subsequently suffered major losses in value.

There exist two possible interpretations. The first is that the models are cor-
rect, but events have occurred that lie in the extreme tails of the assumed distribu-
tions of exogenous variables: if the shock is two or three standard deviations from
the mean, even a correct model will give dramatically incorrect predictions. How-
ever, it is unlikely that this is the whole story. It appears as if the reduced-form
models used by the rating agencies and many investors greatly underestimated
default rates, even conditional on the behavior of real estate prices. At any rate,
the opinion that this is the case is frequently expressed.

“Structural” mortgage valuation models specify a setting in which the finan-
cial consequences to a borrower of defaulting or not defaulting on a mortgage are
explicitly modeled. They incorporate the assumption that the borrower defaults
when it is optimal to do so, and only then. Structural valuation models, unlike
reduced-form models, can in principle give accurate results even in new environ-
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ments, such as that we now face. The most sophisticated structural valuation
models—Downing, Stanton and Wallace [2], for example—analyze how changes
in home prices and interest rates affect both the prepayment and the default
options. The authors just cited found that the value of each option depends im-
portantly on the existence of the other. They concluded (in 2005) that changes
in house prices were a major determinant of the value of both options; no doubt
they would put that conclusion more strongly today.

For the purpose of analyzing the current crisis our primary interest is in the
default option rather than the prepayment option. When equity is negative, as
is frequently the case now, prepayment is often not possible. Further, we will be
assuming constant interest rates, removing a major motivation for refinancing.
However, we cannot entirely neglect the prepayment option in analyzing sub-
prime mortgages because, as discussed below, many borrowers have been willing
to borrow using expensive subprime mortgages in the expectation of refinancing
on more favorable terms in the near future when, due to capital gains, equity will
have risen. It follows that the valuation of subprime mortgages may be strongly
affected by existence of the prepayment option, particularly if prepayment costs
are low.

The model that we will be using incorporates this motive for prepayment: if
house prices rise following initiation of a mortgage, default becomes more unlikely.
It follows that the actuarial cost of the default option is less than what borrowers
are actually paying, since borrowers’ periodic payments are based on the (higher)
default probability as of the mortgage initiation date. By refinancing borrowers
can reset this cost to the appropriate level.

Finally, we simplify by assuming that mortgages are perpetuities that have no
scheduled payment of principal. Since almost all the early payments on 30-year
mortgages consist of interest, this specification does not involve major distortion.

We also will take house prices to be exogenous, thereby shutting down any
link between mortgage underwriting practices and house prices. This is probably
a major problem: it appears likely that lax underwriting standards were a major
contributor to the price runup that occurred in the decade prior to 2006. Deter-
mining the impact of changes in mortgage underwriting standards on house prices
is a major research topic, but one best left for further work.

The focus in this paper, then, is on how different possible mortgage terms
alter the effect of house price changes on the incentives to default, and thereby
on the valuation of mortgages and mortgage-based securities. A major exoge-
nous specification will be the mortgage payment per dollar of house value, the
major determinant of loan-to-value ratios (again, the assumption of exogeneity
is questionable). For obvious reasons the size of the mortgage payment affects
the likelihood and timing of default. Initially attention is restricted to “voluntary
default”—default that occurs as an optimal choice on the part of the borrower
rather than as a response to cash shortage. This specification is less restrictive
than it might otherwise appear inasmuch as both types of default are strongly
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influenced by house price changes, which are modeled here (as noted above, a
borrower in financial difficulty will refinance or sell in preference to defaulting if
house prices are increasing, but cannot do so otherwise).

Finally, it is assumed that borrowers are homogeneous, implying that we do
not incorporate measures of borrowers’ ability to repay, such as FICO scores, in
the analysis. This specification too is not as restrictive as it might otherwise
appear—despite the widespread discussion in the financial press of “Ninja loans”
(no income, no job, no assets), it turns out that average credit scores of subprime
borrowers have remained approximately constant over the past five years (Jaffee
[3]). The reason is clear: rising real estate prices implied that even the weakest
borrowers could avoid default by refinancing or selling, implying that their FICO
failed to provide an accurate measure of risk. The implication is that taking initial
loan-to-value ratios as a proxy for underwriting standards generally is not too
bad an approximation. Our model, then, relates default to loan terms and house
prices. This is no doubt a misspecification, but other studies (Doms, Furlong and
Krainer [6], Gerardi, Shapiro and Willen [5], for example) have found that, taking
loan terms as given, house price changes are the most important determinant of
default frequencies.

1 Default and Mortgage Valuation

Existing structural mortgage valuation models are based on Merton’s classic paper
[7]. Several modifications of Merton’s framework are necessary if it is to be applied
to mortgage valuation. First, Merton assumed that the defaultable asset is a
discount bond, and that there exists a fixed time horizon. Thus the problem for
the borrower was to decide whether or not to default, and if the decision is to
default, whether or not to default before the horizon date. As Merton noted, the
absence of coupon payments implies that in this setting the default decision is
formally identical to the problem of whether to exercise an American call option
on a non-dividend-paying stock. Early exercise is never optimal.

