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Abstract

We explore empirically models of aggregate fluctuations with two basic ingredients:

agents form anticipations about the future based on noisy sources of information; these

anticipations affect spending decisions and output in the short run. Our objective is

to separate fluctuations due to actual changes in fundamentals (news) from those due

to temporary errors in the private sector’s estimates of these fundamentals (noise).

Using a simple model where the consumption random walk hypothesis holds exactly,

we address some basic methodological issues and take a first pass at the data. First,

we show that if the econometrician has no informational advantage over the agents in

the model, structural VARs cannot be used to identify news and noise shocks. Next,

we develop a structural Maximum Likelihood approach which allows us to identify

the model’s parameters and to evaluate the role of news and noise shocks. Applied

to postwar U.S. data, this approach suggests that noise shocks play a relevant role in

short-run fluctuations.
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Introduction

A common view of the business cycle gives a central role to anticipations. Consumers and

firms continuously receive information about the future, which sometimes is news, sometimes

just noise. Based on this information, consumers and firms choose spending and, because of

nominal rigidities, spending affects output in the short run. If ex post the information turns

out to be news, the economy adjusts gradually to a new level of activity. If it turns out to

be just noise, the economy returns to its initial state. Therefore, the dynamics of news and

noise generate both short run and long run changes in aggregate activity. In this paper, we

ask how aggregate time series can be used to shed light on this view of the business cycle.

We are interested in this view for two reasons. The first is that it appears to capture

many of the aspects often ascribed to fluctuations: the role of animal spirits in affecting

demand—spirits coming here from a rational reaction to information about the future—,

the role of demand in affecting output in the short run, together with the notion that in the

long run output follows a natural path determined by fundamentals.

The second is that it appears to fit the data in a more formal way. More specifically,

it offers an interpretation of structural VARs based on the assumption of two major types

of shocks: shocks with permanent effects and shocks with transitory effects on activity.

As characterized by Blanchard and Quah (1989), Gaĺı (1999), Beaudry and Portier (2006),

among others, “permanent shocks” appear to lead to an increase in activity in the short run,

building up to a larger effect in the long run, while “transitory shocks”—by construction—

lead to a transitory effect on activity in the short run. It is tempting to associate shocks

with permanent effects to news and shocks with transitory effects to noise.

In this paper, we focus on a simple model which provides a useful laboratory to address

two issues: a methodological one and a substantive one. First, can structural VARs indeed

be used to recover news and noise shocks? Second, what is the role of news and noise shocks

in short-run fluctuations?

On the first question, we reach a strong negative conclusion—one which came as an

unhappy surprise for one of the coauthors. In models of expectation-driven fluctuations in

which consumers solve a signal extraction problem, structural VARs can typically recover

neither the news or noise shocks, nor their propagation mechanisms. The reason is straight-

forward: If agents face a signal extraction problem, and are unable to separate news from

noise, then the econometrician, faced with either the same data as the agents or a subset of

these data, cannot do it either.

To address the second question, we then turn to structural estimation, first using a simple
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method of moments and then Maximum Likelihood. We find that our model fits the data well

and gives a clear description of fluctuations as a result of three types of shocks: shocks with

permanent effects on productivity, which build up slowly over time; shocks with temporary

effects on productivity, which decay slowly; and shocks to consumers’ signals about future

productivity. All three shocks affect agents’ expectations, and thus demand and output in

the short run and noise shocks seem to be an important source of short-run volatility. In our

baseline specification, noise shocks account for more than half of the forecast error variance

at a yearly horizon, while permanent technology shocks account for less than one third. This

result is somewhat surprising when compared with variance decompositions from structural

VARs, such as Shapiro and Watson (1989) and Gaĺı (1992), where transitory “demand

shocks” typically account for a smaller fraction of aggregate volatility at the same horizons

and permanent technology shock capture a bigger share. Our methodological analysis helps

to explain the difference, showing why structural VARs can understate the contribution of

noise/demand shocks to short-run volatility and overstate that of permanent productivity

shocks.

Recent efforts to empirically estimate models of news-driven business cycles include Chris-

tiano, Ilut, Motto and Rostagno (2007) and Schmitt-Grohé and Uribe (2008). These papers

follow the approach of Jaimovich and Rebelo (2006), modeling news as advanced, perfect

information about shocks affecting future productivity. We share with those papers the em-

phasis on structural estimation. The main difference is that we model the private sector

information as coming from a signal extraction problem and focus our attention on disen-

tangling the separate effects of news and noise.

The problem with structural VARs emphasized in this paper is essentially an invertibil-

ity problem, also known as non-fundamentalness. There is a resurgence of interest in the

methodological and practical implications of invertibility problems, see, e.g., Sims and Zha

(2006) and Fernández-Villaverde, Rubio-Ramı́rez, Sargent and Watson (2007). Our paper

shows that non-invertibility problem are endemic to models where the agents’ uncertainty

is represented as a signal extraction problem. This idea has also recently surfaced in models

that try to identify the effects of fiscal policy when the private sector receives information

on future policy changes (see Leeper, Walker and Yang, 2009).

The paper is organized as follows. Sections 1 and 2 present and solve the model. Section

3 looks at the use of structural VARs. Section 4 presents the results of our structural

estimation. Section 5 explores a number of extensions and Section 6 concludes.
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1 The model

For most of the paper, we focus on the following model, which is both analytically convenient,

and, as we shall see, provides a good starting point for looking at postwar U.S. data.

We want to capture the notion that, behind productivity movements, there are two

types of shocks: shocks with permanent effects and shocks with only transitory effects. In

particular, we assume that the effects of the first type of shock gradually build up over time,

while the effects of the second gradually decay over time. One can think of the transitory

component as either true or reflecting measurement error. This does not matter for our

purposes.

We also want to capture the notion that spending decisions are based on agents’ expec-

tations of the future, here future productivity. We assume that agents observe productivity,

but not its individual components. To capture the idea that they have more information

than just current and past productivity, we allow them to observe an additional signal about

the permanent component of productivity. Having solved the signal extraction problem, and

based on their expectations, agents then choose spending. Because of nominal rigidities,

spending determines output in the short run.

Thus, the dynamics of output are determined by three types of shocks, the two shocks

to productivity, and the noise in the additional signal. For short, we shall refer to them as

the “permanent shock”, the “transitory shock”, and the “noise shock”. Permanent shock is

a slight (and common) misnomer, as it refers to a shock whose effects build up gradually.

Now to the specific assumptions.

