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Abstract

This paper investigates the relationship between the size of the �rm and the quality of
innovations of the �rm. Much of the previous literature on innovation focuses on innovation
frequency with an economy-wide uniform innovation quality. In contrast to the previous liter-
ature, this paper allows �rms to choose not only the stochastic innovation frequency but also
the innovation quality and focuses on how this heterogeneity in innovation quality is a¤ected
by the size of the �rm. This paper has three distinct contributions:

First, using Compustat �rms and their patent applications, I document the following three
reduced form facts: i) Firm sales growth (both short-run and long-run) is negatively related
to the �rm size. ii) Firm R&D intensity, de�ned as R&D expenses over sales is negatively
related to the �rm size. iii) The quality of innovation, proxied by the number of citations that
a patent receives, is negatively related to the �rm size.

Second, I build a tractable general equilibrium growth model that is rich enough to investi-
gate these empirical results. I prove the existence of the equilibrium, characterize its properties
and show that the predictions of the theoretical model are consistent with the reduced form
evidences mentioned above.

Third, I structurally estimate the theoretical model parameters using Simulated Method
of Moments on Compustat �rms. Finally, I use these estimated parameters to conduct a macro
policy experiment to evaluate the e¤ects of a size-dependent R&D subsidy on di¤erent sized
�rms. In conclusion of this analysis, the optimal size-dependent R&D subsidy policy does
considerably better than optimal uniform (size-independent) policy. More interestingly, the
optimal (welfare-maximizing) policy provides higher subsidies to smaller �rms.
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1 Introduction

In his earlier work, Joseph Schumpeter (1934) claimed that the major source of innovation were

small �rms operated by wild-spirited entrepreneurs. However, in his later work, Schumpeter

(1942) argued that the main innovators in an economy were actually the big �rms that posess

the required resources for important R&D laboratories and projects. His intriguing theories,

also known as the Schumpeter Mark I and Mark II theories,1 have raised many policy questions

that are still open to debate. In particular, does �rm size matter for innovation? Are big �rms

more R&D intensive as Schumpeter argued in his second theory? What are the implications of

these facts for �rm growth? Most importantly, how should the optimal R&D policy incorporate

these facts? These questions are at the heart of any policy debate which targets technological

development through innovation.

To start with, this paper uncovers the important reduced form facts using Compustat and

USPTO patent data. Then, it outlines a theoretical model to understand the microfoundations

of the observed reduced form relations. Next, it estimates the structural parameters of the

theoretical model using Simulated Methods of Moments (SMM). Finally, a policy experiment

of varying R&D subsidy to di¤erent sized �rms is conducted.

The key �nding of the reduced form analysis is that smaller �rms undertake more radical

and original innovations as measured by subsequent patent citations. This fact is also a key

property of the theoretical model which furthermore explains other stylized empirical patterns

related to the relationship between �rm size and �rm growth and �rm size and R&D inten-

sity. Besides explaining the reduced form facts, this tractable model provides a comprehensive

framework for understanding the implications of macroeconomic policies on innovative behav-

ior. Hence, this paper concludes by studying the implications of R&D subsidy policies under

various regimes: i) uniform (size-independent) R&D subsidy, ii) size-dependent two-level R&D

subsidy, iii) size-dependent linear R&D subsidy. Overall, the paper elaborates on the hetero-

geneity of innovation quality of di¤erent sized �rms, documents the related empirical patterns,

develops intiution for these results and outlines how to incorporate these important facts into

the macro models and policy analysis.

The �rst reduced form relationship considered here is the relationship between �rm size

and �rm growth. The previous literature on �rm growth is mainly centered around Gibrat�s

(1931) claim that the growth rate of a �rm is independent of its size. I repeat here a similar

exercise with the Compustat dataset in order to generate an independent, but comparable

1Nelson and Winter (1982a,b) Kamien and Schwartz (1975, 1982)
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measure of the relationship between �rm size and growth. Doing so, I also address certain

caveats that the previous empirical literature has overlooked. My results tend to corroborate

the �ndings of previous studies which suggested that smaller �rms grow faster on average.

This e¤ect becomes even sharper once unobserved �rm heterogeneity is controlled for. These

results are robust to, among other things, the survival bias and the selection of small �rms in

the Compustat sample.

The second reduced form relationship investigated is that between �rm size and R&D

intensity, de�ned as R&D spending over sales. In his seminal book, Joseph Schumpeter (1942)

claimed that �rm size was crucial for both R&D intensity and innovation suggesting that large

�rms have a size advantage. The early subsequent empirical studies had mostly supportive

conclusions to Schumpeter�s theory. However, more recent studies from late 80s and early 90s

have utilized larger datasets and addressed several econometric concerns. In the end, these

later studies have generally found no systematic relationship between R&D intensity and �rm

size. My results on this question di¤er signi�cantly from the previous literature. I show that

the R&D intensity decreases signi�cantly with �rm size, which implies that R&D spending

increases less than proportional with �rm size. This result is robust to, among numerous other

speci�cations, the problem of missing R&D entries in Compustat and the sample selection

problem of small �rms.

The last reduced form analysis addresses the relationship between �rm size and innovation

quality. Empirical studies that have focused only on innovation frequency, to the detriment of

innovation quality, have been inadequate to capture the true e¤ect of innovations on techno-

logical progress. One single, major innovation could be much more important for technological

progress than many incremental innovations. The main empirical challenge lies in measuring

innovation quality. Additional information from patent data can be used to overcome this

hurdle. Industrial economists have documented a strong positive correlation between the value

of a patent and elements such as the number of citations that the patent receives from subse-

quent research, its claims and scope.2 Hence, the number of citations that a patent receives is

a good indicator of the quality or importance of an innovation and is therefore used as a proxy

for this. For robustness, I verify my results with alternative indicators of patent quality. The

reduced form results indicate that the number of citations a patent receives decreases as �rm

size increases. This implies that �rm size is negatively related to innovation quality. The use

of the alternative proxies for innovation quality do not dramatically a¤ect the results.

2For patent scope, see Lerner (1994).
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These three empirical facts constitute the starting point of the study. To understand the

microfoundations underlying these results, I build a general equilibrium model with entry and

exit. In this model, technologically heterogeneous �rms compete for innovation in order to

increase operating pro�ts. Each �rm is identi�ed by its �rm-speci�c labor productivity which

is improved stochastically through R&D and innovation. Every innovation raises a �rm�s

pro�t, by reducing its cost relative to its competitors. A novelty of this model is that �rms can

endogenously choose not only the probability of innovation, but also the innovation quality

which has been taken as exogenous in previous papers. I prove the existence and characterize

the properties of the equilibrium and show that the model�s predictions are consistent with the

aforementioned reduced form evidences. My theoretical results rely on two features: 1) The

concavity of the pro�t function and as a result of this, the concavity of the value function; 2)

R&D production technology being constant returns to scale in productivity. Any model with

these features would imply that �rms with lower productivity will have a greater incentive to

increase their productivity. Therefore, they will be more R&D intensive, choose higher quality

innovations and grow faster.

To complete the analysis, I estimate the main structural parameters of the theoretical

model using the Simulated Method of Moments (SMM). These parameter estimates allow me to

discuss the impact of various macroeconomic policies on innovation. In particular, I focus on the

e¤ects of a public R&D subsidy for di¤erent sized �rms by comparing three di¤erent regimes: i)

uniform (size-independent) R&D subsidy, ii) size-dependent two-level R&D subsidy (namely

a di¤erent subsidy rate for �rms with a size above a certain threshold), iii) size-dependent

linear R&D subsidy. The results of this analysis document the signi�cant contributions of size-

dependent subsidies on welfare. The optimal size-dependent policy provides higher subsidies

to smaller �rms due to their higher and more in�uential innovative behavior.

This paper contributes in several ways to the empirical literature on �rm innovation, R&D

and growth. A detailed review of the related empirical literature will be provided in the

next section. On the theoretical side, this paper is a contribution to the endogenous growth

literature with step-by-step innovation. Previous studies with endogenous R&D decisions

have mainly focused on the arrival rate of innovations as a choice of the �rm, treating the

size of each individual innovation as an exogenous parameter of the model (Aghion, Harris

and Vickers, 1997; Aghion Harris, Howitt and Vickers, 2001; Acemoglu and Akcigit, 2008).

This theoretical speci�cation leaves out a very important empirical observation; namely that

di¤erent innovations have di¤erent quality and technological impacts. The ultimate goal of the

current work is to shed light on this unexplored subject both empirically and theoretically.
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The results of this paper are also interesting for strand of literature focusing on R&D

subsidies. It is widely argued that the social return to R&D is greater than the private return,

which suggests that the equilibrium amount of private R&D investment is suboptimal and R&D

subsidies could be used to make up for the private underinvestment in R&D (Spence, 1984;

Griliches, 1992, 1995; Jones and Williams, 1998). This paper contributes to this literature

by introducing a size-dependent R&D subsidy policy and documenting the substantial welfare

gain from this policy.

Finally this paper is also a contribution to the recently growing literature on size-dependent

policies. This literature typically argues that the size-dependent policies create detrimental ef-

fects on the economy by misallocating the resources (Guner, Ventura and Xu, 2008; Klenow and

Rodriguez-Clare 1997; Hall and Jones 1999; Caselli 2004, Restuccia and Rogerson, forthcom-

ing). On the other hand, in the context of Intellectual Property Rights Protection, Acemoglu

and Akcigit (2008) argues that the gain from size-dependent policies could be substantial. This

paper adds to this literature by introducing size-dependent R&D subsidy policy.

The rest of the paper is organized as follows: Section two reviews the related empirical

literature and describes the reduced form analysis; section three builds the theoretical model

and presents its results; section four does the structural estimation of the model with SMM;

section �ve investigates the size-dependent R&D subsidy policy and section six concludes.

2 Empirical Evidence

The goal of this section is to document some empirical facts about growth, R&D and innovative

activity of di¤erent sized �rms. More precisely, the three relations estimated are

� Firm size vs �rm growth,

� Firm size vs R&D intensity,

� Firm size vs innovation quality.

2.1 Related Literature

The literature on �rm growth has been deeply in�uenced by Gibrat�s law. This theory has

however been mostly refuted by empirical evidence, in particular for the US economy. Most

studies showed that �rm size in the U.S. is negatively correlated with �rm growth (Mans�eld,

1962; Hall, 1987; Amirkhalkhali and Mukhopadhyay, 1993; Botazzi and Secchi, 2003 for quoted
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US manufacturing �rms and Evans, 1987a; Gabe and Kraybill, 2002 for non-quoted �rms).

Nevertheless, several studies have still argued that Gibrat�s law holds for �rms above a certain

size threshold (Mowery, 1983; Caves, 1998).

Similarly, the early literature on �rm level R&D has been inspired by Schumpeter�s claim

and showed that the R&D spending increases more than proportionally in relation to �rm size

(Horowitz, 1962; Hamberg, 1964; Scherer, 1965 a,b, 1980; Comanor, 1967; Meisel and Lin,

1983; Kamien and Schwartz, 1982). However, these studies focused mainly on the 500-1000

largest �rms, possibly due to limitations in data availability. In addition, the unobserved sector

and �rm heterogeneities, which were potential sources of bias, were not taken into account in

these studies. Hence, it is not surprising that more recent studies from the late 80s and early

90s, which have utilized relatively larger datasets and controlled for sector level heterogeneity,

have contradicted earlier �ndings. Indeed, they showed that the increase in �rm size in relation

to R&D is either proportional (Cohen et al, 1987) or slightly less than proportional below a

certain �rm size threshold (Bound et al, 1984).

The innovation patterns of di¤erent sized �rms have been analysed by a number of studies.

Kamien and Schwartz (1975) argue that small �rms are more innovative in highly concentrated

industries. Mans�eld (1968) and Mans�eld et al (1971) document that the major innovation

per R&D expense is higher for smaller �rms. Cooper (1964) claims that small �rms have an

organizational advantage in innovative activities. Other studies argue that major innovations

come from small �rms because they make use of the innovation opportunities whereas large

�rms might supress such opportunities for various reasons (Blair, 1972; Pavitt and Wald, 1971;

Kamien and Schwartz, 1975). These empirical studies are based on case studies which prevent

us from drawing broader conclusions.

Finally the literature on patents have generated fruitful work for detecting �rm level in-

novations and identifying their heterogenous values. Trajtenberg (1990) shows the positive

relationship between the citations a patent receives and its social value. Harho¤ et al (1996)

shows the same relationship but for the private value of a patent. Hall et al (2001) argue that

a �rm�s market value is not positively correlated with patent counts but rather with the "cita-

tion weighted patent portfolio", a measure which considers both patent counts and the number

of citations per patent. Similarly, Shane and Klock (1997) document a positive relationship

between patent citations and Tobin�s q. In addition, Shane (1999a, 1999b) suggests that the

more citations a patent receives, the more likely it is to get licensed. Sampat (1998) and Sam-

pat and Ziedonis (2004) present the positive correlation between the number of citations and

licensing revenues. This seems to con�rm that the number of citations a patent receives is a
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good indicator of the quality of the innovation and to justify its use as a proxy for innovation

quality.

In addition, other studies have introduced alternative indicators for innovation quality.

Lerner (1994) shows that the scope of a patent is positively correlated with �rm value. Lanjouw

and Schankerman (1999, 2001) point out that the number of claims of a patent is correlated

with its value. Ja¤e and Trajtenberg (2002) argues that the number of claims of a patent

could indicate the scope of a patent. For robustness, I verify my results using the number of

claims of a patent as an alternative indicator of its quality. Finally, one could argue that a

high-quality or more radical innovation would combine the knowledge from di¤erent technology

�elds. Therefore the originality index, de�ned by Trajtenberg, Ja¤e and Henderson (1997) will

be used as another alternative indicator for the quality of innovation. The details of this index

is provided in the next section.

2.2 Data

The data used is from the Standard and Poor�s Compustat database which includes informa-

tion on all publicly trade companies in the US since 1950. Besides the tremendous increase in

the sample size, the average �rm size in Compustat data has decreased drastically over time

(see �gure 1) which allows the sample data to capture a wider range of �rm sizes. Compared

to earlier studies using Compustat, this could potentially make the current sample more rep-

resentative of the whole population of US manufacturing �rms. Following a common practice

in the literature, I exclude from the sample non-manufacturing �rms or non-domestic �rms.3

The data on innovation is taken from the NBER/USPTO patent dataset, described in detail

in Hall et al (2001). It includes all utility patents granted in the USA between 1963 and 2002.

