
On the Stability of Least Squares Learning∗

Chetan Dave†

NYU (Abu Dhabi)

James Feigenbaum‡

Utah State University

October 9, 2010

Abstract

Econometricians choose estimators to minimize their loss function defined over es-

timation errors. In a model of inflation-unemployment tradeoffs, the econometrician’s

loss function ought to derive from the policymaker’s loss function. We consider the

implications for adaptive learning of a variance-adjusted least squares estimator that

treats overestimates and underestimates asymmetrically. Least-squares learning is close

to a ridge line of the expected loss function within this family of estimators. Asymmet-

ric estimators can lower the average inflation rate and the policymaker’s expected loss

function either by reducing long run inflation or by increasing the frequency of escapes

to a low-inflation outcome.
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1 Introduction

Dynamic stochastic macroeconomic models can produce multiple outcomes depending on

the equilibrium concept employed. In particular, following Kydland and Prescott (1977) and

Barro and Gordon (1983), models in which a central bank sets monetary policy over time

when facing a public with rational expectations can deliver one of two outcomes. The Nash

equilibrium concept delivers a time-consistent high inflation outcome, while the Ramsey

equilibrium concept delivers a time-inconsistent low inflation outcome. Assuming that the

central bank learns the latent parameters of the structural Phillips curve by econometrically

estimating a ‘perceived’(and possibly misspecified) Phillips curve from the entire time series

of data, it is possible to state a stability condition whereby the Nash outcome is selected

as the one that is ‘learnable’.1 On the other hand, if more weight is given to recent data,

Sargent (1999) and Cho et al (2002) have shown that an economy may occasionally ‘escape’

for brief periods to the Ramsey outcome.

The conventional assumption underlying these studies regarding the interaction between

policy and data-inference is that the hypothesized econometrics is conducted using some form

of a recursive least-squares estimator. In this paper we investigate what happens if the policy

maker learns using an alternative estimator, for there are infinitely many estimators available.

Least squares is usually employed due to its relative simplicity, but an econometrician’s

primary concern when choosing the estimator should be to make estimates that ultimately

minimize the policymaker’s loss function (see Berger (1985)).

We focus on the family of variance-adjusted least-squares estimators introduced by Var-

ian (1975). The least-squares estimator is optimal for a loss function that is symmetric with

respect to over- and underestimates of model parameters. However, if estimates in one di-

rection are more costly than in the other direction, the optimal estimator will bias estimates

in the less costly direction by an amount proportional to the variance of the least-squares

1See Evans and Honkapohja (1999, 2001).
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estimate.2 The family of variance-adjusted least-squares estimators is then parameterized

by the proportionality constant. Conventional least squares is nested within this family but,

we find that it is quite close to a ridge line of the policymaker’s realized loss function. Thus

if the policymaker’s econometrician experiments with alternate estimators, he will quickly

move away from least squares to an estimator that overestimates the (absolute) slope of

the Phillips curve and underestimates the intercept, which produces better outcomes for the

policymaker.

With respect to our results, the intuition for escape dynamics presented in Cho et al

(2002) is particularly appealing and provides the starting point for the present analysis.

Specifically, under escape dynamics, a sequence of unusual shocks causes a policy maker

to lower the estimate of the trade-off between unemployment and inflation. As the trade-

off diminishes, the policy maker responds by lowering the inflation target. This response

produces data confirming that the trade-off has indeed diminished, and, in fact, suggests

that the trade-off is even smaller than originally thought. The policy maker then further

reduces the inflation target and the process continues until inflation is driven to zero and

the economy replicates the Ramsey outcome. Once the targeted level of inflation is at

zero, the negative correlation between inflation and unemployment becomes apparent again.

Witnessing this return through their recursive symmetric least squares learning process, the

government begins ratcheting up inflation, and the economy heads back toward the high-

inflation Nash outcome.

Within the larger class of variance-adjusted estimators, we can generalize the above

mechanism of Cho et al (2002). Most of the time, the economy is in a state of high inflation,

the level of which we refer to as long run inflation. Sporadically, an econometrician with a

variance-adjusted least-squares estimator will see data that produces an estimate close to

zero for the Phillips curve slope, which leads the economy to escape to a state of low inflation.

