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Abstract

This paper studies a competitive general equilibrium model with default and endogenous
collateral constraints. Even though all collateralized contracts are allowed, the possibility
and desirability of trade in spot markets (or the equivalent trade in ex ante asset backed
securities) creates externalities, as spot prices (or security prices) and the bindingness of
collateral constraints interact. We show that if agents are allowed to contract ex ante
on market fundamentals determining the state-contingent spot price, over and above con-
tracting on true underlying states of the world, then competitive equilibria with bundled
securities and commodities and with endogenous collateral constraints are equivalent with
Pareto optima. Examples show that it is possible to have multiple market fundamentals in
equilibrium. Equivalently, it is possible for there to be segregation into distinct competitive
securities exchanges with endogenous (positive and negative) entry fees. Fees accrue to
borrowers who are otherwise collateral constrained.

Key words: default, endogenous collateral, externalities, segregated exchanges, Walrasian
equilibrium, limited commitment

1. Introduction

This paper uses a competitive general equilibrium with directly-collateralized and asset-
backed securities to analyze the interaction between the endogenous valuation of collateral
and corresponding default decisions. The interaction creates an “externality”, which causes
a collateral-constrained equilibrium to be inefficient. The externality exists because the
consumption feasibility set of an agent directly depends on the decisions of other agents
in the contracting period through the spot prices and the prices of asset backed securities.
The impact on the feasible set in turn affects the allocations of all agents whenever the
collateral or borrowing constraints of some agents are binding.

The primary contribution of this paper is not the discovery of the externality, as this is
clear from the literature, (e.g., Geanakoplos and Polemarchakis, 1986; Geanakoplos, 2003;
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Caballero and Krishnamurthy, 2001; Lorenzoni, 2008), but rather a solution to the problem
using market-based, segregated exchanges in securities. This approach should be applicable
more generally to problems in which the inefficiency of competitive equilibrium is a result
of frictions depending on future spot prices or terms-of-trade, a pecuniary externality, e.g.,
moral hazard with retrading.

We take it as a primitive that default is possible or equivalently that collateral is required
to make borrowers (or issuers of securities) repay their loans. A borrower may choose to
default on a particular loan, or a particular state-contingent promise, and in doing so would
lose the value of collateral backing that particular loan or security. A rational borrower
will base her default decision security by security on the value of the collateral backing
each liability, compared to the original promise to pay. Of course the value of the collateral
good at the time of repayment decisions (called the execution period) and in the market
for asset backed securities (in the contract period) is an equilibrium phenomenon. Yet this
market-clearing price of collateral determines whether borrowers default or not and the
overall amount of debt.

A contract or security consists of two items, a state-contingent promise and the collateral
backing that promise. Contracts which do not default have to be backed by a sufficient,
minimum level of collateral, again depending on the promise and the value of collateral.
Likewise asset backed securities which are issued have to be backed in collateral by an
equivalent value of asset backed securities acquired. For every set of securities which actually
default, handing over collateral, there is another set which is equivalent, with the same
overall payoff and no default. Adding up all such promises, over state-contingent security
promises directed backed by collateral and over state-contingent securities backed by the
promises of others, generates a state-contingent collateral constraint on trades in the ex
ante contract market. But contracts which do default also require collateral that is to be
handed over when the borrower does not repay. That is, partially collateralized securities
are still intimately associated with the exactly amount of collateral which serves a backing.
Again, by rescaling contracts, these constraints can be shown to be equivalent. We label
such constraints collateral constraints, for brevity.

The externality problem is considered as a missing-market problem; that is, the markets
for contracts over the “market fundamentals”, those aspects of the environment which
determine the spot-market-clearing price, are missing. The market fundamentals are, in
general, defined by the distribution of the resources across types of agents. In this paper,
with identical homothetic preferences, the market fundamental is simply the aggregate ratio
of a pair of physical commodities. Note again that a market fundamental is endogenous;
that is, it depends on aggregate saving, which is a result of the actions in the trading period
of all agents as a group.

In this paper, we extend the commodity space so that contracts are contingent on
these market fundamentals and contingent contracts can be bought or sold, over and above
contracts contingent on true underlying states of the world, though securities contingent
on underlying states and market fundamentals are bundled together. Allowing agents to
contract ex-ante on market fundamentals determining the state-contingent spot-market-
clearing price in effect allows them to contract on the price, and internalizes the externality.
We thus prove that the competitive equilibria with endogenous collateral constraints in the
extended commodity space are equivalent with Pareto optima. One could view these results
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as normative, indicative of the need for a systematic but market-determined way for traders
to unwind commitments.

A price island is a way to conceptualize the consistent execution of the contingencies
on fundamentals. That is, a price island specifies the spot price, and the set of agents that
end up there have to support that price. This is like a club constraint in other literature,
e.g., Prescott and Townsend (2006). Agents can carry in goods in such a way that their
pre-trade ratio of endowments in a spot market deviates from the market fundamental, but
the sum of the deviations must, by the definition of consistency, be zero. Lotteries are then
a way to assign agents to price islands jointly with other decisions such as security holdings
and end-of-trading-period collateral. In a decentralized equilibrium, in which prices are
taken as given, all price islands including out-of-equilibrium price islands are available for
agents to purchase. Specifically, we internalize the externality by making household types
pay or be paid for their influence on the spot market prices, when the pre-trade endowment
ratio is different from the market fundamental. On another interpretation, ex post spot
trades are replaced by ex ante trade in asset backed securities. In this interpretation, a
household has to pay or be paid for the rights to trade in a particular security exchange.
This is related to the consumption right in Bisin and Gottardi (2006). Here the coupling
of asset backed securities with directly backed securities is even more natural.

We do not require that the markets keep track of individual trades and contracts, only
that the over all composition of traders be such as to deliver the contracted price. This
takes a certain commitment to prevent retrading across the “price islands.” In other words,
trades are segregated across mutually-distinct security markets. With these institutions in
place, prices will direct trade and traders efficiently.

More generally, endogenous collateral constraints generate a non-convexity problem, as
prices reflecting assignments and collateral decisions interact multiplicatively. As Prescott and Townsend
(1984b); Hansen (1985); Rogerson (1988) have shown, lotteries can (weakly) improve on de-
terministic allocations when feasible sets are not convex. For computational purposes, we
allow each variable to take only finite values (finite grids).

Importantly, the amount a household pays (or receives) in unit of account in the contract
market does depend on its type, its individual endowment position relative to the market
fundamental. Again, the amount that an agent will pay (or receive) depends on the differ-
ence between the market fundamental and endowment ratio of good-1 to good-2 (including
collateral holding). If her endowment ratio is exactly equal to the market fundamental,
then she does not pay (nor is paid). On the other hand, if she comes with a low (high)
endowment ratio relative to the market fundamental, i.e., holding little of good-1 and lots
of good-2 relative to the market fundamental, so that with good 1 as the numeraire, the
spot price of her abundantly held good 2 is high (as in the market there is much of good-1),
then she will pay (will be paid) for the right to trade at the specified market fundamental.

The collateralization structure in this model incorporates both “tranching” and “pyra-
miding” (see also Geanakoplos, 1997). With “tranching”, a specific piece of collateral can
be used to back up several contracts as long as their promises to pay are in different states,
i.e., no conflicting claims. With“pyramiding”, agents are allowed to use financial assets,
the contracts for promises to receive goods of others, as collateral for their own promises.
One could interpret these contracts as the asset-backed securities which are much in the
news these days, e.g., the set of securitized mortgage obligations, promises ultimately but
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indirectly backed by underlying collateral asset, e.g., houses. What actually gets traded
is an equilibrium phenomenon. This is different from the contract-specific collateralization
structure as in Geanakoplos (2003), among others, where the collateral of a contract cannot
be used as collateral for any other contract. On the other hand, our structure is similar to
that of Lustig (2007), where several state-contingent contracts can be backed by the same
collateral.

Of course agents are allowed to retrade in spot markets, and that is what delivers the
spot-market-clearing prices. However, with pyramiding, agents are indifferent between ex-
ante contracting versus retrading in spot markets. This is because anything which can be
done in the spot market, trading one good for another, can be done in the ex ante contract
market, with promises to receive one good backing promises to surrender the other. Agents
do not need to retrade in spot markets, but they may well do so. It is worth noting, however,
that most of results in this paper would obtain even without the “pyramiding” assumption.
We do so to allow for realism and generality. Even without pyramiding, state-contingent
collateral constraints generate an externality. This externality is what we seek to remedy.

Related Literature

This paper is related to the literature on decentralization with autarky as the penalty for
reneging, e.g., Kehoe and Levine (1993); Kocherlakota (1996); Alvarez and Jermann (2000).
Similar to our model, they allow ex ante complete contracts, and focus on decentralization of
constrained optimal allocations. On the other hand, the punishment mechanism is different
from ours, as for us defaulting agents will only lose their collateral.

The second class of related literature is on limited borrowing with assets or capital
as collateral. Our environment is similar to the environment of Geanakoplos (1997, 2003);
Kiyotaki and Moore (1997); Geanakoplos and Zame (2002); Lustig (2007); Kilenthong (2008),
among others, but our contractual structure is different. These papers assume a contract-
specific collateralization structure while we allow for both “tranching” and “pyramiding”.
These papers, except Lustig (2007); Kilenthong (2008), follow the tradition of Bewley (1986)
and assumes exogenously incomplete markets as part of the specification. Our paper allows
for all state-contingent contracts, but with limited collateral, so in this sense our contracts
are endogenously incomplete.

This paper also relates to financial accelerator and crises literature, e.g., Bernanke and Gertler
(1989); Lamont (1995); Bernanke et al. (1996); Kiyotaki and Moore (1997); Aghion et al.
(1999); Krishnamurthy (2003); Cooley et al. (2004); Rampini (2004); Ranciere et al. (2008).
These papers use endogenous borrowing constraints as amplification mechanisms. Our pa-
per is closely related to Kiyotaki and Moore (1997) and Krishnamurthy (2003) in that they
also focus on collateral constraints. The difference is that our focuses are the efficiency
property of a competitive equilibrium and the decentralization of constrained optimal allo-
cations.

There is also a related literature on a pecuniary externality that results from retrad-
ing in spot markets or from anonymous trading, when there is some impediment to ex-
change, (e.g., Jacklin, 1987; Geanakoplos and Polemarchakis, 1986; Greenwald and Stiglitz,
1986; Bisin et al., 2001; Caballero and Krishnamurthy, 2001, 2004; Allen and Gale, 2004;
Golosov and Tsyvinski, 2007; Farhi et al., 2007; Lorenzoni, 2008). Similarly to Geanakoplos and Polemarchakis
(1986); Caballero and Krishnamurthy (2001); Farhi et al. (2007); Lorenzoni (2008), we are
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explicit about the source of the externality in our context, but we go on to propose a
market-based solution to the problem. This is also related to Makowski (1980); Pesendorfer
(1995); Acemoglu and Zilibotti (1997) showing that interaction among firms/intermediaries
may not create an efficient set of securities because they do not necessarily internalize com-
plementarities in innovating securities. On the other hand, competitive broker dealers in
our model solve an externality problem by creating new securities/commodities costlessly.
Our results are robust to the presence of marginal or unit costs, however.

The remaining of the paper proceeds as follows. Section 2 describes the primitive in-
gredients of the model. We establish the existence of the externality in section 3. Section
4 defines the extended commodity space with lotteries. The constrained feasible allocation
and the Pareto program are formulated in this section. Section 5 introduces a competitive
equilibrium with lotteries and contracts over market fundamentals. In section 6, the first
and second welfare theorems, and the existence theorem, are proved. The collateralization
structure, namely tranching and pyramiding, is articulated in section 7. Some properties
of equilibrium prices are discussed in section 8. Numerical examples are shown in section
9. Section 10 concludes the paper. Appendix A contain proofs. With limited space, some
theoretical results and derivations that are omitted from the main text are presented in the
supplementary materials.

2. The Model Economy

This is a two-period economy, t = 0, 1. All contracts are traded in period-0, henceforth
called the “contracting period”. In addition, in period-0, both of two consumption goods
can be traded and consumed, and one of them can be saved. All contracts will be executed
in period-1, henceforth called the “execution period”. There are a finite number S of
possible states of nature in period-1, i.e., s = 1, 2, ..., S. This allows S = 1 so there is only
intertemporal trade. Let 0 < �s < 1 be the objective and commonly assessed probability of
state s occurring, where

∑
s �s = 1. The two goods can be traded and consumed in each

state s. We refer to these as spot markets.
Again there are two goods, called good-1 and good-2. Good-1 cannot be stored (is

completely perishable) from t = 0 to t = 1, while good-2 is storable. The good-2 that
can be stored is collateralizable, i.e., can serve as collateral to back promises. Henceforth,
good-2 and collateral good will be used interchangeably. Furthermore, good-1 will be the
numeraire good in every date and state.

There is a continuum of agents of measure one. The agents are divided into H types,
each of which is indexed by ℎ = {1, 2, ⋅ ⋅ ⋅ ,H}. Each type ℎ consists of �ℎ ∈ (0, 1) fraction
of the population such that

∑
ℎ �

ℎ = 1. Each agent type ℎ is endowed with good-1 and
good-2, eℎ0 =

(
eℎ10, e

ℎ
20

)
in period-0 and eℎs =

(
eℎ1s, e

ℎ
2s

)
, in each state s = 1, ⋅ ⋅ ⋅ , S. Let

eℎ =
(
eℎ0 , ⋅ ⋅ ⋅ , eℎS

)
be the endowment profile of agent type ℎ over period-0 and all states s

in period-1. Heterogeneity of agents originates in part from the endowment profiles eℎ. As
a notational convention, vectors or matrices will be represented by bold letters.

Let kℎ ∈ R+ denote the collateral holding (equivalent to the holding of good-2) of an
agent type ℎ at the end of period-0. Note that this collateral allocation does not need to be
equal to his initial endowment of good-2. In particular, since good-2 can be exchanged in
the contracting period (at date t = 0), kℎ will be equal to the net-position in the collateral
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good after trading in period-0. The collateral good as legal collateral backing claims is
assumed to be kept in escrow, and cannot be taken away either by borrowers or lenders.
However, the holding of good-2 can also include normal saving. The storage technology
of good-2 whether in collateral or normal saving is linear but potentially with a random
return. In some applications, it is natural to treat the returns as a constant, and focus
on how collateral interacts with intertemporal trade. In other applications, the risk is in
the collateral itself, i.e., what happens if housing values could fall (as if in a small open
economy). Each unit of good-2 stored will become Rs units of good-2 in state s = 1, ⋅ ⋅ ⋅ , S.
Specifically, storing I units of good-2 at date-0 will deliver RsI units of good-2 in state
s. It is noteworthy that the results in this paper are valid even if the technology R is not
random. In most of the exposition, uncertainty originates in the endowment, primarily.

