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Abstract

This paper considers a general class of nonlinear rational-expectations models in which pol-

icymakers seek to maximize an objective function that may be household expected utility. We

show how to derive a target criterion that is: (i) consistent with the model’s structural equa-

tions, (ii) strong enough to imply a unique equilibrium, and (iii) optimal, in the sense that a

commitment to adjust the policy instrument at all dates so as to satisfy the target criterion

maximizes the objective function. The proposed optimal target criterion is a linear equation

that must be satisfied by the projected paths of certain economically relevant “target variables.”

It takes the same form at all times and generally involves only a small number of target variables,

regardless of the size and complexity of the model. While the projected path of the economy

requires information about the current state, the target criterion itself can be stated without

reference to a complete description of the state of the world. We illustrate the application of

the method to a nonlinear DSGE model with staggered price-setting, in which the objective of

policy is to maximize household expected utility.
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Forecast targeting has become an increasingly popular approach, both to the organization of

monetary policy deliberations and to communication with the public about monetary policy deci-

sions, at central banks around the world. In this approach, a contemplated forward path for policy

is judged correct to the extent that quantitative projections for one or more economic variables,

conditional on the contemplated policy, conform to a target criterion.1 The present paper consid-

ers whether the conditions required for the conduct of policy to maximize welfare can be cast in

the form of such a target criterion.2 We consider a fairly general class of stabilization problems,

in which the set of possible equilibrium evolutions of the economy is determined by a system of

forward-looking structural equations, representing optimizing behavior on the part of the private

sector. (Our abstract framework need not apply only to monetary policy, though that is the leading

example that motivates our formulation of the problem.)

We show that it is possible quite generally to choose a target criterion with two important

properties. First, we seek a target criterion that is consistent with the structural equations, and

that at the same time is strong enough to imply a determinate forward path for the economy. Thus

we must verify that there exists an evolution that satisfies the target criterion, looking forward

from any possible situation that may have been reached, and also that the evolution consistent

with the target criterion is unique. Second, we seek a target criterion such that the state-contingent

evolution determined by the criterion is optimal, in the sense of maximizing an ex ante expected

welfare criterion.

It might be thought that a sufficient solution to this problem would simply be to compute

the optimal state-contingent evolution of all endogenous variables, under an optimal commitment

chosen at some initial date 0 and to refer to the solution to this problem at any later date 

to determine what forward path for policy from date  onward is consistent with the optimal

equilibrium. In practice, however, such a once-and-for-all description of the optimal evolution

under all possible situations that can ever arise will be impractical, even for decision-making within

an institution like a central bank, let alone for communication with the public about the basis for

policy decisions.

1For further discussion and examples, see, e.g., Svensson (1997, 2005) and Woodford (2007).
2This has previously been shown to be possible in special examples in Svensson and Woodford (2005) and Giannoni

and Woodford (2005). The present exposition offers a simpler expression for the optimal target criterion than in our

previous attempt at a general theory, in Giannoni and Woodford (2003a), in addition to allowing a considerably more

general class of possible objectives for policy, so that the present approach can be applied to problems, like the one

in section 4, where the objective of policy is assumed to be the maximization of household utility.
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Policymakers have a great deal of information about the specific situation that has arisen, once

it arises, without having any corresponding ability to list all of the situations that may arise very

far in advance. The target criterion that we seek is accordingly one that allows a forward path for

policy to be selected at each date, looking forward from the particular situation that has arisen at

that date, without any reference to all of the paths that the economy might have taken but has

not.

Moreover, the target criterion that we propose can be stated without a complete description of

the state of the world in which it is to be applied. The target criterion is a linear equation that

must be satisfied by the projected paths of certain “target variables”; while a determination of the

forward path of policy required for the economy’s evolution to satisfy the criterion will involve fine-

grained information about the current state, the target criterion itself (which takes the same form

at all times and involves only a small number of target variables) can be stated without reference

to such a complete description of the state.

The methods that we use to derive the optimal target criterion are related to methods used in

the literature on (discrete-time, stochastic) optimal control, but our approach differs in important

respects. In the standard theory of optimal control (e.g., Anderson and Moore, 1979; Hansen

and Sargent, 2010), a “policy equation” is derived that specifies a vector of policy instruments

(or “controls”) as a function of a state vector that includes a complete description of both current

disturbances and all information available at a given point in time about future disturbances. When

the theory is extended to deal with optimal policy choice subject to forward-looking constraints,

the policy equation specifies the instruments as functions not only of the state vector but also of

a vector of Lagrange multipliers measuring the value of inducing alternative expectations about

conditions at an earlier date.3

The characterization we that seek is instead independent of the choice of the instruments of

policy – for example, the optimal target criterion for monetary stabilization policy takes the same

form, regardless of whether the central bank is expected to use a short-term nominal interest rate

as its policy instrument, or the money supply, in a model where one of the structural relations can

be used to determine the money supply required to achieve a given equilibrium interest rate and

vice versa – and instead specifies only a relationship that policy should aim to bring about among

“target variables” that can be influenced by policy. Moreover, we seek a relationship that can be

stated without reference to the complete state vector (which in practical applications must be a

3 Important early expositions of this approach include Backus and Driffill (1986) and Currie and Levine (1993).
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very large state vector, if one that can even be written down), and that involves only economically

relevant “target variables” – variables for which quantitative projections have meaning indepen-

dent of the particular model of the economy that may be used to produce the projections – rather

than abstract concepts such as the Lagrange multipliers associated with a particular optimization

problem. We also seek to provide a target criterion that involves the smallest possible set of target

variables, and the fewest possible leads and lags, given the structure of the model.4

The paper is organized as follows. Section 1 presents the general class of nonlinear optimiza-

tion problems including both backward-looking and forward-looking constraints with which we are

concerned. Section 2 derives a local linear approximation to the optimal equilibrium dynamics in

such a problem, and states some important algebraic properties of the coefficients of the equations

describing these dynamics. (Here we generalize standard results from the theory of optimal control

to a case in which the controls and their effects are not specified.) Section 3 then gives the gen-

eral form of the optimal target criterion, and establishes that it does indeed determine a (locally)

unique equilibrium that coincides with the optimal evolution characterized in section 2. Section 4

illustrates the application of the method to a nonlinear DSGE model with staggered price-setting.

Section 5 concludes.

1 A General Nonlinear Framework

We consider a general nonlinear forward-looking model describing the behavior of the private sector

and a general objective function for the policy authority, as in the analysis of Benigno and Woodford

(2008). In this section, we derive nonlinear first-order conditions for the policy problem, and use

these to define the steady state around which our local analysis of optimal stabilization in response

to shocks is conducted.

1.1 The Model

Consider the following optimal policy problem. The policy authority seeks to determine which

state-contingent evolution of the -dimensional vector of endogenous variables {} for  ≥ 0 will

maximize the objective

0 ≡ 0

∞X
=0

−0 ( )  (1.1)

4 It is always possible to also propose more complex target criteria that would also implement the optimal responses

to shocks; see Giannoni and Woodford (2003a) for further discussion.
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where 0    1  ( ) is a twice continuously differentiable function in all of its arguments, and

 is a vector of exogenous disturbances. We assume that  includes variables determined at date

 or possibly before. The evolution of these variables must satisfy the  constraints

 ( ; −1) = 0 (1.2)

 [ ( ; +1)] = 0 (1.3)

each period. Here  (·) and  (·) are respectively -dimensional and −-dimensional vector-valued
functions, twice continuously differentiable with respect to all of their arguments, where 0 ≤  ≤ 

The vector of exogenous disturbances  is assumed to evolve according to some bounded stochastic

process (specified further below).