2This mechanism is quite similar to the precautionary-saving mechanism of Leland (1968) and Sandmo
(1970), which also depends on an asymmetric valuation of high consumption shocks versus low consumption
shocks in the utility function.
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Afterwards, the slope estimates gradually return to their average level and inflation returns

to its long run rate.

Now, if the econometrician biases his slope estimates upward, this reduces the long run

inflation since he believes a small increase in inflation will produce a big decrease in unem-

ployment. It also reduces the frequency of escapes since zero slope estimates will be more

infrequent. In contrast, if our econometrician biases his slope estimates downward, this in-

creases the long run level of inflation and increases the frequency of escapes. Within the

neighborhood of zero slope bias, i.e. conventional least squares, this will increase the pol-

icymaker’s loss function. However, the loss function exhibits a non-monotonic dependence

on the size of the bias. For a suffi ciently large downward bias, the escape frequency will be

so high that the economy hardly returns to its high long run level, and average inflation

will be very low. With a large enough bias in either direction, the policymaker can achieve

average outcomes close to the Ramsey outcome. This can occur with a smaller slope bias

if, in addition, the econometrician biases down the intercept estimate, which also leads the

policymaker to target inflation at a lower level.

Note that, while we are introducing new parameters, we are not modifying the economic

model that delivers the time-inconsistency tension, so this does not cut against Occam’s

Razor. The more complex dynamics we present are not obtained by expanding the economic

framework; we are focused on examining parameter values for the tools employed to analyze

the model, rather than parameters of the model itself. Indeed, the space of possible time-

series estimators is always infinite-dimensional, regardless of whether an econometrician ties

his hands by only considering the least-squares estimator in this space. With the asymmetric

(or ‘precautionary’) least squares learning described here, the econometrician is effi ciently

processing the data that comes out of the model given that the symmetric least squares case is

nested within the broader framework we consider. The result is that least-squares learning is

unstable to any experimentation with other estimators. Indeed allowing the econometrician

to broaden the class of estimators may provide central banks an escape from the tragedy of
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inevitable high inflation described in Sargent (1999).

Within the broader learning literature, it is not uncommon to examine the effects of

alternate learning hypotheses such as ours. For example, Evans and Ramey (1998) examine

the notion of calculation costs associated with updating in a Lucas (1972) model. We simply

investigate the effects of asymmetric (or ‘precautionary’) least squares (which nests the

conventional estimator) given that once one allows for expectations to be replaced with

regressions, examining the effects of alternate estimators is of interest.

The paper is structured as follows. In Section 2 we introduce the variance-adjusted least

squares estimator. Section 3 provides detail with respect to the economic environment in

which learning takes place both in the standard case and in the case that the econometrician

employs a variance-adjusted least squares estimator. We argue that the policy-maker, in the

time inconsistency environment, is comfortable receiving the variance-adjusted least squares

estimates that feed into policy-making as those estimates help lower the economic loss to

the policy-maker. An almost willful ignorance of the estimates being received from the

econometrician serves to lower long run inflation, or increase the frequency of escapes, and

thus lowers the loss experienced by the policy-maker.3 In Section 4 we show simulation

evidence that generalizes the intuition of Cho et al. (2002) as discussed above. Section 5

concludes.

2 The Variance-Adjusted Least Squares Estimator

Following Berger (1985), let us suppose that a statistical decision maker (SDM) estimat-

ing a parameter θ in the space Θ ⊆ Rm has a loss function L̃(θ, θ̂), where θ̂ is his estimate

of θ. A rational SDM will then specify an estimator θ̂(y), which is a function of the data y,

3While modeling the broader potential principal-agent tension between the policy-maker and the econo-
metrician who delivers the estimates is beyond the scope of this paper, we do note that the notion of willful
ignorance is not entirely without theoretical precedence, see Carrillo and Mariotti (2000).
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with the objective of minimizing the expected loss function

E
[
L̃(θ, θ̂(y))

]
, (1)

where the expectation is taken over y.4

For now, let us assume for a given θ that L̃ is minimized when θ̂ = θ, so the SDM has

an incentive to find the truth.5 If L̃ is C4, then

∂L̃

∂θ̂i
(θ, θ) = 0 (2)

for i = 1, ...,m, and

L̃(θ, θ̂) = L̃(θ, θ) +
1

2

m∑
i=1

m∑
j=1

∂2L̃

∂θ̂iθ̂j
(θ, θ)(θ̂i − θi)(θ̂j − θj)