This analysis is correct, but not directly applicable to real estate finance.
Mortgages involve periodic payments. The homeowner (or investor) weighs the
mortgage payment on one hand against the housing services (or rent) and the
prospects for capital gain on the other. He defaults if the former outweighs the
latter. Modifying Merton’s framework to allow for periodic mortgage payments
renders the default decision problem formally identical to that of whether and
when to exercise an American call option on a dividend-paying stock. In that
case early exercise is sometimes optimal. Contemporary applications of Merton’s
model to mortgage valuation, including ours, implement this respecification.

As far as we can determine, existing structural default models take no account
of the housing services or rent that may, or may not, offset the mortgage pay-
ments. This is obviously a major omission, and it is unlikely that quantitative
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applications can arrive at accurate representations of the default decision if they
take no account of housing services. We include a variable representing housing
services, and assume that it is proportional to house value. The specification of
proportionality is surely an oversimplication, but at least housing services enter
the model, so the model makes economic sense.

Existing analyses characterize optimal mortgage default in a setting that takes
the mortgage interest rate and other mortgage terms as given. In contrast, we
recognize that borrowers must pay for the default option in the form of a mortgage
interest rate that exceeds the risk-free interest rate, and that the magnitude of
the excess of the mortgage interest rate over the risk-free rate can be determined
as an implication of the optimal default decision.

Analyses of optimal exercise of finance options assume that exercise is free. In
the real estate setting that assumption may not be acceptable: both borrowers
and lenders may incur costs upon default that they can avoid if borrowers do not
default. These costs are difficult to measure directly, but they affect mortgage
pricing, and therefore can be estimated indirectly. We extend the analysis to
allow for such default costs.

Models of optimal default, such as that of Merton and the model of this paper,
contain an implication that, we believe, has not been sufficiently appreciated: that
the economic value of a mortgage cannot be identified with its book value. Using
book value as a determinant of default appears superficially to be an innocuous
specification, at least when interest rates are constant and default is costless: a
natural intuition would be that when default is costless existence of the default
option is irrelevant for valuation of the mortgage since the lender suffers no loss
at the time of default. If so, the value of the mortgage should be unaffected by
changes in house prices. Therefore, it would seem, if mortgages are modeled as
perpetuities, default optimally occurs when the house price equals the initial value
of the mortgage.

In contrast to this intuitive argument, when applied to the real estate setting
Merton’s analysis implies that the economic value of a mortgage follows a differ-
ential equation. As we show here, the constants of integration are such that the
value of the mortgage depends on the value of the house. This is so even when
costs of default are zero and interest rates are deterministic. If the mortgage
is modeled as a perpetuity, its economic value differs from its book value after
the origination date, due to appreciation or depreciation of the underlying asset.
An important implication is that optimal default does not occur as soon as the
book value of equity—the market value of the collateral minus the book value of
the mortgage—becomes negative. Rather, there exists a range of house values
in which the book value of equity is negative but homeowners optimally do not
default. Only when the book value of equity passes a threshhold does default
occur. This will become clear in the discussion below.
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1.1 The Model Setting

We assume that housing services x follow a geometric Brownian motion:

dx = αxdt+ σxdz, (1)

where α is the average proportional increase over time in the level of housing
services, σ is the associated volatility and z is a standard Brownian motion. As
applied to investment property, x can be interpreted as the difference between
rental income and costs to the owner of utilities, repairs, and so on.

It is assumed that the price of housing equals the expectation of future housing
services discounted at rate ρ :

P0 =

∫ ∞
t=0

e−ρtE(x(t))dt =
x0

ρ− α
, (2)

where x(0) = x0. Here E is the expectations operator. As a scale choice, we
will set x0, the value of housing services at the date the mortgage is initiated,
equal to 1 henceforth. Thus mortgages are initiated when the price of housing
equals 1/(ρ− α). The valuation model (2) can be justified either by interpreting
the probability measure in eq. (1) as the risk-neutral measure or more simply by
directly assuming that agents are risk neutral. The latter assumption is acceptable
here because we are not interested in the effects of risk aversion on mortgage
valuation. As noted, mortgages are assumed to be perpetuities (conditional on
nonoccurrence of default), and to be indexed by the level of the periodic payment
c, which we take as exogenous. For the most part we assume that mortgages are
not prepayable.

The cash supplied by the lender toward the purchase equals the present value
of the mortgage payments, making appropriate allowance for default as described
below. Thus low (high) loan-to-value mortgages can be generated by setting c
at a low (high) level. The borrower is assumed to supply the remainder of the
purchase price as a down payment.