1.1 Productivity

Productivity (in logs) is given by the sum of two components:

at = xt + zt. (1)

The permanent component, xt, follows a unit root process given by

∆xt = ρx∆xt−1 + εt. (2)

The transitory component, zt, follows a stationary process given by

zt = ρzzt−1 + ηt. (3)
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The coefficients ρx and ρz are in [0, 1), and εt and ηt are i.i.d. normal with variances σ2
ε and

σ2
η. Agents observe productivity, but not the two components separately.1

For most of the paper, we assume that the univariate representation of at is a random

walk

at = at−1 + ut, (4)

with the variance of ut equal to σ2
u, and restrict attention to the family of processes (1)-(3)

that are consistent with this assumption. We do this for two reasons. The first is analytical

convenience, as it makes our arguments more transparent. The second is that, as we shall

see, this assumption provides a surprisingly good starting point when looking at postwar

U.S. data. As will be clear however, our central results do not depend on this assumption.

In general, a given univariate process is consistent with an infinity of decompositions

between a permanent and a transitory component with orthogonal innovations, as shown in

Quah (1990, 1991). In our setup, there is a one-parameter family of processes for xt and zt

which deliver a univariate random walk for at. These are all the processes with ρx and ρz

equal to the same value ρ ∈ [0, 1) and variance parameters equal to σ2
ε = (1− ρ)2 σ2

u and

σ2
η = ρσ2

u.
2

Productivity may be the sum of a permanent process with small shocks that build up

slowly and a transitory process with large shocks that decay slowly (high ρ, small σ2
ε and

large σ2
η), or it may be the sum of a permanent process which is itself close to a random

walk and a transitory process close to white noise with small variance (low ρ, large σ2
ε and

small σ2
η). An econometrician who can only observe at cannot distinguish these cases. The

sample variance of ∆at gives an estimate of σ2
u. But the parameter ρ, and thus ρx, ρz, σ2

ε

and σ2
η, are not identified. As we shall see, when consumers have access to some information

on the permanent component xt and the econometrician has access to consumption data, he

will be able to identify ρ and the remaining parameters.

1.2 Consumption

We assume that consumption smoothing leads to the Euler equation

ct = E[ct+1|It], (5)

1A similar process for technology, which combines level and growth rate shocks, has been recently used
in an open economy context by Aguiar and Gopinath (2007).

2To prove this result, notice that the spectral density of ∆at, is equal to the sum of the spectral densities
of ∆xt and ∆zt, which are, respectively, (1−ρeiω)−1(1−ρe−iω)−1σ2

ε and (1−eiω)(1−e−iω)(1−ρeiω)−1(1−
ρe−iω)−1σ2

η. Under the assumed parameter restrictions the sum yields a flat spectral density.
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where It is the consumers’ information at date t, to be specified below. For a generic variable

Xt, we use, when convenient, Et [Xτ ] or Xτ |t as alternative notation for E [Xτ |It].

We drastically simplify the supply side, by considering an economy with no capital, in

which consumption is the only component of demand and output is fully determined by the

demand side. Output is given by yt = ct and the labor input adjusts to produce yt, given the

current level of productivity. We impose the restriction that output returns to its natural

level in the long run, namely that

lim
j→∞

Et[ct+j − at+j] = 0.

In Appendix A, we show that this model can be derived as the limit case of a standard New

Keynesian model with Calvo pricing when the frequency of price adjustment goes to zero.

Combining the last two equations gives

ct = lim
j→∞

Et[at+j]. (6)

Consumption, and by implication, output, depend on the consumers’ expectations of pro-

ductivity in the long run.

To close the model we only need to specify the consumers’ information set. Consumers

observe current and past productivity, at. In addition, they receive a signal regarding the

permanent component of the productivity process

st = xt + νt, (7)

where νt is i.i.d. normal with variance σ2
ν . Moreover, consumers know the structure of the

model, i.e., know ρ and the variances of the three shocks.

Finally, on the econometrician’s side, we will consider both the case where st is unob-

servable and the econometrician only has access to time series for at and ct (as it will be the

case in our empirical exercise), and the case where he can also observe st directly.

2 Solving the model

The solution to the model gives consumption and productivity as a function of current and

lagged values of the three shocks, ε, η, and ν. It will be convenient for later to derive it

in two steps. First, we solve for consumption as a function of productivity expectations.

Second, we derive the dynamics of these expectations using the Kalman filter.
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2.1 Step 1

From equations (2), (3), and (6) above,

ct = xt,t +
ρ

1− ρ
(xt|t − xt−1|t)

or, equivalently,

(1− ρ)ct = xt|t − ρxt−1|t (8)

Writing the corresponding expression for ct−1, taking expectations of equation (2) at time

t− 1, and replacing, we can write consumption as

ct = ct−1 + uc
t , (9)

with uc
t given by

uc
t =

1

1− ρ

(
xt|t − xt|t−1

)
− ρ

1− ρ

(
xt−1|t − xt−1|t−1

)
.

Turning to productivity, equations (1) and (3) imply

at − ρat−1 = xt + zt − ρ (xt−1 + zt−1)

= xt − ρxt−1 + ηt.

Adding and subtracting xt|t − ρxt−1|t on the right-hand side, and substituting (8) and (9),

gives

at = ρat−1 + (1− ρ) ct−1 + ua
t , (10)

with ua
t given by

ua
t = xt − xt|t−1 − ρ

(
xt−1 − xt−1|t−1

)
+ ηt.

The law of iterated expectations implies Et−1[u
j
t ] = 0 for j = c, a. Moreover, given that

past consumption is measurable with respect to past information, this implies

E
[
uj

t |at−1, ct−1, at−2, ct−2, ...
]

= 0

for j = c, a. Therefore, (9) and (10) give us the bivariate VAR representation of the joint

process of consumption and productivity.

Note that, under our assumptions, the univariate representations of both productivity and
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consumption are random walks. For productivity, the result follows from our assumptions on

the productivity process. For consumption, it follows from the behavioral assumption (5),

independently of the productivity process. When we move to the bivariate representation,

past productivity does not help predict consumption, but, if ρ is positive and thus consump-

tion and productivity are not collinear, past consumption helps predict productivity as it

captures the consumers’ information on the permanent component xt.

2.2 Step 2

The second step requires us to solve for the u’s as a function of the underlying shocks. Agents

enter the period with beliefs xt|t−1 and xt−1|t−1 about the current and lagged values of the

permanent component of productivity. They observe current productivity at = xt + zt, and

the signal st = xt + νt and update their beliefs applying the Kalman filter:




xt|t
xt−1|t
zt|t


 = A




xt−1|t−1

xt−2|t−1

zt−1|t−1


 + B


 at

st


 (11)

where the matrices A and B depend on the underlying parameters (see Appendix B).

2.3 The dynamic effects of shocks

Equations (9)-(11), together with equations (1)-(3), fully characterize the dynamic responses

of productivity and consumption to the different shocks. Except for two special cases to which

we shall come back below (the case of a fully informative or a fully uninformative signal),

these must be solved numerically.

Figure 1 gives the computed impulse responses of consumption and productivity to the

three shocks. The parameters are chosen in line with the estimates obtained later, in Section

4. The time unit is the quarter. The parameter ρ is set to 0.89: this implies slowly building

permanent shocks and slowly decaying transitory shocks. The standard deviation of produc-

tivity growth, σu, is set to 0.67%, and this, together with ρ, implies standard deviations of

the two technology shocks, σε and ση, equal to 0.07% and 0.63%, respectively. The standard

deviation of the noise shock, σν , is set to 0.89%, implying a fairly noisy signal.