In order to state certain technical regularity conditions below, it is useful to state condition

(1.2) in a more general form when  = 0 instead writing


¡
0  0 ; 0−1

¢
= ̄0  (1.4)

where ̄0 is a vector of  small quantities that may differ from zero.
5 The model structural relations

then consist of equation (1.2) for each period   0 equation (1.3) for each  ≥ 0 and equation

(1.4), for given initial conditions 0−1 ̄0  and a given exogenous process {} for the disturbances.
We assume that    ≤ 2. The first inequality is necessary in order for there to be at least

one direction each period in which it is possible for policy to continuously vary equilibrium values

of one or more of the endogenous variables; the second (which simplifies the algebraic structure of

our problem,6 while it is not essential for our methods) implies that the number of independent

dimensions of policy is not too large relative to the number of endogenous variables in the model.

For example, in many classic treatments of monetary stabilization policy, policy choice is assumed

to be one-dimensional (the choice of the money supply, or of one nominal interest rate, each period),

so that  = + 17 and this is the case for which we present the most thorough analysis.

Note that in this formulation of the optimal policy problem, we do not specify the “instruments”

of policy, and write a set of structural equations that should completely determine the evolution

5The idea is that we wish to consider perturbations of the initial conditions for the policy problem that do not

necessarily correspond to changes in the specified values for 0−1 and 0 . The point of the distinction is that we

wish to consider optimal policy in the case of non-zero values of ̄0 even when specifying that the process {} is
equal to ̄ with probability one at all times.

6See discussion following Assumption 2 below.
7See, for example, Clarida et al., (1999), Giannoni and Woodford (2003b), or Benigno and Woodford (2005).
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of the endogenous variables under any given evolution of the instruments.8 Instead, equations

(1.2)—(1.4) represent the conditions that must be satisfied in equilibrium under any possible policy

(as a result of optimizing private behavior), which may or may not even involve all of the intended

instruments of policy; the existence of instruments under the control of the policy authority is

represented by the incompleteness of the set of equations (1.2)—(1.4) relative to the number of

endogenous variables to be determined. (Because    the variables  are surely not uniquely

determined by the structural relations, even if some subset of them may be, as discussed in Propo-

sition 2 below.) We do not specify the way in which the available instruments of policy must be

adjusted in order to bring about a given state-contingent evolution of the endogenous variables,

but we assume that the set of equations (1.2)—(1.4) represents a complete set of constraints, so that

any evolution of the variables  consistent with these equations (and satisfying certain bounds, as

discussed further below) can in fact be achieved under some policy.

We proceed in this way in order to make it clear that the optimal target criterion does not

depend on the choice of the instrument of policy that is adjusted in order to comply with the

target criterion. For example, the instrument of monetary policy might be either a short-term

nominal interest rate, or the quantity of base money (to consider two familiar cases). The model

structural relations may include an equilibrium relation linking these two variables (the condition

required in order for the demand for money at the given interest rate to equal the supply of money),

but no equation specifying the central bank’s operating target for either variable. The structural

relation may be taken to determine the implied nominal interest rate, if the quantity of money is the

instrument (as in traditional textbook accounts); or it may be taken to determine the endogenous

quantity of base money, if the interest rate is the central bank’s instrument (as in the case of most

actual central banks). The optimal target criterion that the central bank should seek to satisfy is

the same in either case, and depends only on the set of structural relations (possibly including the

coefficients of the money-demand relation).

In addition, we assume that the policymaker considers only paths for the economy consistent

with initial pre-commitments of the form


¡
0−1 0−1; 0

¢
= ̄0  (1.5)

where ̄0 , which may depend on the exogenous state at date 0 and on predetermined variables,

is chosen according to a self-consistent rule (as discussed further below). If we were instead to

8This is an important difference between our current approach and the characterization of optimal policy in

Giannoni and Woodford (2003a).
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consider the problem of maximizing (1.1) subject only to constraints (1.2)—(1.4) and the initial

conditions 0−1 and ̄0 , the optimal solution would in general not involve a constant value of 

even in the absence of random disturbances (in the case that    so that one or more of the

structural equations is forward-looking). As a consequence, the unconstrained optimal (or Ramsey)

policy cannot generally be described by a time-invariant policy rule; a target criterion designed to

implement this policy would have to be indexed by the time that has elapsed since the date at

which the optimization was performed.9

Here we consider the simpler problem of characterizing policy that is optimal subject to a par-

ticular kind of pre-commitment of the form (1.5). “Self-consistency” of the initial pre-commitment

means that ̄0 is determined by a rule which is also satisfied for all  ≥ 0 under the policy that

solves this optimization problem, so that the policy chosen can be viewed as fulfilling a commit-

ment that would optimally have been made at an earlier date.10 Formally, we require that ̄0 be

determined by a function of the form ̄0 = ̄(0 ; 0−1), where 0−1 is some vector of sufficient

statistics for the history of the endogenous variables up until period 0 − 1,11 with the property
that under the optimal policy subject to these pre-commitments,

(−1 −1; ) = ̄(; −1)

in each period   0 as well.

Choice of an initial pre-commitment of this kind results in a problem for which the solution is a

steady state ( = ̄ for all  ≥ 0, for some vector ̄) in the absence of random disturbances (i.e., in

the case in which  = ̄ with certainty for all ), and we can approximate optimal policy in the case

of small enough disturbances by linearizing around this steady state. Moreover, the constrained-

optimal policy (hereafter simply called “optimal policy”) can be described by a time-invariant rule

for the determination of  as a function of exogenous and pre-determined state variables, and as a

consequence it is possible to implement the policy using a time-invariant target criterion.

9Even more problematic for our purposes, it would not be possible to compute a linear approximation to optimal

policy by linearizing around steady-state values of the endogenous variables; it would instead be necessary to linearize

around a non-constant path for the variables , greatly increasing the number of derivatives that would have to be

evaluated in order to apply such an approach.
10We have elsewhere called this a policy that is “optimal from a timeless perspective.” See Woodford (1999, 2003),

Giannoni and Woodford (2003a) and Benigno and Woodford (2008) for further discussion.
11This vector may include not only lagged values 0−  but also lagged forecasts 0−0−+ for arbitrary

  ≥ 1 See section 3.3 for a precise specification.
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1.2 Nonlinear First-Order Conditions for Optimal Policy

We wish to characterize the state-contingent evolution {} for  ≥ 0 that maximizes (1.1) subject

to the constraints (1.2)—(1.5). A Lagrangian for this (exact) nonlinear optimal policy problem is

given by

L0 = 0 +0

∞X
=0

−0
£
0 ( ; −1) +Θ

0
 ( ; +1)

¤
+−1Θ00−1

¡
0−1 0−1; 0

¢
= 0

∞X
=0

−0
£
 ( ) + 0 ( ; −1) + −1Θ0−1

¡
−1 −1; 

¢¤
(1.6)

where  andΘ are vectors of Lagrange multipliers of dimensions  and − respectively, associated
with the constraints (1.2)—(1.3) for any date  ≥ 0

12 and −1Θ00−1 is the vector of multipliers

associated with the constraints (1.5). Differentiating with respect to  we obtain the  first-order

conditions (FOCs)

1 ( ) + 01 ( ; −1) + 

£
0+13

¡
+1 +1; 

¢¤
+ 

£
Θ01 ( ; +1)

¤
+ −1Θ0−13

¡
−1 −1; 

¢
= 0 (1.7)

at each date  ≥ 0 where  denotes the vector of partial derivatives with respect to the th

argument of the function considered.