1.2 Costless Default

It is assumed in this section that default is costless to both the borrower and the
lender. Thus the borrower is assumed to be able to terminate the mortgage at any
time by turning over the house to the lender. He incurs no costs due, for example,
to reduced access to credit or moving costs. In turn, the lender is assumed to
suffer no loss of value when the house is turned over to him.

We begin by demonstrating intuitively the error pointed out above arising from
assuming that the value of the mortgage is a constant independent of the house
value. The incorrect analysis is represented in Figure 1. The mortgage is initiated
at x0 = 1, and the cash supplied by the lender equals M(1). The borrower’s down
payment E(1) equals P (1)−M(1), where P (x) equals house value when housing
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services equal x. The line M(x) is taken to be flat in the region x > x∗, reflecting
the assumption that the economic value of the mortgage after the origination date
is independent of house value, and therefore equals its book value. Default is held
to occur when the borrower’s equity reaches zero, which occurs at x∗, where x∗
satisfies P (x∗) = M(x∗).

To see the error in this analysis, observe that when x equals x∗ the borrower is
represented as being indifferent between defaulting and not defaulting. However,
this cannot be the case—at x = x∗ the borrower is in a heads-I-win, tails-you-lose
situation: if the house price drops below x∗ he can default immediately and avoid
a loss, whereas if it increases his equity becomes strictly positive. This asymmetry
implies that the borrower will strictly prefer not defaulting to defaulting, contra-
dicting the assumption implied by the diagram that the borrower is indifferent
between defaulting and not defaulting.

This effect can be avoided if we recognize that the value of the mortgage
depends on the value of the house even though there are no costs of default. Thus
we must distinguish the economic value of the mortgage, which depends on x,
from its book value, which does not. Further, the value of the mortgage as a
function of x cannot have a kink at x = x∗, since it is the kink that causes the
anomaly at x = x∗. To avoid the kink the value of the mortgage as a function of
x must be tangent to the value of the collateral at the default point. It follows
that existence of the default option implies that the value of the mortgage is an
increasing function of x even when default is costless.

We now provide a correct determination of the optimal default point, from
which we can compute the value of the mortgage and the homeowner’s equity as
a function of house value. Define E(x) as the owner’s equity in the house (house
value minus economic mortgage value). Absence of arbitrage implies that the
discounted gain on the homeowner’s equity follows a martingale. This martingale
property implies that E(x) satisfies the stochastic differential equation

ρE(x)dt = E [dE(x)] + (x− c)dt, (3)

where dt is the increment in time and c is the periodic payment on the mortgage.
Here x− c, which can be either positive or negative, is the analogue of dividends
in a stock valuation expression, and dE(x) is the analogue of capital gain. Using
Ito’s lemma, (3) leads to the (deterministic) differential equation

1

2
x2σ2E ′′(x) + αxE ′(x)− ρE(x) = −x+ c. (4)

This differential equation is similar to those arising in finance and also in the
real options literature (see Dixit and Pindyck [1], Ch. 7 for detailed and very
clear exposition of a model that contains the model here as a special case). The
boundary conditions are the value-matching condition

E(x∗) = 0 (5)
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Figure 1: Incorrect analysis of optimal default
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and the smooth-pasting condition

E ′(x∗) = 0. (6)

The smooth pasting condition is a necessary condition for optimal exercise of the
default option since default is a free boundary. It requires that M(x) be tangent
to x/(ρ − α) at x∗. The role of the smooth pasting condition is exactly to avoid
the anomaly discussed above that would occur if the greater of x/(ρ−α) and the
value of the mortgage had a kink at x∗.

The value of the mortgage equals the value of the house less the borrower’s
equity. Thus the value-matching condition implies that the value of the mortgage
at x∗ equals the value of the house, x∗/(ρ−α), and the smooth pasting condition
implies that the slope of the mortgage value as a function of x is 1/(ρ − α) at
x = x∗. These boundary conditions allow solution for the constant of integration
e.

For x > x∗, the solution to the differential equation is

E(x) = exm +
x

ρ− α
− c

ρ
(7)

where e is the constant of integration:

e =
1

m(α− ρ)

[
c

ρ

(
m(ρ− α)

m− 1

)]1−m

(8)

and m is the negative root associated with the differential equation (4):

m =
−(α− 1

2
σ2)−

√
(α− 1

2
σ2)2 + 2σ2ρ

σ2
(9)

(the constant of integration associated with the positive root equals zero).1

The value of the mortgage is given by

M(x) = P (x)− E(x) =
c

ρ
− exm, (10)

from

P (x) =
x

ρ− α
(11)

and (7). Because m is negative, when x is high the mortgage value approaches c/ρ
asymptotically, agreeing with the value it would have in the absence of default.