+
1

6

m∑
i=1

m∑
j=1

m∑
k=1

∂3L̃

∂θ̂iθ̂j θ̂k
(θ, θ)(θ̂i − θi)(θ̂j − θj)(θ̂k − θk) +O

(∥∥∥θ̂ − θ∥∥∥4) . (3)
The first-order condition for the SDM’s problem is then

0 ≈
m∑
j=1

∂2L̃

∂θ̂iθ̂j
(θ, θ)(E[θ̂j(y)]−θj)+

1

2

m∑
j=1

m∑
k=1

∂3L̃

∂θ̂iθ̂j θ̂k
(θ, θ)E

[
(θ̂j(y)− θj)(θ̂k(y)− θk)

]
. (4)

Typically one assumes third derivatives of L̃ at θ̂ = θ are negligible, in which case (4)

simplifies to
m∑
j=1

∂2L̃

∂θ̂iθ̂j
(θ, θ)(E[θ̂j(y)]− θj) = 0. (5)

If the Hessian

Hij =
∂2L̃

∂θ̂iθ̂j
(θ, θ) (6)

4We assume the SDM follows the classical or frequentist paradigm.
5In our inflation-unemployment model, the loss function will not be minimized for θ̂ = θ because of time

inconsistency, but presumably our naive econometrician does not know this, else he would not employ a
least-squares estimator.
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of L̃ is nonsingular at θ̂ = θ, as it will be if H is positive definite (so L̃ is strictly concave),

then E[θ̂(y)] = θ is the unique solution to (5), and the loss function will only be minimized

for an unbiased estimator, including a least-squares estimator.

In general, however, the third derivatives of L̃ at θ̂ = θ will be non negligible. Let

Ωjk = E
[
(θ̂j(y)− θj)(θ̂k(y)− θk)

]
(7)

for j, k = 1, ...,m. Then a solution to (4) in this wider case must satisfy

E[θ̂i(y)] = θ − 1

2

m∑
j=1

m∑
k=1

m∑
l=1

H−1ij
∂3L̃

∂θ̂j θ̂kθ̂l
(θ, θ)Ωkl (8)

for i = 1, ...,m. Thus a rational SDM will choose a biased estimator. This reflects the fact

that the loss function increases more sharply if the estimator is wrong in one direction than

in the opposite direction. The bias in (8) is proportional to the variance of the estimator θ̂

relative to the true value θ since the mean squared error of the estimate is given by Ω.

Suppose that θ̂
u
is an unbiased estimator with variance-covariance matrix Ωu. Then

(8) suggests the SDM ought to replace the unbiased estimator with the variance-adjusted

estimator defined by

θ̂
v

i (y) = θ̂
u

i (y)− 1

2
AijΩ

u
jk, (9)

where Aij is an appropriate estimate of

Aij =
m∑
j=1

m∑
k=1

m∑
l=1

H−1ij
∂3L̃

∂θ̂j θ̂kθ̂l
(θ, θ). (10)

For the special case of Varian’s (1975) LINEX loss function, the variance-adjusted estimator

will minimize the loss function exactly (see also Zellner (1976)).

6



3 A Monetary-Policy Environment

3.1 The Model

As an example of how an SDM would choose an estimator in a learning environment, we

consider the following model of inflation and unemployment. Let ut represent unemployment

and πt represent inflation. The monetary authority chooses its target inflation rate xt to

minimize the loss function

L(xt) = E[π2t + αu2t ], (11)

where ut is governed by

ut = uNR − ω(πt − x̂t) + σ1W1t (12)

and

πt = xt + σ2W2t. (13)

The shocks (W1t,W2t)′ are i.i.d. and normally distributed with zero means and identity

covariance matrices. The standard deviations σ1, σ2 are positive. In the Phillips curve (12),

x̂t is the private sector’s expectation of inflation at t and the parameters uNR > 0 and ω > 0

are respectively the natural rate of unemployment and the slope.