These FOCs can be written more compactly as

(1 ( ))
0 +

£
̄0
¡
+1  +1 

¢
+1

¤− −1̄ 0
¡
 −1  −1

¢
 = 0 (1.8)

where +1 is an -dimensional vector, and ̄
¡
+1  +1 

¢
and ̄

¡
 −1  −1

¢
are (×)

matrices defined as

+1 ≡
⎡⎣ 1

2

⎤⎦ ≡
⎡⎣ +1

Θ

⎤⎦
̄
¡
+1  +1 

¢ ≡
⎡⎣ 3

¡
+1 +1; 

¢
1 ( ; +1)

⎤⎦
̄
¡
 −1  −1

¢ ≡
⎡⎣ −1 ( ; −1)

−3
¡
−1 −1; 

¢
⎤⎦ 

These FOCs are necessarily satisfied by the optimal equilibrium, if one exists, but a solution to the

FOCs is not necessarily an optimum. We shall assume, however, that an optimum satisfying the

12To be more precise, 0 is the vector of multipliers associated with constraints (1.4).
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FOCs does exist; and under further assumptions stated below, a bounded solution to the FOCs

will also necessarily correspond to an optimum.

Note that (1.6) is also the Lagrangian for an alternative problem, the problem of choosing a

path {} to maximize the modified objective

0 + −1Θ00−1
¡
0−1 0−1; 0

¢
(1.9)

subject to the constraints (1.2)—(1.4) for dates  ≥ 0 In this alternative formulation, the vector

Θ0−1 is part of the data defining the problem, just as the vector ̄0 is in the problem stated earlier.

Since the Lagrangian for this alternative problem is the same, the set of first-order conditions is

also identical to the ones given above. Therefore, any solution to the first type of problem for some

choice of the vector ̄0 is also a solution to a problem of the second type for some choice of the

vector Θ0−1, and vice versa. The modification of the policy authority’s objective as in (1.9) is an

alternative way of requiring it to take account of the value to a policymaker at an earlier time of

being able to anticipate a particular kind of policy from date 0 onward.
13

The fact that 2 = Θ−1 means that these multipliers are determined a period in advance

(unlike the elements of 1). Hence a further requirement for consistency of the multipliers {}
with an optimal plan is that

2 −−12 = 0 (1.10)

for all   0 In addition, 20 is given as an initial condition (in the case of the modified problem

defined by a vector of initial multipliers Θ0−1). Alternatively, we adjoin an initial pre-commitment

(1.5) to the set of structural equations, and leave the vector 20 to be determined endogenously.

1.3 Optimal Steady State

If an optimal steady state (an optimum in which  = ̄ for all , under the assumption that  = ̄

for all ) exists, it will be described by constant vectors
¡
̄ ̄ ̄

¢
satisfying


¡
̄ ̄; ̄

¢
= 0 (1.11)


¡
̄ ̄; ̄

¢
= 0 (1.12)

(1)
0 +
¡
̄− −1̄

¢0
̄ = 0 (1.13)

13This alternative way of requiring the policymaker to internalize the consequences of a prior commitment is used,

for example, in Marcet and Marimon (1998), Khan et al. (2003), and Svensson and Woodford (2005).
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where 1 ≡ 1
¡
̄ ̄
¢
  ≡ 

¡
̄ ̄; ̄

¢
  ≡ 

¡
̄ ̄; ̄

¢
for  = 1 2 3 and

̄ ≡ ̄
¡
̄ ̄ ̄ ̄

¢


̄ ≡ ̄
¡
̄ ̄ ̄ ̄

¢


We shall suppose that such a steady state exists; in fact, we make the more specific assumption

stated below.

Assumption 1 (a) Let a vector ̄ of “steady state” values of the exogenous disturbances be given.

Then there exist vectors ̄ ∈ R and ̄ ∈ R such that if 0−1 = ̄ Θ0−1 = Θ̄ [≡ ̄2] ̄0 = 0 and

 = ̄ with certainty for all  ≥ 0 − 1 the optimal policy [the one that maximizes (1.9) subject to
constraints (1.2)—(1.4)] involves  = ̄ with certainty for all  ≥ 0

(b) Moreover, for any small enough neighborhood N of ̄ there exist neighborhoods NΘ of

Θ̄ N of ̄ N of 0, and N2 ⊆ N such that for any 0−1 ∈ N2 Θ0−1 ∈ NΘ ̄0 ∈ N  and

a disturbance vector  = ̄ for all  ≥ 0 − 1, the optimal policy involves  ∈ N with  → ̄

as  → ∞ Moreover, there exists a sequence of multipliers {} consistent both with the specified
initial conditions and with the FOCs (1.8) for all  ≥ 0 such that  ∈ NΘ × N for all  ≥ 0,

and  → ̄ as →∞ Finally, the convergence is exponential: there exists   1 such that

lim
→∞ ( − ̄) = 0 lim

→∞ ( − ̄) = 0 (1.14)

for any initial conditions in the specified set.

(c) There also exists a neighborhood N of the vector ̄ ≡ (̄ ̄; ̄) and a diffeomorphism

 : NΘ ×N2 ×N → N ×N2 ×N

with the properties

2(Θ  ̄ ) =  3(Θ  ̄ ) = ̄ 

such that for any Θ0−1 ∈ NΘ a path {} for  ≥ 0 maximizes (1.9) in the case of this vector

of multipliers, initial conditions (0−1 ̄0), and a specification that  = ̄ for all , if and only if

it maximizes (1.1) subject to the initial pre-commitments (1.5), where ̄0 = 1(Θ0−1 0−1 ̄0),

and the same initial conditions (0−1 ̄0). Moreover, the matrix Γ̄ ≡ (Θ̄) is non-singular.

Assumption 1 implies not only that a steady state exists, but that in the case of any initial

conditions close enough to consistency with the steady state and no stochastic disturbances, the
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optimal equilibrium will remain forever near this steady state, and converge to it asymptotically

(indeed, at an exponential rate). We also assume that the Lagrange multipliers associated with

the optimal policy remain forever near their steady-state values and converge exponentially as well.

It then follows that for any small enough neighborhoods of the steady state (as specified in the

statement of the assumption), there must exist a neighborhood N of ̄ such that the optimal

dynamics will also involve  ∈ N and  ∈ NΘ × N for all  ≥ 0 as long as  ∈ N for all

 ≥ 0 − 1 though of course there is no convergence to the steady state in the stochastic case.
This makes it possible for us to analyze optimal stabilization policy in response to small enough

disturbances through a purely local analysis of equilibria in which the endogenous variables 

remain forever near the steady-state values ̄ and the multipliers {} remain forever near the
steady-state values ̄

Assumption 1(c) implies that in the case of all initial conditions close enough to consistency with

the steady state (which is to say, all of those with which we shall be concerned in this paper), there

is a unique problem of the first type (defined by a vector of pre-commitments ̄0) corresponding

to each problem of the second type (defined by a vector of initial Lagrange multipliers Θ0−1), and

vice versa. The additional stipulation that the mapping  has a non-singular Jacobian matrix is

only a slight strengthening of the assumption that the mapping is invertible near the steady state;

this is necessary to allow us to assert a similar equivalence between the linearized versions of the

conditions that characterize the two kinds of optimal plans.