In response to a one standard deviation increase in ε, a permanent technology shock,

productivity builds up slowly over time—the implication of a high value for ρ. Consumption

also increases slowly. This reflects the fact that the standard deviations of the transitory
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Figure 1: Impulse Responses to the Three Shocks
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shock, η, and the noise shock, ν, are both large relative to the standard deviation of ε. Thus,

it takes a long time for consumers to be able to assess that this is really a permanent shock

and to fully adjust consumption.

For our parameter values, consumption (equivalently, output) initially increases more

than productivity, generating a transitory increase in employment. Smaller transitory shocks,

or a more informative signal would lead to a larger initial increase in consumption, and thus

a larger initial increase in employment. Larger transitory shocks, or a less informative signal,

might lead instead to an initial decrease in employment.

In response to a one standard deviation increase in η, the transitory shock, productivity

initially increases, and then slowly declines over time. As agents put some weight on it

being a permanent shock, they initially increase consumption. As they learn that this was a

transitory shock, consumption returns back to normal over time. For our parameter values,

consumption increases less than productivity, leading to an initial decrease in employment.

Again, for different parameters, the outcome may be an increase or a decrease in employment.

Finally, in response to a one standard deviation increase in ν, the noise shock, consump-

tion increases, and then returns to normal over time. The response of consumption need not

be monotonic; in the simulation presented here, the response turns briefly negative, before

returning to normal. By assumption, productivity does not change, so employment initially

increases, to return to normal over time.

3 A structural VAR approach

The question we take up in this section is whether a structural VAR approach can recover

the underlying shocks and their impulse responses.

The answer to this question is, generally, no. The basic intuition is the following: if the

agents solve for the best estimate of the long run level of productivity to choose consumption,

then an econometrician with access to the same data, or less, will not be able to separate

news from noise based on the reduced form VAR innovations at time t. If the econometrician

could separate news from noise, so would the agents. But then it would be optimal for them

not to respond to noise, and noise-driven fluctuations would disappear.

In the rest of this section we flesh out this intuition and show how it leads to a non-

invertibility problem. As a benchmark, we use a simple long run identification restriction à

la Blanchard and Quah (1990), but our argument extends to any identification scheme that

attempts to map linear combinations of time t innovations to the underlying shocks in the

model.
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We work out in more detail the case where the econometrician information set only

includes ct and at, because this will be the information used in our empirical exercise below.

In this case, the reason for the non-invertibility problem is simple: the model features three

shocks and the econometrician only observes two variables. However, we will see that even

when the econometrician can directly observe st and runs a trivariate VAR in (ct, at, st),

the problem remains. The non-invertibility problem does not depend on the number of

observables, but it is inherent in the model representation of consumers’ uncertainty.

It is best to start with two special cases and then generalize.

3.1 A fully uninformative signal

Consider first the case of a fully uninformative signal, σν = ∞, so the consumers’ only

information is given by current and past values of at.

Then, trivially, our random walk assumption for at leads to ct = at. In this case, the

two innovations uc
t and ua

t coincide and are identical to the innovation ut in the univariate

representation of at. The bivariate dynamics of consumption and productivity are given by

ct = at−1 + ut,

at = at−1 + ut.

This characterization holds for any value of ρ. Thus, whatever the value of ρ and the rela-

tive persistence and importance of the permanent and transitory components of productivity,

a structural VAR with long-run restrictions will attribute all movements in productivity and

consumption to permanent shocks, and none to transitory shocks. The impulse responses

of productivity and consumption to ε will show a one-time permanent increase; the impulse

responses of productivity and consumption to η will be identically equal to zero.

In this case the decomposition between temporary and permanent shocks is essentially

irrelevant, given that no information is available to ever separate the two. We could just

take the random walk representation as the fundamental starting point and just interpret ut

as the single, permanent shock. Unfortunately, this simplification will no longer be possible

when consumers have access to some, imperfect information on xt.

3.2 A fully informative signal

Consider next the case of a fully informative signal, σν = 0, so consumers no longer face

a signal extraction problem. They know exactly the value of the permanent component of
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productivity, xt—and by implication, the value of the transitory component, zt = at − xt.

In this case, equations (9) and (10) simplify to:

ct = ct−1 +
1

1− ρ
εt,

at = ρat−1 + (1− ρ) ct−1 + εt + ηt.

Consumption responds only to the permanent shock, productivity to both. In this case,

a structural VAR approach will indeed work. Imposing the long-run restriction that only

one of the shocks has a permanent effect on consumption and productivity will recover εt

and ηt, and their dynamic effects.

3.3 The general case

Which of these two cases is exceptional? The answer is, unfortunately, the second. As soon

as the signal is not fully informative a structural VAR approach fails.

Figure 2 shows the estimated impulse responses to the shocks with permanent and tran-

sitory effects obtained from structural VAR estimation, together with the true impulse re-

sponses to the three underlying shocks. The underlying parameters are the same as for Figure

1. The estimated impulse responses are obtained by generating a 100,000-period time series

for consumption and productivity using the true model, and then running a structural VAR

on them. The structural VAR is identified by imposing a long run restriction which dis-

tinguishes two orthogonal shocks: one with permanent effects on output and one with only

transitory effects.

Look first at the true and estimated responses of productivity to a shock with permanent

effects. The solid line in the top left quadrant plots the true response to a permanent

technology shock, which replicates that in Figure 1, namely a small initial effect, followed by

a steady buildup over time. The dashed line gives the estimated response from the structural

VAR estimation: The initial effect is much larger, the later buildup much smaller. Indeed,

simulations show that the less informative the signal, the larger the estimated initial effect,

the smaller the later build up. (Remember that, when the signal is fully uninformative, the

estimated response shows a one-time increase, with no further build up over time).

Turn to the true and estimated responses of consumption to a permanent shock in the

bottom left quadrant. The solid line again replicates the corresponding response in Figure

1, showing a slow build-up of consumption over time. The dashed line shows the estimated

response, namely a one-time response of consumption with no further build up over time.
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The right quadrants show the true and estimated responses to shocks with transitory

effects on output. The solid lines show the true responses to a transitory technology shock

(thick line) and to a noise shock (thin line). The dashed lines give the estimated response to

the single transitory shock from the structural VAR. They show that the estimated response

of productivity to a transitory shock is close to the true response to a transitory technology

shock, but the estimated response of consumption is equal to zero.

In short, the responses from the structural VAR overstate the initial response of produc-

tivity and consumption to permanent shocks, and thus give too much weight to these shocks

in accounting for fluctuations. For productivity, the less informative the signal, the larger the

overstatement. For consumption, the overstatement is independent of the informativeness

of the signal.