Preferences are identically homothetic. The preferences of agent type ℎ are represented
by the utility function U

(
cℎ1 , c

ℎ
2

)
: R2

+ → R, where
(
cℎ1 , c

ℎ
2

)
are the consumption of good-1

and good-2 of agent ℎ, respectively. Let 0 < � ≤ 1 be the common discount factor. The
discounted von Neumann-Morgenstern expected utility of ℎ is thus

U
ℎ
(
cℎ
)
≡ U

(
cℎ10, c

ℎ
20

)
+ �

S∑

s=1

�sU
(
cℎ1s, c

ℎ
2s

)

where, as with the notation for endowments, cℎ =
(
cℎ0 , ⋅ ⋅ ⋅ , cℎS

)
is the consumption alloca-

tion with cℎ0 ≡
(
cℎ10, c

ℎ
20

)
∈ R

2
+ and cℎs ≡

(
cℎ1s, c

ℎ
2s

)
∈ R

2
+ for s = 1, . . . , S as the consumption

of good-1 and good-2 in period-0, in state s, respectively. The utility function satisfies

Assumption 1. For each agent type ℎ, common utility function U
(
cℎ1 , c

ℎ
2

)
is homothetic,

continuous, strictly concave, strictly increasing in both arguments, and satisfies the usual
Inada conditions.

Homotheticity will allow us closed form solutions in the determination of spot prices. Risk
aversion with random endowments motivates trade in state-contingent securities. Hetero-
geneous intertemporal endowments motivates trade in bonds. We will on occasion put
superscript ℎ on the utility function for clarity, but preference heterogeneity is not an es-
sential part of what we do here.

2.1. Market Fundamentals

Agents can trade in spot markets in each state s. In principle, the market-clearing prices
in these spot markets depend on the distribution of pre-trade (before ex-post spot trade)
endowments or the composition of agents. To be precise, let zs be a market fundamental
that determines the spot-market-clearing price in state s, and accordingly the spot-price
function is defined by p(zs).

With identical homothetic preferences, the aggregate ratio of good-1 to good-2 in state

s is the market fundamental in state s; that is, zs =
∑

ℎ �
ℎeℎ1s

RsK+
∑

ℎ �
ℎeℎ2s

, where K =
∑

ℎ �
ℎkℎ is

the aggregate (endogenous) saving including collateral. Here then the spot price function
can be represented by a single-valued function p(zs) such that p(zs) = p(z′s) implies that
zs = z′s. In other words, the market fundamental is necessary and sufficient to pin down
the spot price. This ensures that working with spot prices is equivalent to working with
market fundamentals. We summarize:
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Lemma 1. With identical homothetic preferences, the market fundamental in state s is
given by

zs =

∑
ℎ �

ℎeℎ1s
RsK +

∑
ℎ �

ℎeℎ2s
(1)

Market clearing price p(zs) is a one-to-one function, i.e. p(zs) is a single-valued, and
p(zs) = p(z′s) implies that zs = z′s. In addition, with strictly concavity of U(⋅), p(zs) is
strictly monotone increasing.

Condition (1) is called a consistency constraint. It ensures that the market fundamental
is consistently well-defined. That is, p(zs) is exactly the spot price that constitutes a spot
market equilibrium. This is an implication of the homotheticity assumption.

2.2. Collateralization Structure

A specific piece of collateral can be used to back up several contracts as long as their
promises to pay are in different states. Thus, there is no conflict in a given state s. This is
known as tranching. This is distinct from the contract-specific collateralization structure (in
Geanakoplos, 2003, among others), in which the collateral of a given security cannot be used
as collateral for any other security. For full generality here, we will consider state-contingent
securities as the primitives and otherwise let the security structure be endogenous. Accord-
ingly, we focus on securities paying in each state s with market fundamental zs, one at a
time.

A (contingent) security promising to pay one unit of good 1 in period-1 and state s with
Ĉ units of good 2 as collateral is a promise to pay a unit of good 1 if the state of nature is s
and nothing otherwise. For notational convenience, we use ˆ to distinguish securities paying
in good 1, the numeraire, from securities paying in good 2. With limited commitment, that
is, allowing default, the payoff of this security is given by

D̂ =

{
min

(
1, ĈRsp(zs)

)
if state is s

0 otherwise
(2)

where this payoff is in units of good 1 in period t = 1, and p(zs) is the price of good 2 (in
units of good 1) in state s. Note that this defaulting condition depends on the spot price
p(zs).

Equation (2) captures the essence of limited commitment problem in this model. The
issuer or “borrower” in period t = 0 may not wish to honor the state-contingent obligation.
This creates the limited commitment problem; that is, she will keep the promise if that
promise is no larger than the value of the collateral, i.e., 1 ≤ ĈRsp(zs), and will “default”
otherwise, ĈRsp(zs) < 1. In case of default, the payoff of the contract in state s is equal to
the value of its collateral in that state, ĈRsp(zs) units of good 1.

We will first show that there is no loss of generality in restricting attention to securities
without default, and also in excluding over-collateralized securities, whose collateral value
is strictly larger than the promise. We prove the result for a security paying in good 1 in
state s with good 2 as collateral. Then, we will argue that the same logic applies for all
other types of securities.
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Now consider a contingent security that will be in default in state s, with collateral
Ĉ < 1

Rsp(zs)
. That is, an issuer of this security will “default” in state s. Hence, according

to condition (2), the payoff of this security (in units of good 1) in state s is

min
(
1, ĈRsp(zs)

)
= ĈRsp(zs) < 1 (3)

We now argue that there is an alternative security that does not default but generates
exactly the same total payoffs using the same amount of collateral overall. Consider a state-
s contingent security with collateral amount C̃ = 1

Rsp(zs)
. This security will not default. It

is straightforward to show that the payoff of this security is one unit of good 1 in state s.
Now consider ĈRsp(zs) units of the alternative security. That collection of securities pays
in state s one per unit or ĈRsp(zs) in total. This is exactly the same as the payoff of the
original security with default: see (3). In addition, the total collateral for ĈRsp(zs) units
of the alternative security with 1

Rsp(zs)
collateral per unit is Ĉ, which is exactly the same as

the collateral level of the original security. Therefore, the alternative security can generate
the same payoffs using the same total amount of collateral but without default.

A similar argument also applies to all other types of securities, including directly-
collateralized securities paying in good-2 rather than good-1, and asset-backed securities,
which will be precisely defined later. For now define an asset-backed security as a contract
backed by promises to receive goods of others. This is termed pyramiding. The details of
asset-backed securities will be discussed in Section 7.

The discussion is summarized in the following lemma.

Lemma 2. For any state-contingent security, there exists a security with no default that
can generate the same total payoffs using the same amount of collateral.

Thus, there is no loss of generality in restricting attention to no-default securities only.
Further, issuing securities that do default requires no less collateral than (an equivalent set
of) securities that do not. In other words and this may seem counterintuitive, securities
with default, i.e., with little collateral, do not economize on collateral. In addition, we
also show in the supplementary materials that default cannot make collateral constraints,
formally defined below, less binding.

In addition, with perfectly divisible collateral, there is no loss of generality in excluding
over-collateralized securities, whose collateral value is strictly larger than the promise. More
precisely, an over-collateralized security paying in good-1 in state s is a contract with a
collateral Ĉ such that ĈRsp(zs) > 1. The payoff of this security in state s is 1. This
security is equivalent to a no-default security with 1

Rsp(zs)
< Ĉ units of good-2 as collateral,

whose payoff in state s is also 1. A similar result applies to other types of securities as well.
It is worthy of emphasis, however, that own saving should not be interpreted as over-

collateralization, as no securities are acquired from others; that is, each agent can save. This
saving will result in the slackness of the collateral constraint (4) defined below. In particular,
an agent may hold at the end of period-0 more collateral good than the (minimum) amount
needed to collateralize all securities issued.

3. Collateral Constraints and Externality

As will be proved in Section 7 (see Lemma 4), there is no loss of generality in considering
only two classes of securities; (i) �̂ℎs - securities paying in good 1 in state s, (ii) �ℎs - securities
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paying in good 2 in state s. Here a positive number denotes the purchaser or holder , and
negative the issuer. When negative, each of the state-contingent securities must be backed
by the issuer either by good-2 or by purchased assets (other people’s promises). In other
words, �̂ℎs and �ℎs include both directly collateralized and asset-backed securities. As well
be established in Section 7, the collateral constraints for an agent type ℎ take the intuitive
form

p(zs)Rsk
ℎ + �̂ℎs + p(zs)�

ℎ
s ≥ 0, ∀s (4)

The collateral constraint (4) states that, for each state s, the net-value of all assets,
including collateral good and securities, must be non-negative. If �̂ℎs and �ℎs were negative,
we could write this as p(zs)Rsk

ℎ ≥ −�̂ℎs − p(zs)�
ℎ
s . That is, there is sufficient collateral in

value in state s to honor the value of all promises. Since �̂ℎs and �ℎs include asset-backed and
directly backed securities, collateral types per se do not matter. In addition, we can show
that the markets economize on collateral; that is, there is no gain from pooling collateral
across agents type h (see Lemma 9 in Appendix A).

The collateral constraints (4) can be written in consumption space as follows. Suppose
for the moment that securities are such that there is no spot trade in equilibrium (see
Lemma 5). The consumption for an agent type ℎ in state s is given by

cℎ1s = eℎ1s + �̂ℎs (5)

cℎ2s = eℎ2s +Rsk
ℎ + �ℎs (6)

Substituting these two equations into the collateral constraint (4) yields

cℎ1s + p(zs)c
ℎ
2s ≥ eℎ1s + p(zs)e

ℎ
2s (7)

This condition implies that, due to limited commitment and the possibility of default, the
market value of consumption in a state s of an agent cannot be lower than the market value
of her endowment (without collateral kℎ) in the same state (related to Kehoe and Levine,
1993; Golosov and Tsyvinski, 2007, among others). Intuitively, if this constraint were to
be violated, an agent type ℎ would have promised to deliver some part of the value of her
endowments, over and above her consumption, but such promises require collateral.

The interaction between the bindingness of collateral constraints and spot prices gener-
ates an externality. Technically, there is an externality because the consumption feasibility
set of an agent type ℎ depends on other agents’ choices of saving kℎ̃ through the spot price.
This dependency results from the collateral constraints1 (7), or borrowing constraints in
general. If there were no collateral constraint, the consumption feasibility set would be
independent of other agents’ choices (and therefore there would be no externality). Intu-
itively, an infinitesimal agent has no influence on aggregate saving. On the other hand, a

1This is true even we allow for directly-collateralized securities paying in good 2,  ℎ
s only. As precisely

described in Section 7, each agent will also face a spot trade constraint:

�
ℎ
1s + p(zs)�

ℎ
2s = 0

where �ℎis is the amount of good i an agent ℎ received from trading in the spot market in state s. Combining
this spot trade constraint with (4), (5), and (6) leads to the collateral constraint (7).
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constrained planner knows she can influence the resource allocation in period 1 through
period 0 assignments, namely saving. The asymmetry between the influence of the planner
versus induced agents generates an inefficiency when a collateral constraint is binding. We
now present the formal statement below. For simplicity, we focus on identical allocations
for each type.

3.1. Collateral Constrained Optimality

Attainable allocations are those that can be achieved by exchanges of securities and
collateral in date 0 and exchanges of consumption goods in date 1 at state s, respecting spot
prices p(zs). Accordingly, attainable allocations are defined using the spot-price function
p(zs). As will be later proved in this section (see Lemma 5), the asset-backed securities
in this model are simply substitutes for spot markets. Henceforth, we let asset-backed
securities play this role and shut down active trade in spot markets.

Definition 1. An allocation
(
cℎ0 , k

ℎ, �̂ℎs , �
ℎ
s

)
ℎ
is attainable if

(i) it satisfies resource constraints:

∑

ℎ

�ℎcℎ10 ≤
∑

ℎ

�ℎeℎ10 (8)

∑

ℎ

�ℎ
[
cℎ20 + kℎ

]
≤

∑

ℎ

�ℎeℎ20 (9)

∑

ℎ

�ℎ�̂ℎs = 0, ∀s (10)

∑

ℎ

�ℎ�ℎs = 0, ∀s (11)

(ii) for each ℎ, it satisfies the collateral constraints (4),

(iii) the consistency constraints (1) hold for all s.

With non-constant, s-contingent spot-price function, the attainable set is non-convex.
The non-constant price condition is typical. For instance, this is the case with identi-
cal homothetic and strictly concave preferences. The main source of the non-convexity
is the product of spot-price function and the sum of collateral and contract allocations,
p(zs)

(
Rsk

ℎ + �ℎs
)
, in the collateral constraints (4).

Lemma 3. With identical homothetic and concave preferences, the attainable set is non-
convex.

A constrained optimal allocation is characterized using the following planner’s problem.

Let U
ℎ
be the reservation utility level for an agent type ℎ.

Definition 2. The Pareto Program without Lotteries:

max
(cℎ0 ,kℎ,�̂ℎ,�ℎ)ℎ

U
(
c110, c

1
20

)
+ �

∑

s

�sU
(
e11s + �̂1s , e

1
2s +Rsk

1 + �1s
)

(12)
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subject to (1), (4), (8)-(11), the participation constraint for each ℎ = 2, ⋅ ⋅ ⋅ ,H,

U
(
cℎ10, c

ℎ
20

)
+ �

∑

s

�sU
(
eℎ1s + �̂ℎs , e

ℎ
2s +Rsk

ℎ + �ℎs
)

≥ U
ℎ
, (13)

and non-negativity constraints for consumption and collateral allocations.