Assumption 1 implies the existence of steady-state values (̄ ̄) that satisfy conditions (1.13),

associated with the given stationary vector of values ̄ for the exogenous states, and further implies

the existence of a solution to the FOCs, in which the variables  and  remain forever near their

steady-state values, in the case of any small enough perturbations in the initial conditions. It is

these local solutions to the FOCs (1.8) that we wish to further characterize, through the linear

approximation presented in the next section. Under relatively weak regularity conditions, we show

that there must be at most one solution to the FOCs that remains forever near the steady state,

which solution must (by Assumption 1) be the optimal equilibrium. Hence it suffices to find a

target criterion with the property that a path for the endogenous variables that is feasible under

some policy, that remains forever within the neighborhood N and that fulfills the target criterion

at all times (i) exists in the case of all initial conditions near enough to consistency with the steady

state and all small enough disturbances, and (ii) must also satisfy the FOCs in all periods, in order

for us to conclude that fulfillment of the target criterion is necessary and sufficient for the intended
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future evolution of policy to be optimal, again in the case of all initial conditions near enough to

consistency with the steady state and all small enough disturbances.

We do not here seek to provide more fundamental assumptions under which Assumption 1 is

necessarily valid. In practice it is relatively straightforward in applications to verify the existence of

a steady-state solution to the FOCs (1.13). It is also straightforward to evaluate the second-order

conditions [SOCs] that tell whether this solution represents a local welfare optimum, discussed fur-

ther in section 2.2.1 below,14 and to analyze convergence to the steady state in the deterministic case

for initial conditions close enough to consistency with the steady state, as these involve algebraic

properties of the derivatives of the functions defining the problem, evaluated at the steady-state

values of their arguments. The more difficult question is verification of the global optimality of the

local optimum represented by a solution to the FOCs and SOCs. We do not address this here, but

assume that it is satisfied in an application of interest.

Finally, note that while we assume the existence of an “optimal steady state” in the sense

that optimal policy involves constant values of the endogenous variables in the absence of random

disturbances, we do not assume that the steady state near which we conduct our analysis is an

undistorted steady state. That is, we do not assume that in the absence of disturbances and under

suitable initial conditions, there would exist a policy that achieves the unconstrained maximum

of the function (; ̄) each period. Our methods are applicable to problems in which there exist

distortions, the severity of which depends on policy, but that cannot be eliminated at all times by

any policy. For example, in the application treated in section 4, the steady-state level of output

may be inefficiently low, owing either to market power or to tax distortions, even under the optimal

monetary policy.

2 Linear Approximation of the Optimal Equilibrium Dynamics

As long as we are interested solely in small enough perturbations of the steady-state policy problem,

of the kind described in Assumption 1, we can approximate the optimal solution for  as a function

of the initial conditions (0−1 0−1 ̄0 Θ0−1) and the history of disturbances (0      ) by a

linear function of these variables, where the coefficient on each variable represents the partial

derivative of the optimal  with respect to that variable, with all partial derivatives evaluated at

14Benigno and Woodford (2008) present an alternative formulation of the SOCs that has some advantages from a

computational standpoint.
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the steady state referred to in Assumption 1. And as usual, the implicit function theorem allows

us to calculate these derivatives by solving linearized versions of the conditions that describe an

optimum, where the linearizations are all computed at the steady-state solution.15

2.1 Approximation

Local approximation of the optimal equilibrium dynamics requires us to solve a system of linear

difference equations consisting of linearizations of two sets of nonlinear equations: the structural

equations (1.2)—(1.4) on the one hand, and the first-order conditions (1.8) on the other. We linearize

these equations around the steady-state values of the arguments ( = ̄  = ̄ and  = ̄ for

all ), where ̄ and ̄ are the optimal steady state values (assumed to exist in Assumption 1) in

the case of the constant vector ̄ for the exogenous variables. We will denote the deviations from

steady-state values by ̃ ≡ − ̄ ̃ ≡ − ̄ ̃ ≡ − ̄ and derive local approximations for the

case in which these terms are small. Specifically, we consider the family of stochastic processes

 = ̄ + 

indexed by a parameter  ≥ 0 where {} is some bounded process (held fixed as we consider
variations in ). We wish to characterize optimal monetary policy for the case in which  is

sufficiently small (though still positive), by computing solutions for the state-contingent evolution

of all endogenous variables that are accurate up to an error that is at most of size O(2) To
economize on notation, we shall assume that the disturbances {} evolve in accordance with a
linear first-order vector autoregressive process,16 so that

̃+1 = ̃ (2.1)

where  is a matrix such that ||||  1
The following Lemma summarizes the linear approximations of the structural equations and

first-order conditions.

Lemma 1 Assuming that the exogenous disturbances satisfy (2.1), a first-order approximation of

the structural equations (1.2)—(1.3) around the steady-state can be written as

̄̃+1 = ̄̃ + ̄̃ (2.2)

15See Woodford (2003, Appendix A.3) or Benigno and Woodford (2008) for further discussion.
16Note that this allows for serial correlation of arbitrary complexity in the disturbance processes, as long as the

vector  is assumed to include a sufficient number of lagged disturbances.
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for all  ≥ 0 omitting terms that are merely of second order,

̄1 (̃ −−1̃) = ̄
³
̃ −−1̃

´
(2.3)

for all   0 where ̄ and ̄ are the same matrices as in (1.13), ̄1 ≡ −1 ̄1 ≡ 3 are the

 × matrices consisting of the first  rows of ̄  respectively ̄ and

̄ ≡
⎡⎣ 2

2

⎤⎦  ̄ ≡ 2

The linearized version of the initial conditions (1.4) can be expressed as

̄1̃0 = ̄1̃0−1 + ̄̃0 − ̄0  (2.4)

Similarly, a linear approximation of the nonlinear first-order conditions (1.8) takes the form

0 = 

£¡
0 + +2

¢
̃+1

¤
+

h¡
̄− −1̄

¢0
̃+1

i
+

h
 () ̃+1

i
 (2.5)

where  denotes the lag operator and we define

 ≡
³
̄
0 ⊗ 

´
3
£
(1 )

0¤+ ¡Θ̄0 ⊗ 
¢
−11

£
(3)

0¤ 
 ≡ 1

£
(1)

0¤+ ³̄0 ⊗ 

´©
1
£
(1 )

0¤+ 3

£
(3 )

0¤ª
+
¡
Θ̄0 ⊗ 

¢ ©
1
£
(1)

0¤+ −13

£
(3)

0¤ª 
and

 () ≡
n
2
£
(1)

0¤+ ³̄0 ⊗ 

´
2

£
(1 )

0¤+ ¡Θ̄0 ⊗ 
¢
2
£
(1)

0¤o · 
+−1

¡
Θ̄0 ⊗ 

¢
2

£
(3)

0¤ · 2 + 
³
̄
0 ⊗ 

´
2
£
(3 )

0¤ 
Finally, a linear approximation of (1.10) yields

̃2 −−1̃2 = 0 (2.6)

for all   0

Note that the matrices ̄ ̄ ̄1 ̄1 ̄  and the matrix polynomial  () are independent of

the specification of the shock processes, and in particular of the matrix  The proof of the lemma

is in Appendix B.
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2.2 Regularity Conditions

Our analysis relies upon some further properties of the matrices of coefficients of the linearized

structural relations. Here we state these additional assumptions and discuss some of their impli-

cations. The assumptions are not too restrictive, but allow us to simplify our analysis and the

statement of our results in important respects.

The linearized structural equations are valid only locally, so that it makes sense to consider only

solutions to these equations that are bounded, i.e., that satisfy the bound

||̃|| ≡ ess sup
≥0

|̃|  ∞ (2.7)

We shall state our further regularity conditions in terms of the matrices ̄ and ̄.

Assumption 2 (a) The matrix ⎡⎣ ̄

̄

⎤⎦ (2.8)

is of full column rank, i.e., of rank .