The estimated responses of consumption to estimated permanent shocks (full initial re-

sponse) and to estimated transitory shocks (no response) are particularly striking. In fact,

it is possible to show that these features are the outcome of the random walk assumption for

consumption and are independent of the model parameters. This is shown in the following

proposition.

For generality, the proposition is proved allowing for any integrated process for produc-

tivity and for a general information structure for the consumers and the econometrician.

The only restriction is that the econometrician has at most the same information as the con-

sumers. We also allow for any form of structural identifying restriction. That is, we consider

all possible identified shocks that are linear combinations of the reduced form innovations.

The proof is in Appendix C.

Proposition 1 Suppose at follows an I(1) stochastic process and consumption is given by

ct = limj→∞ E [at+j|It]. Suppose the econometrician observes a vector of variables Yt, which

are in the consumers’ date-t information set. Let wt be any identified shock in a structural

VAR representation of Yt. The shock wt either leads to a permanent change in consumption

or has no effect on consumption at any horizon.

Why do structural VARs fail? Suppose there was an identified structural shock that

could be mapped into the noise shock of the model. That means that there would be a

linear combination of reduced form innovations at time t that can be used to forecast the

transitory increase in consumption depicted in panel (c) of Figure 1. Since the consumers

have access to all the data used by the econometrician, they would be able to forecast this

transitory fluctuation in consumption. But that would violate consumption smoothing, i.e.,
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the random walk hypothesis for consumption. The same logic explains why the response to

an identified permanent shock is flat.

One could enrich the model, e.g., adding preference shocks and allowing for changes in

the real interest rate, so as to relax the random walk hypothesis for consumption. However,

the essence of the argument remains: noise shocks that lead to transient “mistakes” by

consumers cannot be detected using information available to consumers at date t. Any

structural VAR identification scheme can only make use of that information and so is bound

to fail.

Notice that Proposition 1 applies equally well to the case where Yt ≡ (ct, at, st), so the

problem is present also when the number of shocks and innovations is the same. In Section

4.5 below we will argue that in our model the observability of st has a small effect on the

econometrician’s ability to make inference on the underlying shocks. The crucial problem is

not the number of observable variables, but the fact that the econometrician does not have

more information than the consumers.

3.4 What if the econometrician has more information than the

agents?

The argument above suggests two potential ways out, both based on the possibility that the

econometrician may have access to more information than the agents, either at time t or

later.

First, if we think of the transitory component as reflecting in part measurement error,

and if the series for productivity is revised over time, the econometrician, who has access to

the revised series, may be better able than the consumers to separate the permanent and

the transitory components. To take an extreme case, if the transitory component reflects

only measurement error, and if the revised series remove the measurement error, then the

econometrician has access to the time series for the permanent component directly, and

can therefore separate the two components. While this is extreme, this suggests that the

bias from SVAR estimation may be reduced when using revised series rather than originally

published series.3 The dispersed information model in Lorenzoni (2009) goes in this direction,

by assuming that consumers do not have access to real time information on aggregate output,

but only to noisy local information. Under that assumption it is possible to map the noise

3A related article here is Rodriguez Mora and Schulstad (2007). They show that growth in period t is
correlated with preliminary estimates of past growth available in period t, not with final estimates, available
later. One potential interpretation of these results is that agents choose spending in response to these
preliminary estimates, and their spending in turn determines current output.
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shock in that model to the transitory shock from an identified VAR. However, also in models

with dispersed information, once we enrich the consumers’ information set, the problem

raised here is bound to reappear.

The need for superior information on the econometrician’s side, suggests a second way

out. In the end, the econometrician always has access to superior information, as he can

observe future realizations of variables that the consumer did not observe at time t. Then one

may hope that a combination of past and future data may be used to identify current shocks.

More formally, the traditional invertibility problem is that the map from the economic shocks

to the shocks in the VAR may not have an inverse that is one-sided in nonnegative powers of

the lag operator. Maybe adding a sufficient number of lead terms an inverse can be found?

Unfortunately, the answer is no. As we will show numerically in Section 4.5, even having

access to an infinite sequence of past and future data the econometrician is never able to

exactly recover the values of the shocks.

3.5 What does the structural VAR deliver?

A different way of looking at the problem is to understand what is the correct interpretation

of the identified shocks that the structural VAR delivers. It turns out that the structural

VAR allows us to recover the process for at in its innovations representation.4 Namely, the

process for at can be represented by the alternative state-space system:

x̂t = x̂t−1 + v1
t (12)

at = ρat−1 + (1− ρ)x̂t−1 + v2
t . (13)

To prove this equivalence it is sufficient to define x̂t ≡ ct, and use the results in Section 2,

substituting v1
t = uc

t and v2
t = ua

t .

But then why not start directly from (12)-(13) as our model for productivity dynamics?

The reason why this is not particularly appealing as a primitive model is that the disturbances

v1
t and v2

t in the innovation representation above are not mutually independent, and thus

hard to interpret as primitive shocks. In particular, our signal extraction model implies that

v1
t and v2

t are positively correlated and that the correlation is higher the higher the value

of σν . As we shall see in the next section, this positive correlation is indeed present in the

data. Our informational assumptions provide a rationale for it.

4See Anderson, Hansen, McGrattan, and Sargent (1996) for general conditions under which such a rep-
resentation exists.
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Going back to structural VARs, a long run identifying restriction will lead us to identify

v1
t as the permanent technology shock and will give a linear combination of v1

t and v2
t as the

temporary shock. For some purposes, this representation may be all we are interested in.

Clearly, that is not the case if we are trying to analyze the role of noise shocks in fluctuations.

4 Structural estimation

We now turn to structural estimation, proceeding in two steps. For our benchmark model

structural estimation is particularly easy, and all parameters (save one) can be obtained

matching a few moments of the model to the data; thus we start with it. For more general

processes however, one must use maximum likelihood. We show how it can be done, show

estimation results for our benchmark model and compare them to those obtained by matching

moments.

4.1 Matching moments

At this point, it is clear that we (the econometrician) cannot recover the three shocks from

the two variables we observe, productivity and consumption. However, estimating equation

(10) by OLS, we can recover ρ, and estimating equation (4) we can recover σu. Given ρ

and σu, we immediately get σε and ση. Recovering the variance of the noise shock is less

straightforward, but it can be done by matching another moment. In particular, numerical

results show that, given the remaining parameters, the coefficient of correlation between

the reduced form innovations uc
t and ua

t is an increasing function of σν . Therefore, we can

recover this parameter by matching the correlation in the data. Having identified all the

model parameters, we can fully characterize the dynamic effects of the various shocks.

How well does our simple benchmark model fit the time series facts for productivity and

consumption? The answer is: fairly well. Although it clearly misses some of the dynamics

in the data, it seems worth starting with it.

The basic characteristics of the two time series are shown in Table 1. We construct

the productivity variable as the logarithm of the ratio of GDP to employment and the

consumption variable as the logarithm of the ratio of NIPA consumption to population.