1For x < x∗, E(x) does not follow the solution (7) to the differential equation (4). The
simplest way to see this is to observe that for x < x∗ immediate default is optimal. That being so,
the value of the mortgage equals the value of the house, implying that E(x) = P (x)−M(x) = 0.
It is easily verified that the (expected) gain on the discounted equity is generally nonzero,
and therefore the discounted gain is not a martingale. But the differential equation (4) that
characterizes E(x) is based on the martingale assumption.
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This makes sense: when x is extremely high default in the foreseeable future is
improbable, so it does not materially affect valuation of the mortgage. However,
for values of x that are not high, M(x) depends positively on x. It follows that
the intuition supplied above—to the effect that when default is costless existence
of default should not affect the value of the mortgage—is incorrect.

Having calculated M(x), one can compute the borrower’s down payment E(1)
as P (1) −M(1), the initial loan-to-value ratio M(1)/P (1), the initial mortgage
yield c/M(1) and the recovery rate P (x∗)/M(1).

We now provide a numerical example of the equity values and mortgage values
as a function of house services that are implied by this model. Our calibration
assumes that ρ = .07, α = .03, σ = 0.2, so that the average (real) proportional
gain on both the equity and the mortgage is seven per cent, and the initial price-
rent ratio is 1/(ρ − α) = 25 (real-world price-rent ratios are closer to 10 or 15
than 25, but recall that here we are abstracting away from operating costs such
as repairs and utilities expense). The standard deviation of the change in housing
services, σ, is taken to be 20%. This setting may be too high, but it will do for
the purpose of the example.

Under these parameter values a security similar to a conventional mortgage
can be generated by specifying that the mortgage payment c is 1.5. In that case
the initial loan-to-value ratio is 77.1%. Default occurs when the house value drops
to 58.4% of its original value. At that price the recovery rate (ratio of collateral
value at the default point to the origination value of the mortgage) is 75.8%.
The yield on the mortgage at its origination date, equal to c/M(1), is 7.8%.
The difference between this figure and the expected return on the mortgage, 7%,
represents compensation for the possibility that the collateral value will drop,
possibly leading ultimately to default. The computed functions M(x) and E(x)
are displayed in Figure 2.

As the figure indicates, equity as we have characterized it is a nonnegative
and increasing function of x for x > x∗, and it equals zero at x = x∗. Again, it
is important to emphasize here that by equity we mean the difference between
the value of the house and the economic value of the mortgage, not the difference
between the value of the house and the book value of the mortgage. The book
value of the mortgage, as a perpetuity, equals its initial value as long as default
has not yet occurred. Accordingly, if equity is defined as the value of the house
minus the book value of the mortgage, equity becomes negative for values of x
strictly above x∗, but as long as x > x∗ optimal behavior is not to default. This
is so even though default is assumed to be costless.

References to negative equity in the press presume the book value definition
of equity; this is unavoidable given the difficulty in estimating the market value
of a mortgage in a real-world setting. In this paper, however, as noted the term
“equity” denotes the value of the house minus the economic value of the mortgage.
Thus in our usage default occurs when equity equals zero; in the absence of default
costs, negative equity does not occur.
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None of this is to say that the book value of a mortgage is irrelevant to its
valuation: the prepayment decision is governed by the mortgage’s book value in
relation to its market value. Prepayment is discussed below.

A security similar to a subprime mortgage results if c is increased from 1.5 to
2.0. This increase in the periodic payment results in an increase in the initiation
value of the mortgage; the initial loan-to-value ratio is 93.0%. Default occurs if
the house value drops to 78% of its original value. Thus, as would be expected,
the magnitude of the price drop that is just sufficient to induce default is much
smaller under a subprime mortgage than under a conventional mortgage. Un-
der a conventional mortgage the down payment protects the lender from all but
the most drastic price drops, whereas under a subprime mortgage the lender has
much less protection. Correspondingly, the recovery rate, 83.7%, is higher under
a subprime mortgage than a conventional mortgage.

The fact that default is likelier under a subprime mortgage than a conventional
mortgage implies that a higher yield, 8.6%, is needed to compensate the lender
for the higher default risk. It is seen that the higher default probability under the
subprime mortgage relative to the conventional mortgage more than outweighs
the fact that the recovery rate is higher under the subprime mortgage than under
the conventional mortgage.

Figures 3, 4 and 5 display computed values of the same mortgage-related
variables as functions of c. For now, restrict attention to the lines labeled kb =
kl = 0, which correspond to the case assumed here in which default costs are zero.
In all three figures c is plotted horizontally. In Figure 3 the vertical coordinate
is the initial loan-to-value ratio, while in Figure 4 the vertical coordinate is the
mortgage yield at initiation and in Figure 5 the vertical axis displays the recovery
rate. We do not plot the default point x∗ but that can be computed as the product
of the loan-to-value rate and the recovery rate.