3.2 Equilibria Under Complete Information

Prior to discussing adaptive learning mechanisms, and our innovation to those mecha-

nisms, we first describe the outcomes that arise when the monetary authority knows the

parameters uNR and ω (as in Kydland and Prescott (1977)). If the monetary authority takes

x̂t as given, it will choose xt to minimize

LALMN (xt) = x2t + α[uNR − ω(xt − x̂t)]2 + ασ21 + (1 + αω2)σ22. (14)
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The solution for the optimal inflation target is then given by

xt(x̂t) =
αω

1 + αω2
(uNR + ωx̂t) . (15)

Under rational expectations, x̂t = xt(x̂t), so the equilibrium policy is

x∗t = αωuNR. (16)

This corresponds to the time-consistent Nash equilibrium of Kydland and Prescott (1977),

for which E[Ut] = u, E[πt] = αωu, and

LALMN (x∗t ) = ασ21 + (1 + αω2)(αu2NR + σ22). (17)

If, on the other hand, the monetary authority does not try to exploit the private sector’s

expectations and assumes the private sector will have rational expectations such that x̂t = xt,

then the enlightened policymaker’s loss function is

LALMR (xt) = x2t + σ22 + α
[
u2NR + σ21 + ω2σ22

]
. (18)

The policymaker sees no tradeoffbetween inflation and unemployment, so the optimal policy

is xt = 0. In this Ramsey equilibrium, E[Ut] = uNR, E[πt] = 0, and

LALMR (0) = ασ21 + αu2NR + (1 + αω2)σ22 < LALMN (x∗t ). (19)

This enlightened policy produces a smaller value for the loss function, but it requires com-

mitment on the part of the monetary authority. If xt is chosen after x̂t, an inflation target

of

xt(0) =
αωuNR
1 + αω2

(20)

8



would produce an even smaller loss

LALMN (xt(0)) = ασ21 +
α

1 + αω2
u2NR + (1 + αω2)σ22 < LALMR (0) (21)

if the monetary authority catches the public off guard. Thus the enlightened Ramsey policy

is time-inconsistent.

3.3 Adaptive Learning with a Misspecified Model

The literature on adaptive learning relevant to this policy problem assumes that the

monetary authority believes in a misspecified version of the Phillips curve:

ut = uNR − ωπt + ηt, (22)

where ηt is a mean-zero noise variable uncorrelated with the other variables determined at

t. This perceived law of motion (PLM) assumes that unemployment is inversely related to

realized inflation, as opposed to the actual law of motion (the ALM in (12)) in which unem-

ployment is inversely related to unexpected inflation. The policymaker then uses estimates

of uNR and ω to set a target inflation rate xt that minimizes (11) subject to the constraint

(22). The current estimate of uNR and ω are determined by some function of previous data

on inflation and unemployment. What makes this an interesting model is the fact that fu-

ture estimates of uNR and ω are endogenous, depending on the policymaker’s choice of the

inflation target and its attendant effect on unemployment via the ALM.

Formally, the policymaker will choose xt to minimize (11) subject to the constraints (22)

and (13). This obtains the loss function

LPLM(xt) = x2t + α(uNR − ωxt)2 + α
[
ω2σ22 + V [η2t ]

]
+ σ22. (23)

Since LPLM(xt) only differs by an additive constant from LALMN (xt) when x̂t = 0, the two
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problems have the same solution:

xPLMt =
αωtuNR,t
1 + αω2t

. (24)

Of course, the actual unemployment rate is still governed by (12). We assume that the

public has the same information as the policy-maker and that the public knows how the

policy-maker makes its decisions. Consequently, we still have x̂t = xt.

3.4 Least-Squares Learning

Where we depart from previous work is in the determination of ω and uNR. The ex-

isting literature has focused primarily on least-squares estimation or some variation thereof

(Carceles-Poveda and Giannitsarou (2007)), where the policy-maker computes a regression

to estimate the parameters of the PLM. Under the conventional approach, as in Evans and

Honkapohja (2001), equal weight is put on the entire data set. This is consistent with the

belief that the Phillips curve is constant over time, so data from, say 100 years ago, are

just as informative as data observed today. A Kalman filter is used to construct a recursive

formulation of the least-squares estimator.

Let ξt = (uNRt , ωt) be the current estimates of the Phillips curve parameters given the

data {(ui, πi)}t−1i=0, which are given by the least-squares formula

ξt = (X ′tXt)
−1X ′tUt, (25)

where we define Ut = (u0, ..., uT−1)
′ and

Xt =


1 π0
...