We use quarterly data, from 1970:1 to 2008:1. An issue we have to confront is that, in

contradiction to our model, and indeed to any balanced growth model, the productivity and

consumption variables have different growth rates over the sample (0.34% per quarter for

productivity, versus 0.46% for consumption). This difference reflects factors we have left out
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of the model, from changes in participation, to changes in the saving rate, to changes in the

capital-output ratio. For this reason, we allow for different linear trends in productivity and

consumption and use the residuals from these trends in what follows.5

Lines 1 and 2 of Table 1 show the results of estimated AR(1) for the first differences of

the two variables. Recall that our model implies that both productivity and consumption

should follow random walks, so the AR(1) term should be equal to zero. In both cases, the

AR(1) term is indeed small, insignificant in the case of productivity, significant in the case

of consumption.

Our model further implies a simple dynamic relation between productivity and consump-

tion. Rewriting equation (10) as a cointegrating regression gives:

∆at = (1− ρ)(ct−1 − at−1) + ua
t

Line 3 shows the results of estimating this equation. Line 4 allows for lagged rates of

change of consumption and productivity, and shows the presence of richer dynamics than

implied by our specification, with small but significant coefficients on lagged rates of change

consumption and productivity.

Line Dependent ∆a(−1) ∆c(−1) (c− a)(−1)
variable:

1 ∆a -0.06 (0.09)
2 ∆c 0.24 (0.08)
3 ∆a 0.05 (0.03)
4 ∆a -0.21 (0.10) 0.32 (0.12) 0.03 (0.02)
5 ∆(8)a 0.03 (0.15)
6 ∆(20)a 0.31 (0.30)
7 ∆(40)a 0.98 (0.43)

Table 1: Consumption and Productivity Regressions.
Note: Sample: 1970:1 to 2008:1. ∆(j)a ≡ a(+j − 1) − a(−1). In parenthesis: robust standard
errors computed using the Newey-West window and 10 lags.

Our model’s dynamic implications on the relation between consumption and productivity

can be extended to longer horizons. Specifically, (10) can be extended to obtain the following

5We are aware that, in the context of our approach, where we are trying to isolate potentially low frequency
movements in productivity, this is a rough and dangerous approximation. But, given our purposes, it seems
to be a reasonable first pass assumption. The reason why we concentrate on the sample 1970:1 to 2008:1 is
precisely because with longer samples we are less confident that the simple linear detrending adopted here
does a satisfactory job. When we turn to variance decomposition, we will discuss the robustness of our
results to extensions of the sample.
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cointegrating regression, which holds for all j ≥ 0,6

at+j − at = (1− ρj)(ct−1 − at−1) + ua,j
t ,

where ua,j
t is a disturbance uncorrelated to the econometrician’s information at date t. Thus,

according to the model, a larger consumption-productivity ratio should forecast higher future

productivity growth at all horizons and the coefficient in this regression should increase

with the horizon. Lines 5 to 7 explore this implication. We correct for the presence of

autocorrelation due to overlapping intervals by using Newey-West standard errors. The

results are roughly consistent with the model predictions. However, the increasing pattern in

the regression coefficients only appears at long enough horizons, suggesting, again, potentially

richer consumption-productivity dynamics.

The regression in line 3 implies a value of ρ of 0.95. Together with an estimated standard

deviation σu equal to 0.67%, this implies σε = 0.03% and ση = 0.65%. In words, these results

imply a very smooth permanent component, in which small shocks steadily build up over

time, and a large transitory component, which decays slowly over time.

We can then compute the coefficient of correlation between ∆c and the residual of the

regression on line 3, corresponding, respectively to uc
t and ua

t . This coefficient of correlation

is equal to 0.52. Notice that if the signal was perfectly informative this correlation would be

equal to 0.05, while if the signal had infinite variance it would be 1.7 Therefore, the observed

correlation is consistent with the model and allows us to identify a fairly large standard

deviation of the noise shock, namely σν = 2.1%.

The fact that we are able in our benchmark model to recover the model parameters

by matching a few moments from the data, is clearly a special case. For more general

specifications of productivity or consumption behavior, one must adopt a different approach.

We now discuss this general approach, and then return to the data.

6This is obtained by induction. Suppose it is true for j, that is, Et [at+j ] =
(
1− ρj

)
ct + ρjat. Taking

expectations at time t− 1 on both sides yields

Et−1 [at+j ] =
(
1− ρj

)
Et−1[ct] + ρjEt−1[at]

=
(
1− ρj

)
ct−1 + ρj ((1− ρ) ct−1 + ρat−1)

=
(
1− ρj+1

)
ct−1 + ρj+1at−1,

the second equality follows from (5) and (10), the third from rearranging.
7These bounds can be derived from the analysis in Sections 3.1 and 3.2. To obtain the first, some algebra

shows that under full information Cov[uc
t , u

a
t ]/

√
V ar[uc

t ]V ar[ua
t ] = (1−ρ)/

√
(1− ρ)2 + ρ. The second bound

is immediate.
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4.2 Maximum Likelihood

To estimate a model where consumers face a non trivial signal extraction problem, one can,

generally, proceed in two steps.

• Take the point of view of the consumers. Write down the dynamics of the unobserved

states in state space representation and solve the consumers’ filtering problem. In our

case, the relevant state for the consumer is given by ξt ≡ (xt, xt−1, zt), its dynamics are

given by (2) and (3), the observation equations are (1) and (7), and Kalman filtering

gives us the updating equation (11).

• Next, take the point of view of the econometrician, write down the model dynamics

in state space representation and write the appropriate observation equations (which

depend on the data available). In our case, the relevant state for the econometrician

is given by ξE
t ≡ (xt, xt−1, zt, xt|t, xt−1|t, zt|t). Notice that the consumers’ expectations

become part of the unobservable state and the consumers’ updating equation (11) be-

comes part of the description of the state’s dynamics. The observation equations for the

econometrician are now (1) and (8), where the second links consumption (observed by

the econometrician), to consumers’ expectations. The econometrician’s Kalman filter

is then used to construct the likelihood function and estimate the model’s parameters.

Table 3 shows the results of estimation of the benchmark model presented as a grid over

values of ρ from 0 to 0.99.8 For each value of ρ, we find the values of the remaining parameters

that maximize the likelihood function and in the last column we report the corresponding

likelihood value. The table shows that the likelihood function has a well-behaved maximum

at ρ = 0.89. The corresponding values of σε and ση are 0.07% and 0.63%, respectively. The

standard deviation of the noise shock σν is 0.89%.

The results are roughly in line with those obtained in Section 4.1. Relative to those

estimates, the Maximum Likelihood approach favors smaller values of ρ and σν . However,

comparing lines 6 and 8 in Table 2 shows that the likelihood gain from one set of parameters

to the other is not large. In other words, the data are consistent with a range of different

combinations of ρ and σν . When we look at the model’s implications in terms of variance

decomposition, we will consider different values in this range.