Finally, Figure 6 plots the default point x∗ against the loan-to-value ratio.
Note, from the identity LTV • RR = M(1)

P (1)
• P (x∗)

M(1)
= P (x∗)

P (1)
= x∗, that this figure

is implied by Figures 3 and 5. This figure shows the practical importance of the
theoretical observation, discussed above, that the economic value of mortgages
depends on the level of housing services. Consider, for example, a 98% mortgage
(generated by c = 2.28). Contrary to the natural intuition that optimal default
would occur after a 2% drop in price, in fact a price drop of 11% is required to
trigger default (x∗ = 0.89).

1.3 Costly Borrower Default

In the model of the preceding section the default option is a device that allows
sharing between the owner and the lender of the risk of house price decreases.
Without a mortgage the owner obviously bears 100% of the risk, whereas when
a lender supplies part of the purchase price, the fact that the value of the mort-
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gage drops as house value drops implies that he provides partial insurance to the
borrower against the risk of loss of value. The proportions in which the loss is
shared between the borrower and lender depend on the volatility of house price
changes and the terms of the mortgage. Since the associated transfer of risk en-
tails no deadweight loss, subprime loans imply no inefficiency: for any possible
house price, that price equals the sum of the mortgage value and the equity value.

To the extent that the preceding analysis, including the assumption of zero
default costs, applies to the US crisis of the last several years, the interpretation
is that mortgage markets exhibited nothing that can be called an institutional
failure. Along these lines, the story incorporated in the model just presented is
that house values dropped (on the order of $1 or $2 trillion), with the costs of this
drop being shared by homeowners and lenders. The model there incorporated the
assumption that subprime mortgages did not contribute to the magnitude of the
loss, and also that the loss was a pure transfer involving no deadweight loss.

There is a consensus—although not one that has been documented in a serious
way in the financial press or elsewhere—that the assumption of costless default
is a major misspecification. It is not entirely clear that this consensus opinion
is justified. We noted in the introduction the existence of many subprime mort-
gages in which the borrowers have not defaulted despite having negative equity.
Many observers in the financial press appear to identify this negative equity with
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deadweight social costs when it results in default. This observation ignores the
distinction noted above between equity based on the economic value of the mort-
gage and equity based on its book value. When x is low but greater than x∗,
equity under the latter definition may be negative, but borrowers will not default
because equity under the former definition is still positive. There is no dispute
about the fact that many borrowers have negative equity under the book value
definition, but that does not establish that they have negative equity under the
economic definition, and, as we will see, it is the latter that indicates the existence
of positive default costs.

It appears that some subprime loans have been granted that had negative eq-
uity at the date of origination. Existence of such mortgages is possible only in the
presence of costs of default that induce borrowers to be willing make payments on
the loan as long as their equity is only slightly negative. In the absence of such
costs borrowers would default immediately upon closing a negative-equity mort-
gage. Lenders, anticipating this, would never grant negative-equity mortgages.
Thus the existence of mortgage loans with negative economic equity is evidence
in favor of positive default costs.

Informal evidence suggests the existence of substantial default costs. Default
costs to the borrower would surely include the expense of moving necessitated by
default, and also the costs implied by the credit downgrades that result from de-
fault. In some states the lender can proceed against the other assets of a borrower
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Figure 7: Borrowers’ default costs
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who defaults, although in other states the lender does not have such recourse.
When the lender has recourse the borrower cannot simply avoid any further obli-
gation under the mortgage by turning over the keys to the lender. Costs to the
lender include expenses incurred repairing, maintaining and reselling foreclosed
properties, and also include foregone income during the period (which may be
a year or more) between when the borrower terminates mortgage payments and
when the lender can gain possession of the property. The press has reported many
instances when defaulting borrowers stole appliances and vandalized the proper-
ties upon vacating foreclosed houses. To forestall such behavior, some lenders
have offered payments of several thousand dollars to owners of foreclosed proper-
ties who turned them over to lenders in satisfactory condition.

To determine the effects of default costs we assume the existence of nonnegative
constants kb and kl that capture the default costs of the borrower and lender,
respectively. It is assumed that these costs are not received as revenue by any
party. We also assume that default costs, when strictly positive, are proportional
to the initial value of the house at the origination date, so as to be able to carry
over the assumption of scale-invariance, which implies that the convention that
x = 1 at the mortgage origination date is a harmless numeraire choice. Default
costs are assumed to be the same for all borrowers and all lenders, implying
unrealistically that all mortgages with the same contract terms will default, and
at the same time, if any of them do.

Existence of costly default implies that it is necessary to distinguish between
the value of a mortgage to the borrower as a liability and its value to the lender as
an asset. The easiest way to see this is to observe that when x = x∗ the mortgage
has liability value of x∗/(ρ−α)+kb to the borrower and asset value of x∗/(ρ−α)−kl
to the lender. Thus the deadweight loss resulting from default at the time of
default equals kb + kl. We denote the values of the mortgage to the borrower and
the lender as Mb(x) and Ml(x). For any x we have Mb(x) > Ml(x); this difference
is a decreasing function of x because for high values of x the possibility of default
is minor contributor to the value of the loan to either borrower or lender. Both
mortgage values converge to c/ρ as x goes to infinity, as occurs when there are no
default costs.