By de�nition, patents grant their holder a monopoly for the use of the innovation. Patents

identify �prior art�through citations so as to clearly mark the boundaries of that monopoly

power. This variable, namely the number of citations will be used as a proxy of innovation

quality. It is available in the NBER Patent Data set for all patents granted after 1975.

Another important component of the patent data set is the match between patent and

Compustat �rms (Hall et al, 2001). Even though this match is a great source for linking the

patents to �rms, it is necessary to be cautious because it includes the Compustat �rms that

existed in 1989. Firms that were established after 1989 are not included in the patent-match

data.
3The term �non-domestic�refers to the �rms that do not have their headquarters in the US.
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The last two variables used are the number of claims and the originality index. The former

is the number of �components� or the �main pieces� of the patent. It can be interpreted as

the �scope�or �width�of the innovation (Ja¤e and Trajtenberg, 2002, p. 432). The latter is

an index calculated for each patent i as follows : Originalityi � 1 � �nij s2ij , where sij is the
percentage of citations made by patent i to a patent that is in patent class j and nj is the

number of patent classes. This implies that if a patent cites a wider set of patent classes, its

originality index is higher.

Table 1 contains the descriptive statistics for the key variables.

2.3 Firm Size vs Firm Growth

2.3.1 Benchmark Speci�cation

To investigate the link between �rm growth and �rm size, the following regression is estimated

using OLS

git = �0 + �1 lnSalesit + �j + �t + "ijt (1)

where gijt � Salesij(t+1)=Salesijt � 1 is the growth rate of �rm i in industry j at time t;

Salesijt is net sales and �i and �t are respectively the industry and sector �xed e¤ects.4 This

regression does not include the �nal period�s growth rate of the �rms that exit the sample. If

Gibrat�s law holds, �1 should be zero.

The results are reported in the �rst column of Table 2. The coe¢ cient �1 is estimated

as -0.037 with a standard deviation of 0.001 which is a considerable departure from Gibrat�s

law. This is both statistically signi�cant and economically large. An increase of one standard

deviation in lnSales (= 0:412) decreases the growth rate by 1.5 percentage points. Since the

average growth rate is 12 percent, this amounts to a sizeable 13 percent decrease in growth

rate relative to the mean. However, simple OLS results may not be reliable enough and further

re�nements to the estimation are presented next.

Before the discussion of the results continues, it is important to note that the reduced form

analysis on R&D intensity and innovation quality will use similar speci�cations to (1). To avoid

repetition, the detailed discussion on the common caveats related to all three speci�cations will

be provided in the �rst section and only be mentioned brie�y in later sections.

4All nominal variables are de�ated by the GDP de�ator in the corresponding year
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2.3.2 Survival Bias

Firms that exit the market do not report any data in Compustat which disables the observation

of the decline in Salest in period t when the exit happens. In general, the exit rate is higher

among smaller �rms, so that excluding exiters from the sample biases the results in favor of

small �rms. To address this problem, there are two di¤erent methods.

The �rst method consists in merely assuming that the output of a �rm drops to zero right

before the exit, so that the growth rate in their last period is -100 percent. The results of this

method are presented in column 2 of Table 2. The parameter estimate has now increased from

-0.037 to -0.025 con�rming the suspicion that the benchmark OLS is biased downward due

to survival bias. A one standard deviation increase in lnSales leads to a 20 percent decrease

relative to the average growth rate of this sample (0.057). Even though this method has

generated both statistically and economically signi�cant estimates, it is likely to overcorrect

for the bias, since -100 percent is a lower bound for the actual growth rate in the last period

before exit.

The second possible solution is to apply a Heckman two-step selection estimation

(Wooldridge, 2000). The selection equation can be written as,

z�it = 
0 + 
1 lnSalesit + 
X+ �it (Selection Equation)

where z� is a latent variable interpreted as "the propensity to exit", which depends on �rm

size and some other explanatory variables X. Even though the latent variable is unobserved,

a binary variable zit is observable which is de�ned as:

zit =
1 if z�it > 0; (the �rm remains in the sample)
0 if z�it < 0 (the �rms exits)

The outcome equation is then

git = �0 + �1 lnSalesit + �j + �t + "ijt (Outcome Equation)

The growth rate git is observed only when zit = 1: A consistent estimator of �1 (1) can then

be obtained from the conditional regression

E (git j z�it > 0) = �0 + �1 lnSalesit + �2�it + �j + �t + "ijt (2)

where

�it =
� (
0 + 
1 lnSalesit + 
X)

� (
0 + 
1 lnSalesit + 
X)
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is the �Inverse Mills Ratio�. The parameters of 
0; 
1;
 are obtained with a probit regression.

The Heckman two-step model requires an exclusion restriction (instrument) otherwise the

model is identi�ed solely on distributional assumptions. The novel instrument used here is

the ownership status of the �rm. Indeed, �rm exits are signi�cantly a¤ected by the ownership

status of the �rms. Besides other factors, once the parent company is �nancially constrained,

it might decide to sell its subsidiary to a third party through carve-out, spin-o¤ or sell-o¤

(Draho, 2004, p.156). Such transactions would increase the likelihood of getting dropped from

the Compustat sample for subsidiaries. This fact makes the ownership status of the �rm a

novel instrument in the selection equation.

Columns 3a,b and 4 of Table 2 report the estimation results of this two-step selection

model. The signi�cance of the inverse Mills ratio con�rms the existence of a selection bias.

Column 3a shows that the probability of surviving in the sample increases signi�cantly in

�rm size. In addition, the sign of the coe¢ cient on the ownership status dummy5 implies that

subsidiaries have a lower probability of survival. Column 3b reports the same results in Column

3a as the marginal e¤ects at the sample means. These transformed results suggest that the

marginal e¤ect at the sample mean of lnSales is 0.008 (standard error=0.000) which implies

that the marginal change in lnSales from the average increases the probability of surviving

in the sample by 0.8 percent. The new, corrected coe¢ cient on �rm size in Column 4 is now

-0.028 with a standard error of 0.002. As expected, it lies between the simple OLS coe¢ cient

and the coe¢ cient obtained when assuming zero output in the last period. This is because,

as explained, the OLS estimation favored small �rms whereas the latter method favored the

large �rms. With this new corrected estimate, one standard deviation increase in lnSales is

associated with a 10 percent decrease in the growth rate, which is economically sizeable. Since

the coe¢ cient on �rm size remains signi�cantly negative, these results show that the survival

bias alone cannot account for the negative relationship between �rm size and growth.

2.3.3 Measurement Error

Another common concern for estimating (1) is the errors-in-variables problem, as �rm sales

are a noisy proxy for �rm size. Consider a measurement error in Salesit in period t: This will

create a spurious negative relationship between �rm growth and �rm size because it a¤ects the

denominator of the dependent variable as well. Therefore the existence of a measurement error

would bias the estimate of �1 downwards. The problem can be solved through an instrumental

variables approach, which uses the one year-lagged values of sales, lnSalest�1 as an instrument

5This dummy becomes 1 when the observation is a subsidiary.
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for lnSalest.

The results reported in column 5 of Table 2 show a less negative coe¢ cient of -0.028

(standard deviation=0.001) on �rm size, con�rming the presence of some error-in-variables

bias. Again, this suggests that one standard deviation increase in lnSalest is associated with

1.2 percentage points decrease in growth rate which corresponds to a 10 percent decrease of

the growth rate relative to the sample average. Therefore this implies that errors-in-variables

was not the sole driver of this relation.

2.3.4 Sample Selection

A �nal problem is the sample selection bias inherent in the Compustat sample. Suppose for

example that most big �rms are present in the sample, even though they might have low

or medium productivities, but that only the small �rms with the highest productivities are

admitted in the sample. There are two potential reasons for this. First, small �rms might be

more productive due to some unique unobserved individual characteristics. Secondly, as part

of their life-cycle, at the time that they are selected into the sample, they might be on the

increasing side of an inverse U-shaped growth/age trajectory which might lead to high initial

growth rate and lower growth rates over time.

These two issues require di¤erent approaches. The former concern is related to unobserved

�rm heterogeneities which can be captured by the �xed-e¤ects regression. Column 6 of Table

2 reports the �xed e¤ects results including time e¤ects. Contrary to the expectations, adding

�rm �xed e¤ects sharpens the contrast between the growth rates of small and large �rms by

reducing the coe¢ cient down to -0.175 (standard error=0.003) which is more than 5-fold in

absolute terms of the benchmark OLS estimate. This suggests that a one standard deviation

increase in �rm size is associated with an approximately 61 percent decrease in growth rate

relative to the sample average. Even though this result seems to be surprising initially, it

shows that avoiding the �rm �xed e¤ects generates an omitted variable bias which favors the

large �rms. These omitted variables are likely to bias the results in favor of large �rms, since

these are the factors which have made these �rms �large �rms�at the �rst place. The very

same factors would make the �rm grow faster than others in general and not controlling for

them would make the �rm size take the credit for the additional growth of the large �rms.

Unfortunately, previous literature has generally overlooked this aspect, possibly due to data

limitations.

The second issue regarding the position of the �rm on its growth trajectory is more related

to the age or the time elapsed since when the �rm �rst shows up in the sample. A way to
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address this issue is to control for the number of years that the �rm has spent in Compustat

sample. Column 7 controls for this variable which is denoted by �Age�. The point estimate

of the coe¤cient on Age is -0.003 (standard error=0.000). This signi�cant negative coe¢ cient

on Age illustrates that on average, �rms are growing faster earlier in their life-cycle. This is

also economically signi�cant since this implies that in 10 years (�=one standard deviation of
Age, 11.3), the growth rate of a �rm with the same beginning and end-of-period sizes will

decrease by 25 percent relative to the average growth rate of the sample. On the other hand,

the coe¢ cient of the lnSales is close to the OLS estimate with a small increase. Controlling for

age, the benchmark OLS estimate increases by only 0.007 percentage point to -0.03 (standard

error=0.001), which is still highly signi�cant and economically large. The tiny increase suggests

that only a small portion of the OLS estimate could be attributed to the sample selection

problem of the second kind.

Another strategy to address the second caveat is to focus only on the �rms that have been

long enough in the sample. For that purpose Column 8 consider the �rms that have been in the

Compustat sample for more than 10 years. This approach is expected to eliminate the initial

heterogeneity of the �rms that might have quali�ed them to go public. The drawback of this

approach is the signi�cant decrease in the sample size (around 50%) and reducing the attention

only on the healthy �rms which manage to stay for more than 10 years in the sample. The

average �rm size increases by more than 15 folds (from 0.07 to 1.06) eliminating the young and

typically small �rms. Nevertheless, this method would be suggestive about an upper bound

of the actual coe¢ cient estimate on lnSales: This speci�cation produces an estimate of -0.011

(standard error=0.001) which is about a third of the OLS estimate. This decline was expected

as the nature of the sample has changed, yet in spite of this, the result from this restricted

sample still indicates a smaller but very signi�cant negative relationship between �rm size and

growth. Moreover, this negative relationship is also economically signi�cant. A one standard

deviation increase in lnSales (�=2.154) is associated with 2.37 percentage points decrease in
the growth rate, which amounts to a 42 percent decrease in growth rate relative to the average

growth rate of 5.6 in the sample.

Therefore the conclusion of all these di¤erent speci�cations is that the statistically and

economically signi�cant negative relationship between �rm growth and �rm size is robust to

sample selection problem.
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2.3.5 Additional Caveats

Time-varying Sector Characteristics. These heterogeneities could be a potential issue.

The take-o¤ of the computer industry in the mid-80s for example could be attributed to such

an unobserved sector level change. In order to prevent the results from being a¤ected by these

changes, I introduce an interaction term between the sector and time dummies. Column 9

shows that the impact of �rm size on growth is almost identical as in the benchmark OLS

estimation, showing that time-varying sector e¤ects do not signi�cantly a¤ect the benchmark

results.

Short-Run vs Long-Run. The short-run relationship between �rm size and growth

might di¤er from the true long-run relationship , because of transitory and cyclical movements

in Sales: Therefore, the 10-year average growth rate of �rms between 1995-2005 is regressed on

the initial �rm size of 1995. This is done �rst by excluding �rms which have exited over the

period (Column 10) and then by applying Heckman�s 2-step selection method (Columns 11a,b

and 12). Column 10 indicates that the long-run results, which includes only the �rms that

survived for 10 years, are 0.009 percentage point higher than the short-run benchmark OLS.

This should be expected since this sample excludes the exiters which are typically smaller

�rms. The average �rm size of the survivors is 0.171 whereas the average �rm size of the

exiters during this period is -0.599. Since this might cause a survivor bias on the estimate,

columns 11-12 employ the Heckman selection method. Column 11a shows that the probability

of surviving is increasing in �rm size whereas subsidiaries have a lower probability of surviving.

Column 11b reports the marginal e¤ects at the sample means. These estimates imply that

the marginal deviation from the average �rm size increases the probability of surviving by 5

percent. Similarly, being a subsidiary company decreases the probability of surviving by 41

percent. However, the coe¢ cient �2 of the inverse Mills ratio in (2) is not signi�cant indicating

that the survival bias does not a¤ect the OLS results systematically. Column 12 reports

the results of the second step. The corrected estimate on lnSales is now -0.026 (standard

deviation=0.006). This is not very di¤erent from the OLS estimate in Column 10 since the

survivor bias is not in e¤ect. These alternative speci�cations indicate that even the long-run

relationship between �rm size and growth is not consistent with Gibrat�s law.

In conclusion, the benchmark regression, together with the robustness checks6 show the

following result.

6 I also checked the robustness of the results with Compustat segment level data and I did not �nd any
signi�cant di¤erence between the results of the two datasets.
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Fact 1 (Firm Growth) Firm size is negatively related to �rm growth.

2.4 Firm Size vs R&D Intensity

2.4.1 Speci�cation.

The next empirical question is the relationship between �rm size and R&D intensity. Bound

et al (1984) had used a much older version of the Compustat data including only the �rms

that existed in 1976. With this cross-section, they found the size elasticity of R&D to be 0:97

suggesting that R&D intensity is independent of �rm size.

To analyse the same relationship, I will consider the following benchmark speci�cation,

ln (R&Dit=Salesit) = �0 + �1 ln (Salesit) + �j + �t + "ijt (3)

In this reduced form equation R&Dit stands for the total R&D spending of a company in a

given year.