8For all our Maximum Likelihood estimates we used Dynare (v.3), which allows for the use of matrices in
the model section of the code. Our observables are first differences of labor productivity and consumption,
so we use a diffuse Kalman Filter to initialize the variance covariance matrix of the estimator (a variance-
covariance matrix with a diagonal of 10).
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Line ρ σu σε ση σν ML
1 0.00 0.0067 0.0067 0.0000 0.0089 −3 ∗ 1012

2 0.25 0.0183 0.0137 0.0092 0.0000 859.2
3 0.50 0.0102 0.0051 0.0072 0.0000 980.5
4 0.70 0.0077 0.0023 0.0065 0.0026 1042.6
5 0.80 0.0071 0.0014 0.0064 0.0056 1064.5
6 0.89 0.0067 0.0007 0.0063 0.0089 1073.2
7 0.90 0.0067 0.0007 0.0064 0.0099 1073.1
8 0.95 0.0068 0.0003 0.0066 0.0234 1072.2
9 0.99 0.0063 0.0001 0.0063 0.0753 1068.5

Table 2: Maximum Likelihood Estimation: Benchmark Model

A simple exercise, using this approach, is to relax the random walk assumption for

productivity, allowing ρx to differ from ρz, and allowing the variances of the shocks to be

freely estimated. The estimation results are reported in Table 3 and are quite close to those

obtained under the random walk assumption.

Estimate Standard error
ρx 0.8879 0.0478
ρz 0.8878 0.0474
ση 0.0065 0.0004
σε 0.0007 0.0003
σν 0.0090 0.0052

Table 3: Maximum Likelihood Estimation: Unconstrained Model

4.3 Variance decomposition

What do our results imply in terms of dynamic effects of the shocks and variance decom-

positions? If we use the estimated parameters from the benchmark model (line 6 in Table

2), the dynamic effects of each shock are given in Figure 1 and were discussed in Section

2.3: A slow and steady build up of permanent shocks on productivity and consumption; a

slowly decreasing effect of transitory shocks on productivity and consumption; and a slowly

decreasing effect of noise shocks on consumption.

Figure 3 illustrates the implications in terms of variance decomposition, plotting the

contribution of the three shocks to forecast error variance at a 1 to 20 quarters horizon. The

main result is that noise shocks are an important source of short run volatility, accounting for
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Figure 3: Variance decomposition

more than 70% of consumption volatility at one quarter horizon and more than 50% at a four

quarter horizon, while permanent technology shocks play a smaller role, having almost no

effect on quarterly volatility and explaining less than 30% at four quarters. It is interesting

to compare this result to traditional SVAR exercises, such as Shapiro and Watson (1989) and

Gali (1992), where demand shocks typically explain a smaller fraction of aggregate volatility

and permanent technology shocks play a bigger role.9 The analysis in Section 3 helps explain

the logic behind these differences.

In Table 4, we report the results of some robustness checks. On each line, we report

the fraction of consumption variance due to noise shocks at 1, 4 and 8 quarters horizon, for

different parameter values. Line 1 corresponds to our benchmark estimation. Line 2 reports

the results obtained by setting ρ at a higher level and choosing the remaining parameters by

maximum likelihood (see line 8 of Table 2). The variance decomposition at short horizons is

not very different, but noise shocks turn out to be more persistent under this parametrization

9Below, we show that the difference is not due to the fact that we use consumption rather than GDP.
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and explain a much bigger fraction of variance at 8 quarter horizon. On line 3 we report

the parameters obtained when estimating our model on a longer sample, 1948:1 to 2008:1.

With this dataset the estimate of ρ is larger and we obtain results analogous to the ones

on line 2. Finally, in lines 4 and 5 we experiment with changing only the volatility of noise

shocks, keeping the other parameters fixed. In particular, relative to the benchmark, we first

decrease and then increase σν by one standard deviation (which is 0.0034 in our maximum

likelihood estimate). Interestingly, it is the lowest value of σν that leads to the largest amount

of noise-driven volatility. A lower value of σν makes the signal st more precise, so consumers

rely on it more. In our parameters’ range this leads to greater short run volatility.

Line Parameters Noise-driven consumption variance (fraction)
ρ σu σν 1 Quarter 4 Quarter 8 Quarter

1 benchmark 0.89 0.0067 0.0089 0.75 0.53 0.23
2 high ρ 0.95 0.0068 0.0234 0.71 0.68 0.58
3 sample 1948:1-2008:1 0.96 0.0099 0.0382 0.73 0.71 0.64
5 low σν 0.89 0.0067 0.0055 0.82 0.46 0.17
4 high σν 0.89 0.0067 0.0123 0.68 0.53 0.26

Table 4: Variance Decomposition: Robustness Checks

4.4 Recovering the states: retrospective history

So far we have focused on using structural estimation to estimate the model’s parameters.

Now we turn to the question: what information about the unobservable states xt and zt and

the shocks εt, ηt, and νt can be recovered from structural estimation? We begin from the

states.

Using the Kalman smoother it is possible to form Bayesian estimates of xt and zt using

the full time series available and obtain a retrospective history of the U.S. business cycle.

Figure 4 shows a plot of these estimates obtained using our benchmark model. The solid line

correspond to the estimated permanent component of productivity xt, the dashed line to the

consumers’ real time estimate of the same variable xt|t (as estimated by the econometrician

using the full sample, recall that xt|t is also an unobservable state for the econometrician).

Looking first at medium run movements, the model identifies a gradual adjustment of

consumers’ expectations to the productivity slowdown in the 70s and a symmetric gradual

adjustment in the opposite direction during the faster productivity growth in the second half

of the 90s. Around these medium run trends, temporary fluctuations in consumers’ beliefs
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produce short run volatility. However different episodes appear driven by different dynamics.

For example, the boom preceding the 90-91 recession seems driven by animal spirits and the

recession seems due to a unavoidable readjustment of expectations to underlying productivity

dynamics, while the boom of the late 90s seems characterized by a belated catching up of

expectations to the underlying productivity acceleration. Obviously, the model is too stylized

to give a credible account of all cyclical episodes. For example, given the absence of monetary

policy shocks the recession of 81-82 is fully attributed to animal spirits.