For expositional reasons, we focus only on interior solutions; that is, the non-negativity
constraint for kℎ is neglected without loss of generality here. Let �ℎcc−s, and �ℎū denote
the Lagrange multipliers for the collateral constraint (4) for agent ℎ in state s, and for
the participation constraint (13) for agent ℎ, respectively. For notational convenience, let
�1ū = 1. A necessary condition2 for constrained optimality related to collateral allocation
kℎ is given by, for any ℎ,

Uℎ20
Uℎ10

=
∑

s

�s�
Uℎ2s
Uℎ10

Rs +
∑

s

�ℎcc−s

�ℎūU
ℎ
10

p(zs)Rs −
∑

s

�ℎ

�ℎūU
ℎ
10

p′(zs)

p(zs)

∂zs

∂K

∑

ℎ̃

�ℎ̃cc−s�̂
ℎ̃
s (14)

where Uℎi0 =
∂Uℎ(cℎ10,cℎ20)

∂ci0
, Uℎis =

∂Uℎ(cℎ1s,cℎ2s)
∂cis

for i = 1, 2, p′(zs) =
∂p(zs)
∂zs

, and K =
∑

ℎ �
ℎkℎ.

See the derivation in the proof of Lemma 10 in the supplementary materials.
Of special interest, the last term depends not only on the bindingness of collateral

constraints for ℎ but also the bindingness of other agents’ collateral constraints. This
implies that if an agent’s collateral constraint is binding, it will impact everyone. This is
the source of the externality.

3.2. Collateral Equilibrium

Let P̂as and Pas be the prices of securities paying in good 1 and in good 2 in state
s, respectively. For notational convenience, we denote the vectors of security prices by

P̂a =
(
P̂as

)
s
and Pa = (Pas)s. A collateral equilibrium is defined:

Definition 3. A collateral equilibrium is a specification of prices of good 2 in period-0, P20,
the prices of securities paying in good 1, P̂a, and the prices of securities paying in good 2,

Pa, the spot price of good 2 in each state s, p(zs), and an allocation
(
cℎ0 , k

ℎ, �̂ℎ, �ℎ
)
ℎ
such

that

(i) taking prices as given, for any ℎ,
(
cℎ0 , k

ℎ, �̂ℎ, �ℎ
)
solves

max
(cℎ0 ,kℎ,�̂ℎ,�ℎ)

U
(
cℎ10, c

ℎ
20

)
+ �

∑

s

�sU
(
eℎ1s + �̂ℎs , e

ℎ
2s +Rsk

ℎ + �ℎs

)
(15)

subject to the collateral constraints (4), and the budget constraint at t = 0:

cℎ10 + P20

(
cℎ20 + kℎ

)
+ P̂a ⋅ �̂ℎ + Pa ⋅ �ℎ ≤ eℎ10 + P20e

ℎ
20 (16)

2Given that the constraint set is not convex (Lemma 3), this optimality condition is necessary but may
not be sufficient. Nevertheless, this does not cause any problem to our externality argument, as we simply
need to show that a collateral equilibrium cannot be constrained optimal, i.e. does not satisfy the necessary
optimal condition (14).
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(ii) all markets clear: (8)-(11) hold,

(iii) the consistency constraints (1) hold for all s.

The necessary optimal condition for a collateral equilibrium that is comparable to the
optimal condition for a constrained optimality (14) is given by, for any ℎ,

P20 =
Uℎ20
Uℎ10

=
∑

s

�s�
Uℎ2s
Uℎ10

Rs +
∑

s


ℎcc−s

Uℎ10
p(zs)Rs (17)

where 
ℎcc−s is the Lagrange multiplier for the collateral constraint of contracts paying in
state s for agent ℎ. See the derivation in the proof of Lemma 10 in the supplementary
materials.

3.3. The Externality

Note that an infinitesimal agent takes a spot price, p(zs), as invariant. To the contrary,
the constrained planner can influence the spot prices p(zs) through collateral assignments,
kℎ, for the agents of type ℎ in period-0, which affect the market fundamentals zs. This key

influence is the term in p′(zs)
p(zs)

∂zs
∂K

. The difference between the impact of the planner and
that of the agents creates the externality and causes an inefficiency.

Note that if the last term in (14) is zero and we set 
ℎcc−s =
�ℎcc−s

�ℎū
, then condition (17) is

exactly the same as (14). On the other hand, if the last term in (14),
∑

s
�ℎ

�ℎūU
ℎ
10

p′(zs)
p(zs)

∂zs
∂K

∑
ℎ̃
�ℎ̃cc−s�̂

ℎ̃
s ,

is positive, as in all numerical examples in this paper, the equilibrium price of good-2 in
period-0 will be too high in the collateral equilibrium relative to the (constrained) optimal
one. Intuitively, the planner can do better by lowering the aggregate saving or collateral
(see Example 1).

The last term in (14) could be zero if either �ℎ̃cc−s = 0 for all ℎ̃ or p′(zs)
p(zs)

∂zs
∂K

= 0. With a

strictly concave utility function, the spot price varies with the market fundamental3 (is not

constant), i.e. p′(zs)
p(zs)

∂zs
∂K

∕= 0. As a result, when the collateral constraints are binding, i.e.,

�ℎ̃cc−s > 0 for some ℎ̃, the last term in (14) will be non-zero in general. With this non-zero
term, a collateral equilibrium will not be constrained efficient. It is the interaction between
the bindingness of collateral constraints and spot prices that is the key. As an exceptional
case, a collateral equilibrium could be a full first-best optimum. That is, the environment
could be such that despite the focus of the paper we could ignore the collateral constraint.
But, otherwise, the collateral equilibrium must be constrained suboptimal. The result is
summarized in the following theorem. The proof is in the supplementary materials. In
particular, we argue that a collateral equilibrium is first-best optimal when all collateral
constraints are slack.

3If the utility function is linear in both goods, then the spot price is constant, i.e. p′(zs)
p(zs)

∂zs
∂K

= 0. This
clearly results in constrained efficiency. Similarly, if the amount of aggregate saving is fixed exogenously,
then the market fundamental (the ratio of good-1 to good-2) is fixed. This also implies that the last term
is zero, and so constrained efficiency.
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Theorem 3.1. If a collateral equilibrium is not first-best optimal, then it is constrained
suboptimal.

Intuitively, consider an economy with two representative agents. Let K = k1 + k2 be
the total saving. See figure 1a as an example of an attainable set in state s. Eℎs =

(
eℎ1s, e

ℎ
2s

)

is the endowment of agent ℎ in state s. Note that when K > 0, the endowments points of
the two agents will not coincide, and the vertical distance between them is RsK. Indeed,
it is as if agent 2 were holding all the collateral. The collateral-constrained attainable set
is represented by the area between the parallel lines. The lower (upper) border of the
attainable set corresponds to the bindingness of agent 1’s (agent 2’s) collateral constraint
(7). As a result, when agent 1’s collateral constraint is binding, the resulting consumption
allocation will be on the lower border (e.g., point A in figure 1b), and vice versa.
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(a) (b)

Figure 1: Collateral-constrained attainable sets. (a) Attainable allocations (the shaded area) depends on
the spot price p(zs) which depends on total saving K. (b) The resulting consumption allocation will be on
the lower border of the attainable set when agent 1’s collateral constraint is binding.

Figure 2a illustrates that different spot prices lead to different attainable sets. Note that
lower total saving (K < K) implies lower slope of the boundaries of the attainable set. This
is because lower total saving implies higher spot price of good 2 relative to good 1, which in
turn implies that the slope, − 1

p(zs)
, is lower in absolute value. As shown in the figure, when

two attainable sets with different spot prices are overlapped, they are not contained in one
another. Hence, when agent 1’s collateral constraint is binding, the marginal change in total
saving (say, from K to K) could lead to a consumption allocation that is not attainable
under the original level of total saving (the graph features a discrete change moving from
point A to new point B which is not attainable with the overall total saving K). This
marginal effect, therefore, is not priced in the collateral equilibrium considered thus far.
That is, there is an externality.

On the other hand, if none of the collateral constraints were binding, this dependency on
the spot price will not generate the externality. See figure 2b. With no binding collateral
constraints, the resulting consumption allocations will be strictly inside (interior of) the
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Figure 2: Collateral-constrained feasible sets. (a) Different levels of (endogenous) aggregate saving imply
different (overlapped) feasible sets. When agent 1’s collateral constraint is binding, changing total saving
from K to K moves the resulting consumption from A to B which is not feasible with K. (b) When none
of the collateral constraints is binding, changing total saving from K to K moves the resulting consumption
from A to B, which is feasible with K.

attainable set. This implies that its neighborhood is also in the attainable set. As a result,
the marginal change in total saving will lead to the resulting consumption allocation that
is still feasible under the original level of total saving (A and B are both feasible with
total saving K). This implies that the collateral equilibrium prices out this marginal effect.
Hence, there is no externality in this case.

4. Internalizing The Externality: The Economy with “Price-Islands”

Let z = (zs)
S
s=1 denotes a vector of the market fundamentals in all states, each of

which is called a price-island in state s. The composition of agents determines the market
fundamental. We can go further and interpret a price-island zs as a segregated exchange
institution in which the composition of agents forms in such a way as to deliver the market
fundamental zs.

Being in island-zs in state s means that an agent ℎ can trade in spot markets at spot
price p(zs), as determined by the market fundamental zs. Equivalently, even if the spot
markets were shut down4, an agent on an island zs can accomplish the same thing by
trading in ex-ante securities (�̂s, �s), that is, trading in segregated security exchanges, in
which the prices depend on zs.

4As proved in Lemma 5 in Section 7, the spot markets are redundant in that agents are indifferent
between trading in ex-ante contracts or in spot markets. Importantly, the spot markets are opened.
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Let Δs ∈ R define “type ℎ’s deviation from the market fundamental5” in state s.

Δs = zs

(
eℎ2s +Rsk

ℎ
)
− eℎ1s =

(
eℎ2s +Rsk

ℎ
)(

zs −
eℎ1s

eℎ2s +Rskℎ

)
, ∀s (18)

Note that if Δs = 0, then
eℎ1s

eℎ2s+Rskℎ
= zs and type ℎ’s pre-trade endowment is exactly equal

to the market fundamental. If Δs > 0, then type ℎ holds a relative low amount of good-1
and abundant amount of good-2, that is, relative to zs. Adding one unit of good-2 (via
collateral k) adds to the deviation Δs by exactly zsRs (see Eq.(18)). This is the same for all
agent types. But note also that there is a part of Δs over which ℎ has no control, namely her
endowments. The “type ℎ deviation from the fundamental” will be priced in a competitive
equilibrium. In addition, the price of the right to trade in each island will be proportional
to the “type ℎ deviation from the fundamental”.

Now suppose it were possible to assign agents to different islands even in state s as
if by a lottery. Security trades are also bundled into this potentially random assignment.
Island assignments, by lottery or not, are still state-contingent. Importantly, a resident of
an island-zs can trade securities with other residents in the same island only. Securities are
executed at spot prices within each island only.

Thus, for each agent type ℎ, let xℎ(c0, k, �̂, �, z,Δ) ≥ 0 denote a probability measure on(
c0, k, �̂, �, z,Δ

)
, where Δs satisfies (18) for all s. In other words, xℎ

(
c0, k, �̂, �, z,Δ

)
is the

probability of receiving period-0 consumption, c0 ≡ (c10, c20), collateral, k, securities paying
in good-1, �̂s, securities paying in good-2, �s, and being in island-zs in state s where all
securities are executed and all spot-trade takes place also. Recall that a positive (negative)
amount of trade means receiving (transferring out) the specified good.

As a probability measure, a lottery of an agent type ℎ satisfies

∑

(c0,k,�̂,�,z,Δ)

xℎ
(
c0, k, �̂, �, z,Δ

)
= 1 (19)

With a continuum of agents, xℎ
(
c0, k, �̂, �, z,Δ

)
can be interpreted as the fraction of agents

type ℎ assigned to a bundle
(
c0, k, �̂, �, z,Δ

)
. More formally, with all choice object gridded

up as an approximation, the commodity space L is assumed to be a finite n-dimensional
linear space6.

For notational purposes, let b =
(
c0, k, �̂, �, z,Δ

)
be a typical commodity, called a

bundle. We will use b and
(
c0, k, �̂, �, z,Δ

)
interchangeably. Accordingly, we can write

xℎ ≡
[
xℎ(b)

]
b
∈ R

n
+ as a typical lottery for an agent type ℎ.

5If we were in the underlying spaces of k and zs, they would enter multiplicatively, hence and so we would
have a non convexity problem. This is not a problem with lotteries, however.

6The limiting arguments under weak-topology used in Prescott and Townsend (1984a) can be applied to
establish the results if L is not finite.
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4.1. Consumption Possibility Set

A holder of a bundle b =
(
c0, k, �̂, �, z,Δ

)
will receive k units of collateral and hold

portfolio of securities
(
�̂, �
)
. With limited commitment, each bundle b will be feasible

only if the collateral and security assignments satisfy the collateral constraint (4) which we
repeat here:

p (zs)Rsk + �̂s + p (zs) �s ≥ 0, ∀s (20)

Accordingly, we impose the following condition on a probability measure xℎ (b).

xℎ
(
c0, k, �̂, �, z,Δ

)
≥ 0 if

(
c0, k, �̂, �, z,Δ

)
satisfies (18) and (20) (21)

= 0 if otherwise

In words, a positive measure can be defined only on feasible bundles, which have to satisfy
conditions (18) and (20). More formally, the consumption possibility set of an agent type
ℎ is defined by

Xℎ =

{
xℎ ∈ R

n
+ :
∑

b

xℎ (b) = 1, and for any b, xℎ (b) satisfies (21)

}
(22)

Let xℎ be a typical element of Xℎ. Note that Xℎ ⊂ L is compact and convex. In addition,
the non-emptiness of Xℎ is guaranteed by assigning mass one on each agent’s endowment.

4.2. Attainable Allocations

An attainable allocation with lotteries is defined in an analogous manner to the ones
without lotteries. In particular, an allocation x ≡

(
xℎ
)
ℎ
is attainable if xℎ ∈ Xℎ for all ℎ,

and it satisfies the following feasibility constraints.
Recall that good-1 cannot be stored; only good-2 is storable. The aggregate endowment

of good-1 in period-0 is
∑

ℎ �
ℎeℎ10. Therefore, the resource constraint for good-1 in period-0

is given by ∑

ℎ

∑

(c0,k,�̂,�,z,Δ)

�ℎxℎ
(
c0, k, �̂, �, z,Δ

)
c10 ≤

∑

ℎ

�ℎeℎ10 (23)

Similarly, the feasibility constraint for good-2 in period-0 is given by

∑

ℎ

∑

(c0,k,�̂,�,z,Δ)

�ℎxℎ
(
c0, k, �̂, �, z,Δ

)
[c20 + k] ≤

∑

ℎ

�ℎeℎ20 (24)

Note that the nonnegativity constraint on k guarantees that the aggregate saving is non-
negative.