...

1 πt−1

 . (26)
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Let us also define

Rt =
1

t
X ′tXt, (27)

which satisfies the matrix difference equation

Rt = Rt−1 +
1

t

(
xt−1x

′
t−1 −Rt−1

)
, (28)

where xt = (1, πt)
′. Inserting (27) into (25), we obtain

ξt = t−1R−1t
(
(t− 1)Rt−1ξt−1 + xt−1ut−1

)
.

Applying (28), this simplifies to

ξt = ξt−1 + t−1R−1t xt−1(ut−1 − x′t−1ξt−1). (29)

Note that the forecast error ut−1 − x′t−1ξt−1 is weighted by the gain factor t−1. Since the

data set increases with each new observation, this is an example of a decreasing-gain learning

algorithm. Under this learning process, the economy will converge to the Nash equilibrium

with its high value for the policymaker’s loss function LALMN (x∗t ).

Cho et al (2002) consider instead a constant-gain generalization of the least-squares

estimator, where each new datum is given the same weight in the Kalman filter. Although

procedurally different, this produces results similar to what one would obtain if one computed

a regression on only the last T observations for some fixed T . More precisely, we replace

(28) and (29) by the difference equations

ξt = ξt−1 + T−1R−1t xt−1(ut−1 − x′t−1ξt−1) (30)

and

Rt = Rt−1 +
1

T

(
xt−1x

′
t−1 −Rt−1

)
, (31)
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where T is fixed. This is appropriate if the policymaker is concerned about structural change

to the Phillips curve and believes data from 100 years ago is not informative about what

is happening today. The constant-gain recursive estimator departs from its decreasing-gain

counterpart in that escape dynamics can arise. If by chance the Phillips curve in the last T

periods appears flat, the inflation rate can temporarily drop to the low value of the Ramsey

equilibrium with its lower loss LALMR (0). It is this constant-gain case that we generalize upon

in the following section.

3.5 Variance Adjusted Learning

Now let us suppose that our policymaker engages an econometrician who supposes, cor-

rectly as it turns out, that estimation errors in one direction might be more costly with

respect to the policymaker’s loss function (11) than errors in the other direction. Following

Varian (1975) and our discussion in Section 2, he considers the larger space of estimators

ξat = ξt +
1

2
Σta, (32)

where Σt is the variance-covariance matrix of the least-squares estimator and (auNR , aω)′

measures the strength of the ‘precautionary motive’(or asymmetry) against underestimat-

ing the two Phillips curve parameters uNR and ω. If either auNR or aω is negative then

the precautionary motive for that variable is against overestimation. For the least-squares

estimator, the variance-covariance matrix is

Σt = t−1R−1t σ2t , (33)

where

σ2t =
1

t− 1

t−1∑
i=0

(ui − x′iξt)2 (34)
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is the most recent estimate of the variance of ηt. We define

St =
1

t

t−1∑
i=0

uix
′
i, (35)

which satisfies the difference equation

St = St−1 +
1

t
(ut−1x

′
t−1 − St−1). (36)

Then we can rewrite σ2t as

σ2t =
1

t− 1

t−1∑
i=0

[
(ui − x′iξt−1)2 + 2(ui − ξ′t−1xi)x′i(ξt−1 − ξt) + (ξt−1 − ξt)′xix′i(ξt−1 − ξt)

]
,

which simplifies to

σ2t = σ2t−1 +
1

t− 1
[(ut−1 − x′t−1ξt−1)2

(
1 + t−1x′t−1R

−1
t xt+1

)
+ 2

(
ξ′t−1Rt − St

)
R−1t xt−1(ut−1 − x′t−1ξt−1)]. (37)

The preceding derivation is exact and the estimator ξat with σ
2
t and St defined above is a

variance-adjusted generalization of the decreasing gain least-squares estimator described in

3.4. Not surprisingly, the dynamics generated with variance-adjusted decreasing-gain learn-

ing algorithm converge to the same Nash equilibrium as the ordinary least-squares algorithm.

In the long run, σ2t will converge to some steady-state variance and the precautionary ad-

justment for the variance will disappear.