The Kalman smoother also tells us how much information on the unobservable states is

contained in past and future data. In particular, in Figure 5 we plot the root mean squared

errors (RMSE) of the smoothed estimates of xt and zt, when data up to t+j are available, for

j = 0, 1, 2, .... Formally, these RMSE correspond to the square root of Et+j[(xt−Et+j[xt])
2],

and can be computed using two different information sets: the econometrician’s, which only

includes observations of ct and at, and the consumer’s, which also includes st. For simplicity,

we compute RMSE at the steady state of the Kalman filter, that is, assuming the forecaster

has access to an infinite series of data up to time t + j. In this case, the econometrician’s

information set coincides with the consumer’s, that is, the econometrician can perfectly back

up the current value of st from current and past observations of ct and at. This is a numerical

result: computing the RMSE of st from the econometrician’s Kalman smoother, we find that

it is equal to zero at j = 0. This implies that, in our model, with a sufficiently long data

set, the direct observation of st does not add much to the econometrician’s ability to recover

the unobservable states (or the shocks).
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Figure 5 shows that the consumer’s and the econometrician’s contemporaneous estimate

of the current state xt has a standard deviation of 0.44%. By using future data, this standard

deviation almost halves, to 0.28%. However, most of the relevant information arrives in the

first six quarters, after that there are minimal gains in the precision of the estimate.

4.5 Recovering the shocks: more on invertibility

Turning to the shocks, we know from our discussion of structural VARs that the information

in current and past values of c and a is not sufficient to derive the values of the current

shocks. However, this does not mean that the data contain no information on the shocks.

In particular, using the Kalman smoother the econometrician can form Bayesian estimates

on ε, η, and ν using the entire time series available. Figure 6 plots these estimates for our

benchmark model. As for the states, in Figure 7 we report the RMSE of the estimated shocks

as a function of the number of leads available. To help the interpretation, each RMSE is

normalized dividing it by the ex ante standard deviation of the respective shock (σε, ση, and

σν).

Notice that if the model was invertible, the RMSE would be zero at j = 0. The fact

that all RMSE remain bounded from zero at all horizons shows that even an infinite data

set does not allow us to recover the shocks exactly.

The transitory shock η is estimated with considerable precision already on impact and

the precision of their estimates almost doubles in the long run. The noise shock ν is less
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precisely estimated, but the data still tell us quite a lot about it, giving us an RMSE which is

about 1/3 of the prior uncertainty in the long run. The shock that is least precisely estimated

is the permanent shock ε. Even when infinite future data are available, the residual variance

is about 94% of the prior uncertainty on the shock.

How do we reconcile the imprecision of the estimate of ε with the fact that we have

relatively precise estimates of the state x, as seen in Figure 5? The explanation is that

the econometrician can estimate the cumulated effect of permanent productivity changes by

looking at productivity growth over longer horizons, but cannot pinpoint the precise quarter

in which the change occurred. Therefore, it is possible to have imprecise estimates of past

ε’s, while having a relatively precise estimate of their cumulated effect on x. This also helps

to explain the high degree of autocorrelation of the estimated permanent shocks in Figure

6. The smoothed estimates of ε in consecutive quarters tend to be highly correlated, as the

econometrician does not know to which quarter to attribute an observed permanent change

in productivity. Notice that the autocorrelation of the estimated shocks is not a rejection of

the assumption of i.i.d. shocks, but purely a reflection of the econometrician’s information.

In fact, performing the same estimation exercise on simulated data delivers a similar degree

of autocorrelation as the one obtained from actual data.

5 Extensions

We have shown how models where agents face signal extraction problems cannot be estimated

through SVARs, but can be estimated through structural estimation. Structural estimation

however requires a full specification of the model, including the processes for the perma-

nent and transitory components of productivity, the information structure, the behavior of

consumers. And, unfortunately, the estimated parameters are likely to be sensitive to the

specific assumptions.

There are at least two dimensions in which we think our benchmark model needs to be

extended.

The first is motivated by the data. As we saw from Table 1, the dynamics of consump-

tion and the dynamic relation between productivity and consumption are richer than those

implied by the benchmark. These require at least a modification of our assumptions about

consumption behavior. Our assumption about consumption implies that consumption fol-

lows an exact random walk for any productivity process and any standard deviation of the

noise in the signal. As we have seen however, the univariate process for consumption, shown

in line 2 of Table 1, shows evidence of richer dynamics.
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Here we try two approaches. The first is to allow for some time variation in the real

interest rate by turning to a standard New Keynesian model with Calvo pricing. Such a

model is described in Appendix A and leads to a process for consumption (and output) of

the form

ct = d1at + d2xt|t + d3xt|t−1 + d4zt|t

where the coefficients d are non-linear functions of the following model parameters: the

discount factor β, a parameter φ, reflecting the response of the nominal interest rate to

inflation in the monetary policy rule, and a parameter κ, capturing the degree of nominal

and real rigidities in price setting. We set β at 0.99 and estimate the remaining parameters

by Maximum Likelihood, following the same steps laid out in 4.2. The results are reported

in Table 5.

Estimate Standard error
κ 0.0011 0.0004
φ 1.4436 0.1403
ρ 0.8780 0.0225
σu 0.0067 0.0004
σν 0.0065 0.0019

Table 5: Maximum Likelihood Estimation: standard New Keynesian model

Notice that the data prefer a very low value for κ, so the implications of the New Key-

nesian model are very close to those of the benchmark model. We then try an alternative

simple specification of consumption behavior, to capture slow consumption adjustment

ct = δct−1 + (1− δ) lim
j→∞

Et[at+j].

In Table 6 we report the results from estimating this variant of the model, presented as a

grid search over the value of the adjustment parameter δ. The data seem to prefer a small

but positive value of δ.

Our second extension is motivated by the discussion of labor hoarding, and pro-cyclical

productivity in the research on the relation between output and employment. Our bench-

mark model has assumed that labor productivity is exogenous; there is however substantial

evidence is however that, perhaps due to labor hoarding, some of the movements in produc-

tivity are in fact endogenous. Thus, in contrast to our assumption, a positive realization

of the noise shock may lead consumers to spend more, and lead in turn to an increase in

productivity.
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δ ρ σu σε σζ σν ML
0 0.8785 0.0068 0.0008 0.0063 0.0086 1073.3

0.1 0.87 0.0071 0.0009 0.0066 0.008 1075.9
0.2 0.8591 0.0075 0.0011 0.007 0.0072 1074.8
0.3 0.8412 0.0082 0.0013 0.0075 0.0062 1068.8
0.4 0.7823 0.0092 0.002 0.0081 0.0035 1057
0.5 0.6915 0.0107 0.0033 0.0089 0.0002 1044.4
0.6 0.7126 0.013 0.0037 0.011 0.0003 1018.2
0.7 0.6524 0.0177 0.0061 0.0143 0.0006 976.7
0.8 0.6371 0.0272 0.0099 0.0217 0.0012 910.9
0.9 0.648 0.0567 0.02 0.0456 0.0033 796

Table 6: Maximum Likelihood Estimation: Slow Consumption Adjustment

α ρ σu σν ML
0 0.891 0.0067 0.0089 1073.2

0.1 0.8989 0.0069 0.0067 1072.9
0.2 0.911 0.0072 0.0052 1071.6
0.3 0.9249 0.0077 0.0039 1068.2
0.4 0.8948 0.0085 0 1064.6
0.5 0.9419 0.0095 0 1055.1
0.6 0.9434 0.0114 0 1034.1
0.7 0.9469 0.0148 0 998.2
0.8 0.9645 0.0229 0 937.6
0.9 0.9356 0.0454 0 830.1
1 0.007 0.0067 0.0857 391.1

Table 7: Maximum Likelihood Estimation: Labor hoarding

To capture endogenous responses of productivity, we extend the model by letting at

represents the exogenous productivity process, and allowing actual productivity ãt to respond

to increases in employment, according to the following relation:

ãt = at + α(ct − at).