Recall that all securities are executed within each assigned island only. In particular,
for an island-zs in state s, the net supply of a security paying in good-1 in state s, �̂s must
be zero ∑

ℎ

∑

(c0,k,�̂,�,z−s,Δ)

�ℎxℎ
(
c0, k, �̂, �, z−s, zs,Δ

)
�̂s = 0 ,∀s, zs (25)
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where z−s = (z1, . . . , zs−1, zs+1, . . . , zS) is a vector of market fundamentals in all states but
state s. This feasibility condition holds for every state s and every island zs. Similarly, the
feasibility or market-clearing constraint for a security paying in good-2 is given by

∑

ℎ

∑

(c0,k,�̂,�,z−s,Δ)

�ℎxℎ
(
c0, k, �̂, �, z−s, zs,Δ

)
�s = 0 ,∀s, zs (26)

Similar to the economy without lotteries, the market fundamental in each island must
be consistent. In other words, the planner will choose the composition of agents to set
the market fundamental for each island to its specified level. With identical homothetic
preferences, the consistency constraint for an island-zs is that the aggregate ratio of good-1
to good-2 within the island-zs be exactly zs:

zs =

∑
ℎ

∑
(c0,k,�̂,�,z−s,Δ) �

ℎxℎ
(
c0, k, �̂, �, z−s, zs,Δ

)(
eℎ1s + �̂s

)

∑
ℎ

∑
(c0,k,�̂,�,z−s,Δ) �

ℎxℎ
(
c0, k, �̂, �, z−s, zs,Δ

) (
eℎ2s +Rsk + �s

) (27)

Using the feasibility conditions for securities within each island, (25)-(26) and the definition
of “type ℎ deviation from the fundamental” (18), these consistency constraints can be
rewritten as

∑

ℎ

∑

(c0,k,�̂,�,z−s,Δ)

�ℎxℎ
(
c0, k, �̂, �, z−s, zs,Δ

)
Δs = 0, ∀s, zs (28)

where the last equation follows the definition of Δs.

Definition 4. An allocation x ≡
(
xℎ
)H
ℎ=1

∈ X1 × . . . × XH is said to be attainable if

xℎ ∈ Xℎ for every ℎ, and it satisfies (23)-(26) and (28).

Let X denote the set of all attainable allocations. With finite linear weak-inequality
constraints, the attainable set X is compact and convex. In addition, the assumption that
the endowment is on the grids also ensures that X is nonempty.

4.3. Constrained Optimal Allocations

A constrained optimal allocation is an attainable allocation such that there is no other
attainable allocation that can make at least one agent type strictly better off without
making any other agent type worse off. To be precise, the expected utility of an agent type
ℎ, holding a lottery xℎ, is given by

U
ℎ
(
xℎ
)
=

∑

(c0,k,�̂,�,z,Δ)

xℎ
(
c0, k, �̂, �, z,Δ

){
U
(
c10, c20

)
+ �V ℎ

(
k, �̂, �, z

)}

where V ℎ
(
k, �̂, �, z

)
=
∑

s �sU
(
eℎ1s + �̂s, e

ℎ
2s +Rsk + �s

)
is the “indirect” utility of agent

ℎ that is derived from a bundle
(
c0, k, �̂, �, z,Δ

)
. This indirect utility is the result of the
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assignment of the bundle that is executed in period-1 over state s. In other words, it
summarizes all actions happening to the holder of the bundle in period-1. In each state s,
a holder type ℎ receives �̂s units of good-1 as the net-payment from portfolio �̂, �s units of
good-2 as the net-payment from portfolio �, Rsk units of good-2 from the collateral good,
and also eℎ1s units of good-1 and eℎ2s units of good-2 as endowments.

Definition 5. An attainable allocation x∗ ∈ X is said to be a constrained optimal allocation
if there is no another attainable allocation x ∈ X such that

U
ℎ
(
xℎ
)
≥ U

ℎ
(
x∗ℎ
)

for every ℎ, and U
ℎ̄
(
xℎ̄
)
> U

ℎ̄
(
x∗ℎ̄
)

for some ℎ̄

We characterize constrained optimality using the following Pareto program. Let �ℎ ≥ 0
be the Pareto weight of agent type ℎ. There is no loss of generality to normalize the weights
such that

∑
ℎ �

ℎ = 1. A constrained Pareto optimal allocation x∗ solves the following Pareto
program.

Definition 6. The Pareto Program with Lotteries:

max
(xℎ∈Xℎ)

ℎ

∑

ℎ

�ℎ�ℎ
∑

(c0,k,�̂,�,z,Δ)

xℎ (b)
{
Uℎ
(
c10, c20

)
+ �V ℎ

(
k, �̂, �, z

)}
(29)

subject to (23)-(26), (28).

Note again that we already embedded the collateral constraints (20) and the “individual
deviations from the fundamental” (18) into the consumption possibility sets Xℎ.

It is clear that the objective function now is linear in xℎ. Thereby it is continuous and
weakly concave. As discussed earlier, the feasible set X is non-empty, compact, and convex.
Therefore, a solution to the Pareto program for given positive Pareto weights exists and is
a global maximum. The proof of the equivalence between Pareto optimal allocations and
the solutions to the program is omitted for brevity (see Prescott and Townsend, 1984b, for
a similar proof).

5. Decentralized Equilibrium

Let P20 be the price of good-2 in period-0, and P
(
c0, k, �̂, �, z,Δ

)
be the price of a

bundle
(
c0, k, �̂, �, z,Δ

)
. Note that the price of good-1 in period-0 is P10 = 1 as good-1 is

the numeraire good. Each agent is infinitesimally small relative to the entire economy and
will take all prices as given. The broker-dealers introduced below will also act competitively.
Note as well that Δ is also priced.

Consumers: Each agent ℎ, taking prices, P20, P
(
c0, k, �̂, �, z,Δ

)
, as given, chooses

xℎ in period t = 0 to maximize its expected utility:

max
xℎ

∑

(c0,k,�̂,�,z,Δ)

xℎ
(
c0, k, �̂, �, z,Δ

){
U
(
c10, c20

)
+ �V ℎ

(
k, �̂, �, z

)}
(30)
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subject to xℎ ∈ Xℎ, and period-0 budget constraint

eℎ10 + P20e
ℎ
20 ≥

∑

(c0,k,�̂,�,z,Δ)

P
(
c0, k, �̂, �, z,Δ

)
xℎ
(
c0, k, �̂, �, z,Δ

)
(31)

The period-0 budget constraint (31) states that the agent sells all her endowments7 including
good-2 at price P20 and uses this income to buy lotteries xℎ, which includes consumption
in period-0,

(
cℎ10, c

ℎ
20

)
.

In state-s, a type-ℎ holder of bundle
(
c0, k, �̂, �, z,Δ

)
receives in addition to her endow-

ments of good-1 and good-2,
(
eℎ1s, e

ℎ
2s

)
, �̂s units of good-1 as the net-payment of portfolio

�̂, Rsk units of good-2 from the collateral good, �s units of good-2 as the net-payment of
portfolio �. Of course, if �̂s and �s are negative, these are promise to pay. Again, the result

of the actions in period-1 is summarized in V ℎ
(
k, �̂, �, z

)
. It is worthy of emphasis that

the agent will reside in island zs, where she can in principle trade good-1 and good-2 at
price p(zs) in spot markets. (Again in the equilibrium under consideration it will not be
necessary to trade even though they believe they could.)

Broker-Dealers: The primary role of a broker-dealer is to put together deals, i.e.,
buying consumption goods and collateral and selling the bundle, including securities backed
by collateral. In order to do so, the broker-dealer issues (sells) y (b) ∈ R+ units of each

bundle b =
(
c0, k, �̂, �, z,Δ

)
, at the unit price P (b). Note that the broker-dealer can issue

any non-negative number of a bundle b; that is, the number of bundles issued does not have
to be between zero and one and is not a lottery. It is simply the number of bundles, a real
number. Let y ∈ L be the vector of the number of bundles issued as one move across b.
With constant returns to scale, the profit of a broker-dealer must be zero and the number
of broker-dealers becomes irrelevant. Therefore, without loss of generality, we assume there
is one representative broker-dealer, which takes prices as given.

By issuing or selling bundle b =
(
c0, k, �̂, �, z,Δ

)
, the broker-dealer promises to deliver

k units of collateral good to a holder, i.e., provide collateral to back promises. In order to
do so, the broker-dealer needs to acquire a sufficient amount of collateral. In particular,
it buys I units of good-2 at price P20 (in terms of good-1) in period-0, and distributes it
according to y.

∑

(c0,k,�̂,�,z,Δ)

y
(
c0, k, �̂, �, z,Δ

)
k = I (32)

This constraint states that the broker-dealer uses I as collateral for the promises to deliver
the collateral good.

Similarly, the broker-dealer will also deliver (c10, c20) units of good-1 and good-2 to a

holder of a bundle b =
(
c0, k, �̂, �, z,Δ

)
. In order to do so, the broker-dealer acquires C1

7It is worthy of emphasis that we can write an equivalent problem specifying consumption transfers in
period-0, instead of consumption allocation. By doing so, agents do not need to sell their entire endowments
but simply buy and sell consumption transfers. In other words, it is not restrictive that we make agents sell
their entire endowments and buy consumption allocation through lotteries.
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units of good-1 and C2 units of good-2, and distributes them according to y:

∑

(c0,k,�̂,�,z,Δ)

y
(
c0, k, �̂, �, z,Δ

)
c10 = C1 (33)

∑

(c0,k,�̂,�,z,Δ)

y
(
c0, k, �̂, �, z,Δ

)
c20 = C2 (34)

In conclusion, the total (market) cost to the broker-dealer from buying good-1 and good-2
for collateral backing and consumption is equal to C1 + P20C2 + P20I.

Furthermore, it also delivers or assigns a portfolio of claims or securities
(
�̂, �
)
to the

holder. We do not require the broker-dealer to offer collateral backing for securities de-
livered to consumers, �̂, � < 0, and done with collateral k as that is up to the consumers
themselves. Neither does the broker-dealer itself hold any securities or net position, but
simply distributes securities according to y. Hence, the net-supply of each contract from
the broker-dealer must be zero:

∑

(c0,k,�̂,�,z−s,Δ)

y
(
c0, k, �̂, �, z−s, zs,Δ

)
�̂s = 0, ∀s, zs (35)

∑

(c0,k,�̂,�,z−s,Δ)

y
(
c0, k, �̂, �, z−s, zs,Δ

)
�s = 0, ∀s, zs (36)

As we shall see below, these constraints will be equivalent to the market-clearing constraints

for contracts in the competitive equilibrium with y
(
c0, k, �̂, �, z,Δ

)
=
∑

ℎ �
ℎxℎ

(
c0, k, �̂, �, z,Δ

)
,

essential the market-clearing condition for lotteries.
The broker-dealer’s technology also requires that the sum of all “type ℎ deviations from

the fundamental” must be zero in each island-zs for every state s:

∑

(c0,k,�̂,�,z−s,Δ)

y
(
c0, k, �̂, �, z−s, zs,Δ

)
Δs = 0 ,∀s, zs (37)

This constraint is the counter part of the consistency constraint (28) in the Pareto program.
In particular, using the market-clearing condition for lotteries, we can show that this con-
sistency constraint is identical to (28). Hence, it is also called the consistency constraint
for an island-zs for every state s.

The objective of the broker-dealer is to maximize its profit by choosing (y, C1, C2, I),

taking prices, P20, P
(
c0, k, �̂, �, z,Δ

)
, as given:

max
(y,C1,C2,I)

∑

b

y (b)P (b)−
[
C1 + P20C2 + P20I

]
(38)

s.t. (32)− (37)

where the first term is the total revenue of the broker-dealer and the bracketed term denotes
its total (market) cost.

20



The existence of an optimum to the broker-dealer’s problem requires, that for any bundle(
c0, k, �̂, �, z,Δ

)
,

P
(
c0, k, �̂, �, z,Δ

)
≤ c10 + P20c20 + P20k + P̂a(z) ⋅ �̂ + Pa(z) ⋅ � + PΔ(z) ⋅Δ (39)

where P̂a (z) ≡
(
P̂a(zs, s)

)S
s=1

, Pa (z) ≡ (Pa(zs, s))
S
s=1 , and PΔ (z) ≡ (PΔ(zs, s))

S
s=1 are the

vectors of Lagrange multipliers for the market-clearing constraints for contracts paying in
good-1 (35), for the market-clearing constraints for contracts paying in good-2 (36), and for
consistency constraints (37), respectively. In particular, for an island zs in state s, P̂a(zs, s),
Pa(zs, s), and PΔ(zs, s) are the shadow prices of a contract paying in good-1 and good-2,
respectively, and the shadow price of “type ℎ deviations from the fundamental” in the island-

zs. Condition (39) holds with equality if y
(
c0, k, �̂, �, z,Δ

)
> 0. Here P

(
c0, k, �̂, �, z,Δ

)

is the revenue from the sale of one unit of bundle
(
c0, k, �̂, �, z,Δ

)
. This condition is in fact

the necessary and sufficient condition for the saddle-point profit maximization problem.
Define c10 + P20c20 + P20k as the market cost of the bundle, and P̂a(z) ⋅ �̂ + Pa(z) ⋅ � +

PΔ(z) ⋅Δ as its shadow cost. The broker-dealer considers the sum of both market cost and
shadow cost as its total cost for issuing a bundle. The optimal condition (39) states that
the broker-dealer will issue a bundle only if it does not cause a total loss (the revenue is
strictly less than the sum of market cost and shadow cost). On the other hand, the revenue
of a bundle cannot be strictly larger than the total cost. Otherwise, the broker-dealer will
issue an unbounded number of such a bundle, which cannot be an equilibrium. In addition,
the total market profit of the broker-dealer in equilibrium is zero.