The results of this benchmark regression are in column 1 of Table 3 . In contrast to most pre-

vious studies, a 10 percent increase in �rm size is associated with 2.65 percent decrease in R&D

intensity. In other words, the elasticity of R&D spending with respect to the �rm size is 0.735

which is signi�cantly less than unity. To see the practical importance of this e¤ect, consider an

average sized �rm (lnSale = 0:073) with the average R&D intensity (ln(R&D=Sale) =-3.205).

Consider also a 10 percent annual growth in real sales for 10 years. If the R&D intensity was

independent of the �rm size, the new real R&D spending would have increased from 4.4 to

11.4 percent at the end of the period. However, with the current estimate, the real R&D

spending goes up to 8.9 percent which is 22 percent lower than the case where R&D intensity

is independent of the �rm size.

Unfortunately, about 30% of the observations are excluded due to missing entries, which is

a problem that is addressed next.

2.4.2 Missing Observations

In the Compustat dataset, while most of the �rms report detailed data, some �rms report more

aggregated variables.7 As a result of these classi�cation strategies, many �rms do not report

R&D, even though they might have had a positive R&D expenditure. Following Bound et al

(1984), I will treat both missing and null observations as signifying �not reporting positive

R&D�(see Bound et al (1984) for a detailed discussion of this assumption). Consequently, a

7Firms have to follow certain accounting procedures in data reporting. However, the interpretation of these
procedures vary in great detail across �rms.
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two-step Heckman selection procedure is applied. The instrument that will be used in the �rst

stage is the Propensity to Report (PTR) Index which is generated in the following way: First,

12 data items (excluding R&D) that are common to all the manufacturing �rms are selected.8

Reporting of these items substantially di¤ers across �rms. Hence, the PTR index of a �rm

in year t corresponds to the percentage of those 12 items that are reported (i.e. not missing)

in that year. This index indicates to what extent and in how much detail a �rm reports its

data. Its value becomes 1 if the �rm reports all of the 12 items and 0 if it reports none. The

rationale behind this index as an instrument in the �rst stage is that, if the �rm chooses to

report a high fraction of those 12 items, then this would be a sign that the �rm has a good

propensity to report data, or detailed data classi�cation. Hence, it is plausible to think that

this �rm will also be more likely to report R&D.

Table 3, columns 2a,b and 3 report the results of the selection model. The signi�cance

of the inverse Mills ratio indicates as before the existence of a selection bias. Column 2a

shows that the probability of reporting positive R&D is increasing both in �rm size and PTR

index. Column 2b reports the marginal e¤ects at the sample means. It shows that a marginal

deviation from the sample average of �rm size increases the probability of reporting positive

R&D by 0.04 (standard error=0.001). The corrected estimates in Column 3 indicate that

the R&D intensity decreases by 2.1 percent if the �rm size increases by 10 percent, which

corresponds to an elasticity of 79%, again signi�cantly less than unity. To see its economic

signi�cance, the same exercise as above gives 19 percent lower real R&D spending in the �nal

period relative to the case where the R&D intensity is independent of the �rm size. Therefore

the coe¢ cient is still economically large.

2.4.3 Measurement Error

Similar to section 2.3.3, measurement errors could be a concern: I follow the same steps as

before and instrument the sales at time t by its lagged value. The estimates, presented in

Column 4 of Table 3, show the coe¢ cient on lnSales is precisely estimated as -0.225 (standard

error=0.003). In other words, the results were not strongly biased by the measurement error,

since the R&D elasticity increases from 74 percent to only 78 percent.

8The items are: DATA3 (inventories), DATA4 (current assets), DATA5 (current liabilities), DATA7 (prop-
erty, plant & equipment), DATA29 (employees), DATA41 (cost of goods sold), DATA42 (labor related ex-
penses), DATA103 (depreciation expenses), DATA216 (stockholders�equity), DATA224 (nonoperating income),
DATA263 (building at cost), DATA264 (machinery at cost).
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2.4.4 Sample Selection

This problem has been discussed in the previous section in detail. Brie�y, if the Compustat

sample selects only the highest R&D intensive �rms among the small �rms, and if this bias is

not so severe for large �rms, this factor might derive the observed results in the benchmark

OLS. Therefore I will address this issue again in two ways.

First, the permanent unobserved heterogeneity is captured through �xed e¤ects. The

result of this method is presented in column 5. Interestingly, the coe¢ cient estimate of this

speci�cation is lower than the benchmark OLS estimate, namely -0.384 with a standard error of

0.007, and the size elasticity of R&D is now only 62% , marking even more the contrast to the

previous literature. The possible explanation for this result is that excluding �rm characteristics

from these regressions is likely to give all the credits for higher R&D intensity to �rm size. For

example �rm speci�c know-how or products could a¤ect the size of the �rm through making

it capture the market and grow faster. The very same factors could make the �rm invest in

R&D to develop them further.

Secondly, the temporary unobserved heterogeneity caused by the �rm�s life-cycle can be

captured by the number of years spent in the Compustat sample. The results from this

estimation, in Column 6 con�rms that �rms are more R&D intensive when recently added to

the sample, but does not have a dramatic e¤ect on the benchmark estimates. To address the

same problem in a di¤erent way, one can restrict the sample to only those �rms which have

been surveyed by Compustat for more than 10 years. The resulting estimate in Column 7 is

now -0.092, which is higher than the benchmark. As it has been mentioned in the previous

section, the possible explanation for this result is the exclusion of small �rms from the sample.

However, even among mature �rms, the negative relationship between R&D intensity and �rm

size remains, though less stark. Consider a �rm that has the average size and R&D intensity

in this new sample (lnSale =1.027, ln(R&D=Sale =-3.705) and grows with 10 percent for

10 years. The end-of-period real R&D spending was going to be 0.028 if R&D intensity was

independent of the �rm size, but is now only 0.021, that is, 8% lower.

2.4.5 Additional Caveats

The robustness of the results to alternative speci�cations can also be checked. The methods

are the same as the ones employed in section 2.3.5.

Changing Sector Heterogeneities. The results using a year�sector interaction e¤ect
are presented in column 8 and are very close to the benchmark OLS results.
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Short-Run vs Long-Run. The long-run estimate of -0.298 (standard error=0.014) in

column 9 is 10% lower than the short-run estimate. This coe¢ cient denotes that the elasticity

of R&D with respect to the �rm sale is 0.70. As a result, the negative relationship between

R&D intensity and �rm size is sharper in the long-run.

Overall, the following fact can be summarized from the data.9

Fact 2 (R&D Intensity) Firm size is negatively related to R&D intensity.

2.5 Firm Size vs Innovation Quality

2.5.1 Speci�cation

The �nal and most innovative reduced form estimated is the one between �rm size and inno-

vation quality, as proxied by the number of forward citations. The benchmark reduced form

regression considered is:

Citationsjit = �0 + �1 ln (Salesjt) + �k + �t + "ji (4)

where Citationsjit denotes the number of citations that patent i of �rm j receives within 7-years

after its grant date t, Salesjt is the sales of �rm j in year t, and �k is a �xed e¤ect for 4-digit

International Patent Classi�cation (IPC) k. In chosing the window size, one faces a trade-o¤

because a larger window captures more citations per patent, but also reduces the number of

observations available. Since the number of cumulative citations increases mostly until 5 to 6

years before evening out, after the grant date, using a 7-year period seems optimal.10

The �rst column in Table 4A reports the benchmark result, using the full sample of patents

and �rms. The coe¢ cient estimate is precisely estimated as 0.154 (standard error = 0:008).

However, there might be a biased sample problem. The patent data sample was matched only

to �rms which existed in 1989. Hence, the �rms that entered after 1989 are not represented.

This causes the sample to get smaller, older and the average �rm size to get larger over time;

hence, the sample could get biased as time elapses.

To account for this, the second column focuses only on patents obtained between 1988-1992.

In this case, the benchmark coe¢ cient doubles to �0:324. This result should not be surprising
because the previous sample included presumably large and successful �rms from later years

in addition to the current sample, which would bias the result in favor of large �rms. This

9 I also checked the robustness of the results with Compustat segment level data and I did not �nd any
signi�cant di¤erence between the results of the two datasets.
10 I checked for the robustness of the results with 8 and 10-year windows and veri�ed that the results are not

signi�cantly sensitive to those variations.
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estimate is also economically sizable. A one-standard deviation increase in the log of �rm sale

(= 2:294) is associated with a decrease of 0.742 citations, which is 15 percent of the sample

mean.

In columns (3a) and (3b) a negative binomial regression is performed. The reason for using

this form rather than a Poisson model is to allow for the overdispersion in citations, i.e., that

the standard deviation of citations is greater than the mean. The coe¢ cients of the negative

binomial and the marginal e¤ects at the sample averages are reported respectively in columns

3a and 3b of the same table. The negative binomial estimate at the sample mean (= �0:282)
is slightly larger than the OLS estimate (= �0:324) and still highly signi�cant (standard error
= 0:013). In column 4 the analysis is extended to a zero-in�ated negative binomial to correct

for the fact that a lot of observations cluster around zero.11 The coe¢ cient estimate at the

sample average (= �0:276) does not di¤er much from the standard negative binomial. Hence,

it appears that the patents of small �rms receive more citations and hence that smaller �rms

generate better quality patents.

However, there remain some important issues to be addressed.

2.5.2 Patenting Decisions

An important concern is the di¤erential patenting behavior of small and large �rms. One could

argue that due to strategic reasons large �rms might patent more heavily. Indeed, one can

consider that there is a �crown�patent, which is the main patent for an important innovation,

but that large �rms also patent other peripheral innovations around it, so that those can

be used against opponents in cases of litigation, to make a strong case against a competitor

coming even close to the market niche of the �rm. On the other hand, if the costs of patenting

are important to small �rms, they might register their innovations only if the innovation is

signi�cantly high quality and prefer to save on the expense of patenting minor quality patents.

This would cause the quality of patents of small �rms to be higher. This concern can be

addressed by performing the regression not on the whole universe of patents, but rather on

only the best patent (the one with the highest number of citations) of each company. However,

this strategy tends to overestimate the quality of patents of larger �rms that apply for a big

number of patents.12 For that purpose, I will use the total number of patents of a �rm as a

11a) In the full sample 40%, in the 88-92 sample 12% of the patents have 0 citations.
b) The independent variables of the in�ation equation are the �rm sales and 2-digit IPC classi�cations.
12Assume �rm i receives only 1 patent in a given patent class in year t and �rm j obtains 10 patents in the

same patent class and year. If we focus on the best patents, �rm j will be more advantegous since its best
patent will be the best of 10 patents whereas �rm i has only one patent which will count as the best patent.
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control variable.

Column 5 shows the results of this approach. The results con�rm the existence of a possible

bias since the coe¢ cient of the negative binomial regression has increased from -0.040 to -0.035.

The marginal e¤ect of this speci�cation at the sample average is almost identical to the previous

speci�cations. As a result, it is reassuring to see that the bias due to patenting behavior of

�rms is not the sole driver of the negative relationship between �rm size and innovation quality.

2.5.3 Non-patenting Firms

The analysis so far have focused only on �rms which hold at least one patent in their portfolio.

However, 25% of the Compustat �rms do not register for any patent in any given year. These

�rms are typically small �rms, so that excluding them from the analysis could bias the results in

favor of small �rms. To address this issue, a Heckman selection model is utilized. The variable

used here as an instrument is a dummy, taking the value of one if the �rm has patented at all

in the past. The rationale behind this is that a patent made before signi�es on the one hand

that the �rm is already familiar with the patenting procedures, which makes it easier to patent

new innovations and on the other hand, reveals that the �rm has a propensity to patent its

innovations (as opposed to some �rms, which for secrecy or other reasons might chose to never

patent their innovations). Therefore one could expect a higher probability of observing a �rm

in the sample if the �rm has ever patented before. The results of this technique are listed in

columns 6-7. The estimates of the �rst stage show that the probability of registering for a

patent is increasing in �rm size. In line with the expectations, the probability of registering

for a patent increases if the �rm has patented before. The signi�cant inverse Mills ratio

documents the existence of selection in the estimation. The corrected results show that the

negative relation between �rm size and patent quality remains, though the coe¢ cient estimate

(= �0:242) is bigger than the benchmark estimate (= �0:324) since the latter was biased due
to the missing observations. Hence, the signi�cant negative relationship between �rm size and

innovation quality is not solely driven by sample selection.

2.5.4 Alternative Quality Measures

Next, I consider alternative indicators of patent quality. Column 8 considers an originality

index, the construction of which was explained in section 2.2 ranging from 0 to 1, and increasing

in the width of technologies cited by the patent. For any given number of citations, the wider

is the range of cited patent classes, the higher the value of this index will be.13 The results in

13The calculation of this index was described in the data description section.
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column 8 indicates that as the �rm size doubles, its innovations combine a smaller number of

technologies and the originality index decreases by 0.001.

In column 9 the results from regressing the number of claims of a patent on the �rm size

are presented. The number of claims could be seen as an alternative indicator of the value of

an innovation since the patent holder would demand so many claims that the marginal cost is

equated to the marginal expected return to that innovation. The result of this estimation also

documents a negative relationship between �rm size and innovation quality. The coe¢ cient

estimate of this regression (= �0:601) is not only statistically but also economically signi�cant.
A one-standard deviation increase in �rm size (= 2:294) is associated with a decrease of 1.378

claims, which is 11 percent of the sample mean.

In conclusion, I proxied the innovation quality by patent citations, by patent originality

and by the number of patent claims and all these cases generated the following result.14

Fact 3 (Innovation Quality) Firm size is negatively related to innovation quality.