To generate interesting dynamics as in Cho et al (2002), we must again use a constant-

gain version of the learning algorithm. As in the case of the least-squares learning algorithm,

we replace the time t by a fixed horizon T to obtain the difference equations

St = St−1 +
1

T
(ut−1x

′
t−1 − St−1) (38)
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σ2t = σ2t−1 +
1

T − 1
[(ut−1 − x′t−1ξt−1)2

(
1 + T−1x′t−1R

−1
t xt+1

)
+ 2

(
ξ′t−1Rt − St

)
R−1t xt−1(ut−1 − x′t−1ξt−1)], (39)

which together with (30) and (39) define the constant-gain version of the variance-adjusted

learning algorithm.

4 Simulation Results

4.1 Loss Function Surfaces

Given an environment in which agents adaptively learn using least squares, the usual

procedure is to stochastically approximate the system of equations that characterize model

dynamics, including the Ricatti equations delivered by recursive least squares regressions.

Such an approximation for ‘mean’dynamics delivers a system of differential equations that

can be examined for stability of model equilibria. Cho et al . (2002) went further and de-

fined escape dynamics as well for the case of recursive symmetric least squares learning under

constant gain. Since this analytical procedure is not easily generalized to account for the

dynamics of the variance, we instead opt to provide evidence via simulation on whether Ram-

sey or Nash inflation is obtained under variance-adjusted learning. The simulation results

prompt the intuition described above: variance adjusted learning on the part of a monetary

authority can lead to a higher frequency of escape and a lowering of the long run average

rate of inflation. The key of course to this intuition is the nature of the econometrician’s

loss function surface and so we begin with three plots of these surfaces in Figures 1, 2 and

3 below.
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Figure 1. Econometricians’Loss Function (0.05 gain).
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Figure 2. Econometricians’Loss Function (0.0025 gain).
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Figure 3. Econometricians’Loss Function (0.1 gain).

We generate each of these figures (and all reported simulations below) having fixed α

at 1, ω at 2 and uNR at 5 so that the Nash level of inflation from (16) is 10 while the

Ramsey equilibrium inflation rate is, of course, zero. In the self-confirming equilibrium that

a decreasing-gain learning algorithm will converge to, the Phillips curve is perceived to have

a slope of 2, which is the actual value, and an intercept of 25, which adds to uNR the effect

of the public’s expectations about inflation. The standard deviations of the shocks, σ1 and

σ2, are set to 1.5. The econometrician starts each simulation looking at data generated by

a predecessor policy maker who targeted the inflation rate at its Nash value.

In our baseline calibration, we set the horizon for the constant gain algorithm to 20

periods, implying a gain of 0.05. This is the loss surface shown in Figure 1, and we also

use this calibration for the time series plots below. Recall that a high gain translates into

a shorter time span of data employed by the econometrician. Thus the probability of ob-

serving a history in which the Phillips curve appears to be flat is high, and consequently

the probability of escape is also high. Since we are interested in examining dynamics in the

variance-adjusted learning environment a high gain of 0.05 is a natural choice. To show the

robustness of our main result we also show the loss surface for the low value of 0.0025 in
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Figure 2 and at the even higher value of 0.1 in Figure 3.6

In each of Figures 1-3, we see that least-squares learning is close to a ridge line of the

more general loss function. If our econometrician experiments by allowing for a small degree

of asymmetry in the estimation of either Phillips curve parameter, she will quickly discern

that better policy results from overestimating the slope and underestimating the intercept

relative to least squares. However, movement away from least squares in this direction is a

purely local phenomenon. Whereas slight underestimates of the slope lead to a worsening of

policy, large underestimates improve policy, and likewise for overestimates of the intercept.

The econometrician will be nearly indifferent between giving the policymaker very high or

very low estimates of the parameters as long as she does not give them the least-squares

estimates of the parameters.

4.2 Time-Series Simulations

Why do biased estimates of the Phillips curve parameters improve policy? Do they cause

the policymaker to target rates of inflation lower than those consistent with a Nash out-

come? We investigate this question by examining the time series generated by our model in

simulations.

For our baseline parameters, the loss function for the Ramsey equilibrium will average

to LALMR (0) = 38.5 from (19). In contrast, the loss function for the Nash equilibrium will

average to the much higher LALMN (x∗t ) = 138.5 from (17).