Market Clearing: In period-0, the market-clearing condition for good-1 is

∑

(c0,k,�̂,�,z,Δ)

y
(
c0, k, �̂, �, z,Δ

)
c10 =

∑

ℎ

�ℎeℎ10 (40)

Similarly, the market-clearing condition for good-2 in period-0 is

∑

(c0,k,�̂,�,z,Δ)

y
(
c0, k, �̂, �, z,Δ

)
[c20 + k] =

∑

ℎ

�ℎeℎ20 (41)

The market-clearing conditions for lotteries in period-0 are

∑

ℎ

�ℎxℎ
(
c0, k, �̂, �, z,Δ

)
= y

(
c0, k, �̂, �, z,Δ

)
, ∀
(
c0, k, �̂, �, z,Δ

)
(42)

Definition 7. A competitive equilibrium is a specification of allocation (x,y), and the

prices P20, P
(
c0, k, �̂, �, z,Δ

)
such that

(i) for each ℎ, xℎ ∈ Xℎ solves (30) subject to (31), taking prices as given,

(ii) for the broker-dealer,
{
y, P̂a(z), Pa(z), PΔ(z)

}
solves (38), taking prices as given,

(iii) in period-0, markets for good-1, good-2 and lotteries clear, i.e., (40)-(42) hold,
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6. Existence and Welfare Theorems

As in the classical general equilibrium model, the economy is a well-defined convex
economy, i.e., the commodity space is Euclidean, the consumption set is compact and
convex, the utility function is linear. As a result, the first and second welfare theorems hold,
and a competitive equilibrium exists. In particular, this section proves that the competitive
equilibrium is constrained optimal and any constrained optimal allocation can be supported
by a competitive equilibrium with transfers. Then, we will use Negishi’s method to prove
the existence of a competitive equilibrium. Since all the proofs in this section are quite
standard, we put them in the supplementary materials.

The standard contradiction argument will be used to prove the following first welfare
theorem. We also assume that there is no local satiation point in the consumption set.

Assumption 2. For any xℎ ∈ Xℎ, there exists x̃ℎ ∈ Xℎ such that

U
ℎ
(
x̃ℎ
)
> U

ℎ
(
xℎ
)

(43)

where U ℎ
(
xℎ
)
is the expected utility of agent ℎ derived from allocation xℎ.

This assumption is easily satisfied using reasonable specifications of the grid of consumption
allocation in period-0. For example, with a strictly increasing utility function, if we include
a very large consumption allocation in period-0 into the grid (larger than what can be
attained with endowments and storage), then the local nonsatiation assumption will be
satisfied.

Theorem 6.1. With local nonsatiation of preferences (Assumption 2), a competitive equi-
librium allocation is (constrained) Pareto optimal.

The Second Welfare theorem states that any Pareto optimal allocation, corresponding
to strictly positive Pareto weights, can be supported as a competitive equilibrium with
transfers, precisely defined in the supplementary materials. The standard approach applies
here. In particular, we will first prove that any constrained optimal allocation can be decen-
tralized as a compensated equilibrium (precisely defined in the supplementary materials).
Then, we will use a standard cheaper-point argument (see Debreu, 1954) to show that any
compensated equilibrium is a competitive equilibrium with transfers.

Theorem 6.2. With Assumption 1, any Pareto optimal allocation corresponding with
strictly positive Pareto weights �ℎ > 0,∀ℎ can be supported as a competitive equilibrium
with transfers.

We will use Negishi’s mapping method (Negishi, 1960) to prove the existence of com-
petitive equilibrium. The proof benefits from the second welfare theorem. Specifically, a
part of the mapping applies the theorem in that the solution to the Pareto program is a
competitive equilibrium with transfers. We will show that a fixed-point of the mapping
exists and it represents a competitive equilibrium without transfers.

Theorem 6.3. For any positive endowments, with Assumption 1, a competitive equilibrium
exists.
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7. Details of the Building Blocks: Asset-Backed Securities, Collateral Con-

straints, and Spot Markets

This section precisely defines asset-back securities (pyramiding), and derives the unified
collateral constraints (4) by considering the collateral constraints of each type of securities
one at a time and adding them up (and disaggregating back down). In addition, we also
prove that the spot markets are equivalent to ex-ante asset-backed securities.

7.1. Collateral Constraints on Directly Collateralized Securities

To generalize a bit, let  ̂ℎ ≡
(
 ̂ℎs
)S
s=1

∈ R
S and  ℎ ≡

(
 ℎs
)S
s=1

∈ R
S denote agent ℎ’s

portfolios of securities demanded, held at the end of period-0 paying in good-1 and in good-
2, both with good-2 as collateral directly, respectively. Again, we adopt the convention that
positive means demand and negative means sale. So, holding a positive amount of a security
paying good 2 in state s, max

(
0,  ℎs

)
=  ℎs , a positive number, is equivalent to buying that

security (or lending) while holding a negative amount of a security, min
(
0,  ℎs

)
=  ℎs , a

negative number, is equivalent to selling that security (or borrowing). In short, the max
and min operators pick off demand and supply, respectively. A wedge is created by the need
to back the supply by collateral but not the demand.

More generally, a security paying a unit of good-1 in state s backed by good-2 pays the
minimum of 1 unit of good-1 or the value of its collateral in state s. By an argument similar
to the one given earlier, the minimum no-default collateral is 1

p(zs)Rs
per unit. Similarly,

with no-default and no-over-collateralization, a security paying in good-2 in state s requires
1
Rs

units of good-2 as collateral. The results so far are summarized in the first two rows of
the Table 1 with collateral requirement in the last column.

Table 1: Collateral requirements for each type of securities.

payment collateral issued purchased assets total collateral
unit unit liabilities available requirement for

as collateral no default securities

 ̂ℎs good-1 good-2 −min
(
0,  ̂ℎs

)
max

(
0,  ̂ℎs

)
−
(

1
Rsp(zs)

)
min

(
0,  ̂ℎs

)

 ℎs good-2 good-2 −min
(
0,  ℎs

)
max

(
0,  ℎs

)
−
(

1
Rs

)
min

(
0,  ℎs

)

�̂ℎs good-1 securities paying −min
(
0, �̂ℎs

)
max

(
0, �̂ℎs

)
−
(

1
p(zs)

)
min

(
0, �̂ℎs

)

in good-2
�ℎs good-2 securities paying −min

(
0, �ℎs

)
max

(
0, �ℎs

)
−p(zs)min

(
0, �ℎs

)

in good-1
�̂ℎs good-1 securities paying −min

(
0, �̂ℎs

)
max

(
0, �̂ℎs

)
−min

(
0, �̂ℎs

)

in good-1
�ℎs good-2 securities paying −min

(
0, �ℎs

)
max

(
0, �ℎs

)
−min

(
0, �ℎs

)

in good-2

For securities
(
 ̂ℎs ,  

ℎ
s

)
with good-2 as collateral, paying in good-1 and good-2, re-

spectively, agent ℎ must hold good-2 at the end of period-0 no less than the collateral
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requirement in any state (shown in Table 1):

kℎ ≥ −min
(
0,  ̂ℎs

)( 1

Rsp(zs)

)
−min

(
0,  ℎs

)( 1

Rs

)
, ∀s (44)

which can be rewritten as

p(zs)Rsk
ℎ +min

(
0,  ̂ℎs

)
+ p(zs)min

(
0,  ℎs

)
≥ 0, ∀s (45)

These are state-contingent collateral requirement constraints with directly collateralized
contracts. We incorporate asset-backed securities in the next section.

Note that when an agent ℎ’s collateral requirement constraints (44) are not binding for
every state s (i.e., the LHS of (44) exceeds its RHS or (44) holds with strict inequality
for every state s), then the agent ℎ holds collateral kℎ more than needed to back issued
securities. The extra part of collateral is normal saving.

7.2. Pyramiding: Asset-Backed Securities

In real world economies, agents are allowed to use the promises to receive goods of others
as collateral to back their own promises. This is termed pyramiding. In other words, there
are two types of collateral, good-2 itself (described in the preceding section) and “assets”
backed by such collateral. The prototypical example of an asset-backed promise in this
paper is an ex-ante agreement for an agent to give up good-1 in the spot market in state s
backed by someone else’s promise, a receipt of good-2, or vice versa. The promise of receipt
is the asset, and this backs the promise to pay. Indeed, if the planned spot-market trade
is at equilibrium price of p(zs), then one is moving along a budget line and so the value
of collateral, the good to be recovered, exactly equals the promise and there is no need for
additional underlying collateral.

With two physical commodities, there are four possible types of asset-backed securities,
summarized in the last four rows of Table 1. For example, a unit of an asset-backed
security �̂s paying in good-1 in state s needs 1

p(zs)
units of assets paying in good-2 as

collateral. The value of the payoff of 1
p(zs)

units of securities paying in good-2 in state s

equals p(zs)× 1
p(zs)

= 1 unit of good-1, which is exactly the face-value promise to pay. These
collateral requirements are minimum no-default levels.

As shown in the third row of Table 1 (see the column titled total collateral requirement),
an asset-backed security paying a unit of good-1 in state s, �̂ℎs , requires that the total

amount of purchased assets paying in good-2 in state s is no less than −
(

1
p(zs)

)
min

(
0, �̂ℎs

)
.

Similarly, an asset-backed security �ℎs requires that the total amount of purchased assets
paying in good-2 in state s is no less than −min

(
0, �ℎs

)
(see the last row of Table 1). On

the other hand, the total amount of purchased assets paying in good-2 is max
(
0,  ℎs

)
+

max
(
0, �ℎs

)
+max

(
0, �ℎs

)
, as shown in the second, fourth and last rows of Table 1 (see the

next-to-last column titled purchased assets). Hence, the collateral requirement condition
regarding issued securities �̂ℎs and �ℎs that require financial assets paying in good 2 as
collateral can be written as, for any state s,

max
(
0,  ℎs

)
+max

(
0, �ℎs

)
+max

(
0, �ℎs

)
≥ −

(
1

p(zs)

)
min

(
0, �̂ℎs

)
−min

(
0, �ℎs

)
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This states that the agent purchases enough assets or promises paying in good-2, �ℎs , �
ℎ
s , �

ℎ
s ,

to back up her own asset-backed securities or issued promises �̂ℎs , �
ℎ
s . The above condition

can be rearranged as

p(zs)max
(
0,  ℎs

)
+ p(zs)max

(
0, �ℎs

)
+ p(zs)�

ℎ
s ≥ −min

(
0, �̂ℎs

)
(46)

where we applies the fact that max
(
0, �ℎs

)
+min

(
0, �ℎs

)
= �ℎs .

Similarly, the collateral requirement condition for issued securities that require financial
assets paying in good 1 as collateral is given by

max
(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
+ �̂ℎs ≥ −p(zs)min

(
0, �ℎs

)
, ∀s (47)

where the right-hand-side comes from the fourth and fifth rows of Table 1.

7.3. The Derivation of The Collateral Constraints

We now show that the collateral constraints (4) are equivalent to collateral requirement
conditions (with three types of collateral), (45), (46), and (47). In other words, there is no
loss of generality to use the collateral constraints (4); an allocation is attainable under (4)
if and only if it is so under (45), (46), and (47).

To be more precise, let �̂ℎs =  ̂ℎs + �̂ℎs + �̂ℎs and �ℎs =  ℎs + �ℎs + �ℎs be state-s contingent
securities paying in good-1 and in good-2, respectively, which can be backed either by good-
2 or purchased assets (other people’s promises). Note that �̂ℎs and �ℎs include both directly
collateralized and asset-backed securities. An attainable allocation under (45), (46), and
(47) can be defined similarly to the one under (4) by replacing (10)-(11) the following
resource constraints:

∑

ℎ

�ℎ ̂ℎs =
∑

ℎ

�ℎ ℎs =
∑

ℎ

�ℎ�̂ℎs =
∑

ℎ

�ℎ�ℎs =
∑

ℎ

�ℎ�̂ℎs =
∑

ℎ

�ℎ�ℎs = 0, ∀s (48)

The collateral constraint (4) results from summing (45), (46), and (47) altogether, and
then applying max(0, x) + min(0, x) = x to get rid of max and min operators. In addi-
tion, the proof of this lemma in Appendix A also shows how to recover contract allocation(
 ̂ℎs ,  

ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ
s , �

ℎ
s

)
ℎ
from

(
�̂ℎs , �

ℎ
s

)
.

Lemma 4. The following statements are true:

(i) if
(
cℎ0 , k

ℎ,  ̂ℎs ,  
ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ
s , �

ℎ
s

)
ℎ
is attainable, then the collateral constraint (4) and

the market-clearing conditions (10)-(11) hold, and

(ii) if
(
kℎ, �̂ℎs , �

ℎ
s

)
ℎ

is attainable, then there exists a collateral and security allocation
(
kℎ,  ̂ℎs ,  

ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ
s , �

ℎ
s

)
ℎ
that satisfies collateral requirement conditions (45), (46),

(47) and the market-clearing conditions (48).
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7.4. Ex-ante Contracting versus Ex-post Spot Trading

Thus far we implicitly shut down trade in the spot markets in each state. This section
shows that the spot markets are redundant when all types of contracts are available (see
Lemma 5 below). In other words, agents do not need to trade in spot markets, though
they may well do so. Importantly, the spot markets are open and deliver the spot price
p(zs). In addition, we also show that the asset-backed securities are not necessary when the
spot markets are open and active (see Lemma 6 below). Put differently, agents simply are
indifferent between trading in spot markets or ex-ante asset-backed securities. The proofs
are similar to the proof of Lemma 4, and therefore they are put in the supplementary.

When the spot markets are open, each agent ℎ can trade �̂ℎs units of good 1 for �ℎs units
of good 2 at a spot price p(zs) according to the spot-trade constraint:

�̂ℎs + p(zs)�
ℎ
s = 0 (49)

Recall that the spot price function, p(zs), is the price such that the spot markets for both
goods clear:

∑

ℎ

�ℎ�̂ℎs = 0 (50)

∑

ℎ

�ℎ�ℎs = 0 (51)

Hence, an attainable allocation with the spot markets is defined by adding the spot-trade
constraint (49) and market-clearing constraints (50)-(51) to Definition 1.

To be more precise, an allocation is said to be equivalent to an attainable allocation if
it is attainable and generates the same consumption allocation and market fundamental in
each state s as the original attainable allocation.