3 Model

3.1 Demographics, Preferences and Technology

Consider the following discrete time economy. The representative household maximizes the ex-

pectation of an in�te sum of discounted utility, with intertemporal preferences of the following

form,

Ut = Et
1X
�=t

�� logC� (5)

where Ct denotes consumption at time t. In this speci�cation, � 2 (0; 1) is the discount factor
and Et the expectation operator conditional on the information at time t. The logarithmic

form measures the per-period utility derived from the consumption of the �nal good Yt which

is produced using a continuum of di¤erentiated goods indexed by i 2 I and a numeraire good.
Speci�cally the production function takes the following form:

Yt =

"
�y0;t

Z
i2I
yi;tdi�




2

Z
i2I
y2i;tdi�

�

2

�Z
i2I
yi;tdi

�2#1=2
(6)

where y0;t and yi;t denote the quantities of the numeraire good and variety i at time t, re-

spectively. This structure has been used by several papers (Ottaviano et al (2002), Melitz and

14Controlling for the number of years spent in the Compustat sample and restricting attention only to 10+
years old �rms did not change the results dramatically. Therefore they are not being reported to save space.
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Ottaviano (2008), Corcos et al (2007)). The parameters �; 
; � > 0 capture the substitution

patterns among the varieties and the numeraire good. The speci�cation in (6) features love

for variety which is measured by 
: Having 
 = 0 implies that the varieties are perfect substi-

tutes. Without loss of generality, the price of the �nal good is set equal to 1. The household is

allocated with a continuum of 1 unit of labor which will be supplied inelastically for production

and R&D. The representative household also owns a balanced portfolio of all the �rms in the

economy which implies the following budget constraint

Ct �
Z
i2I
�i;tdi+ wt

where I is the set of active �rms in the economy.

3.1.1 Final Good Sector

The �nal good producer maximizes pro�ts, using a set of di¤erentiated goods [yi]i2I and the

numeraire y0;t as inputs and takes their prices as given. Each of the di¤erentiated input yi;t is

being produced by a monopolist i 2 I who charges pi;t for each unit it sells. While mapping
the model into real life, one can think of each variety as a di¤erent brand of a product, say i

and j as the Home Computing goods of Hewlett Packard (HP) and Dell. To capture the reality

that HP produces and develops only HP products, in speci�cation (6) �rm i will compete with

other �rms from its own product line. In other words, it will only produce, improve and price

products that are in its own product line i. The representative household demands all of the

brands. In equilibrium, the �nal good producer will demand more of the lower priced products

which will push �rms to compete in lowering their costs of production.

The numeraire good, is assumed to be produced in an outside, perfectly competitive market

at a marginal cost ' > 0; hence, its price is p0;t = '; 8t: The �nal good producer does not
have any storage technology available and therefore optimizes period-by-period. The problem

of the �nal good producer can be stated as

�Y;t = max
y0;[yi]i2I

�
Yt
�
y0;t; [yi]i2I

�
�
Z
i2I
pi;tyi;tdi� p0;ty0;t

�
(7)

This maximization generates the �nal good producer�s demands for the intermediate goods,

ydi;t (pi;t) and y
d
0;t.

3.1.2 (Di¤erentiated) Intermediate Goods Sector

This sector is composed of monopolistically competitive �rms which make decisions about

production, R&D, entry and exit. Each of those is described below.
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Production Monopolist i in the intermediate goods sector operates with the following linear

technology,

yi;t = qi;tli;t (8)

where li;t is the labor hired by �rm i for production at time t and qi;t 2 [qmin;t;1) is the
�rm-speci�c labor productivity with a distribution function 	t (Qt) : Productivity qi;t can be

stochastically improved through R&D. The lower bound of Qt imply that in every period there

is a threshold below which the technology is outdated and does not have any productive value

relative to the current level of average technology.15 If we denote the wage rate by wt; equation

(8) implies that the �rm speci�c marginal cost of production is simply ci;t = wt=qi;t. For

mathematical convenience, the lower bound for the technology is assumed to be qmin;t = q̂minwt

where q̂min � 6�'=(�2 � 2�'2) is some constant:16

On the production side, monopolist i decides how much to produce and what price to charge

for its product, taking the �nal good (Yt), wage rate (wt) and the productivity distribution

(	t) in the economy as given. Its production decision is simply

max
pi;t;yi;t

f(pi;t � ci;t) yi;t j Yt; wt;	tg (9)

subject to

yi;t = y
d
i;t (pi;t)

R&D The evolution of the �rm speci�c marginal cost at time t is determined by two factors:

the growth rate of the wage rate and the innovation by the �rm. Each intermediate good i has

a quality ladder along which �rm i improves its state of technology qi;t through additive step-

by-step innovations. The outcome of R&D is uncertain, so that a �rm cannot directly choose

to make an innovation, but only a probability of success for achieving an innovation. The

novelty of the current model is that �rms can endogenously choose not only this probability of

success for but also the quality of innovation. Hence, each R&D decision is splitted into two

components:

� the quality of the innovation that the �rm aims for, �i;t 2
�
0; ��t

�
; and

15One can think of typewriters as an example which have been replaced by computers and are not in use
anymore.
16This assumption ensures that the production of the monopolist never assumes negative values. In addition,

since in steady state, wt will grow at a constant rate, this assumption also ensures that the lower bound for the
minimum quality (the threshold for the outdated technologies) in the economy would grow at the same constant
rate. Moreover, this assumption also guarantees that the pro�t function is concave in labor productivity qi;t,
which is crucial for the results of the model.
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� the probability of success, �i;t 2 [0; 1] :

Let qi;t be the technology of �rm i at time t: Any successful innovation of quality �i;t

improves the technology by this amount with probability �i;t: As the overall technology in

the economy improves, the maximum step size (innovation quality) ��t will grow as well. For

simplicity, this upper limit will be set as ��t = wt:17 Let
�
�i;t; �i;t

�
be �rm i�s R&D decision in

period t. Consequently, the state of technology for �rm i in the subsequent period will be

qi;t+1 =

8<:
qi;t + �i;t with probability �i;t

qi;t with probability 1� �i;t
(10)

The innovation step �i;t is the size of the quality improvement on top of the current technology.

This speci�cation assumes that there are constant returns to scale to quality improvements; in

other words, the improvements are independent of the current quality of the �rm�s technology.

The alternative speci�cation, which has been used by several studies in the literature (Aghion,

Harris and Vickers, 1997; Aghion, Howitt, Harris and Vickers, 2000; Acemoglu and Akcigit,

2008) is that the improvements are proportional to the current quality, yet this would introduce

increasing returns to scale to quality improvements.18

The theoretical results of the current model will rely on two features: First, the concavity of

the value function in quality and second, the absence of any strong increasing returns in quality.

These two features would imply that �rms with lower quality, will have a greater incentive to

increase their productivity. Therefore, they are going to choose higher quality innovations and

grow faster. The assumptions on the production function in (6) and the structure of the quality

improvement in (10) guarantee those two aforementioned features.

The speci�cation for the R&D cost function is as follows. Let

hi;t = h

�
�i;t
wt
; �i;t

�
(11)

denote the amount of labor required to undertake an R&D project of size �i with a success

probability of �i at time t: In real life, �rms bene�t from the improvement of the aggregate tech-

nology through (i) spillovers ((Ja¤e, 1989; Ja¤e, Trajtenberg, and Henderson, 1993; Anselin,

Varga, and Acs, 1997; Anselin, Varga, and Acs, 2000)) (ii) improvements in labor substituting

capital in R&D (computers, for instance). The reduced form (11) captures such positive ex-

ternalities. In steady-state, wt is a fraction of Yt; therefore, (11) implies that a given quality of

17Since the payo¤ relevant state variable is q=w the payo¤ relevant improvement will become �=w: Setting
the upper limit as �� = w bounds the payo¤ relevant innovation size between 0 and 1, i.e., �=w 2 [0; 1] :
18One way to eliminate this increasing returns to scale would be to make the R&D cost function proportional

to the current quality.
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innovation requires less labor as the overall technology in the economy advances. The function

h is assumed to be strictly convex, with hx (�; �) ; hxx (�; �) ; hxz (�; �) � 0; hx(�;�)
z decreases in z;

for x; z 2 f�; �g and x 6= z, and the Inada conditions are assumed to hold h (0; �) ; h (�; 0) = 0
, h (1; �) ; h (�; 1) = 1. As a result, the cost of an R&D project

�
�i;t; �i;t

�
is simply the R&D

labor expense, wthi;t: Having labor as the only input for both R&D and production and the

speci�cation for the supply of the numeraire good imply the following resource constraint for

the economy,

Ct � Yt � 'y0;t:

Free Exit All �rms are assumed to have an outside option of �t = ��Yt where �� 2 (0; 1) :
This means when the market value of a �rm falls below �t; it would be optimal to exit and

utilize the outside option. The decision to exit will be denoted by �i;t = 1 if the �rm decides to

exit and �i;t = 0, otherwise. In terms of timing of the model, �rms decide to stay or exit after

the stochastic R&D outcome is realized. In summary, the decision variables of an incumbent

monopolist �rm are i) output yi;t; ii) price pi;t; iii) innovation quality �i;t; iv) innovation

intensity �i;t, and v) exit �i;t:

Free Entry The market has an outside pool of potential entrants, which is large enough

to have entry as long as it is pro�table. These outside �rms are ready to pay an entrance

fee �t = ��Yt where �� 2 (0; 1) and determine their entry level productivity qi;t with a draw
from the last period�s end-of-period productivity distribution 	t�1 (Qt) : In the beginning of

period t; these potential entrants pay the fee and draw a productivity. As a result of this draw

qi;t � 	t�1 (Qt), �rms with a high productivity draw will enter the market and the �rms with
a low productivity draw will �nd it more pro�table to stay out of the market and utilize the

outside option. The outside �rms will enter the market as long as the expected value of entry

is greater than the entry fee �t: This process will determine the equilibrium measure of the

�rms in the market, Nt:

Labor Market Labor is being employed by monopolist i both in production (li;t) and R&D

(hi;t). The measure of the labor supply is assumed to be 1. Given a wage rate wt, labor market

has to satisfy the following condition in equilibrium,

1 =

Z
i2I
[li;t (wt) + hi;t (wt)] di (12)

Finally, to review the model, the timeline of the model in period t can be summarized as
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follows:

beginning
of period t

!

draw of a
productivity,
qi;t� 	t�1(q)
and decision
to enter

!
i) production yi;t; Yt
ii) R&D, (�i;t; �i;t)
iii) labor market

clearance

! R&D outcome
realized, qi;t+1

!
decision
to stay or
exit, �t

3.2 Equilibrium

Throughout the model, I will focus on the Markov Perfect Equilibrium which makes the payo¤s

functions of the payo¤ relevant state variables. For each individual �rm, the state variables

are the �rm speci�c productivity qi;t and the productivity distribution 	t in the economy. In

the maximization problem of each monopolist, the wage rate is a su¢ cient statistics for the

productivity distribution, therefore the only pay-o¤ relevant state variable becomes the ratio of

the �rm�s productivity to the wage rate, q̂i;t � qi;t=wt: This conclusion allows me to drop �rm
speci�c indices and focus on the variables only as a function of the state space Q̂t � Qt=wt.

Before starting to characterize the equilibrium, I provide the de�nition of an allocation in

this economy. Henceforth, bold letters will denote the entire mapping of the variables from

the state space, i.e., yt � [yq̂;t]q̂2Q̂t :

De�nition 1 (Allocation) An allocation in this economy consists of i) consumption levels

[Ct]
1
t=0 ; ii) prices, quantities, innovation qualities, intensities and exit decisions of monopolists

[pt;yt;�t;�t;�t]
1
t=0 ; iii) quantities of the numeraire good [y0;t]

1
t=0, iv) the measure of available

product types, [Nt]
1
t=0 ; v) the distribution of productivities,[	t]

1
t=0 and vi) wage rates, [wt]

1
t=0 :

Markov Perfect Equilibrium strategies can simply be represented as

[pt;yt;�t;�t;�t]
T : Q̂t � R2 ! R2+ � [0; 1]

2 � f0; 1g

where the state dependent strategies take the relative quality qt=wt; �nal output Yt; and the

wage rate wt and map them to price, output, R&D decisions and exit decisions. The formal

de�nition of the Markov Perfect Equilibrium goes as follows.

De�nition 2 (Equilibrium) A Markov Perfect Equilibrium is an allocation

h[C�t ]
1
t=0 , [p

�
t ;y

�
t ;�

�
t ;�

�
t ;�

�
t ]
1
t=0,

�
y�0;t
�1
t=0
,[N�

t ]
1
t=0, [w

�
t ]
1
t=0 , [	

�
t ]
1
t=0i such that i) [p�t ;y

�
t ]
1
t=0

solves monopolist�s pro�t maximization, ii) [��t ;�
�
t ]
1
t=0 solves optimal R&D investment

problem, iii) [��t ]
1
t=0 solves monopolist�s exit problem, iv)

�
y�0;t
�1
t=0

is consistent with the

�nal good producers maximization problem, v) [C�t ]
1
t=0 is consistent with the household�s
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optimization, vi) [N�
t ]
1
t=0 makes the free-entry condition hold as an equality, vii) the evolution

of the productivity distribution [	�
t ]
1
t=0 is consistent with the R&D, entry and exit decisions of

the �rms and viii) [w�t ]
1
t=0 is consistent with the labor market clearing condition.

Having provided the de�nition of the equilibrium for this economy, I start to solve for it

with the production decision of the monopolist.

Production The �nal good producer�s demand for the numeraire good in equation (7) is

y0;t =

�
�

4'2
+
�

2�

�
�ytNt +




2�

�
y2t
�

�yt
(13)

where �yt � (1=Nt)
R
i2I� yi;tdi;

�
y2t
�
� (1=N)

R
i2I� y

2
i;tdi and Nt is the total number of �rms that

are actively producing in the market. The demand for the numeraire good is increasing in the

dispersion of di¤erentiated goods. Similarly, the inverse demand for each variety i 2 I is

pi;t =
�y0;t � 
yi;t � ��ytNt

2Yt
: (14)

The monopolist i with a marginal cost ci;t = wt=qi;t takes this inverse demand for its variety

as given and maximizes its pro�t as in (9) : Since the pay-o¤ relevant state variable is the ratio

of the technology to the wage rate, I will adopt the following notation q̂i;t � qi;t=wt = 1=ci;t:
The maximization of the monopolist delivers the following output and price decisions

yi =
Y




 
2
'

�N
+

�
1

q̂

�
t

� 1

q̂i;t

!
(15)

pi =
1

2

 
2
'

�N
+

�
1

q̂

�
t

+
1

q̂i;t

!
(16)

The optimal price set by the monopolist increases in its marginal cost ci;t = 1=q̂i;t. Note that

with the production function in (6) the mark-ups are decreasing in the number of competitors

and in marginal cost. This implies that an increase in marginal cost is always shared by both

the monopolist and consumer. The empirical �ndings of Hopenhayn and Campbell (2002) and

Syverson (2004, 2007) empirically support these features.