It is assumed throughout that there is free entry into, and exit from, the lend-
ing industry. Accordingly, lenders adjust loan terms so as to pass the discounted
expected value of default costs on to borrowers. As a result, it is necessary to dis-
tinguish between the amount of the buyer’s down payment, equal to the purchase
price less the funds supplied by the lender (Ml(1)), and the borrower’s equity
immediately following purchase, equal to the purchase price less Mb(1). Since
Mb(1) > Ml(1), the buyer’s equity E(1) at the date of mortgage origination is
strictly less than the down payment. Thus purchase of a house using a mortgage
entails an immediate deadweight loss to the borrower of Mb(1) −Ml(1), which
equals the expected discounted value of default costs. If house prices drop, the
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deadweight loss increases, reaching kb + kl when prices drop to x∗/(ρ− α).2

In this section it is assumed that kl = 0, so that only borrowers have positive
default costs.

Incorporating default costs into the model presented above is achieved by
replacing the value-matching condition (5) with

E(x∗) = −kb, (12)

so that borrowers default when their equity equals −kb. As noted above, the
values of the mortgage to the borrower and the lender are then calculated by
using the boundary conditions as modified to derive the constants of integration
of the differential equations representing Mb(x) and Ml(x).

We now repeat the calculation of default-related mortgage statistics reported
in the preceding section assuming kb = 4, so that kb equals 16% of the assumed
purchase price of 25. Comparison of the lines labeled kb = kl = 0, discussed
above, and kb = 4, kl = 0 in Figures 3, 4 and 5 makes clear the effect of borrowers’
default costs on mortgage terms. As one would expect, assuming that borrowers
incur costs upon default implies that the default point x∗ is lower than was the
case with costless default. Therefore default is less probable in the presence of
default costs than when they are absent. For any value of c, specifying that
borrowers have default costs increases the initial loan-to-value ratio and decreases
the mortgage interest rate. Both results are consequences of the fact that default
is less probable when borrowers’ default costs are present. Figure 4 shows that
assuming kb > 0 decreases the recovery rate; this is again a direct result of the
fact that x∗ decreases in the presence of borrowers’ default costs.

2The presence of deadweight losses due to costly default implies an inconsistency in the
formulation of the model. The model specifies that the discounted value at t of expected housing
services equals xt/(ρ − α) regardless of whether or not a mortgage is used. This specification
makes no allowance for the present value of the loss due to default risk when a mortgage is used.
Thus when either kb or kl is greater than zero, house buyers using mortgages would find that
houses are overpriced relative to the expected value of subsequent housing services.

As we will discuss below, this shortcoming of the model has an unfortunate implication for the
modeling of prepayable mortgages. As will be noted, borrowers whose homes have appreciated
have a motive to refinance because default risk has decreased, implying that they are overpaying
for the default option. It would be natural to assume that borrowers will refinance whenever
the value of the mortgage liability exceeds the initiation cost plus the prepayment penalty. If
the prepayment penalty is less than Mb(1) − Ml(1), however, this specification implies that
borrowers would repay their loans immediately upon incurring them. This bizarre implication
results from the fact that the model gives no explanation for why individuals use mortgages in
the first place. Therefore in the presence of default costs the model cannot give a consistent
explanation of when agents refinance as it stands.

One could eliminate the problem just noted by setting the initial price at a level lower than
1/(ρ − α). However, the indicated amount of the decrease depends on the loan-to-value ratio.
This is different for different values of c, the determination of which we are not modeling, so it
is unclear how great a decrease to specify. Thus this respecification does not provide an easy
resolution of the problem. We prefer to avoid the major respecifications that would be required
to deal with this difficulty.
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1.4 Costly Lender Default

In this section we set the borrower’s default cost kb equal to zero and allow the
lender’s default cost kl to equal 4. With zero default costs for the borrower,
default occurs when E(x) = 0. However, the initial condition for Ml(x) at the
default point is M(x∗) = P (x∗) − kl (Figure 7). In Figures 3, 4 and 5 the line
marked kb = 0, kl = 4 shows plots of loan-to-value ratios, mortgage yields and
recovery rates that occur when the lender bears a cost upon default. These figures
indicate that the effects of lender costs are very different from those of borrower
costs. Since it is the borrower who determines the default point, imposing costs
on the lender does not directly affect the default point (but doing so does affect
the default point indirectly, since lender costs affect the mortgage yield). For
given mortgage payment c, imposing default costs on the lender reduces the loan-
to-value ratio and increases the mortgage yield. These effects are in the opposite
direction of those implies by borrowers’ costs. The default point, and therefore
the recovery rate, is only slightly affected by imposing default costs on the lender.