Lemma 5. For any attainable allocation
(
cℎ0 , k

ℎ, �̂ℎ, �ℎ, �̂ℎ, �ℎ
)
ℎ
, there exists an equiva-

lent allocation
(
cℎ0 , k

ℎ, �̂′ℎ, �′ℎ, �̂ ′ℎ, � ′ℎ
)
ℎ
such that

�̂ ′ℎs = � ′ℎs = 0,∀s, ℎ (52)

Condition (52) in Lemma 5 implies that the spot markets in period-1 are redundant
when all securities are allowed; that is, anything that can be done through the spot markets
and one set of securities is feasible under another set of securities without spot markets.
Henceforth (and previously), the ex-post spot trade transfers will be (were) set to zero,
(�̂ℎ = 0, �ℎ = 0 as in (52)) and the spot-trade constraints (49) will be (were) neglected,
unless stated otherwise.

Lemma 6. For any attainable allocation
(
cℎ0 , k

ℎ,  ̂ℎs ,  
ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ, �ℎ
)
ℎ
, there exists

an equivalent allocation
(
cℎ0 , k

ℎ,  ̂′ℎ
s ,  

′ℎ
s , �̂

′ℎ
s , �

′ℎ
s , �̂

′ℎ
s , �

′ℎ
s , �̂

′ℎ, � ′ℎ
)
ℎ
such that

�̂′ℎs = �′ℎs = �̂ ′ℎs = � ′ℎs = 0,∀s, ℎ (53)
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It is worthy of emphasis that Lemma 5 and Lemma 6 imply that the asset-backed
securities that we need in this model are the ones that replicate spot markets. In other
words, the asset-backed securities in this model (with tranching) are simply substitutes for
spot markets. Henceforth, we let asset-backed securities play this role and shut down active
trade in spot markets. The result is summarized in the following corollary.

Corollary 1. Asset-backed securities and the spot markets are perfect substitute in this
model.

8. Analysis of Prices

This section characterizes systematic relationships among equilibrium prices.

8.1. Spot Markets and Contract Prices: No-Arbitrage Condition

The pyramiding mechanism puts a restriction on the prices of contracts traded within
each price-island. The ratio of the equilibrium prices of the securities in island-zs in state s,
Pa(zs,s)

P̂a(zs,s)
, must be equal to the marginal rate of substitution or the spot price in the island,

p(zs). Otherwise, there will be an arbitrage possibility (by keeping the collateral constraints
satisfied with pyramiding). The result is summarized in the following lemma.

Lemma 7. In a competitive equilibrium, for each s and zs,

Pa(zs, s) = p(zs)P̂a(zs, s) (54)

Using the no-arbitrage condition (54), the collateral constraints (4) can be rewritten as

P (zs, s)Rsk ≥ −P̂a(zs, s)�̂s − P (zs, s) �s, ∀s (55)

These constraints state that the value in units of good 1 at t = 0 of all ex ante securities held
(RHS) cannot exceed the value of collateral held (LHS). These constraints are applicable
when the spot markets are not available but the ex-ante asset-backed securities can be
traded.

8.2. Prices of the Right to Trade

Trading in price islands also imposes a restriction on collateral, contract and price-island
prices, P20, Pa(zs, s), PΔ(zs, s). Even though collateral and securities are indeterminate (see
Lemma 11 in the supplementary), holding collateral additionally impacts the spot price
p(zs). Therefore, the equilibrium price of collateral must reflect the role of collateral on the
spot price in each price island.

Again a no-arbitrage condition requires that the prices of two different bundles that
result in the same consumption allocation for an agent ℎ must have the same prices. Using
the profit maximization condition of a broker-dealer (39) and some algebra, we can prove
the following equation must hold.

P20 +
S∑

s=1

PΔ (zs, s) zsRs =
S∑

s=1

Pa (zs, s)Rs (56)

27



The RHS is the price of contracts paying Rs units of good-2 in every state s. On the other
hand, the LHS is the total cost of the same return, received by buying and holding a unit
of collateral. The first term on the LHS is the price of the collateral good. The second term
on the LHS comes from the fact that holding more a unit of good-2 increases Δ in every
state s by the amount zsRs. In particular, an agent holding an additional unit of collateral
must pay for the marginal impact zsRs at price PΔ (zs, s). This term prices the impact of
collateral on the market fundamental. In equilibrium, these two values must be the same.

Lemma 8. In a competitive equilibrium, for each set of islands z = (zs)s, (56) holds.

8.3. Trading in Price-Islands Generates Intertemporal Transfers

Trading in price-islands can generate additional intertemporal transfers. For example,
a constrained agent would like to smooth consumption by issuing securities or borrowing to
transfer future resources back to period-0 but cannot do so much because of the limited com-
mitment. Trading in price-islands facilitates more consumption smoothing by generating
period-0 transfer for a constrained agent.

For the sake of discussion, we will consider a case with two types of agents one of which
is constrained, and without uncertainty (i.e., S = 1). In addition, as shown in the previous
section, we assume that a constrained agent holds no collateral, k = 0. Using (18), (39),
and (54), an agent type ℎ’s budget constraint (31) can be rewritten as

∑

b

xℎ (b) [c10 + P20c20] ≤ eℎ10 + P20e
ℎ
20 +

∑

b

xℎ (b) P̂a (z1, 1)
[
−�̂1 − p(z1)�1

]

+
∑

b

xℎ (b)PΔ (z1, 1)

[
eℎ11
eℎ21

− z1

]
eℎ21

The third term on the RHS is the revenue from borrowing via
(
�̂1, �1

)
. Using the

collateral constraint (20), p(z1)R1k + �̂1 + p(z1)�1 ≥ 0. Since the constrained agent holds
no collateral, k = 0, her collateral constraint becomes �̂1 + p(z1)�1 = 0. Of course, this
constrained agent would like to go short on the contracts (i.e., having �̂1+ p(z1)�1 < 0) but
cannot do so because she holds no collateral. In other words, with zero collateral, the agent
cannot borrow from trading in contracts.

Of special interest, the last term on the RHS shows that the constrained agent could
potentially receive positive period-0 wealth by trading in price-islands. In particular, a
constrained agent could smooth consumption intertemporally by trading in price-islands
in such a way that this term is positive, giving her more resources to purchase date zero
consumption. For example, if PΔ (zs, s) > 0, then the constrained agent will buy a price

island-zs whose market fundamental is lower than her own endowment, i.e., zs <
eℎ1s
eℎ2s

, and

vice versa (see also Examples in the next section).
On the other hand, an unconstrained agent will potentially hold strictly positive amount

of collateral, k > 0. She will in fact transfer out period-0 wealth from trading in price-

islands. For example, if a constrained agent has zs <
eℎ1s
eℎ2s

, then the consistency constraint

(28) implies that an unconstrained agent in island-zs must have zs >
eℎ1s

Rsk+eℎ2s
. Hence, if

PΔ (zs, s) > 0, the last term on the RHS will be negative for an unconstrained agent.
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9. Numerical Examples

Two economies without uncertainty and one economy with uncertainty are discussed in
this section. As formally shown in Lemma 11 in the supplementary, all equilibria presented
here have constrained agents holding zero collateral, k = 0. For brevity, several details are
omitted but available in the supplementary.

The first economy consists of two types of agents. A collateral equilibrium with an
externality and a competitive equilibrium with price-islands (without externality) are both
presented. We find naturally that the externality leads to a larger amount of aggregate sav-
ing (over all collateral) relative to the one in the competitive equilibrium with price-islands
or segregated exchanges. Interestingly, the competitive equilibrium with price-islands has
a unique active price-island even though all price-islands are available. This does not have
to be true in general, however. In particular, the second environment with three types of
agents illustrates a price-islands equilibrium with multiple active price-islands.

The effects of internalizing the externality on prices and allocations are discussed. We
find that internalizing the externality could make (i) the price of good-2 fluctuates less over
time relative to the collateral equilibrium, and (ii) someone is strictly better off and someone
is strictly worse off than being in the collateral equilibrium. The first outcome suggests,
again naturally enough, that the externality causes the collateral price to fluctuate too much.
It is the good in short supply when there are borrowing constrained agents. The second
outcome is a bit more surprising; trading in the price islands may generate a redistribution
of wealth across agents. This is a general equilibrium effect of the model. See figure 3.
Note that, as shown in example 3, the second statement may not be true in general. The
redistribution of wealth could be very small or vanishing when the agents are quite similar.
If so, internalizing the externality would lead to a Pareto improvement.
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Figure 3: Bold curve: the Pareto frontier and collateral equilibrium without lotteries; Dash curve: the Pareto
frontier and competitive equilibrium with lotteries.
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Environment 1. There is a single state, S = 1, and two types of agents, H = 2, both of
which have an identical constant relative risk aversion (CRRA) utility function

U(c1, c2) =
c
1−

1

1− 

+

c
1−

2

1− 

, ∀ℎ (57)

where 
 = 2. Each type consists of 1
2 fraction of the population, i.e. �ℎ = 1

2 . In addition,
the discount factor � = 1. The storage technology is given by R = 1. The endowment
profiles of the agents are shown in Table 2 below. Recall that eℎit is an agent ℎ’s endowment
of good-i in period t. Note that endowments for both agents are symmetric. In particular,
an agent type 1 is well endowed with both goods in period-0 and vice versa for type 2.

Table 2: Endowment profiles of the agents.

endowments first-best allocations
eℎ10 eℎ20 eℎ11 eℎ21 kℎ cℎ10 cℎ20 cℎ11 cℎ21

ℎ = 1 3 3 1 1 0 2 2 2 2
ℎ = 2 1 1 3 3 0 2 2 2 2

The symmetry of endowments with � = 1, and of the utility function across goods
implies that the first-best aggregate saving will be zero, and each agent gets the average 2
units of each good in each period (see Table 2). Accordingly, the first-best price of good-2

in period-0 is P fb20 = 1, and the market fundamental is z = 1. Unfortunately, the first-best
allocation is not attainable; that is, it violates the collateral constraints.

We now consider the economy with default and collateral (with an externality). The
endowment profile and the first-best allocation suggest that agent 2 would like to move
resources forward from t = 1 to t = 0, and therefore will be constrained. Hence, we will
assume that agents type 2 hold no collateral, i.e. k1 = k and k2 = 0. We will then solve for
an equilibrium k.

As shown in the supplementary materials, the equilibrium collateral is k = 1.3595.

As a result, the price of good-2 in period 0 is P20 =
(

4
4−k

)2
= 2.2948, and the market

fundamental in period-1 is z = 4
4+k = 0.7463, which implies that the spot price is p(z) =

z
 = 0.5570. Note that the collateral price at t = 0 is higher in the equilibrium with an
externality, i.e., P fb20 = 1 < P20 = 2.2948. On the other hand, the spot price of good-2 in
period-1 is lower in the equilibrium with an externality, i.e., pfb(z) = 1 > p(z) = 0.5570.
In words, the collateral distortion makes the price of good-2 higher in the first period and
lower in the second period relative to the first-best. Nevertheless, an agent type 1 is saving.
This is because saving is the only way she can transfer resources to t = 1, given that a
constrained agent holds zero collateral and cannot trade intertemporally.

Figure 4a illustrates period-0 equilibrium allocation with the externality. It shows that
agent 1, the unconstrained agent, sells good 1 and buys good 2, and vice versa for agent
2. In addition, the allocation is on the budget line of constrained agent 2, which is the
line passing through E2

0 . This implies that the unconstrained agent will effectively do all
the saving, k1 = 1.3595. Figure 4b illustrates period-1 equilibrium allocation with the
externality, including security trades. Agent 1 buys �̂1 = 0.3252 and sells �1 = −0.5839,
and vice versa for agent 2. Equivalently, we can actually dispense with securities: agent 1
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buys 0.3252 units of good 1 and sells 0.5839 units of good 2 at price p(z) = 0.5570 in spot
markets, and vice versa. In other words, all security trades are equivalent to spot trades.
In addition, the expected utility of an agent type 1 and type 2 are U 1 = −2.2527 and
U 2 = −2.5724, respectively. The unconstrained agent is better off.
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Figure 4: The equilibrium (with externality) allocation. (a) Point A is period-0 equilibrium allocation with
the externality where Agent 1 buys good-2, sells good-1, and saves good-2, and vice versa. (b) Point C is
the period-1 equilibrium allocation with the externality where agent 1 buys good-1 and sells good-2, and
vice versa.

We will now turn to a corresponding competitive equilibrium with price-islands. The
equilibrium allocation reported in this paper is a numerical solution to the Pareto program
(29) that corresponds to a competitive equilibrium (without transfers8).

There is only one active island, z = 0.7729, even though all price-islands are available
for trade. We will now compare this equilibrium allocation without any externality to the
one with an externality. The equilibrium average or per capita saving (without externality)
is
∑

ℎ

∑
b �

ℎxℎ(b)k = 1.1753
2 = 0.5877, which clearly smaller than the aggregate saving in

the equilibrium with externality, though more than the first-best.
With lower aggregate saving, the price of good-2 in period 0 is lower (P20 = 2.0073 <

2.2948) but the spot price of good 2 is higher (p(z) = 0.5974 > 0.5570), relative to the
one in the equilibrium with the externality. Thus, the price of good-2 varies less over time
when the externality is internalized. Equilibrium fees of price-islands, including the fees of
inactive (out-of equilibrium) islands are summarized in Table 3 below.

Notice that the fees of price islands are increasing with the market fundamentals; that
is, the larger the specified market fundamental of a price island, the higher the fee of the

8The linearity of the problem again can potentially generate multiple equilibria; that is, there can be
some configurations of Pareto weights that map a given endowment to different competitive equilibria with
different prices and allocations (see the Working Paper version of Prescott and Townsend, 2006, for a similar
discussion). In all of the examples, we search for a competitive equilibrium using Negishi’s mapping method.
The corresponding Pareto weight is �1 = 0.7780, �2 = 0.2220. It is computed using Matlab program on a
personal computer with AMD Athlon 64X2 Dual Core Processor 3800+ 2.01 GHz, 3.87 GB RAM.
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Table 3: Equilibrium fees of price-islands. The bold numbers are (actively traded) equilibrium prices.

z = 0.7479 z = 0.7729 z = 0.7979

PΔ(z) 0.4639 0.5375 0.6118

price island will be. Intuitively, the larger the market fundamental, the larger the price of
good 2 relative to good 1. Hence, an agent with a larger amount of good 2 relative to good
1 will benefit more from being in a higher price island. Hence, it is optimal to require the
beneficiary agents to pay more for trading in a higher price island, as in the row PΔ(z). Note
also that the prices of out-of-equilibrium (non-active) islands are set to make broker-dealers
break even, but at such prices consumers do not want to buy them.