Next, using the optimal pricing and output decisions of the monopolists, its pro�t becomes

the following expression

�t (q̂i;t) =
Yt
2


 
2
'

�N
+

�
1

q̂

�
t

� 1

q̂i;t

!2
(17)
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where (1=q̂) is the average marginal cost in the economy. Pro�ts decrease in marginal costs,

providing �rms with an incentive to reduce their costs through innovations. Another key point

regarding (17) is that it is concave in q̂i;t on the set Q̂t � Qt=wt.

Value Functions, R&D and Exit Starting from the end of period t, we can formulate the

maximization of �rm i backwards. Let qi;t be the production technology of �rm i in period t and

let qi;t+1 be the technology after the R&D outcome is realized at the end of period t: Denoting

the beginning-of-period and end-of-period values of �rm i by Vt (�) and Wt (�) ; respectively;
and recalling that the pay-o¤ relevant state variable is q̂t � qt=wt; the exit problem can be

stated as

Wt (q̂i;t+1) = max
�i2[0;1]

�
�i;t�t + (1� �i;t)Vt+1

�
q̂i;t+1
1 + gt

��
: (18)

where �t is the outside option and gt is the growth rate of the wage rate between time t and

t + 1 which �rm i takes it as given: Now going backwards, conditional on the fact that the

�rm starts the period with a productivity level of qi;t; the program for the R&D decision is

summarized by the following Bellman equation;

Vt (q̂i;t) = max
�i2[0;��t]
�i2[0;1]

8>><>>:
�t (q̂i;t)� wth

�
�̂i;t; �i;t

�
+

1
1+r

h
�i;tWt

�
q̂i;t + �̂i;t

�
+
�
1� �i;t

�
Wt (q̂i;t)

i
9>>=>>; (19)

where q̂ � q=w, �̂ � �t=wt and r is the interest rate: The �rst term in this equation is the

gross pro�t, the second expression is the R&D expenditure due to the hired R&D workers

for an innovation project with a quality �i;t and a success probability �i;t: The expression in

the bracket is the expected end-of-period value of �rm i taking into account that the R&D

investment will be successful with the endogenous probability �i;t .

Entry In the beginning of period t; potential entrants pay an entrance fee �t = ��Yt and

determine their starting technology with a draw from the previous period�s distribution, q �
	t�1 (q) � wt�1	̂t�1 (q̂). This means, since the fee is sunk at the moment of the draw, �rms
with bad draws qi;t < qexit;t�1 will not enter the market even though they would have already

paid the fee. Firms will attempt to enter, as long as the expected value of entry is higher than

the entry fee. This free-entry condition reads as,Z
Vt (q=wt) d	t�1 (q) � �t: (20)

When the expected value of entry is greater than the entry fee, the measure of �rms in the

market, Nt will implicitly increase leading to a uniform decrease in the value function. As a
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result, the expectation on the left-hand side of (20) will decrease until the inequality holds

with equality.

Labor Market The wage rate is determined through the zero-pro�t condition of the �nal

good producer. If the pro�t is strictly positive, the �nal good producer will choose to produce

an in�nite amount and will demand in�nite amount of labor accordingly. On the other hand,

if the pro�t is strictly negative, there will be no production at all. Therefore through the

zero-pro�t condition of the �nal good producer and equation (16), the wage rate is pinned

down as

wt =

�2

2

h
1 + 


2

R
i2I ~y

2
i;tdi

i
� '

�
4

N + �

�
2�(1=q)t

:

Section 3.2 demonstrated how to obtain �rm i�s labor demand for R&D,

h
�
�̂i;t (wt) ; �i;t (wt)

�
: The labor which are not employed in R&D will determine the level

of the intermediate goods and the �nal good. Again, in equilibrium the total demand for labor

should match the supply as in (12) :

The focus, henceforth, will be on the steady-state, in which all aggregate variables grow at

the same rate g > 0:

3.3 Steady-State and Theoretical Results

I will start this section normalizing the over-time-growing variables by Yt in order to transform

the problem into a stationary problem. Throughout this section, the normalized value of some

generic variable x will be denoted by ~x � x=Y .

De�nition 3 (Steady-State Equilibrium) A Steady-State Equilibrium is a tuple

h V;W;��;��;��; 	̂�; N�; ~w�; g�i such that i)V;W satisfy (18) and (19) ; ii) ��;��;��

solve the the value functions in (18) and (19) ; iii) 	̂� forms an invariant distribution over

the state space Q̂; iv) ~w� clears the labor market, v) N� is constant and consistent with

steady-state free-entry condition, vi) the aggregate variables Yt; wt; and the average technology
1
N�
R
i2I�

1
qi;t
di grow at the steady-state rate g� which is consistent with the steady-state R&D

choices (��;��) :
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Next I characterize the steady-state equilibrium. The normalized steady-state versions of

the value functions in (19) take the following form

~V (q̂i) = max
�i2[0;1]
�i2[0;1]

8>><>>:
~� (q̂i)� ~wh

�
�̂i; �i

�
+

1
1+r

h
�i ~W

�
q̂i + �̂i

�
+ (1� �i) ~W (q̂i)

i
9>>=>>; (21)

where ~V � V=Y; ~W � W=Y; ~� � �=Y; ~w � w=Y are the normalized aggregate variables and

q̂ � q=w and �̂ � �=w are the pay-o¤ relevant state variable and normalized innovation quality.
Similarly the end-of period value function becomes

~W (q̂i) = max
�i2[0;1]

�
�i�� + (1� �i) ~V

�
q̂i

1 + g�

��
(22)

where �� = �=Y: To guarantee consistency with the initial assumption on the technology space

Q̂; the normalized outside option �� is such that �� = ~V (q̂min) : Since the transformed problem

is autonomous, the time subscripts are dropped. A point worth noting is that the growth of

the wage rate g re�ects the pressure of the rest of the �rms on �rm i: The marginal cost of

�rm i increases as the rest of the �rms innovate because the increase in aggregate technology

re�ects itself through an increase in the wage rate. This implies that for any given g > 0; if

�rm i never innovates, it will have to exit the market eventually. Therefore, in addition to the

usual cost reduction incentive, there is an additional incentive to innovate, namely to survive

in the market.

The optimal steady-state exit decision in (22) is

��i =

8<: 1 if �� > ~V
�
q̂i;t+1
1+g�

�
0 if �� < ~V

�
q̂i;t+1
1+g�

�
��i 2 [0; 1] otherwise

This simple condition implies that if the �rm value is below the outside option ��; the �rm

will �nd it optimal to exit.

The next proposition characterizes the value function in (21). Its proof will be presented

in Appendix B of the paper, together with all other proofs.

Proposition 1 Consider the dynamic optimization of an individual �rm. For any given

steady-state values
�
	̂�; N�; ~w�; g�

�
i) the value function in (21) exists, is unique, continuous, strictly increasing, di¤erentiable

and strictly concave.
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ii) Optimal policy functions �� (q̂) ; �� (q̂) exist and they are continuous functions.

This proposition documents that the steady-state value function is increasing in the tech-

nology of the �rm. The following lemma is immediate from Proposition 1.

Lemma 1 Let q̂min be implicitly de�ned as �� = ~V (q̂min= (1 + g
�)) : Then

i) �rm i�s exit decision is a cut-o¤ rule such that

��i = 1 if q̂i < q̂min

��i = 0 if q̂i > q̂min

��i 2 [0; 1] otherwise

ii) potential entrants will follow the same cut-o¤ rule in their entry decision.

Recall that the marginal cost w=qi increases if the �rm fails to innovate since wt =

w0 (1 + g
�)t grows at the rate g�. Together with the cut-o¤ rule, this implies that the �rms be-

low a certain threshold q̂i < q̂dist where q̂dist � (1 + g�) q̂min will exit the market with certainty
if they fail to innovate in the current period. I will call the active �rms below this threshold,

q̂i 2 [q̂min; q̂dist) as distressed �rms.
Next, having demonstrated the di¤erentiability and concavity of the value function in

Proposition 1, we can use the �rst order conditions to pin down the optimal steady-state R&D

decisions:

�̂i :
(1 + g�) ~w�h�̂

�
�̂
�
i ; �

�
i

�
(1 + r)

��i
= ~V 0

 
q̂i + �̂

�
i

1 + g�

!
(23)

�i : ~w�h�i

�
�̂
�
i ; �

�
i

�
(1 + r) =

8<: ~V
�
q̂i+�̂

�
i

1+g�

�
� ~V

�
q̂�i
1+g�

�
if q̂i > q̂dist

~V
�
q̂i+�̂

�
i

1+g�

�
� �� otherwise

(24)

The key economic force for the innovation size is the marginal value of the new state that �rm

i is going to reach if successful. On the other hand, the incentive for the innovation intensity is

the di¤erence between the values of the successful state and the failure state, which is simply

the private value of innovation. The larger this private value is, the more intensively �rm i

will try to innovate.
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Let (��;��) denote the steady-state R&D decisions of all the �rms in (19). Then the

aggregate steady-state growth rate is characterized as

g� =

R
i2I�

1
q̂i
diR

i2I�
q̂i+�̂

�
i (1���i )

q̂2i+�̂
�
i q̂i

di
� 1 (25)

where q̂i = qi=w� and �̂
�
= ��i =w

�:19 This expression makes it clear that the aggregate growth

rate is determined not only by the heterogenous innovation intensities ��; but also by the

heterogenous innovation qualities, ��. This observation has an important implication: Any

policy instrument, such as R&D Subsidy, R&D Tax Credit or Intellectual Property Rights

Policies, which target to improve the aggregate economics growth through technological inno-

vation should also take into account the heterogeneity of the innovation qualities of di¤erent

�rms. The following theorem states the prediction of the model on the relationship between

innovation quality and �rm size. It is consistent with the third reduced form evidence from

section 2 which stated that smaller �rms produce higher quality innovations.

Theorem 1 (Innovation Quality) Let �̂ (q̂) : Q̂! [0; 1] be the policy function as described

in Proposition 1; ii: For q̂ > q̂dist 2 Q̂; �̂ (q̂) is a monotonically decreasing function such that
limq̂!1 �̂ (q̂) = 0.

This theorem states that among the non-distressed �rms, innovations become less drastic

as �rm size increases. The intuition for this result comes from the shape of the value function.

The shape of the value function is driven both by the shape of the marginal cost, ci = 1=q̂i and

the concavity of the pro�t function in the production technology. Since the marginal value of

innovation is diminishing, the incentives for drastic innovation decreases as �rm size increases.

Next, I return to the discussion on the �rm entry. After the �rms with q̂i � q̂min enter the
market, �rms invest in R&D, choose

�
�̂ (q̂i) ; � (q̂i)

�
and hire the R&D workers accordingly.

At any point in time, �rms are assumed to have a normalized outside value of �� > 0.

When the economy has a strictly positive growth rate g� > 0, the marginal cost of �rm i

will increase in every period. If the �rm�s step size is bigger than the aggregate increase, i.e.,

�̂i > g
�q̂i, then the �rm�s relative technology will improve. From Theorem (1) we know that

the quality of innovation, �̂ (q̂) is a strictly decreasing function converging to 0. Therefore, we

have the following lemma.

Lemma 2 Let �̂
�
(q̂) be the equilibrium optimal choice for the innovation quality. Then

19See Appendix B for the derivation.
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i) there exists �q 2 Q̂ such that �̂ (�q) = g��q; and

ii) for q̂i > �q; q̂i;t+1 � q̂i;t:

This lemma implies that there exists a threshold level of technology above which all the

states are transient. This will be crucial for the existence of the invariant distribution. The

formal statement for the existence of the invariant distribution is provided with the proposition

below.

Proposition 2 Consider the above model and let the state of outside �rms be denoted by q̂out.

Assume also that the steady-state growth rate of the economy is strictly positive, g� > 0: For any

given equilibrium R&D decisions in (23), (24) there exists a unique steady-state distribution of

industries, 	̂� (q̂) such that 	̂�
�
Q̂ [ fq̂outg

�
= 1 with an atom at q̂out: Moreover, the invariant

distribution is continuous in its transition probabilities.

Now we have all the necessary tools for the existence of the equilibrium. I establish the

existence of the equilibrium by using Brouwer-Schauder-Tychono¤ Fixed Point Theorem. The

road map for the proof is that the equilibrium will be shown to be the �xed point of a continuous

operator that takes elements from an in�nite dimensional compact convex set and maps it into

the same set. Let m =
h
N; ~w; g; �

�
Q̂
�
; �
�
Q̂
�
; �
�
Q̂
�
; 	̂; ~V

�
Q̂
�
; ~W

�
Q̂
�i
2M be a generic

argument of the following operator

� (m) :M!M (26)

such that

� (m) � [�N (m) ;� ~w (m) ;�g (m) ;� ~V (m) ;� ~W (m) ;�	̂ (m) ;�� (m) ;�� (m) ;�� (m)]
T

It is shown in the Appendix that all of the individual operators in � (m) are continuous and

M is a compact convex set. These steps lead to the following proposition.

Proposition 3 Consider the economy described above. A steady-state equilibrium m� �h
N�; ~w�; g�; �� (:) ; �� (:) ; �� (:) ; 	̂�; ~V � (:) ; ~W � (:)

i
of this economy exists. Moreover, the

steady-state growth rate is strictly positive g� > 0.

Next we turn to the second major result of the model which documents the relationship

between the R&D intensity and �rm size.
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Theorem 2 (R&D Intensity) Let R (q̂) : Q̂ ! R+ be the R&D intensity function de�ned

as

R (q̂) =
w�h (q̂)

y (q̂)
:

For q̂ > q̂dist 2 Q̂; R (q̂) is a monotonically decreasing function.

This result is in line with the second reduced form evidence from section 2: The intuition

for this result comes from the fact that the �rm incentives for radical innovations diminishes

as the �rm size increases. Firms turn to more incremental innovations as their size increases

and this in turn decreases the R&D intensity for larger �rms.

Firm Growth The engine of both �rm level and aggregate growth in this economy is the

productivity enhancing innovation. The model delivered two main reasons for R&D; to increase

pro�ts and to survive in the market. As long as the improvement in the productivity dominates

the increase in the wage rate, the marginal cost of production decreases and �rms start to obtain

a higher share in the market and grow. The following proposition characterizes the expected

�rm growth rate.