(b) In addition, the matrix pencil ̄ −̄ is of rank . Hence its rows are linearly independent;

that is, there exists no vector () 6= 0 of polynomial functions of  such that

()0[̄ − ̄] = 0 (2.9)

for all  Moreover, there exists no vector ̄ 6= 0 such that

̄0[̄ − ̄] = 0 (2.10)

Assumption 2(a) requires that  ≤ 2 as mentioned earlier; thus the number of independent
dimensions along which policy can be varied is not too great, relative to the number of dimensions

of variation that are possible in the endogenous variables. However, in the case that  ≤ 2 the
assumption holds for generic matrices of coefficients ̄ and ̄. If Assumption 2(a) did not hold, the

vector  would involve redundant state variables, that could be eliminated altogether, as far as the

structural equations (2.2) are concerned. These variables may not actually be redundant, because

they might nonetheless matter for equations (2.3)—(2.4); but we abstract from this complication

here, and instead assume that it is possible to write the system in terms of a vector of endogenous

variables for which Assumption 2(a) is satisfied.

Assumption 2(b) similarly implies that there is no redundancy among the separate structural

equations (2.2); it is a stronger form of linear independence assumption, since it also excludes the
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possibility that some equation in the system (2.2) is implied by conditional expectations of leads

of other equations in the system. The further stipulation in the last sentence is the algebraic

condition required for uniqueness of the steady-state Lagrange multipliers ̄ associated with the

optimal steady state ̄ around which we conduct our local analysis.

Assumption 2(a) could equivalently be stated as a property of the pencil ̄ − ̄: there exists

no constant vector  6= 0 such that
[̄ − ̄]  = 0

for all  But it is not possible to make a similar statement about the nonexistence of polynomial

solutions; for the fact that    implies that there must exist polynomial functions () such

that

[̄ − ̄] () = 0 (2.11)

for all . Assumption 2(a) implies only that all such solutions must be of order greater than zero

in 

2.2.1 Second-Order Conditions

We shall make use of a further regularity condition, involving the matrices  and  in addition to

the regularity conditions involving the matrices ̄ and ̄ stated above. This is a second-order con-

dition for the optimality of the steady state that represents a slight strengthening of the conditions

already implicit in Assumption 1.

Let {} be a bounded sequence of vectors of dimension , not all equal to zero, such that

̄0 = 0 ̄ − ̄+1 = 0 for all  ≥ 0 (2.12)

Then let us consider a perturbation of the path {̃}, replacing ̃+ with

̃+ + 

for all  ≥ 0 and an arbitrary date  ≥ 0 while leaving ̃ unchanged for all dates    . Here

 is an arbitrary small quantity. The path {̃} remains consistent with the linearized structural
equations (2.2)—(2.4), and continues to satisfy the bound ||̃|| ∞, for any value of  Then for any
small enough value of ||, this also approximates a feasible perturbation under the exact structural
relations (1.2)—(1.4), up to an error of order O(||2).

In order for the original path {̃} to have been optimal, no such perturbation can increase the
value of the Lagrangian (1.6). In particular, given our assumption of the optimality of the steady
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state in which  = ̄ for all , no such perturbation of the steady state can increase the value of the

Lagrangian. In the case of any small enough value of || the increase in the value of the Lagrangian
as a result of the perturbation {} is proportional to

∞X
=0


£
0 + 0+1 + 0

0+1
¤ ||2 +O(||3)

regardless of the date  ,17 where all derivatives are evaluated at the steady state. Hence a sufficient

condition for such a perturbation of the steady-state policy to be welfare-reducing, in the case of

any small enough ||  0 is that
∞X
=0


£
0 + 0+1 + 0

0+1
¤
 0 (2.13)

We can now state the additional regularity condition that we shall invoke.

Assumption 3 In the case of any non-zero bounded sequence {} such that (2.12) is satisfied,
(2.13) also holds.

These are second-order conditions for the optimality of the steady state defined by (1.13). Techni-

cally, Assumption 3 is not implied by Assumption 1 as stated above, as that would only require a

weak inequality in (2.13). The present assumption is, however, only a slight strengthening of the

one already implicit in Assumption 1.

2.3 Determinacy of the Solution to the FOCs

We now show that there is a unique bounded (or determinate) solution to the nonlinear FOCs

for the optimal policy problem. We have already assumed that there exists a bounded optimal

equilibrium path (Assumption 1), and since the FOCs are necessary for optimality, there must

exist a bounded solution to the FOCs. The goal of the present section is to show that there can

be only one bounded solution to the FOCs. It will follow from this result that in the case of a

bounded solution, the FOCs are also sufficient for optimality.

As usual, for the analysis of determinacy it suffices that we demonstrate the existence of a unique

bounded solution to the linearized versions of the equations for which we seek to demonstrate the

existence of a locally unique solution. We therefore consider the system of equations consisting of

the linearized structural equations (2.2)—(2.4) together with the linearized FOCs (2.5)—(2.6).

We now state our first important result.

17See section C.2 of the Appendix for details of this calculation.
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Proposition 1 Suppose that Assumptions 1, 2(b) and 3 are satisfied. Then for any initial con-

ditions ̃0−1 ̄0  any specification of the initial Lagrange multipliers Θ̃0−1 and any exogenous

disturbance process {̃} satisfying ||̃||  ∞ where the norm is defined as in (2.7), there exists a

unique solution to the system consisting of the linearized structural equations (2.2)—(2.4) and the

FOCs (2.5)—(2.6) for all  ≥ 0 with the property that ||̃|| ∞ and ||̃|| ∞

The proof is in Appendix A. Note that this unique solution to the linearized FOCs represents

a local linear approximation to an optimal plan, that is, to a plan that coincides (up to an error of

order O(2)) with a plan that maximizes the modified objective function (1.9) defined by the initial
multipliers Θ̃0−1 for the specified initial conditions. Hence any solution to the system of FOCs

with the property that ||̃|| ∞ represents a local linear approximation to an optimal plan.

Using Assumption 1(c), we immediately obtain as a further corollary that there also exists a

unique bounded solution to the system of FOCs augmented by the linearization of the initial pre-

commitments (B.6), for any choice of ̄0  and that any bounded solution to this system of FOCs

represents a local linear approximation to a plan that is optimal in the sense of maximizing (1.1)

subject to the initial pre-commitments. These results follow immediately from Proposition 1, given

the existence of an invertible linear relationship between specifications of Θ0−1 and specifications

of ̄0 

3 The Optimal Target Criterion

We now turn to the main topic of our paper, the construction of an optimal target criterion. Our

task is to show that there exists a criterion that, when conjoined with the linearized structural

relations (2.2)—(2.4), determines a unique bounded solution for the endogenous variables {̃}, and
that the equilibrium evolution that it determines represents a local linear approximation to an

optimal plan, by which we mean a plan that maximizes (1.9) for some initial Lagrange multipliers

Θ0−1 that are determined by a self-consistent rule, or that maximizes (1.1) subject to some initial

pre-commitments (1.5) determined by a self-consistent rule. Our method is to construct a target

criterion, involving only the endogenous variables {̃}, that is fulfilled each period if and only
if the linearized FOCs are satisfied, where the FOCs in question are those associated with some

self-consistent selection of the initial Lagrange multipliers or of the initial pre-commitments. Then

the determinacy of equilibrium under the target criterion will follow from Proposition 1, as will the

fact that the equilibrium so determined represents a local linear approximation to an equilibrium
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that is optimal from a timeless perspective.