Table 6 displays the Maximum Likelihood estimation for this case, as a grid over values for

α. In this case, the model fits the data better with no endogenous productivity responses,

i.e., with α = 0.
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6 Conclusions

On the methodological side, this paper has emphasized the limits of SVARs in exploring

news/noise models of the business cycle. This implies that to identify the role of news and

noise in fluctuations one must rely more heavily on the model’s structure. In this paper, a

central role for identification was played by the consumer’s Euler equation, that is, by the

assumption that current movements in consumption are primarily driven by changes in the

consumers’ expectations on the economy’s lung run potential.

On the empirical side, the data appear quite consistent with a view of fluctuations where

the pattern of technological change is smooth, subject to random shocks which only build

up slowly, while most of the short term action in consumption and output comes from

noisy information on these long run trends. Clearly, we need to extend the model in many

dimensions before having confidence in these conclusions. In particular, adding investment

seems an essential step in building models of the business cycle driven by anticipations.
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Appendix A. Relation of the model with the standard New Key-

nesian model

Consider a standard New Keynesian model, as laid out, e.g., in Gali (2008). Preferences are

given by

E
∞∑

t=0

βtU (Ct, Nt) ,

with

U (Ct, Nt) = log Ct − 1

1 + ζ
N1+ζ

t ,

where Nt are hours worked and Ct is a composite consumption good given by

Ct =
(∫ 1

0
C

γ−1
γ

j,t dj
) γ

γ−1

,

Cj,t is the consumption of good j in period t, and γ > 1 is the elasticity of substitution

among goods. Each good j ∈ [0, 1] is produced by a single monopolistic firm with access to

the linear production function

Yj,t = AtNj,t. (14)

Productivity is given by At = exp at and at follows the process (1)-(3). Firms are allowed to

reset prices only at random time intervals. Each period, a firm is allowed to reset its price

with probability 1 − θ and must keep the price unchanged with probability θ. Firms hire

labor on a competitive labor market at the wage Wt, which is fully flexible.

Consumers have access to a nominal one-period bond which trades at the price Qt. The

consumer’s budget constraint is

QtBt+1 +
∫ 1

0
Pj,tCj,tdj = Bt + WtNt +

∫ 1

0
Πj,tdj, (15)

where Bt are nominal bonds’ holdings, Pj,t is the price of good j, Wt is the nominal wage

rate, and Πj,t are the profits of firm j. In equilibrium consumers choose consumption, hours

worked, and bond holdings, so as to maximize their expected utility subject to (15) and a

standard no-Ponzi-game condition. Nominal bonds are in zero net supply, so market clearing

in the bonds market requires Bt = 0. The central bank sets the short-term nominal interest

rate, that is, the price of the one-period nominal bond, Qt. Letting it = − log Qt, monetary

policy follows the simple rule

it = i∗ + φπt, (16)
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where i∗ = − log β and φ is a constant coefficient greater than 1.

Following standard steps, consumers’ and firms’ optimality conditions and market clear-

ing can be log-linearized and transformed so as to obtain two stochastic difference equations

which characterize the joint behavior of output and inflation in equilibrium. After substi-

tuting the policy rule we obtain:

yt = Et [yt+1]− φπt + Et [πt+1] ,

πt = κ (yt − at) + βEt [πt+1] ,

where κ ≡ (1 + ζ) (1− θ) (1− βθ) /θ and where constant terms are omitted. As long as

φ > 1 this system has a unique locally stable solution where yt and πt are linear functions

of the four exogenous state variables at, xt|t, xt−1|t, zt|t,


 yt

πt


 = Dκ




at

xt|t
xt−1|t
zt|t




.

The matrix Dκ can be found using the method of undetermined coefficient as the solution

to


 1 φ

−κ 1


 Dκ =


 0 0 0 0

−κ 0 0 0


 +


 1 1

0 β


 Dκ




0 1 + ρ −ρ ρ

0 1 + ρ −ρ 0

0 1 0 0

0 0 0 ρ




.

The elements of Dκ are a continuous non-linear function of κ and some lengthy algebra

(available on request) shows that

lim
κ→0

Dκ =
1

1− ρ


 0 1 −ρ 0

0 0 0 0


 .

Since κ → 0 when θ → 1, this completes the argument.
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Appendix B. Kalman filter

Let

C ≡




1 + ρx −ρx 0

1 0 0

0 0 ρz


 , D ≡


 1 0 1

1 0 0


 ,

and

Σ1 ≡




σ2
ε 0 0

0 0 0

0 0 σ2
η


 , Σ2 ≡


 0 0

0 σ2
ν


 .

Then the process for ξt ≡ (xt, xt−1, zt) is described compactly as

ξt = Cξt−1 + (εt, 0, ηt)
′ ,

and the observation equation for the consumers is

(at, st) = Dξt + (0, νt)
′ .

Let P ≡ V art−1 [ξt]. The value of P is found solving the equation

P = C
[
P − PD′ (DPD′ + Σ2)

−1
DP

]
C ′ + Σ1.

The matrixes A and B in the text are then given by:

A = (I −BD) C,

B = PD′ (DPD′ + Σ2)
−1

.
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Appendix C. Proof of Proposition 1

Given that wt is a linear combination of current and past observables Y t ≡ {Yt, Yt−1, Yt−2, ...}
and these variables are in It+k, for all k ≥ 0, we can apply the law of iterated expectations

to get

E
[
ct+k|wt, Y

t−1
]

= E[ lim
j→∞

E [at+k+j|It+k] |wt, Y
t−1] = lim

j→∞
E

[
at+j|wt, Y

t−1
]
,

for all k ≥ 0 and

E
[
ct+k|Y t−1

]
= E[ lim

j→∞
E [at+k+j|It+k] |Y t−1] = lim

j→∞
E

[
at+j|Y t−1

]
.

It follows that the response of consumption to the shock wt is constant and equal to

E
[
ct+k|wt, Y

t−1
]
− E

[
ct|Y t−1

]
= lim

j→∞
E

[
at+j|wt, Y

t−1
]
− lim

j→∞
E

[
at+j|Y t−1

]
,

for all k ≥ 0.

In particular, suppose wt is the identified transitory shock under a Blanchard and Quah

(1989) identification assumption. Then wt is a linear combination of the VAR innovations

such that

lim
j→∞

E
[
at+j|wt, Y

t−1
]
− lim

j→∞
E

[
at+j|Y t−1

]
= 0,

and the effect of the shock on consumption is zero.
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