It is instructive to plot the mortgage yield and the recovery rate against the
loan-to-value ratio, taking all these variables to be implicit functions of c (Figures 8
and 9). Figure 8 shows that the locus of pairs of loan-to-value ratio and mortgage
yield when kb = 4 is virtually indistinguishable from the corresponding locus
when kb = 0. However, for given loan-to-value ratio, imposing kl > 0 has a strong
positive effect on the mortgage yield, particularly for high loan-to-value ratios. In
fact, for loan-to-value ratios above about 85% the yield becomes arbitrarily high.
This happens because the very high values of c required to generate high loan-
to-value ratios imply high default points x∗, which mitigates the positive effect
of c on the loan-to-value ratio. It follows that subprime mortgages with initial
loan-to-value ratios above 95% implies either that borrower costs are above zero
or that lender costs are below 16%, or both, given the assumed values of the other
parameters of the model.

1.5 Default Costs and High Loan-to-Value Mortgages

In Section X below we will use mortgage pricing data to make inferences about
default costs. The higher the value of c, the higher is the loan-to-value ratio at the
mortgage origination date, and the closer is x∗ to 1. Thus for values of c that are
near the maximum value, default occurs in the next arbitrarily short time interval
with arbitrarily high probability. If there are no default costs, the feasible values
of c are bounded above by that value of c which results in M(1) = 1/(ρ− α) (in
our example this turns out to equal c = xxx). Similarly, if kb > 0 and kl = 0 the
upper bound for Ml(1) is 1/(ρ−α) + kb. In the case kb = 0 and kl > 0, 1/(ρ−α)
is an upper bound for Mb(1), which implies that the upper bound for Ml(1) is
1/(ρ−α)−kl. In the computed example this means that the upper bound for the
loan-to-value ratio is 1−kl(ρ−α), which equals 84% if kl = 4. Thus the existence
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of mortgages with initial loan-to-value ratios in excess of 84% is inconsistent with
kb = 0 and kl = 4%; existence of such mortgages implies that either kb > 0 or
kl < 4%.
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Figure 9: Yields as a function of LTV under different default scenarios

Figure 8 plots mortgage yield as an implicit function of the loan-to-value ratio
(these points are generated by varying c). Figure 9 plots recovery rates against
loan-to-value ratios. The discussion in the preceding paragraph implies that in
both figures the curves that assume kl = 0 have an asymptote at a loan-to-value
ratio of 100%, while the curve that assumes kb = 0 and kl = 4 has an asymptote
at 84%.

The conclusions are (1) default costs have pronounced effects on the mortgage-
related variables, and (2) these effects are different depending on whether they
are borne by borrowers or lenders.

1.6 Costly Prepayment

Up to now it has been assumed that mortgages are terminated only by default, so
that, conditional on no default, mortgages are perpetuities. This is a major mis-
specification: borrowers have the option to prepay mortgages at their book values,
possibly subject to a prepayment penalty. In the real world they elect to refinance
when prevailing interest rates drop, since otherwise the present value of the mort-
gage payments would exceed the mortgage’s book value. Under the present model
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this feature is absent since we are taking interest rates to be deterministic and
constant.

As noted in the introduction, in the present model increases in house prices
generate a motive for prepayment. This is so because mortgage values increase
with x due to the decreased probability of default in the economically relevant
future. For x > 1 borrowers are paying a higher price for default risk than is
justified actuarially, since mortgage payments are based on the default probability
appropriate to x = 1. Thus borrowers have an incentive to prepay their mortgages
when the value of the collateral rises above 1/(ρ− α).

These considerations imply that existence of the prepayment option affects the
value of subprime mortgages even if interest rates are taken to be nonstochastic,
as here. As emphasized in the press, borrowers were willing to make very high
periodic payments for high loan-to-value mortgages because they expected to be
able to refinance their property on better terms after generating additional equity
due to capital gains. Further, they are protected from large losses due to decreases
in property values because of the default option and the low level of their equity.
Thus lenders are subjected to default losses if house values drop, but, due to pre-
payment, are unlikely to benefit from gains if they rise. We therefore expect that
lenders will require very high periodic payments for high loan-to-value mortgages
that are prepayable, particularly if (1) borrowers’ default costs are low, so that
they will default at high values of x∗, (2) lenders’ default costs and high, and
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(3) prepayment penalties are low. This is so because they know that default will
occur with high probability, resulting in losses, while if the prepayment penalty is
low the loan will be terminated with high probability due to refinancing; implying
that the maximum gain for the lender equals the prepayment penalty.