3.1 Target Variables

Let us recall that the linearized FOCs (2.5)—(2.6) can be written in the form



h¡
̄− ̄−1

¢0
̃+1

i
=   − ∗  (3.1)

̃2 −−1̃2 = 0 (3.2)

where we now define a vector of (endogenous) “target variables”

  ≡ −

£¡
0 + +2

¢
̃+1

¤
and time-varying (exogenous) “target values” for them

∗ ≡ 

h
 () ̃+1

i


Recall also that (3.1) must hold for all  ≥ 0 while (3.2) must hold for all   0We add in addition

the requirement that ̃20 be equal to some given vector of initial multipliers Θ̃0−1, unless we add

linearized initial pre-commitments of the form (B.6) to determine ̃20 

Here the target variables   summarize the ways in which variations in the endogenous variables

̃ are relevant to verification of whether the FOCs are satisfied or not; hence policy need only be

concerned with the projected paths of these particular variables. Moreover, the target variables

only enter the FOCs through their difference with respect to the exogenously varying target values

∗ ; hence policy need only be concerned with the extent to which the target variables are projected

to differ from their respective target values.

In general, the target variables may be linear combinations of the entire vector of endogenous

variables ̃. However, there is one case of practical interest in which they necessarily involve only

a subset of the variables that are simultaneously determined by the structural model. Consider the

case in which the policy objective is a quadratic function

(; ) = −
1

2
( − ∗ )

0 ( − ∗ ) (3.3)

where  is a symmetric, positive definite matrix, where  ≡ 0 is a subset of the endogenous

variables and ∗ ≡ ∗() is a vector of exogenous targets for the variables . The matrix 0

is  ×  where  may be much smaller than , in the case of a policy institution with a
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fairly complex model of the economy but a relatively simple stabilization objective (that may, for

example, reflect its legislative mandate).

Let us suppose furthermore that the targets are achievable in steady state; this means that in

the case that  = ̄ at all times, there would exist a constant vector ̄ of values for the endogenous

variables satisfying (1.11)—(1.12) and

0̄ = ∗(̄) (3.4)

In this case, a simple characterization of the target variables and target gaps is possible.

Lemma 2 Suppose that the objective of policy is a quadratic function (3.3), that the targets ∗()

are achievable in steady state, in the sense that there exists a vector ̄ satisfying conditions (1.11)—

(1.12) and (3.4), and that Assumption 2(b) is satisfied. Then the target variables   are all linear

combinations of the  variables  − ̄, where ̄ ≡ 0̄ are the steady-state values of the variables

 Moreover, the “target gaps” appearing on the right-hand side of (3.1) are equal to

  − ∗ =  ( − ∗ ) +O(2) (3.5)

to first order, which means that the linearized FOCs (3.1) can be expressed entirely in terms of the

 target variables { − ∗ } and the Lagrange multipliers {̃}.

The proof is in Appendix A. In this special case, at least, the optimal target criterion can be

expressed purely as a restriction upon the evolution of the  target variables { − ∗ }.
Regardless of whether the special assumptions required for Lemma 2 are satisfied, the linearized

FOCs (3.1) can be expressed in a canonical form.

Lemma 3 Under Assumption 2 there necessarily exist non-singular matrices  (× ) and 

(×) such that

¡
̄− ̄

¢0
= 

⎡⎢⎢⎢⎢⎢⎢⎣
1 () · · · 0 0
...

. . .
...

...

0 · · ·  () 0

0 · · · 0 02 −  02

⎤⎥⎥⎥⎥⎥⎥⎦ (3.6)
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where  = −  ≥ 1; for each  = 1    () is an ( + 1)×  matrix pencil of the form

 () ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 0 · · · 0

1 
...

0 1
. . . 0

...
. . . 

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

for some  ≥ 1; and 02 −  02 is a regular pencil of dimension  ×  where

 = −
X

=1



The proof is in Appendix A.

This result allows the system of FOCs (3.1) to be equivalently expressed in the form



£


¡
−1

¢
̂1+1

¤
= ̂1 ( = 1  ) (3.8)

02̂2+1 − −1 02̂2 = ̂2 (3.9)

where we partition the vectors

 ̃ ≡ ̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
̂11
...

̂1

̂2

⎤⎥⎥⎥⎥⎥⎥⎦  −1(  − ∗ ) ≡ ̂  =

⎡⎢⎢⎢⎢⎢⎢⎣
̂11
...

̂1

̂2

⎤⎥⎥⎥⎥⎥⎥⎦
conformably with the partition of the matrix in (3.6). We thus reduce the FOCs to separate blocks

of equations relating subsets of the Lagrange multipliers to particular subsets of the target variables.

Furthermore, each of the blocks of equations other than (3.9) has a particular simple form.

Under some mild additional assumptions, we show below that only the set of −  equations

(3.8) is relevant for the construction of our optimal target criterion. As a result, we may express

the desired target criterion only as a function of the subset of target variables ̂1

3.2 Essential vs. Inessential Variables

In the somewhat special case that the equilibrium relations (2.2) are decomposable into two sub-

systems of a particular type, some of the endogenous variables are determined independently of any

policy choices. We call such variables “inessential.” To show this, we make the following technical

assumptions.
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Assumption 4 Suppose that there exist non-singular matrices  (× ) and  (×) such

that

̄ − ̄ =  0
⎡⎣ 1 − 1 0

0 2 − 2

⎤⎦0 (3.10)

where 1 1 are (− )× (− ) and 2 2 are  ×  square matrices, for some 0    

(a) Then there also exist non-singular matrices 1 ( × ) and 2 ((− )× (− )) such that

⎡⎣ 1 0

0 2

⎤⎦ 0 =
⎡⎢⎢⎢⎢⎢⎢⎣

 01 0

0  0
1

 02 0

0  0
2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.11)

where

 0 ≡
⎡⎣  01

 02

⎤⎦   0 ≡
⎡⎣  0

1

 0
2

⎤⎦
are non-singular square matrices ((− )× (− ) and  ×  respectively), and the blocks⎡⎣  01 0

0  0
1

⎤⎦ 
⎡⎣  02 0

0  0
2

⎤⎦
are  ×  and (− )×  respectively.

(b) Moreover, the characteristic polynomial

 ( ) ≡ det[2 − 2]

can be factored as

 ( ) = 

2Y
=1

(− )

−2Y
=1

(− ) (3.12)

where 0 ≤ 2 ≤  is the number of rows of  0
1 in (3.11),  6= 0 and the complex numbers { }

satisfy ||  1 for all  | |   for all .

Here the blocks  01  02  0
1 

0
2 are of dimensions

 01|{z}  02|{z}  0
1|{z}  0

2|{z}
(1 × ̃) ((̃− 1)× ̃) (2 × ) (( − 2)× )

where ̃ ≡  −   0 0 ≤ 1 ≤  0 ≤ 2 ≤  and 1 + 2 =  For future reference, let us also

define ⎡⎣ 1

2

⎤⎦ ≡ h 1 2

i−1


⎡⎣ 1

2

⎤⎦ ≡ h 1 2

i−1
 (3.13)
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where the blocks 1 2 1 and 2 are of dimensions

1|{z} 2|{z} 1|{z} 2|{z} 
(1 × ̃) ((̃− 1)× ̃) (2 × ) (( − 2)× )

This additional notation will allow us to decompose the system of equations (3.2) in a way con-

formable with our decomposition of (2.2) and (3.1).