Since the equilibrium fee PΔ(z) = 0.5375 is positive in this example, agents with negative
deviation from the fundamental (agent 2 in this case) must get paid for the access to the price
island. In particular, a constrained agent (ℎ = 2) with Δ = −0.6813, is receiving transfer
−PΔ(z)Δ = 0.3662 in period t = 0 for being in the equilibrium price-island. Graphically,
this shifts her budget line outward by T = 0.3662. See figure 1a. This implies how trading
in price islands generates the redistribution of wealth in general equilibrium.
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Figure 5: The equilibrium (without the externality) allocation. (a) Point B is the period-0 equilibrium
allocation without the externality where Agent 1 receives wealth transfer, T = 0.366, from trading in price-
islands. (b) Point D is the period-1 equilibrium allocation without the externality.

In addition, the expected utility of an agent type 1 and type 2 are U 1 = −2.2936,U 2 =
−2.3905, respectively. Recall that the expected utility in the externality equilibrium of an
agent type 1 and type 2 are U 1 = −2.2527 and U 2 = −2.5724, respectively. This shows that
internalizing the externality is beneficial to an agent type 2 (constrained agent) but harmful
for an agent type 1. This is a (distributional) general equilibrium effect. Internalizing the
externality not only improves efficiency of the economy, but also redistributes wealth. To
induce welfare gain for all of agents, there must be lump sum transfers. All agents are
benefit from the efficiency effect, which shifts the Pareto frontier outward as shown in
figure 3. Some agents may be harmed by the distributional effect, however. Note also that
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similar to the collateral equilibrium, all security trades are equivalent to spot trades.

The next environment demonstrates that it is possible to have multiple active islands
or segregated exchanges. In particular, with three types of agents, two of which are con-
strained, there are two distinct active price islands in equilibrium, each of which consists of
different composition of agents. Each island, in fact, consists of one constrained type and
one unconstrained type. The equilibrium allows discrimination among constrained types.

Environment 2. There are three types of agents, and a single state. Each agent is given
the same utility function as in (57) with 
 = 2. Each type consists of 1

3 fraction of the
population, i.e. �ℎ = 1

3 . Similar to the previous example, � = 1, and R = 1. The
endowment profile is given in Table 4 below. Note that to conserve on space we do not
present an equilibrium with externality of this economy.

Table 4: Endowment profiles of the agents.

Type of Agents eℎ10 eℎ20 eℎ11 eℎ21
ℎ = 1 12.5

3 11.5 0.5 0.5
ℎ = 2 12.5

3 0.5 7 5
ℎ = 3 12.5

3 0.5 5 7

With large endowments in t = 1, agent 2 and agent 3 want to move resources forward to
t = 0. The scarcity of collateral then implies that both of them will be collateral constrained.

In addition, type 2 has the larger ratio of period-1 endowment of good 1 to good 2
eℎ11
eℎ21

than

type 3. As shown below, this difference suggests that agent 2 will be in a higher price-island
than agent 3 in equilibrium. In addition, in a competitive equilibrium with price-islands,
an agent type 2 is better off than an agent type 3. Intuitively, agent 2 holds lots of good 1
in period 1 when it is valuable while agent 3 holds lots of good 2 in period 1 when it is not
so valuable.

A competitive equilibrium allocation with price-islands is presented in Table 5 below.
Note that the equilibrium reported here is a competitive equilibrium without lump sum
transfers9. Interestingly, there are two active price islands, z = 0.6028 and z = 0.8167. The
price island z = 0.6028 consists of some fraction of agents type-1, and all of agents type-3 (a
constrained type). On the other hand, the price island z = 0.8167 consists of some fraction
of agents type-1, and all of agents type-2 (a constrained type). Technically, lotteries are
optimal because the collateral constraints create a non-convexity problem (see Lemma 3).
In particular, a convex combination over both islands of the equilibrium allocations of Table
5 is not attainable.

Similar to the previous example, all security trades are equivalent to spot trades; that
is, all of them can be replicated by trading in spot markets. In particular, agent 2 and agent
3 buy good 2 and sell good 1 in the spot markets, and vice versa for agent 1. In addition,
agent 1’s security trading varies across price-islands. This is because different islands have
different spot prices. Notice also that there are more of agents type 1 in island z = 0.8167

9The Pareto weight for this particular equilibrium is given by �1 = 0.5571, �2 = 0.3511, �3 = 0.0918
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Table 5: Equilibrium allocation of (non-zero-mass) lotteries. There are multiple active price islands; z =
0.6028 and z = 0.8167.

ℎ = 1 ℎ = 2 ℎ = 3

kℎ 6.5144 4.6287 0.0000 0.0000

�̂ℎ 1.4022 1.6582 -1.3111 -0.2935
�ℎ -3.8588 -2.4861 1.9657 0.8077
z 0.6028 0.8167 0.8167 0.6028
mass: xℎ(b) 0.2093 0.7907 1.0000 1.0000

than in island z = 0.6028. This follows from the consistency constraints; that is, the market
fundamental in each island has to be equal to the specified level10.

Interestingly, agent 2 and agent 3 have different consumption allocations in period 0
even though they have the same endowment in period 0. This is because they trade in
different price-islands, and thereby receive different wealth transfers. In particular, using
the allocation in Table 5 and the prices in Table 6, agent 2 receives −PΔ(z = 0.8167)Δ =
−2.2098 × (−2.9165) = 6.4449 units of good 1 at t = 0 while agent 3 receives −PΔ(z =
0.6028)Δ = −0.7651 × (−0.7804) = 0.5971 units of good 1 at t = 0.

Equilibrium fees of price-islands, including the fees of inactive (out-of equilibrium) is-
lands are summarized in Table 3 below.

Table 6: Equilibrium fees of price-islands. The bold numbers are (actively traded) equilibrium prices. Note:
they are not adjacent.

z = 0.4500 z = 0.6028 z = 0.7028 z = 0.7667 z = 0.8167 z = 0.8667

PΔ(z) 0.2717 0.7651 1.7619 1.8117 2.2098 2.7253

In addition, the expected utility of an agent type 1, type 2, and type 3 are U 1 =
−1.3123,U 2 = −0.9117,U 3 = −1.4982, respectively. Agent 2 is significantly better off
than agent 3. Note that they have the same period 0 endowment. The difference comes
from two sources. The first one is the difference in their period 1 endowments, as discussed
earlier. This part is true even in the collateral equilibrium with the externality11. The
second one is the large difference in receiving transfers in period 0 from trading in price
island (T2 = 6.4449 > T3 = 0.5971). This part is only true in the competitive equilibrium
with price-islands12. Notice also that a constrained agent type 2 is better off than being
in the first-best world, where she will receive expected utility U 2 = −0.9600. This implies
that constrained does not necessary mean worse-off. This is the general equilibrium effect.

10For instance, the average of good 1 in island z = 0.8167 is 0.7907×0.5+1.000×7 = 7.3953, and average
of good 2 in island z = 0.8167 is 0.7907×(4.6287+0.5)+1.000×5 = 9.0553. Hence, the market fundamental
in island z = 0.8167 is 7.3953

9.0553
= 0.8167.

11The difference between agent 2 and agent 3 in the collateral equilibrium is not as large as in the
competitive equilibrium with price-islands, i.e., U

2 = −1.6452,U 3 = −1.9786. Though, both of them are
strictly better off in the competitive equilibrium with price-islands. See the supplementary materials for the
detailed derivation.

12Note also that agent 2 benefits from the availability of the lotteries in that it allows her to be in a higher
market fundamental island (z = 0.8167), which means a larger transfer, than otherwise (z = 0.7133).
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The last economy illustrates an economy with uncertainty where directly collateralized
securities,  ̂, are actively traded. All agents are constrained, but at different states. In
particular, an agent will be binding in a state where her endowment is large. This is
because she would like to transfer a part of such a large amount of wealth forward to t = 0
but cannot do so because of the collateral constraints.

Environment 3. The economy in this example is similar to the one in example 1, but
there are two states, S = 2. There are two types of agents, H = 2, both of which have an
identical constant relative risk aversion (CRRA) utility function (57) with 
 = 2. Each type
consists of 1

2 fraction of the population, i.e. �ℎ = 1
2 . In addition, the discount factor � = 1.

The storage technology is constant and given by Rs = 1 for s = 1, 2. The endowment profile
is presented in Table 7. Note that the agents are ex-ante identical. But agent type 1 has
relative more of both goods in state s = 1 than in state s = 2 and vice versa for agent type
2.

Table 7: Endowment profiles of the agents.

eℎ10 eℎ20 eℎ11 eℎ21 eℎ12 eℎ22
ℎ = 1 2 2 3 3 1 1
ℎ = 2 2 2 1 1 3 3

First, the symmetry of the endowments and preferences implies that period-0 allocation
should be the same for all agents; that is, cℎ10 = c10 and cℎ20 = c20, for all ℎ. Further, the
indeterminacy between kℎ and �ℎ(s) implies that there is no loss of generality in considering
the case with symmetric collateral allocation, i.e. kℎ = k, for all ℎ.

We will now solve for a competitive equilibrium with the externality. The detailed
derivation is omitted and presented in the supplementary materials. The unique competitive
equilibrium with the externality of this economy has kℎ = k ≈ 0.4603, for all ℎ. Accordingly,
the market fundamental and spot price are zs = 0.8129 and p(zs) = 0.6608, respectively,
for all s. The price of good-2 in period 0, prices of contracts are P ext20 = 1.6872, P̂ exts =
1.2766, P exts = 0.8436, respectively (“ext” stands for externality).

Recall that �̂ℎs and �ℎs include directly-collateralized and asset-backed securities. Never-
theless, we now can recover the positions of each securities13. Of special interest, directly-
collateralized securities (or borrowing contracts) are  ̂1

1 = − ̂2
1 = −0.3042 = − ̂1

2 =  ̂2
2. In

words, an agent ℎ = 1 issues (borrows)  ̂1
1 = −0.3042 units of directly-collateralized security

paying good 1 at s = 1, and vice versa for an agent ℎ = 2. Figure 3a illustrates securities
traded in equilibrium. Here, as discussed earlier, all asset-back securities are equivalent to
spot trades14.

We now turn to the competitive equilibrium with price-islands. As mentioned earlier,
the equilibrium allocation reported here is a numerical solution to the Pareto program (29)
corresponding to a competitive equilibrium without transfers. Each type of agent holds
the same amount of collateral good kℎ = 0.4200 < 0.4603 which is less than the one in

13This can be done using equations (77)-(80) in the proof of Lemma 4
14Here agents trade only securities paying good 1. Though, as in the proof of Lemma 6, there is an

equivalent allocation at which only securities paying good 2 are traded.

35



G
o

o
d

-2

Agent-1 Good-1

Agent-2

E1
1

E2
1

C

R1k
1=0.4603

  
  
  
  
 =

 -
0

.3
0

4
2

=
 0

.0
5
2
5

ˆ
ˆ

2 1

1 1

2

1

1

1

ˆ
ˆ

2 1

1 1

FG

G
o

o
d

-2

Agent-1 Good-1

Agent-2

E1
1

E
2
1

C

D

(a) (b)

Figure 6: (a) Point C is the period-1 equilibrium allocation with the externality. (b) Point D is the period-1
equilibrium allocation without the externality.

competitive equilibrium with the externality. As a result, the market fundamental and
the spot price of good 2 in each state s is higher here, i.e., zs = 0.8285 > 0.8129 and
p(zs) = 0.6864 > 0.6608. In addition, the price of good-2 in period 0 is P20 = 1.5903 <
P ext20 = 1.6872, which is again lower than the one in the competitive equilibrium with the
externality.

We can recover the positions of each security using the same approach as in the com-
petitive equilibrium with the externality. Directly-collateralized securities (or borrowing
contracts) are  ̂1

1 = − ̂2
1 = −0.2872 = − ̂1

2 =  ̂2
2. In words, an agent ℎ = 1 issues (bor-

rows)  ̂1
1 = −0.2872 units of directly-collateralized security paying good 1 at s = 1 in an

island z1 = 0.8285 at a unit price P̂a(z1, 1) = 1.2936, and vice versa for an agent ℎ = 2.
Again, all asset-back securities are equivalent to spot trades. The equilibrium without the
externality is also illustrated in figure 3b. Note that agents trade less securities relative to
the equilibrium with the externality. This is because the agents save less, and are issuing
fewer securities. That is, the externality generates too much borrowing.

10. Concluding Remarks

As we write this, the world financial markets are in much turmoil. Needless to say we do
not attempt here to model all possible problems and corresponding solutions. Rather we use
theory to try to pinpoint one important aspect of what is going on: default, the consequent
use of collateral which moves intertemporal endowments, and endogenous spot prices at
the time of repayment decisions all interact to create an externality. It is in this sense that
in our model markets do not function efficiently. Essentially all traders take spot prices
as given when deciding what claims to buy and issue, and those that issue in the initial
securities market need to back their promises with collateral, which determines subsequent
spot market prices. This simultaneity happens in complete market set ups without frictions
as well, but in our model the set of feasible trades for each agents depends on equilibrium
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spot market prices, so agents are imposing an externality on one another when they each
make their own decisions.

Our solution to this problem is equally intuitive: create a market in the spot market
price itself, that is allow agents to contract on what price they will unwind their contract
commitments, over and above contracting on intertemporal or state-contingent exchange.
Of course that price is still endogenous and the contract price must equal the spot market
price at which supply equals demand, taking into account exogenous endowments, saving,
and contract positions and who is in the market. So when agents contract on the spot
price they essentially are counting on having the requisite number and types of traders
around to support that contract spot price. No agent cares specifically about the identity
or name of other traders, but they do care about the composition of traders (or in our set
up with homotheticity, the ratio of pre-trade endowments). So the new market mechanism
needs to track who people are and what commitments they have made, in a certain well
defined sense. Importantly, the formation of exchanges is determined by the market, so the
government or a planner is not directing traffic. Specifically, to support the new constrained
efficient allocation, there must be an ex ante market for ex post spot markets, with prices
(fees and receipts) paid ex ante at the time of contracting for participation in these ex post
exchanges, depending on each agents type (his/her pre trade endowment inclusive of savings
to support securities). Agents are in effecting buying and selling their rights to trade in
clubs, the set of agents with whom they will execute their promises and unwind positions
(but we do not use the word club in a pejorative sense, as each club has a continuum of
price taking agents).