Proposition 4 Consider the model above and let g� > 0 be the aggregate steady-state growth

rate. Then, expected �rm growth rate can be expressed as

G (q̂) = g� +

[1+g�]�̂
�
(q̂)��(q̂)

q̂+�̂
�
(q̂)

� g��
�~y0 � 2�

�

�
q̂ � 1

:

This theorem documents the role that the innovation quality plays in the expected �rm

growth. Intuitively, higher quality innovations bring higher growth, and since the innovation

quality decreases in �rm size, the following theorem documents that the model generates

the same result that we obtained in the reduced facts, namely the expected growth rate is

decreasing in �rm size.

Theorem 3 (Firm Growth) Let G (q̂) : Q̂ ! R be the function of expected growth rate as

de�ned in Proposition 4. For q̂ > q̂dist 2 Q̂; G (q̂) is a monotonically decreasing function.

This �nal theorem concludes the theoretical section. This model achieved to explain the real

facts that we observed from the data. It predicted that above a certain �rm size threshold the

�rms in the model behaved consistently with the data. Since the Compustat �rms are relatively

larger compared to the whole population in the US manufacturing sector, this threshold �rm

size also �tted well into the main picture. The next section estimates the structural parameters

of the model.
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4 Structural Estimation

The next goal of this paper is to use the theoretical model in order to analyze the e¤ects of

various R&D subsidy policies. The model generated important predictions about the �rms and

their R&D investments, growth dynamics, the distribution of their productivities and their

transitions within this distribution. The model can be simulated with di¤erent parameter

values, taken to the real data and used to simulate the e¤ects of di¤erent macroeconomic

policies. In this respect, a simulation-based estimation technique, like Simulated Method of

Moments (SMM) is particularly useful because it enables us to focus on the relevant moments

of the model and the data. In this section, I will �rst provide the necessary background

information on SMM. Then I will describe the moments chosen and the computational strategy.

Finally, I will conclude the section by presenting the estimates. The next section will conduct

the policy experiment using these estimated parameters.

For the estimation, a parametric form of the R&D cost function needs to be speci�ed and

is chosen such as to satisfy all the assumptions previously imposed, namely:

h
�
�̂; �

�
= B�

�̂
��

1� �̂
+B�

���

1� �

where ��; �� > 1 and B�; B� > 0: Separability is a natural benchmark assumption in this

context since we do not have strong priors about whether these two dimensions of innovation

are complements or substitutes.

To specify the parameters to be estimated, the following simpli�cations are made: The

interest rate is set at 5 percent per annum. The entry fee ~� is also set a priori, such that the

total measure of �rms in the economy is equal to 1 because it is hard to �nd an informative

moment condition for this parameter. The outside option �� determines the cut-o¤ level for the

exiters q̂min: Alternatively, one can determine the cut-o¤ level and compute the corresponding

outside option. Since the mapping between the two is monotonic and continuous, this does not

a¤ect the estimates. For computational simplicity, I will follow the latter option. As a result,

the vector of parameters of length k = 8 to be estimated, within the set � of feasible values

is:

� =
�
� 
 � B� B� �� �� q̂min

�T 2 �
4.1 Simulated Method of Moments (SMM)

The rationale for using the SMM method lies in the lack of a closed form expression for the

parameters in terms of the data moments. The idea of SMM is as follows. Let
�
oAi
�
; i = 1; :::; n
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be i.i.d real observations and MA denote the vector of the l � k selected moments from the

actual data. Let MS (�) denote the vector of the corresponding moments that are generated

from the simulation of the model for a given set of parameters �: In addition, let R2 (�)

denote the weighted sum of squared deviation (WSSD) between the data and their simulated

counterparts,

R2 (�) =
�
MA �MS (�)

�T W �MA �MS (�)
�

(27)

where W is the optimal weighting matrix. SMM calculates the estimate �̂ by minimizing the

distance between the data and the model moments,

�̂ =argmin
�2�

R2 (�)

Due to possible discontinuities in the objective function, Simulated Annealing Algorithm is used

for this minimization (See Go¤e, 1993 or Wu and Wang, 1998 for details of this algorithm).20

Let 
 denote the variance-covariance matrix of (1=
p
n)
�
MA �MS (�)

�
: The optimal

weighting matrix W is the inverse of the variance-covariance matrix W =
�1 (Adda and

Cooper, 2003, p. 88). Hence, observations with higher variance are given less weight. To

calculate 
; I follow Bloom (2008) and use a block bootstrap with replacement on the data.

Gouriéroux and Monfort (1996, p. 29) show that �̂n (W) is consistent when n tends to

in�nity and that
p
n
h
�̂n (W)! �0

i
d�!

n!1
N (0; Q (W))

where

Q (W) =
�
@MT

@�
W
@M
@�T

��1
: (28)

Therefore the magnitudes of the standard errors of estimates are determined both by the

variance-covariance of the moments and the sensitivity of the moments to the parameters,

with a greater sensitivity leading to smaller standard errors.

4.2 Data and Moments

In this estimation, I use the full Compustat manufacturing sample between 1980-2005. The

identifying moment conditions are generated as follows: First, the medians of the variables of

interest are calculated. For each variable, the deviations from a linear time trend and from

sector averages are taken. These deviations are added back to the corresponding variable

20 It samples a � 2 � during each iteration and accepts the current � as the new candidate for the global
minimizer with certainty if it reduces the WSSD and with some probability if the WSSD is increased with the
current � :
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medians to obtain variables centered around their medians, but purged from time and sector

e¤ects. After dropping outliers (the top and bottom 2.5 percentiles for each of the three

variables �rm growth, R&D intensity, �rm sales), �rms are ranked in terms of their size and

divided into two bins of �small �rms� and �large �rms�. The �rst six moment conditions

match the mean �rm growth rates, R&D intensities and labor productivities for each bin to

their simulated counterparts. The next two moment conditions match the yearly transition

rates between the two bins and the last one matches the mean �rm value (normalized by

assets). This way, 9 moment conditions are obtained for the 8 parameters.

4.3 Identi�cation

The necessary condition for identi�cation is that @M
@�T

should have full column rank which means

that the objective function R2 (�) has a unique local minimum attained for the true parameter

value. For the e¢ ciency of the estimator, it is essential to use informative moment conditions,

that is the moments must be sensitive to changes in parameter values as shown in (28).

Hence, for identifying the cost parameters
�
B�; B�; ��; ��

�
; the moments used are the

growth rate, R&D intensity and transition rates which are directly determined by the R&D

choices. To identify the parameters of the production function in (5) and the cut-o¤ produc-

tivity (�; 
; �; q̂min), �rm value/asset and labor productivities are most useful.

4.4 Computational Strategy

The computational solution of the model consists of a nested �xed point problem. The outer

layer of the nest consists of three variables, namely the aggregate growth rate g; the quantity of

the numeraire good y0 and the labor share ~w: To solve the model, I start with some initial guess

for these parameters. Next taken these values as given, inside the nest, �rms�value functions

are solved. Since the problem features continuous state space, the numerical methodology

relies on cubic splines collocation method to approximate the value function exactly at n = 150

collocation nodes (Judd (1998, p. 225), Miranda and Fackler (2002, p.230)). This method uses

a series of cubic polynomial segments spliced together to form a twice continuously di¤eren-

tiable function that approximates the value function at n nodes. The routine for solving the

model is as follows.

1. Start with an initial argmax �̂ and set R̂2 =1:

2. Sample a set of parameters �guess 2 �:
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3. Start with a guess for [g; y0; ~w]guess

4. Solve the value functions

5. Generate the R&D e¤orts [� (q̂) ; � (q̂)]q̂2Q̂

6. Using [� (q̂) ; � (q̂)]q̂2Q̂ generate the invariant distribution of �rms 	 (q̂).

7. Solve for the new values of [g; y0; ~w]new

8. If



[g; y0; ~w]Tguess � [g; y0; ~w]Tnew


 < criteria; stop. Else, update [g; y0; ~w]guess

and go back to line 4.

9. Calculate the moments of the model MS (�guess) : If R2 (�guess) < R̂2; then �̂ =

�guess and R̂2 = R2 (�guess) : Else set �̂ = �guess and R̂2 = R2 (�guess) with some

probability which decreases as the number of iteration increases.

10. Repeat this loop as many times as possible. The more it is repeated, the more likely it

will reach the global minimum.

4.5 Results

The following table reports the moments of the actual data and the model regarding the median

growth rate gi; R&D intensity Ri and the labor productivity qi in bin i; the transition rates

from bin i to j; denoted exiti, and the median �rm value in the sample V:

Moment Conditions

g1 g2 R1 R2 q1 q2 exit1 exit2 V

Data 0.025 0.009 0.068 0.031 1.202 1.462 0.103 0.043 1.053

Model 0.015 0.014 0.035 0.027 0.851 1.194 0.129 0.073 1.063

Table 5

This table shows that the median growth rate and R&D intensity is higher among smaller

�rms. Also, the transition rate from small �rms to large �rms is higher than the transition

rate of large to small �rms . On the other hand, the labor productivity is higher among large
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�rms. All these qualitative facts have been matched by the simulated model. The following

table reports the parameter estimates and their standard errors.

Parameter Estimates

� 
 � B� B� �� �� q̂min

Estimate 79.389 0.118 1.569 2.984 0.016 5.958 1.948 17.725

St Dev (0.425) (0.011) (0.119) (0.212) (0.007) (0.107) (0.114) (0.125)

Table 6

Figure 3 shows the plots of the value function, R&D e¤orts, expected growth rate and

the �rm size distribution at the estimated parameter values as a function of the �rm size.

The value function is consistent with (1) and concave. Again consistent with their theorems,

innovation quality, R&D intensity and expected �rm growth rate are decreasing in �rm size,

for �rms above a certain �rm size threshold (�=0.1). The next section utilizes these parameters

in a policy experiment.

5 Policy Analysis: R&D Subsidy

The suboptimality of private R&D investment has spawned a heated debate both among

academicians and policymakers. It is widely argued that the social return to R&D is greater

than the private return, which suggests that the equilibrium amount of private R&D investment

is suboptimal (Griliches, 1992, 1995; Jones and Williams, 1998). To align the social and private

returns of R&D, policymakers in the U.S. and in the E.U. have used R&D subsidy programs.

The UK, for instance, is one of the countries which employs size-dependent R&D policies,

reserving higher subsidies to SMEs21 (Bloom et al 2001).
21SME: Small and Medium Sized Enterprises are de�ned as �rms with less than 250 employees.
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The implications of such R&D policies for the economy are substantial. Therefore it is

essential to have a good framework to investigate their e¤ects. This section will use the

estimated theoretical model to analyse size-dependent R&D policies.

5.1 Theory

In a decentralized equilibrium, �rms do not take into account the externalities and the

monopoly distortions that they generate. As a result, the market equilibrium does not match

the �rst-best level. The R&D subsidy gives the policymaker a partial ability to align the pri-

vate and the social incentives. In the following setup, the government provides a volume-based

R&D subsidy and �nances � i 2 [0; 1] portion of the whole R&D spending of the �rm.22 The

subsidy rate � i is allowed to be size dependent and since �rm size is a monotonic transformation

of the state-variable q̂; the tax scheme that I will consider is

� i = � (q̂i) ; 8q̂i 2 Q̂

As a result, �rm i will pay only [1� � (q̂i)]wh (q̂i) instead of the full R&D expenditure:

I will assume that the government �nances these subsidies through lump sump corporate

taxes, T � 0. With this policy, the value function of �rm i becomes

~V (q̂i) = max
�i2[0;1]
�i2[0;1]

8>>>>>><>>>>>>:

~� (q̂i)� T � [1� � (q̂i)] ~wh
�
�̂ (q̂i) ; � (q̂i)

�
+

1
1+r

h
� (q̂i) ~W

�
q̂i + �̂ (q̂i)

�
+ (1� � (q̂i)) ~W (q̂i)

i

9>>>>>>=>>>>>>;
:

The government follows a balanced budget. Therefore it must be the case that

T =
Z
� (q̂)wh (q̂) d	 (q̂)

In what follows, I will focus on optimal (welfare-maximizing) subsidy schedules.
22Some policies considers subsidies for non-employee R&D spendings only. I will not focus on that.
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Welfare In the steady state, the discounted sum in (5) can be expressed as

Welfare0 =
1X
t=0

�t ln
�
C0 (1 + g

�)t
�

�=
lnC0
1� � +

1X
t=0

�ttg� (29)

where C0 is the consumption at time 0: From the resource constraint of the economy we have

Ct = Yt � 'y0;t: (30)

Summing over yis in (15) ;

�y0;t � �
R
yi;tdi

2Yt
�
�
w

qi;t

�
=


R
yi;tdi

NtYt
(31)

Combining (30) and (31),

C0 =

24 �~y�0
2 � '

�

�
� + 2


N�

�
~w�(1=qi;0)

35 [1� ~y�0'] :
In steady state, ~y�0; ~w

� and N� are constant and obtained from the normalized economy as in

section 3.3. Therefore in order to compare the welfare levels of two steady-state economies, the

only variable that needs to be speci�ed exogenously is (1=qi;0) which is the inverse quality index

at time 0: In the analysis below, (1=qi;0) is set to 0:1 and equation (29) is used to calculate

welfare.

5.2 Alternative Regimes

Next, I use the estimated structural parameters of the model and introduce di¤erent policy

regimes. As a benchmark, I �rst report the results when no R&D subsidy exists. In the

current framework, this implies � (q̂) = 0 and T = 0: The following table reports the values

of the subsidy rate, the lump-sum tax T , the average innovation quality
�
�̂
�
; the average
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innovation probability ��; the initial consumption C0; the aggregate steady-state growth rate

of the economy g� and the resulting welfare in (29) :

No Subsidy

� T
�
�̂
�

�� C0 g� Welfare

0 0 0.421 0.760 0.959 0.015 9.540

Table 7

Without any R&D subsidy, the average innovation quality in the economy is equal to 0.421.