In the absence of prepayment costs, borrowers would be motivated to repay
continuously whenever x > 1. To avoid this unrealistic prediction, we assume
that prepayment is subject to a penalty kp, so that borrowers will prepay only
when the value of their mortgages exceed their origination value Ml(1) by at least
kp. It is assumed that prepayment is subject to penalty kp regardless of when the
prepayment occurs. In reality prepayment penalties apply only during the first
several years of the mortgage. Our specification has the advantage that it makes
possible application of the stationary setting adopted in earlier sections.

Define x∗ as the level of x at which borrowers elect to prepay.3 To derive
an upper bound for kp, note that if kp > P (1)−Ml(1), the amount the borrower
would have to prepay exceeds the value of the collateral. In that case the borrower
will never prepay (x∗ = ∞). Thus in the absence of prepayment costs we have
1 < x∗ <∞ only when 0 < kp < P (1)−Ml(1). We assume that these inequalities
are satisfied.

As shown above, the differential equation defining E(x) has the solution

E(x) = e1x
m1 + e2x

m2 +
x

ρ− α
− c

ρ
. (13)

Here, as opposed to the derivation of E(x) when no prepayment was allowed, we
allow both constants of integration e1 and e2 to be nonzero. The roots m1 and
m2 are given by

m1,m2 =
−(α− 1

2
σ2)±

√
(α− 1

2
σ2)2 + 2σ2ρ

σ2
. (14)

The boundary conditions are the value-matching conditions

E(x∗) = 0 (15)

and

E(x∗) =
x∗ − 1

ρ− α
+ E(1)− kp. (16)

3There is a conceptual problem in modeling prepayment in the presence of default costs. If
the prepayment penalty is less than the deadweight loss due to default costs at x = 1, then we will
also have x∗ = 1. To see this, suppose that kp < Mb(1)−Ml(1). Then by immediately prepaying
their mortgages, borrowers can replace the liability Mb(1) with the cost kp + Ml(1), which is
lower. The bizarre implication that borrowers would prepay a mortgage that they had just
incurred reflects the exogenous specification that homeowners borrow despite the deadweight
costs of doing so (when kb or kl exceeds zero), but are free to terminate the loan at any time
upon payment of the penalty kp (see the discussion in note 2). To ensure that x∗ > 1 it is
sufficient to consider only values of kp that exceed Mb(1)−Ml(1).

We sidestep this problem by modeling prepayment only when there are no default costs.
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The smooth pasting conditions are

E ′(x∗) = 0 and E ′(x∗) =
1

ρ− α
. (17)

Intuitively it is clear that higher values of kp induce higher values of x∗. The
default point x∗ is lower if prepayment is permitted than if it is not. To see
this, suppose that x equals the default point when there is no prepayment option.
Then the borrower is indifferent between defaulting and continuing to pay the
mortgage. Now suppose that prepayment is permitted. Existence of this option
decreases the value of the mortgage as a liability to the borrower, or as an asset
to the lender. Therefore the existence of the prepayment option decreases the
default point. Lower prepayment penalties increase the value of the option and
therefore decrease the default point.

Table 1 shows the values of x that result in default and prepayment for a range
of values of c and kp.

Table 1: x∗ and x∗ for different values of kp and c

No prepayment kp = 1 kp = 2 kp = 3 kp = 4
c x∗ x∗ x∗ x∗ x∗ x∗ x∗ x∗ x∗ x∗

1 0.3893 ∞ 0.3893 ∞ 0.3893 ∞ 0.3893 ∞ 0.3893 ∞
1.5 0.5839 ∞ 0.5777 1.7708 0.5838 4.8683 0.5839 ∞ 0.5839 ∞
2 0.7786 ∞ 0.7241 1.3592 0.7487 1.6421 0.7641 2.0272 0.7736 2.7212

2.5 0.9732 ∞ 0.8182 1.2449 0.8542 1.3893 0.8813 1.5310 0.9033 1.6838
3 1.1679 ∞ 0.8759 1.1924 0.9161 1.2931 0.9476 1.3825 0.9745 1.4685

As noted above, existence of the prepayment option makes the mortgage more
attractive to the borrower and less attractive to the lender. The higher the value
of the prepayment option, the higher must be the yield on the mortgage to com-
pensate the lender for giving up the possibility of large capital gains if the house
value increases. Figure 11 shows the effect of various prepayment penalties on
the tradeoff between the loan-to-value ratio and the mortgage yield. This fig-
ure shows that for low loan-to-value ratios the prepayment option has little or
no effect on the mortgage yield. This is so because the default option has little
value on a low loan-to-value mortgage, implying that the increase in the value of
the mortgage if the property appreciates is similarly low. Therefore even a low
prepayment penalty will be sufficient to deter prepayment. In contrast, with high
loan-to-value mortgages even a small increase in house values leads to a sizeable
increase in the mortgage value, motivating prepayment even in the presence of
high prepayment costs. (This may explain the very high prepayment speeds of
subprime mortgages in the rising real estate markets prior to 2006).
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2 Empirical Results

To be supplied.
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