In order to visualize more clearly the mechanics of our proposed market structure, we
try to place it in a contemporary setting. We imagine that there are two commodities,
money (good 1) and treasury obligations (good 2, the collateral good). Even though money
and treasuries can not be consumed directly, as can the commodities of our model, each
participant (financial institutions, e.g., banks, insurance companies, hedge funds) derives
an indirect utility from holding them today and also from holding them tomorrow (due to
reasons that we do not model here). But the utility is less from treasuries when they used
as collateral backing promises to pay. In the initial date these financial players borrow and
lend in securities markets and buy insurance obligations, with loans and insurance contracts
dominated in money. The market fundamental in future spot markets then is determined
by the relative ratio of money to treasuries, equivalently the interest rate at that time. In
addition, some market participants buy for cash one among a range of market exchange
certificates designating the future spot price of treasures. Other participants are paid to
hold one of a range market exchange certificates. (In some instances certificates are issued at
random, after the price is paid). This arrangement is essentially offers insurance against the
uncertain spot price of treasuries, but the market in the certificates in effect restricts the set
of traders with whom there is a trade today and unwinding of positions tomorrow, in such a
way that the contracted insured price is the market clearing spot price. Broker-dealers will
clear all the markets for securities and markets of certificates. Of course these institutional
arrangements will require an excellent registration, to keep track of which exchange market
traders are allowed to use (and hence the securities which are held). It is important to
ensure that agents cannot participate across markets where they do not have the right to
buy and sell and unwind trades, to forestall the obvious arbitrage when multiple exchanges
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emerge in equilibrium.
Asset-backed securities are allowed in our set up and do not cause a problem. Neither

are they essential here in that various combinations of securities and markets are equivalent.
Essentially asset back security trades mimic spot market trade, and are an essentially part
of the set up if and only if spot market exchange is for some reason more limited. As a result,
all arguments stated in terms of spot markets can be restated using asset back securities.
In particular, we can solve the externality problem by creating segregated exchanges where
agents can trade ex ante collateralized and asset backed securities indexed by the market
fundamental.

Our methods extend to other set ups in which spot market exchange is desirable or
cannot be limited a priori. First, this model can be readily extended to incorporate
the contract-specific collateralization without pyramiding and tranching as in Geanakoplos
(2003), among others. In this case, spot trades will be necessary and cannot be substituted
by ex-ante contracting. Second, this model can also be extended to general preferences and
dynamic environments. This extended version will be used to study equilibrium cascades.
This is again closely related to Geanakoplos (2003). Third, we can use our approach to
study retrading or anonymous trading in spot markets under moral hazard environments.
This is related to Acemoglu and Simsek (2008).
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A. More Results and Proofs

A.1. Pooling Collateral versus Tranching

This section shows that the markets economize on collateral; that is, there is no gain
from pooling collateral across agents type h. Let the collateral constraints with pooling be:

p(zs)RsK ≥ −
∑

ℎ

�ℎp(zs)min
{
0,  ℎs

}
−
∑

ℎ

�ℎmin
{
0,  ̂ℎs

}
(58)

where the average collateral K =
∑

ℎ �
ℎkℎ. We then show that the group collateral con-

straint is equivalent to individuals collateral constraints (4).

Lemma 9. For any allocation
(
kℎ,  ℎs , �

ℎ
s , �̂

ℎ
s

)
satisfying the collateral constraints (58), then

there exists there exists an equivalent allocation
(
k′ℎ,  ′ℎ

s , �
ℎ
s , �̂

ℎ
s

)
with

k′1 =

∑
ℎ �

ℎkℎs
�1

, and k′ℎ = 0 for ℎ ∕= 1 (59)

 ′ℎ
s =

(
Rsk

ℎ
s +  ℎs

)
−Rsk

′ℎ (60)

where kℎs =
−p(zs)min(0, ℎ

s )−min(0, ̂ℎ
s )

p(zs)Rs
,∀s.

Proof. This result can be proved in two steps: (i) show that the collateral constraints (58)
hold if and only if there exists kℎs such that (4) hold, (ii) then show that any allocation
with state-contingent collateral, kℎs , can be replicated by an allocation with fixed collateral
allocation kℎ.
Step I: =⇒ Suppose that collateral constraints (58) hold. Now consider an alternative
allocation with

kℎs =
−p(zs)min

(
0,  ℎs

)
−min

(
0,  ̂ℎs

)

p(zs)Rs
,∀s (61)

This clearly implies no default. We then only need to show that the average collateral
needed

∑
ℎ �

ℎkℎs is no larger than K. Summing the above equation over ℎ with weight �ℎ

gives, for each s,

∑

ℎ

�ℎkℎs =
∑

ℎ

�ℎ
−p(zs)min

(
0,  ℎs

)
−min

(
0,  ̂ℎs

)

p(zs)Rs
(62)

≤ K (63)

where the last inequality follows from the group collateral constraints (58).
⇐= This can be done by summing over the individuals collateral constraints with weight

�ℎ.
Step II: Let

(
kℎs ,  

ℎ
s , �

ℎ
s , �̂

ℎ
s

)
be an attainable allocation with contingent collateral; that is,

it satisfies the collateral constraint for each ℎ and s:

Rsk
ℎ
s ≥ −min

(
0,  ℎs

)
(64)
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and the average collateral is the same in every state; K =
∑

ℎ �
ℎkℎs for all s. In addition,

the consumption allocation of agent ℎ in state s is given by

cℎ1s = eℎ1s + �̂ℎs (65)

cℎ2s = eℎ2s +
(
Rsk

ℎ
s +  ℎs

)
+ �ℎs (66)

where the spot trade satisfies:

�̂ℎs + p(zs)�
ℎ
s = 0 (67)

Now consider a candidate allocation
(
k′ℎ,  ′ℎ

s , �
′ℎ
s , �̂

′ℎ
s

)
with

k′1 =
K

�1
, and k′ℎ = 0 for ℎ ∕= 1 (68)

 ′ℎ
s =

(
Rsk

ℎ
s +  ℎs

)
−Rsk

′ℎ (69)

�̂ ′ℎs = �̂ℎs , and �
′ℎ
s = �ℎs (70)

Using (68), we can write the securities as

 ′1
s =

(
Rsk

1
s +  1

s

)
− k′1 (71)

 ′ℎ = Rsk
ℎ
s +  ℎs for ℎ ∕= 1 (72)

Using the collateral constraint (64) we can show that for each ℎ ∕= 1:

 ′ℎ
s = Rsk

ℎ
s +  ℎs ≥ Rsk

ℎ
s +min

{
0,  ℎs

}
≥ 0 (73)

where the last inequality follows from the collateral constraint (64). This,  ′ℎ
s ≥ 0, implies

that the collateral constraint for any ℎ ∕= 1 holds (since he does not issue securities at all).
We hence only need to show that the collateral constraint also holds for ℎ = 1. We can

rewrite (71) as

k′1 =
(
Rsk

1
s +  1

s

)
−  ′1

s ≥ − ′1
s (74)

where the last inequality follows from the collateral constraint (64) for ℎ = 1. This shows
that the collateral constraint also holds for ℎ = 1.

Given that
∑

ℎ �
ℎk′ℎs = K =

∑
ℎ �

ℎkℎs , the market fundamentals are the same for every
state. With the same market fundamental, zs, the spot trade is satisfied, using (70).

Now we will show that the consumption allocations ar also the same.

c′ℎ1s = eℎ1s + �̂ ′ℎs = eℎ1s + �̂ℎs = cℎ1s (75)

where the second equality follows from (70), and the last one follows from (65). Similarly,

c′ℎ2s = eℎ2s +
(
Rsk

′ℎ
s +  ′ℎ

s

)
+ � ′ℎs = eℎ2s +

(
Rsk

′ℎ
s +

(
Rsk

ℎ
s +  ℎs −Rsk

′ℎ
))

+ �ℎs

= eℎ2s +
(
Rsk

ℎ
s +  ℎs

)
+ �ℎs = cℎ2s (76)

where the second equality follows from (69) and (70), and the last one follows from (66).
Q.E.D.
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Proof of Lemma 4. The first statement can be proved as follows. First, it is clear that
conditions (48) imply (10)-(11). We now only need to show that (45), (46), and (47) imply
(4). Summing up all collateral requirement conditions, (45), (46), and (47), and using the
fact that max (0, x) + min (0, x) = x give, for an agent ℎ in state s,

p(zs)Rsk
ℎ +

[
 ̂ℎs + �̂ℎs + �̂ℎs

]
+ p(zs)

[
 ℎs + �ℎs + �ℎs

]
≥ 0

which is the collateral constraint for an agent ℎ in state s where �̂ℎs =  ̂ℎs + �̂ℎs + �̂ℎs and
�ℎs =  ℎs + �ℎs + �ℎs .

The second statement is proved as follows. Consider an allocation
(
kℎ, �̂ℎs , �

ℎ
s

)
ℎ
that sat-

isfies (4) and (10)-(11). We will now choose a corresponding allocation
(
kℎ,  ̂ℎs ,  

ℎ
s , �̂

ℎ
s , �

ℎ
s , �̂

ℎ
s , �

ℎ
s

)
ℎ

that satisfies �̂ℎs =  ̂ℎs + �̂ℎs + �̂ℎs , �
ℎ
s =  ℎs + �ℎs + �ℎs , the collateral requirement conditions

(45), (46), (47), and the market-clearing conditions (48). Consider the following candidate
allocation:

 ̂ℎs = �̂ℎs + p(zs)�
ℎ
s (77)

 ℎs = �̂ℎs = �ℎs = 0 (78)

�̂ℎs = �̂ℎs −  ̂ℎs = −p(zs)�ℎs (79)

�ℎs = �ℎs (80)

(78) implies that agents hold no  ℎs , �̂
ℎ
s , �

ℎ
s ; they will borrow or lend through directly col-

lateralized contract paying in good-1  ̂ℎs only.
It is straightforward to show that resource constraints (48) hold. Since the resource

constraints are satisfied and the collateral allocations kℎ are the same, the market funda-
mentals are the same. We now would like to show that collateral requirement conditions
(45), (46), (47) also hold. First, we will show that (46) and (47) hold. There are two cases
to consider; (i) �ℎs > 0, (ii) �ℎs < 0. Case I: Suppose that �ℎs > 0. Using (80), this implies
that �ℎs > 0, which in turn leads to min

(
0, �ℎs

)
= 0. On the other hand, it is true that

max
(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
= max

(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
+ �̂ℎs ≥ 0

where the first equality follows from (78). Since min
(
0, �ℎs

)
= 0, we have

max
(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
= max

(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
+ �̂ℎs ≥ −p(zs)min

(
0, �ℎs

)

which is (47). On the other hand, (79) implies that �̂ℎs < 0 when �ℎs > 0. As a result,
min

(
0, �̂ℎs

)
= �̂ℎs . Using (78), (79), (80), we then can show that

p(zs)max
(
0,  ℎs

)
+ p(zs)max

(
0, �ℎs

)
+ p(zs)�

ℎ
s +min

(
0, �̂ℎs

)

= 0 + p(zs)�
ℎ
s + 0 + �̂ℎs = p(zs)�

ℎ
s − p(zs)�

ℎ
s = 0

where the second equality follows from (79) and (80). This shows that (46) holds.
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Case II: Suppose that �ℎs < 0. (79) and (80) imply that max
(
0, �̂ℎs

)
= �̂ℎs = −p(zs)�ℎs

and min
(
0, �ℎs

)
= �ℎs = �ℎs , respectively. We then can write

max
(
0,  ̂ℎs

)
+max

(
0, �̂ℎs

)
+ �̂ℎs = max

(
0,  ̂ℎs

)
− p(zs)�

ℎ
s ≥ −p(zs)�ℎs = −p(zs)min

(
0, �ℎs

)

which is exactly (47). Note that the first equality follows from (78), the second inequal-

ity follows from the fact that max
(
0,  ̂ℎs

)
≥ 0. Similarly, using , we can show that

max
(
0, �ℎs

)
= min

(
0, �̂ℎs

)
= 0. This implies that

p(zs)max
(
0,  ℎs

)
+ p(zs)max

(
0, �ℎs

)
+ p(zs)�

ℎ
s +min

(
0, �̂ℎs

)
= 0 + 0 + 0 + 0 = 0

which is exactly (46).
Similarly, we can now show that (45) also holds. There are two cases to be considered

as well.
Case I: suppose that �̂ℎs + p(zs)�

ℎ
s < 0. (77) implies that  ̂ℎs < 0, which in turn implies

that min
(
0,  ̂ℎs

)
=  ̂ℎs = �̂ℎs + p(zs)�

ℎ
s . Using (78), we now can show that

p(zs)Rsk
ℎ +min

(
0,  ̂ℎs

)
+ p(zs)min

(
0,  ℎs

)
= p(zs)Rsk

ℎ + �̂ℎs + p(zs)�
ℎ
s + 0 ≥ 0

where the last inequality follows (4). This implies that (45) holds.
Case II: we can use a similar argument to show that (45) holds when �̂ℎs + p(zs)�

ℎ
s =

 ̂ℎs > 0. In summary, we have show that all collateral requirement conditions hold. Q.E.D.

44


	Introduction
	The Model Economy
	Market Fundamentals
	Collateralization Structure

	Collateral Constraints and Externality
	Collateral Constrained Optimality
	Collateral Equilibrium
	The Externality

	Internalizing The Externality: The Economy with ``Price-Islands''
	Consumption Possibility Set
	Attainable Allocations
	Constrained Optimal Allocations

	Decentralized Equilibrium
	Existence and Welfare Theorems
	Details of the Building Blocks: Asset-Backed Securities, Collateral Constraints, and Spot Markets
	Collateral Constraints on Directly Collateralized Securities
	Pyramiding: Asset-Backed Securities
	The Derivation of The Collateral Constraints
	Ex-ante Contracting versus Ex-post Spot Trading

	Analysis of Prices
	Spot Markets and Contract Prices: No-Arbitrage Condition
	Prices of the Right to Trade
	Trading in Price-Islands Generates Intertemporal Transfers

	Numerical Examples
	Concluding Remarks
	More Results and Proofs
	Pooling Collateral versus Tranching

	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	Extra
	R
	Supplementary Materials
	More Proofs
	An Indeterminacy of Collateral Allocations
	Collateral Constraints and Default
	Derivation of a Competitive Equilibrium with the Externality in Environment 1
	Derivation of a Competitive Equilibrium with the Externality in Environment 2
	Derivation of a Competitive Equilibrium with the Externality in Environment 3