6Loss function surfaces are generated by averaging across simulations for 10000 periods.
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Figure 4. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Symmetric Least Squares).
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First, let us consider what happens for the familiar case of least-squares estimation, where

a = (0, 0). The time series for targeted inflation, the estimated Phillips curve parameters,

and the period loss function are shown in Figure 4. Consistent with Cho et al. (2002), the

inflation target, shown in the top panel, remains around the Nash equilibrium value of 10

most of the time but there is an escape where the target falls close to the Ramsey level of zero.

The plots of ωt and uNRt in the middle two panels reflect the intuition of Cho et al. (2002)

as follows. The average estimate of ω is 1.97 and of uNR is 24.3, both close to the values

that would be obtained by regressing ut on πt according to (22) in the Nash equilibrium.7

However, after the 6500th observation a string of data occurs where the correlation of ut

and πt falls, resulting in smaller estimates of both ω and uNR. The policymaker thinks there

is a smaller tradeoff between unemployment and inflation, so according to (24) she reduces

target inflation. As a consequence of the lower target, the slope and intercept estimates

remain depressed, so it takes time for the system to return to Nash equilibrium values. The

period loss function falls to an average value of around 20 during the escape but most of the

time is around the Nash equilibrium value of 138.

Intuitively, one might expect the policymaker could achieve better results if he underesti-

mated the slope since that will increase the probability of finding there is no tradeoffbetween

unemployment and inflation, which will produce a Ramsey-like outcome. The time series

that result from setting aω = −10 are shown in Figure 5. Consistent with our expectation,

escapes occur more frequently in this case. However, the average loss function increases to

153. This is because the inflation rate is higher when the economy is not escaping; the policy

maker is overshooting.

7The misspecification of the model will not bias estimates of the slope but will produce consistent estimates
of uNR + θx∗ rather than uNR.
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Figure 5. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry −10).
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Whether policy will improve if aω is increased above zero or decreased below zero depends

on the parameters of the model. Differentiating (24) by ω, we find

∂xPLMt

∂ωt
=
αuNR,t(1− αω2t )

(1 + αω2t )
2

, (40)

which is of ambiguous sign. For our parameters, αω2 = 4 > 1, where ω is the actual slope

of the Phillips curve. Thus a small decrease in the slope estimate will actually increase the

target inflation rate at normal times.

In this case, overestimating the slope leads to better policy. To see this, we show time

series for aω = 10 in Figure 6. Because the policy maker is overestimating the Phillips curve

slope, he thinks the tradeoff between unemployment and inflation is so large that he does

not need so much inflation to achieve the desired low unemployment. Escapes never happen

in this simulation because he never convinces himself the tradeoff has gone away.
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Figure 6. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry +10).
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In the bottom panel of Figure 5, we see that the period loss function can fall almost to

zero during the many escapes that occur when the Phillips curve slope is underestimated,

but these gains are dominated by the higher values around 200 of the period loss function

that arises during normal periods when inflation is targeted around 15 instead of 10. In

contrast, when the slope is overestimated, the period loss function remains steady with an

average of 87 and an average inflation target of 7.

If we continue to increase aω, we can achieve additional improvements to policy by re-

ducing the target inflation rate even more. This is shown in Figure 7, where aω = 20, target

inflation averages to 5.3, and the period loss function averages to 67. If we increase aω all

the way to 100, as in Figure 8, the average target inflation falls to 1.9, and the period loss

function averages to 42, which is nearly the value of the Ramsey equilibrium.8

8This will be the minimum average value of the loss function over long periods in a model where the
public has rational expectations.
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Figure 7. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry +20).
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Figure 8. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry +100).
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What happens if we continue to vary aω in the opposite direction from −10? If aω = −20

with auNR still equal to zero, we will have passed over to the other side of the ridge line in

the loss function surface shown in Figure 1. The time series for this case are shown in Figure

9.
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Figure 9. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry −20).
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With such a large negative bias, the economy is almost always in an escape. In the rare

times when the economy returns to Nash-like behavior, target inflation and the period loss

function are very high. But most of the time, the return to Nash-like behavior is preempted

by a new escape. Thus the loss function averages only 83. If we decrease aω even further to

−100, as in Figure 10, the behavior is very similar to what happens with aω = +100 (Figure

8).