Under Assumption 2, Lemma 3 states that a decomposition of the form (3.10) exists, so that

the system of linearized structural equations (2.2) can equivalently be written in the form

1
∗
1+1 = 1

∗
1 + Γ1̃ (3.14)

2
∗
2+1 = 2

∗
2 + Γ2̃ (3.15)

for all  ≥ 0 where ⎡⎣ ∗1
∗2

⎤⎦ ≡ 0̃

⎡⎣ Γ1
Γ2

⎤⎦ ≡ ¡−1¢0 ̄
Note that ∗1 ∗2 are two independent vectors of endogenous variables (of lengths  −  and

 respectively), that we may refer to as the “essential” and “inessential” endogenous variables

respectively.18 Each of the subsystems (3.14) and (3.15) involves only one of these sets of endogenous

variables. Thus the system (2.2) decomposes into two independent systems of equations for the

two distinct sets of endogenous variables. Assumption 4(a) states that if such a decomposition of

the system (2.2) is possible, then it is also possible to decompose (2.3)—(2.4) into separate systems

of equations, using the same decomposition of the state variables ̃ into
¡
∗1 ∗2

¢


The content of (2.3) is unchanged if we pre-multiply both sides by 1 (since 1 is non-singular).

But (3.10)—(3.11) imply that

1̄1 =

⎡⎣  01 0

0  0
1

⎤⎦⎡⎣ 1 0

0 2

⎤⎦0 =
⎡⎣  011 0

0  0
12

⎤⎦0
so that the system (2.3) can be equivalently written as

 011
¡
∗1 −−1∗1

¢
= ∆1

³
̃ −−1̃

´
(3.16)

 0
12

¡
∗2 −−1∗2

¢
= ∆2

³
̃ −−1̃

´
(3.17)

18As explained below, the “inessential” variables are not necessarily variables that are not needed for a description

of the exact equilibrium dynamics implied by the model; they are redundant only for a description of the linearized

dynamics.
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for all   0 where ⎡⎣ ∆1
∆2

⎤⎦ ≡ 1̄

Similarly, the system (2.4) can equivalently be written as

 011
∗
10 =  011

∗
10−1 +∆1̃0 − Φ10 (3.18)

 0
12

∗
20 =  0

12
∗
20−1 +∆2̃0 − Φ20 (3.19)

for period 0 where ⎡⎣ Φ10
Φ20

⎤⎦ ≡ 1̄0 

Thus the system of structural equations (2.2)-(2.4) can equivalently be written as two independent

subsystems, one consisting of equations (3.14), (3.16) and (3.18) for the evolution of
©
∗1
ª
 and

the other consisting of (3.15), (3.17) and (3.19) for the evolution of
©
∗2
ª


Clearly, this assumption holds generically; it applies only in the case that a decomposition

of the form (3.10) exists for some 0    , and for generic  ×  matrices ̄ and ̄ no such

decomposition exists. However, such a decomposition may exist, and not only in the case that some

“endogenous” variables are determined independently of policy; the decomposition may exist in the

linearized dynamics even though policy has second-order effects on the inessential state-variables in

the exact model. This possibility is illustrated by our analysis of the exact New Keynesian model

in section 4, where the price dispersion measure is affected by policy only to second order. We

verify that Assumption 4 holds in this case.

In the case that a decomposition of the from (3.10) exists, the subsystem consisting of equations

(3.15), (3.17) and (3.19) represents  structural equations per period to determine the  “inessential”

variables. Thus there is no scope for adjustment of any of these  variables as a policy decision,

under the linearized dynamics. We state Assumption 4 only for the case in which   0 since in

the case that  = 0, there are no inessential variables about which such an assumption needs to

be stated. We can also neglect the case of a decomposition of the form (3.10) with  =  as this

would violate Assumption 2(a): the matrix (2.8) would be of at most rank   .

The following consequence of Assumption 4(b) is useful in what follows.

Lemma 4 Suppose that a decomposition of the matrix pencil ̄−̄ of the form indicated by (3.10)
exists, and that Assumptions 2 and 4 are satisfied. Then there exist non-singular matrices 2 2

23



(of dimensions  × ) such that

 0
2 (2 − 2)

0
2 =

⎡⎣  − 0 0

0  0 − 

⎤⎦ (3.20)

where  is of dimension 2 × 2 and  is of dimension ( − 2)× ( − 2)  all eigenvalues of the

matrix  have modulus less than 1 and all eigenvalues of the matrix  have modulus less than 

The proof of this result is given in Appendix A.

In order to establish that the subsystem consisting of equations (3.15), (3.17) and (3.19) does

indeed determine the  endogenous variables {∗2} one additional regularity condition is needed.
Lemma 4 implies that the stable subspace of the system (3.15) is of the right dimension for deter-

minacy; but we also need an assumption that guarantees consistency between the initial conditions

(3.17) or (3.19) and the stable subspace of the system (3.15).

Assumption 5 Suppose that a decomposition of the matrix pencil ̄ −̄ of the form indicated by

equations (3.10) and (3.11) exists. Then the ( × ) matrix⎡⎣  0
1h

0 −2
i
 0
2

⎤⎦
is invertible.

Note that this condition will be satisfied by a generic matrices satisfying our other assumptions;

it would follow from (though is weaker than) an assumption that 2 is of full rank. Given these

assumptions, we can now show that the variables {∗2} must be unaffected by policy.

Proposition 2 Let the linearized structural equations (2.2)-(2.4) satisfy Assumptions 2, 4, 5, and

let the exogenous disturbances {̃} satisfy ||̃||  ∞. Then if there exists a decomposition of

the form (3.10) for some   0 there is a unique solution {∗2} to the subsystem consisting of

equations (3.15), (3.17) and (3.19) for all periods  ≥ 0 such that ||∗2||  ∞ Hence in the case

of any equilibrium {̃} consistent with (2.2)-(2.4) and such that ||̃||  ∞, the evolution of the
“inessential” variables {∗2} must be the same, independent of any policy choices.

The proof is in Appendix A. It follows that target criteria need be formulated only for the evo-

lution of the “essential” variables {∗1}, and that in addressing the issues both of determinacy of
equilibrium and of the optimality of the implied equilibrium, it suffices to consider the implications

for the essential variables of the target criteria together with the structural equations (3.14), (3.16)

and (3.18).
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3.2.1 Essential vs. Inessential Target Variables

While Assumption 2 and hence Lemma 3 allowed us to decompose the system of linearized FOCs

(3.1) into (3.8) and (3.9), Assumption 4 allows us to decompose the system of equations (3.2) in a

way conformable with our decomposition of (3.1).

Lemma 5 Suppose that Assumptions 2 and 4 are satisfied. Then equations (3.2) hold if and only

if

2
£
̂1 −−1̂1

¤
= 0 (3.21)

2

£
̂2 −−1̂2

¤
= 0 (3.22)

for all   0

The proof is in Appendix A.

In the case that our problem is to maximize the modified objective (1.9) defined by a vector of

initial multipliersΘ0−1 we can also partition the initial conditions implied by the initial multipliers.