5.2.1 Uniform Subsidy

Next I turn to the uniform R&D subsidy policy, for which the subsidy rate does not depend on

�rm size. Formally, this corresponds to � (q̂) = � 2 [0; 1] ; 8q̂ 2 Q̂: Under the optimal uniform

subsidy policy, the model generates the following results:

Optimal Uniform Subsidy

� T
�
�̂
�

�� C0 g� Welfare

0.748 0.046 0.517 0.874 0.814 0.021 15.746

Table 8

Without any subsidy, the growth rate of the economy was 1.5%. The optimal uniform subsidy

rate of 75% boosts growth to 2.1%, at the expense of a 16% lower initial consumption. In

addition, the government collects a payment of 0.05 units worth of the �nal good as a lump-

sum tax to �nance these subsidies. Initial consumption is lower as scarce resources (labor in

this model) are being diverted from the production sector into the R&D sector, but the overall

e¤ect on welfare is strongly positive, as welfare rises by 65%.23

23 It should be noted that the percentage increase in welfare is sensitive to the assumption about the magnitude

of the initial inverse quality index (0.1). Di¤erent numbers would generate the same qualitative results but

quantitative results on welfare would be di¤erent.
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5.2.2 Size-Dependent Two-Level Subsidy

A two-level subsidy is close in essence to the policy used in the UK. It involves a di¤erent

subsidy rate for �rms whose size is above a certain threshold yz = y
�
q̂z
�
, that is:

� (q̂) =

8>><>>:
� s if q̂ < q̂z

� b otherwise

; � s; � b 2 [0; 1] ; q̂ 2 Q̂:

Clearly this policy includes the previous case. I choose the size threshold as the mean pro-

ductivity q̂ found in the no-subsidy case, i.e, q̂z �
R
q̂d	ns (q̂) where 	ns corresponds to the

invariant productivity distribution in the no-subsidy case. The results are reported in the

following table:

Optimal Two-level Subsidy

� s � b T
�
�̂
�

�� C0 g� Welfare

0.714 0.020 0.037 0.506 0.869 0.857 0.021 17.150

Table 9

The main result is the heterogenous subsidy levels of small and large �rms. The �ndings

indicate that the optimal policy provides a 71% subsidy rate to small �rms but only 2% to

large �rms. As in the uniform case, the subsidy improves welfare through a higher growth

rate. However, this time the reduction in the initial consumption is mitigated because of the

lower subsidy provided to large �rms. This is mainly due to the fact that in equilibrium, the

marginal innovations of small �rms are of higher quality which means that the same amount

of subsidy translates into bigger and more frequent innovations. Compared to the uniform

subsidy regime, the same growth gain is achieved at lower cost in terms of initial consumption,

and leads to an additional 9% welfare gain relative to the uniform subsidy regime.
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5.2.3 Size-Dependent Linear Subsidy

The �nal policy regime that I consider is a linear subsidy policy, providing a di¤erential subsidy

rate to �rms of di¤erent sizes (productivities):

� (q̂) = �1 + �2q̂; �1; �2 2 R; q̂ 2 Q̂

The results are reported in the following table

Optimal Linear Subsidy

�1 �2 T
�
�̂
�

�� C0 g� Welfare

1.323 -0.027 0.046 0.514 0.871 0.833 0.022 18.172

Table 10

The main �nding is that the optimal size-dependent subsidy rate is decreasing in �rm size. It

is 85% for the smallest �rm, but 0% for the largest one. Every unit increase in productivity q̂

reduces the subsidy rate by 0.027. This policy generates the same average innovation quality

(0:51) and probability (0:87) as in the case of the uniform policy, but with 2% less reduction in

the initial consumption. The intuition for this is that the same average R&D e¤orts as in the

uniform policy regime are maintained, but this e¤ort is now mainly exerted by the small �rms

which are encouraged to do more R&D. The growth rate increases by 0.1 percentage point and

welfare increases to 18.17 which is a 6% increase on top of the two-level subsidy policy.

Overall, the results show that size-dependent R&D subsidy policies have a signi�cantly

positive impact on welfare. By providing higher subsidies to smaller �rms, the private under-

investment in R&D can be mitigated. Even though the cost of such policies tends to reduce

consumption initially, the higher steady-state growth compensates for this and yields a higher

welfare.
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6 Conclusion

This paper investigated the innovation dynamics of di¤erent sized �rms and studied the relevant

policy implications. It carried out its analysis in three distinct steps. Firstly, using Compustat

�rms and their patent applications, it uncovered three major reduced form facts. The key

�nding of the reduced form analysis was that smaller �rms produce higher quality innovations

as measured by patent citations. The other two stylized empirical patterns were that �rm size

is negatively related to R&D intensity and sales growth.

Secondly, a theoretical general equilibrium model was outlined, destined to explain the

microeconomic causes of the observed reduced form relations. In this model technologically

heterogeneous �rms compete for innovations to increase their operating pro�ts. The major

novelty of the model is that �rms can endogenously choose both the probability of innovation

and the innovation quality. In line with the reduced form results, the key fact of the model is

that smaller �rms undertake more radical innovations. Furthermore the model also explains

other stylized empirical patterns related to the relationship between �rm size and �rm growth

and �rm size and R&D intensity. The theoretical results rely on two features: 1) The concavity

of the pro�t and the value functions, and 2) The absence of strongly increasing returns to

productivity. These two features provide greater incentives for smaller �rms to increase their

productivity. Therefore, they are more R&D intensive, choose higher quality innovations and

grow faster.

Third, the structural parameters of the model were estimated using the Simulated Method

of Moments. These estimated parameters were then used for analyzing the e¤ects of public

R&D subsidies for di¤erent sized �rms on innovation. Three di¤erent regimes were compared:

i) a uniform (size-independent) R&D subsidy, ii) a size-dependent, two-level R&D subsidy (a
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di¤erent subsidy rate for �rms with a size above a certain threshold), iii) a size-dependent

linear R&D subsidy. The results of this analysis documented signi�cant gains from moving

to size-dependent R&D subsidy policies. Introducing size-dependent two-level R&D subsidy

increased the welfare of the economy by 9 percent over the optimal uniform (size-independent)

subsidy. More interestingly, this welfare gain is achieved by providing R&D subsidy only to

small �rms. Next, moving from the two-level subsidy policy to a linear subsidy policy increases

the welfare by an additional 6 percent. This policy also provides higher subsidies to smaller

�rms.

The empirical and theoretical results in this paper documented the important contributions

of small �rms to aggregate technological innovations and growth. Size-dependent policies can

allow policymakers to take advantage of this heterogeneity among di¤erent sized �rms. The

focus of the paper has been only on R&D subsidy policies and as a possible extension of the

current work,would be a study of the implications of entry and production subsidies on welfare.

The challenge is to determine how close these alternative policies could bring the economy to

the �rst best outcome.
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7 Appendix A: Tables & Figures
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Table 1. Summary Statistics

Variable Obs Mean St Dev
Growtht 111,869 0.118 0.412

Log(Salest)� 118,343 0.073 2.294

Log(R&Dt)� 64,214 -3.228 2.231

Age 118,343 12.012 11.329

Subsidiary Dummy 118,343 0.019 0.134

PTR Index 118,343 0.744 0.140

Citations - 7 year 346,719 5.077 7.402

Originality 346,719 0.348 0.289

Claims 346,719 12.743 10.914
�
Sale and R&D data is normalized by the GDP de�ator
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Table 2a. Growth Regressions

OLS OLS Heckman 2-Step IV OLS
(-100%) survive mfx growth

Variable (1) (2) (3a) (3b) (4) (5) (6)

Log(Salest) -0.037��� -0.025��� 0.076��� 0.008��� -0.028��� -0.028��� -0.175���

(0.001) (0.001) (0.003) (0.000) (0.002) (0.001) (0.003)

Subsidiary Dummy -0.422��� -0.062���

(0.046) (0.009)

Constant 0.331��� 0.235��� 0.6.583��� 0.304��� 0.241��� 0.008���

(0.026) (0.030) (0.106) (0.052) (0.022) (0.014)

�� Inv Mills Ratio 0.666���

(0.098)
Sector Dummy Yes Yes Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes Yes Yes
Firm Dummy No No No No No Yes
R2 0.067 0.040 0.051 0.297
Obs 111,869 118,343 118,343 (6588 censored) 102,532 111,755

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is sales growth=Sale(t+1)/Sale(t) -1:
�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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Table 2b. Growth Regressions

OLS OLS OLS OLS Heckman 2-Step
(Age>10) LR LR, survive LR, mfx LR, growth

Variable (7) (8) (9) (10) (11a) (11b) (12)

Log(Salest) -0.030��� -0.011��� -0.037��� -0.028��� 0.116��� 0.046��� -0.026���

(0.001) (0.001) (0.001) (0.002) (0.010) (0.004) (0.006)

Age -0.003���

(0.000)

Subsidiary Dummy -1.605��� -0.412���

(0.373) (0.035)

Constant 0.222��� 0.154��� 0.124��� 0.217��� 0.492�� 0.191���

(0.015) (0.013) (0.001) (0.024) (0.234) (0.142)
Sector Dummy Yes Yes No Yes Yes Yes
Year Dummy Yes Yes No No No No
Firm Dummy No No No No No No
Year*Sector D. No No Yes No No No
R2 0.072 0.044 0.044 0.221
Obs 111,755 47,942 111,755 1,489 3,289 (1800 censored)

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is sales growth=Sale(t+1)/Sale(t) -1.

�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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Table 3a. R&D Intensity Regressions

OLS Heckman 2-Step IV
report mfx log(R&D/Salest)

Variable (1) (2a) (2b) (3) (4)

Log(Salest) -0.265��� 0.095��� 0.038��� -0.214��� -0.225���

(0.003) (0.002) (0.001) (0.004) (0.003)

PTR Index 1.460��� 0.581���

(0.048) (0.019)

Constant -4.307��� -3.115��� -7.146��� -4.491���

(0.157) (0.099) (0.275) (0.157)

�� Inv Mills Ratio 1.126���

(0.069)
Sector Dummy Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes
R2 0.465 0.443
Obs 65,230 120,238 (55,008 cnsrd) 60,710

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is log R&D intensity= ln(R&D(t)/Sale(t)).

�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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Table 3b. R&D Regressions

OLS OLS OLS OLS OLS
(Age>10) LR

Variable (5) (6) (7) (8) (9)

Log(Salest) -0.384��� -0.248��� -0.092��� -0.257��� -0.298���

(0.007) (0.003) (0.004) (0.003) (0.014)

Age -0.006���

(0.001)

Constant -4.560��� -4.324��� -3.909��� -3.227��� -1.594���

(0.148) (0.155) (0.098) (0.005) (0.280)
Sector Dummy Yes Yes Yes No Yes
Year Dummy Yes Yes Yes No No
Firm Dummy Yes No No No No
Year*Sector D. No No No Yes No
R2 0.881 0.466 0.390 0.483 0.456
Obs 65,230 65,230 30,831 65,230 2,418

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is log R&D intensity= ln(R&D(t)/Sale(t)).

�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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Table 4a. Patent Citation Regressions

OLS OLS Negative Binomial 0-Inf�d Neg Binomial
(75-95) (88-92) (88-92) mfx, (88-92) (88-92) mfx, (88-92)

Variable (1) (2) (3a) (3b) (4a) (4b)

Log(Salest) -0.154��� -0.324��� -0.045��� -0.282��� -0.042��� -0.276���

(0.008) (0.018) (0.002) (0.013) (0.002) (0.013)

Count

Constant 3.119��� 8.146��� 2.425��� 1.623���

(0.137) (0.080) (0.012) (0.035)
IPC4 Dummy Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes
R2 0.116 0.142
Obs 346,719 91,366 91,366 91,366 (11,208-zero obs)

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is the number of citation received by each patent.

�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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Table 4b. Patent Citation Regressions

Neg Binomial Heckman 2-Step OLS OLS
Best, (88-92) mfx Selection mfx All �rms, (88-92) Originality Claims

Variable (5a) (5b) (6a) (6b) (7) (8) (9)

Log(Salest) -0.035��� -0.280��� 0.315��� 0.021��� -0.242��� -0.001��� -0.601���

(0.003) (0.023) (0.003) (0.000) (0.028) (0.000) (0.021)

Count 0.067��� 0.567���

(0.001) (0.012)

Pat Dummy 0.303��� 0.016���

(0.030) (0.001)

�� Inv Mills Ratio 1.576���

(0.347)

Constant -17.890��� 0.647��� 1.268��� -0.299��� 16.297���

(0.083) (0.010) (0.023) (0.002) (0.120)
IPC4 Dummy Yes Yes Yes Yes Yes
Year Dummy Yes Yes Yes Yes Yes
R2 0.111 0.050
Obs 31,176 97,999 (6,633 cnsrd) 30,865 92,718

Note: The technique used for each estimation is reported on top of its column.

Dependent variable is the number of citation received by each patent.

�mfx� indicates the marginal e¤ects at the sample mean.

Heteroskedasticity robust standard errors are reported in paranthesis.

*, **, *** indicate 10%, 5%, 1% signi�cance.
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8 Appendix B: Proofs

Proof of Proposition (1).

Fact 4

The relevant state space is Q̂ = [q̂min;1): This implies that Q̂ is a Borel set in R.

Fact 5 �i 2 Z � [0; 1]. Z is a compact Borel set in R. In addition, the transition function is

P
�
q̂i; q̂

0� =
8><>:
�i if q̂

0 = q̂i+�̂i
1+g

1� �i if q̂0 = q̂i
1+g

0 otherwise

:

In order to show that the transition function has the Feller property, for now we will make the
following conjecture and later on we will show that the conjecture is, in fact, true.

Conjecture 6 Firm i�s optimal R&D decisions, � and �̂ are continuous in q̂i:

Now we can continue with our discussion on P: Since �i and �̂i are continuous in q̂i and

 is also a continuous function,

T
 (q̂i) = �i


 
q̂i + �̂i
1 + g

!
+ (1� �i) 


�
q̂i
1 + g

�
is also continuous. This shows that P has the Feller property.

Fact 7
�
�̂i; �i

�
2 � � [0; 1]2 and � is clearly nonempty, compact-valued and continuous.

Fact 8 ~� (q̂i) =
1
2


�
2
'
�N +

�
1
q̂

�
� 1

q̂i

�2
is bounded on Q̂ by �max = 1

2


�
2
'
�N +

�
1
q̂

��2
and is

continuous and � 2 (0; 1) :

Given Facts (4) � (8) the existence and uniqueness of the value function follows from
Theorem 9.6 in Stokey-Lucas (1989) :

Fact 9 ~� (q̂i) =
1
2


�
2
'
�N +

�
1
q̂i

�
� 1

q̂i

�2
; q̂ 2 Q̂ is a strictly increasing function.

Fact 10 � is increasing.

The fact that the value function is strictly increasing follows from the Facts (4)� (10) and
Theorem 9.7 in Stokey-Lucas (1989 p:264) :

Fact 11 Since � (q̂i) is strictly concave in q̂i; we have

�

 
�q̂i + (1� �)

q̂i + �̂i
1 + g

!
> �� (q̂i) + (1� �)�

 
q̂i + �̂i
1 + g

!
:
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Fact 12 � is convex.