Target inflation is nearly constant at −1.1 with a tiny standard deviation of 0.4. The

period loss function averages to 40, which is even lower than what we obtained with aω =

+100.

The econometrician can also apply a precautionary bias to estimation of the intercept of

the PLM, i.e. the natural rate of unemployment. What happens then? What of variance-

adjusted learning on the intercept of the PLM? Figure 11 shows what happens if we over-

estimate the intercept with auNR = 1 and Figure 12 what happens if we underestimate the

intercept with auNR = −1.
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Figure 10. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Slope Asymmetry −100).
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Figure 11. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Intercept Asymmetry +1).
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Figure 12. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Intercept Asymmetry −1).
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In the second panel of Figure 11, we see that overestimation of the intercept leads in-

directly to lower values of the slope estimate. As a consequence, the probability of escape

increases. However, if we differentiate (24) by uNR , we find

∂xPLMt

∂uNR,t
=

αωt
1 + αω2t

> 0, (41)

so overestimation of the intercept also produces higher values for target inflation. The

benefit of more frequent escapes will be overwhelmed by the cost of higher inflation during

normal times for small aUNR , and the period loss function averages to 219 for aUNR = 1. In

contrast, Figure 12 shows that escapes are eliminated when we underestimate the intercept,

but target inflation averages to a lower value of 6.9 when aUNR = −1. In that case, the

period loss function averages to 87. Thus experimentation around auNR = 0 will cause the

econometrician to slightly underestimate the intercept. This pattern persists if we increase

|aUNR | even future. Figure 13 shows the time series for aUNR = 10, and Figure 14 shows the

time series for auNR = −10.
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Figure 13. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Intercept Asymmetry +10).
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Figure 14. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (Intercept Asymmetry −10).
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Finally, Figure 15 shows the time series with the parameters (aUNR , aω) = (−10,−76)

that produce the minimum loss function value of 39 for the region of the parameter space

over which we searched. Although in the vicinity of aω = 0, the loss function only decreases if

we overestimate the slope with aω > 0, for large |aω| underestimates reduce the loss function

slightly more than overestimates.
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Figure 15. Targeted Inflation, Slope, Intercept and Economic Loss Estimates (aω = 76, auNRt = −10).
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5 Conclusion

The adaptive learning approach is a rich environment in which stability, perturbation,

and other issues can be analyzed with respect to models with multiple possible outcomes.

In this paper the approach has been to analyze learning dynamics in the event that the

econometrician chooses the structural estimator to optimize the policymaker’s loss function,

which a responsible econometrician ought to do. Here we experiment with estimators that

are appropriate if estimation errors in one direction are particularly costly. Our simulations

demonstrate complex learning dynamics rich enough to warrant further analytical investi-

gation. Unfortunately, we are not aware of any method by which stochastic approximation

can be conducted for the constant gain case under our notion of variance-adjusted learning,

so we limit our analysis to presenting the simulation results.

The simulations indicate that if there is overestimation of the slope relative to least

squares, we see an increased frequency of the escapes analyzed by Cho et al. (2002). This is

because estimates of the slope of the perceived law of motion (Phillips curve) fall often, along

with wide variation in estimates of the intercept. This leads to overshooting-type dynamics

in the targeted rate of inflation. However, this behavior is not monotonic. For high degrees

of slope underestimation, the econometrician sees negative slope estimates and pushes down

his estimates of the natural rate to near zero leading to low values of the targeted rate of

inflation. These results suggest a possible tension between the pull of time-consistency and

the degree to which a statistical decision maker is cautious about interpreting information

(reflected in the estimator employed).

In summary, our analyses add to the ongoing investigation of various learning hypotheses

advanced within the literature that employs adaptive filtering as the mechanism via which

expectations are formed. This literature replaces the usual signal processing assumption

(effectively, analog noise cancellation) with that of adaptive filtering. Doing so allows re-

searchers to examine the effects of various types of regressions that can be performed as part

of the filtering algorithm; we examine the effects of asymmetric least squares regressions
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which nest the usual least squares algorithms, in the constant gain case. Our results point

towards situations in which ‘precaution’on the part of the learner could result in the lower-

ing of the long run rate of inflation in an economy characterized by the time inconsistency

of discretionary policy.
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