Strict concavity of the value function follows from the Facts (4)� (8) and (11)� (12) and
Theorem 9.8 in Stokey-Lucas (1989 p:265) :

The fact that �̂ (q̂i) and � (q̂i) are continuous and single valued functions also follow from
the same proposition. Note that this proves our conjecture that �̂ (q̂i) and � (q̂i) are continuous.

Proof of Theorem (1). Let us recall the �rst order condition,

�̂i :
��i
1 + g

v0

 
q̂i + �̂i
1 + g

!
= ~wh�̂

�
�̂i; �i

�
(32)

�i : �

"
v

 
q̂i + �̂i
1 + g

!
� v

�
q̂i
1 + g

�#
= ~wh�

�
�̂i; �i

�
(33)

We proceed case by case.

Case 1. Assume an initial equilibrium with
�
q̂old; �̂old; �old

�
and by contradiction assume a new

equilibrium
�
q̂new; �̂new; �new

�
such that q̂new > q̂old; �̂new � �̂old and �new � �old. Then

(32) implies

�

1 + g
v0

 
q̂new + �̂new
1 + g

!
<

�

1 + g
v0

 
q̂old + �̂old
1 + g

!

=
~wh�̂

�
�̂old; �old

�
�old

�
~wh�̂

�
�̂new; �old

�
�old

�
~wh�̂

�
�̂new; �new

�
�new

Here the �rst line used the fact that v is concave (therefore its slope is a decreasing
function). The second line is just the initial equilibrium condition and the last two lines
are using the assumptions of the h (:; :) function.

Case 2. Similarly assume an initial and new equilibria with q̂new > q̂old; �̂new � �̂old; �new � �old:
De�ne a function of

z (q̂) �

24v
�
q̂+�̂
1+g

�
� v

�
q̂
1+g

�
�̂

35 :
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This implies 2 cases: 1) z (q̂new) < z (q̂old) 2) z (q̂new) > z (q̂old) : Consider case 1. Then

z (q̂new) < z (q̂old)

=
~wh�

�
�̂old; �old

�
��̂old

�
~wh�

�
�̂old; �new

�
��̂old

�
~wh�

�
�̂new; �new

�
��̂new

which is a contradiction.

Now consider case 2. Then since �̂ and � are continuous in q̂; 9q̂� > q̂ such that (case 2:1)
z (q̂�) = z (q̂old) and �� > �old or (case 2:2) z (q̂�) � z (q̂old) and �� = �old: Consider case
2:1 :

z (q̂�) = z (q̂old)

=
~wh�

�
�̂old; �old

�
��̂old

<
~wh�

�
�̂old; �

�
�

��̂old

�
~wh�

�
�̂
�
; �new

�
��̂

�

which is a contradiction to the fact that
�
q̂�; �̂

�
; ��
�
is a solution.

Next consider case 2:2 : z (q̂�) � z (q̂old) and �� = �old: This implies q̂
� + �̂

�
< q̂old +

�̂old:(Draw a graph) (no leapfrogging condition) Then

���

1 + g
v0

 
q̂� + �̂

�

1 + g

!
>

��old
1 + g

v0

 
q̂old + �̂old
1 + g

!
= ~wh�̂

�
�̂old; �old

�
> ~wh�̂

�
�̂
�
; �old

�
= ~wh�̂

�
�̂
�
; ��
�

which is a contradiction.

Case 3. Finally assume that �̂ (q̂) and � (q̂) both are increasing functions. Concavity and bound-

ednes of v implies limq̂!1 v0 (q̂) = 0 and accordingly limq̂!1
��(q̂��)
1+g v0

�
q̂��+�̂(q̂��)

1+g

�
= 0:
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Take q̂� 2 Q and let � � ~wh�̂

�
�̂ (q̂�) ; � (q̂�)

�
: Then 9q̂�� > q̂� 2 Q such that

��(q̂��)
1+g v0

�
q̂��+�̂(q̂��)

1+g

�
< � � ~wh�̂

�
�̂ (q̂��) ; � (q̂��)

�
where the �rst inequality uses the

limit condition and the second inequality uses the monotonicity of the R&D decisions.

The result is a contradiction to the fact that
�
�̂ (q̂��) ; � (q̂��)

�
is an equilibrium. Then it

must be the case that �̂ (q̂) or � (q̂) is strictly decreasing for some q̂� < q̂��: Since it was
proven under Case1-2 that �̂ (q̂) and � (q̂) cannot move in the opposite directons ever,
the only possibility is that both �̂ (q̂) are � (q̂) strictly decreasing functions.

QED.

Derivation of (25) . In steady state (1=q̂i) has to be constant: This implies that�
1

q̂i

�
=
1

N

Z
i2I�

1

q̂i
di

R
i2I� (1=q̂i) di has to be constant. ThereforeZ

i2I�

�
�i
w (1 + g)

qi + �i
+ (1� �i)

w (1 + g)

qi

�
di =

Z
i2I�

w

qi
di

where the left-hand side is the next period�s aggregate cost and the right-hand side is today�s.
After some simpli�cation

(1 + g)

Z
i2I�

�
�i

qi + �i
+
(1� �i)
qi

�
di =

Z
i2I�

1

qi
di

g =

R
i2I�

1
qi
diR

i2I�
qi+�i(1��i)
q2i+�iqi

di
� 1

Proof of Proposition (2). Since � (q̂) is continuous, it is bounded on Q̂. Therefore

0 < �min � �
�
Q̂
�
� �max < 1 thanks to the Inada conditions: Let�s consider q̂out as the state

where all exiters are collected. Then 9n� � min fn 2 Ng � 1 such that

q̂max
(1 + g)n

< q̂min

equivalently
log (q̂max)� log (q̂min)

log (1 + g)
< n:

Then for any q̂ 2 Q̂
Pn

�
(q̂; fq̂outg) � (1� �max)n

�
> � > 0

Since for all A � 2Q̂; either q̂out 2 A or q̂out =2 A; we have that

Pn
�
(q̂; A) � Pn� (q̂; fq̂outg) > �
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or
Pn

�
(q̂; Ac) � Pn� (q̂; fq̂outg) > �:

This prove the existence of � > 0; an integer n� � 1 such that for any A � 2Q̂; either
Pn

�
(q̂; A) � � or Pn� (q̂; Ac) � � 8q̂ 2 Q̂: This is Condition M in Stokey-Lucas (1989) p.348.
Then the existence of the invariant distribution follows from Theorem 11.12 in Stokey-Lucas

(1989 p:350).

Proof of Proposition (3). Letm =
h
q̂minN; ~w; g; � (Q) ; � (Q) ; � (Q) ;	; ~V (Q) ; ~W (Q)

i
2

M be a generic argument of the following operator

� (m) :M!M (34)

such that

� (m) � [�q̂min (m) ;�N (m) ;� ~w (m) ;�g (m) ;� ~V (m) ;� ~W (m) ;�	 (m) ;�� (m) ;�� (m) ;�� (m)]
T

I de�ne the elements of the operator � as follows. � ~V (m) is the right-hand side of the Bellman
equation in (21), � ~W (m) is as in (22) ; The R&D decisions �� (m) ;�� (m) ;�� (m) are the
maximizers of the ~V and ~W and	 is the invariant distribution obtained for any givenm whose
existence is proven in proposition (2) : The values for all �� (m) ;�� (m) ;�� (m) ;�	 (m) 2
[0; 1] 8q 2 Q belong to the compact convex set: Similarly the values � ~V (m) ;� ~W (m) 2h
�; 
~q

2
max

2(1��)

i
8i 2 I are also in a compact and convex set:

The remaining parts of the operator �N (m) ;�q̂min (m) ;� ~w (m) ;�g (m) are as follows.
The �rst operator is for the total number of �rms, N: Using the the free entry condition, the
Bellman equation and the pro�t function as expressed in (??)

N = max

8><>:0;min
8><>:Nmax; N~�

Z 8><>:
Y
2


�
2

�N +

�
1
q̂

�
� 1

q̂i

�2
� ~wh

�
�(q̂)
Y ; � (q̂)

�
+ 1
1+r

h
� (q̂) ~W

�
q̂ + �̂ (q̂)

�
+ (1� � (q̂)) ~W (q̂)

i
9>=>; d	(q̂)

9>=>;
9>=>;

� �N (m)

Clearly this mapping assumes values from the set [0; Nmax] which is compact and convex.
Then for the minimum level of productivity qmin, we use the free exit condition

� = V (q̂)

Since ~V is strictly increasing in q̂, we can de�ne the following function

q̂min = min
n
qmax;max

n
qmin; ~V

�1 (��)
oo

� �q̂min (m)

Again, since ~V is continuous in q̂ so is its inverse and ~V being continuous in m implies that
q̂min is continuous in m: In addition, it maps into a compact set24.

24The minimum value ~q0 can take is when 
�q
Y
�
�
1
q̂

�
is maximum which is simply 
~qmax � 1

~qmax
> 0 given

that assumption that q2max > 1=
:
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The operator for the growth rate g is de�ned using its expression in Theorem ??

g = min

8<: 1

q̂min
;

R
i2I�

1
qi
diR

i2I�
qi+�i(1��i)
q2i+�iqi

di
� 1

9=; (35)

� �g (m)

This mapping assumes values from [0; 1=q̂min] which is both compact and convex.
The operator for the price of the numeraire is

p0 = min

8<:p0;min;max
8<:0;

�2

2

h
1 + 


2Y 2

R
i2I y

2
i;tdi

i
� 2�(1=q̂)t�

4

N + �

� :

9=;
9=;

� �p0 (m)

Finally, for the relative wage, I use labor market clearing,

~w = max

8>><>>:0;min
8>><>>: ~wmax;

�
2
N

�
1
~q

�
+ 
�h� 


N

�
�
1
~q2

�
9>>=>>;
9>>=>>;

� � ~w (m)

which takes values only from [0; ~wmax]

De�neM � [q̂min; q̂max]� [0; Nmax]� [ ~wmin; ~wmax]� [0; gmax]��i2I [0; 1]4��i2I
h
0; ~Vmax

i2
and a typical element of the set to be m =

D
q̂minN; ~w; g; �; �; �;	; ~V ; ~W

E
2 M: In order to

show the existence of the equilibirum, I need to show that

� :M!M

that was de�ned in (34) has a �xed point � (m�) = m�: First, M is a compact in the product
topology since it is the cartesion product of in�nitely many compact sets (Aliprantis and
Border, 1999, Theorem 2.57, p.52). Clearly M is non-empty and convex. Moreover M is a
subset of locally Hausdorf space (Aliprantis and Border, 1999, Lemma 5.54, p.192).

Next, I will consider them individually and de�ne their maximum values.

Fact 13 ( ~w) Note that the amount of Y has to be bigger than the expenditure made on all
the di¤erentiated goods, Y �

R
qipidi: In addition, the labor expense at the intermediate sector

(both production and R&D) must be met by the revenues,
R
qipidi >

R
wlidi = w since the total

labor supply is 1: These two observations imply

1 � ~wmax > w=Y � ~w:

On the other hand,
R
qidi <

R
qmaxlidi < wq̂max: Dividing everything by Y

~wmin �
2

�q̂max
< ~w:
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Fact 14 (g) The operator takes nonnegative values in (35) : On the other hand, the highest
increases will be less than when all the �rms are in the smallest technology and innovate the
maximum size with probability 1,

g <

R
i2I�

1
q̂min

diR
i2I�

1
q̂min+1

di
� 1 � gmax =

1

q̂min

Fact 15 ( ~V ) The value of a �rm is bounded from below by 0. On the other hand, the upper
limit for the pro�t that can be generated is

~�i < ~�max �
1




�
�

2
� �

�
� 1

q̂max

�2
Therefore

0 < ~Vi < ~Vmax �
1 + r


r

�
�

2
� �

�
� 1

q̂max

�2
Since � maps compact convex set M into itself and since it is continuous, by Brouwer-

Schauder-Tychono¤Fixed Point Theorem (Aliprantis and Border, 1999, p.550), the �xed point
exists.

Proof of Theorem (2).
R&D spending can be expressed as

R&D Intensity =
whi
yi

=
~wh
�
�̂i; �i

�
Y
2


�
�y0��D

Y � ci
�2

Proposition 1 showed that both �̂i and �i are decreasing in q̂i: On the other hand, the denom-
inator is decreasing for ci 2 C and c0i (q̂i) < 0 which implies the denominator is increasing in
q̂i:Therefore the R&D intensity is decreasing in �rm size.

Proof of Proposition (4).

yi =
Y




�
�y0 � �D
2Y

� w
q

�
Then the expected �rm growth

Eg (yi) = g + Eg (fi)
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where fi �
�
�� w

q

�
and � � �y0��D

2Y : We can express Eg (fi) as

g (fi) =
��

h
�i
w(1+g)
qi+�i

+ (1� �i)
w(1+g)
qi

i
�� w

q

� 1

=
�
h
�i
w(1+g)
qi+�i

+ (1� �i)
w(1+g)
qi

i
+ w

q

�� w
q

=

�i�i(1+g)
qi+�i

� g
q
w�� 1

=

�̂i�i(1+g)

q̂i+�̂i
� g

�q̂i � 1
(36)

Proof of Theorem (3).
Now for the second part, take the derivative wrt q̂i: First let us look at the derivative of

�(q̂i) � �̂(q̂i)�(q̂i)

q̂i+�̂(q̂i)

�0 (q̂i) =

h
�̂
0
(q̂i)� (q̂i) + �̂ (q̂i)�

0 (q̂i)
i h
q̂i + �̂ (q̂i)

i
�
h
1 + �̂

0
(q̂i)
i
�̂ (q̂i)� (q̂i)h

q̂i + �̂ (q̂i)
i2

=
�̂
0
(q̂i)� (q̂i) q̂i + �̂ (q̂i)�

0 (q̂i) q̂i + �̂
2
(q̂i)�

0 (q̂i)� �̂ (q̂i)� (q̂i)h
q̂i + �̂ (q̂i)

i2
< 0

where the second equality uses Proposition 1.

dg (fi)

dq̂i
=
�0 (q̂i) (�q̂i � 1)� � [� (q̂i)� g]

(�q̂i � 1)2
:

Since gi � g; from equation (36) we have �(q̂i) � g: Using this result in the above ratio

dg (fi)

dq̂i
< 0:
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