The requirement that ̃20 = Θ̃0−1 holds if and only if both sets of conditions

2 ̂10 = Ξ10−1 (3.23)

2 ̂20 = Ξ20−1 (3.24)

hold, where we define ⎡⎣ Ξ1
Ξ2

⎤⎦ = Ξ ≡ (−12 )0 Θ̃

Here Ξ0−1 is an alternative representation of the initial multipliers Θ0−1 and Ξ10−1 and Ξ20−1

are respectively the first ̃ − 1 elements and the last  − 2 elements of the vector Ξ0−1 The

multipliers Ξ1 correspond to the ̃−1 forward-looking constraints among the structural equations
governing the evolution of the −  “essential” variables ∗1, while the multipliers Ξ2 correspond
to the  − 2 forward-looking constraints among the structural equations that determine the 

“inessential” variables ∗2

Thus it is possible to decompose the complete system of first-order conditions (3.1)—(3.2) into

two independent subsystems, one involving only the variables ̂1 and the other involving only the

variables ̂2 The first subsystem consists of the conditions (3.8) that must hold for all  ≥ 0;

conditions (3.21), that must hold for all   0; and condition (3.23). The second subsystem
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consists of the conditions (3.9), that must hold for all  ≥ 0; conditions (3.22), that must hold for

all   0; and condition (3.24). As the following proposition states, the second subsystem of FOCs

necessarily has a bounded solution (where again the norm is the one defined in (2.7)), regardless of

the evolution of the target variables.

Proposition 3 Suppose that Assumptions 2, 4 and 5 are satisfied. Then there necessarily exists a

process
©
̂2

ª
such that ||̂2|| ∞ that satisfies conditions (3.9) for all  ≥ 0, (3.22) for all   0

and the initial condition (3.24), regardless of the evolution of the target variables {̂2} (assuming
only that ||̂2||  ∞, where the norms for both multipliers and target variables are defined as in
(2.7)). Hence necessary and sufficient conditions for the existence of a process {̃} such that
||̃||  ∞ that satisfies conditions (3.1) for all  ≥ 0 and (3.2) for all   0, consistent with

given initial multipliers Θ̃0−1 are that the target variables {̂1} be such that there exists a process©
̂1

ª
with ||̂1||  ∞ that satisfies conditions (3.8) for all  ≥ 0 (3.21) for all   0 and the

initial condition (3.23).

The proof is in Appendix A. Accordingly, our problem reduces to the design of a target criterion

involving the variables {̂1} which is necessary and sufficient for the existence of a bounded process
{̂1} with the properties listed in the proposition.

3.3 Implications of the Target Criterion in the Case of Unidimensional Policy

We now specialize the problem by restricting our attention to the case in which there is a single

dimension of policy variation each period, so that  =  −  = 1 (Note that this case covers

conventional analyses of monetary stabilization policy, where the single dimension of policy choice

corresponds to a target for a short-term nominal interest rate or for the money supply each period.)

In this case, there is only a single block of equations of the form (3.8), and we shall drop the 

subscript for the remainder of this section.

We first state the restrictions on the process {̂1} that are required in order for there to exist a
bounded process {̂1} consistent with (3.8). (These conditions are in turn necessary, though not
sufficient, for satisfaction of the complete set of linearized FOCs.) Let us first define the ̃×(̃+ 1)
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matrix polynomial

Γ () ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 · · · 0

(−) 1 0 · · · 0
...

. . .
. . .

...

(−)̃−1 · · · (−) 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
and the ̃+ 1-dimensional vector polynomial

 ()0 ≡
h
1 (−) · · · (−)̃

i


We can then define a moving average of the target variables

 ≡ 
¡
−1

¢0
̂1 (3.25)

We can then establish the following useful result.

Lemma 6 Two processes {̂1} and
©
̂1

ª
specified for all  ≥ 0 satisfy (3.8) for all  ≥ 0 if and

only if they satisfy

̂1 = 

£
Γ
¡
−1

¢
̂1
¤

(3.26)

and

+̃ = 0 (3.27)

for all  ≥ 0, where the implied process {} is defined by (3.25).

The proof is in Appendix A. This result implies that a bounded process for the target variables

{̂1} is consistent with condition (3.8) if and only if the evolution of {} satisfies (3.27); for given
any bounded process satisfying (3.27), (3.26) defines a bounded process {̂1} which will satisfy
(3.8). It remains then only to ask what additional restrictions are required in order for the implied

process {̂1} to satisfy conditions (3.21) and (3.23) as well.
Condition (3.27) is thus an example of a target criterion that is necessary for policy to be opti-

mal, but that is not in general sufficient for optimality; it is not in general a sufficiently restrictive

condition to uniquely determine a forward path for the economy, either. Thus the target criterion

that we seek must be stronger (except in special cases) than (3.27), but must imply (3.27). As it

happens, the desired criterion can also be stated as a restriction upon the evolution of the scalar

target variable  albeit a stronger condition than (3.27). In order to state this criterion, it is useful
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to define a vector of revisions at date  to the forecast path of the target variable,

 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
(−) [ −−1]

(−)2[+1 −−1+1]
...

(−)̃[+̃−1 −−1+̃−1]

⎤⎥⎥⎥⎥⎥⎥⎦  (3.28)

It is also useful to define the matrix of current and past forecast revisions

Ω ≡
h
(−)−1̄ (−)−2̄−1    (−)−(̃−1)̄−(̃−1−1)

i
 (3.29)

where ̄ is the vector consisting of the first 1 rows of  (Note that Ω is a null matrix unless

0  1  ̃; if 1 = 0 Ω has no rows, while if 1 = ̃ it has no columns.)

The optimal target criterion can be expressed more simply if we assume one further regularity

condition. Let the matrix 2 defined in (3.13) be partitioned as

2 ≡
h
21 22

i


where 21 is of dimension (̃− 1)× 1 and 22 is of dimension (̃− 1)× (̃− 1)  We can now

state our final regularity condition.

Assumption 6 The submatrix 22 is non-singular (det22 6= 0).

Note that for any 1  ̃, this assumption holds for a generic non-singular matrix  . The usefulness

of this assumption is that it implies that any ̃-dimensional vector  such that 2 = 0 (i.e., vector

that is a linear combination of the columns of 1) can be reconstructed from its first 1 elements.

That is, partitioning

 ≡
⎡⎣ 1

2

⎤⎦ } first 1 elements
} last ̃− 1 elements,

one must have

 =

⎡⎣ 1

Φ

⎤⎦ 1
where

Φ ≡ − −122 21

We now state the optimal target criterion: this is the requirement that at each date  ≥ 0 the

projected evolution of the process {} must be such that

+1 = (−)−1tr[ΦΩ] (3.30)
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In evaluating this criterion in any period , the references to forecasts at date  − 1 and earlier
are understood to refer to policy authority’s historical forecasts, whether or not they were made

on the basis of an expectation regarding policy in period  and later that corresponds to current

policy intentions. (In particular, forecasts dated 0−1 may not be consistent with the policy regime
that is adopted beginning in period 0, but the target criterion refers to these historical forecasts

nonetheless.) The set of paths for the target variables {̂1} from period 0 onward that are

consistent with the target criterion depends on a vector of initial conditions 0−1 which includes

the historical forecast revisions ̄0− for 1 ≤  ≤ ̃− 1 − 1; the historical forecasts corresponding
to the first 1 rows of 0−1[Γ(−1)̂10 ]; and the historical path of the target variables ̂10−

for 1 ≤  ≤ ̃− 1
19

Note that if 1  ̃ satisfaction of (3.30) for all  ≥ 0 implies that

+̃ = [+̃−1+̃]

= (−)−1tr[ΦΩ+̃−1 ] = 0

for any  ≥ 0 using the fact that ̄+ = 0 for any  ≥ 0 and any  ≥ 1 But if 1 = ̃ Ω is a

null matrix, and (3.30) also implies that +̃ = 0 in this case as well. Hence the target criterion

(3.30) implies condition (3.27), although (except when 1 = ̃) it is not implied by it. In fact, one

can show that this stronger target criterion is also a necessary condition for optimality, at least in

the case of initial pre-commitments of a particular sort.20

Proposition 4 Given Assumption 6 and any initial conditions 0−1 there exists a vector of initial

Lagrange multipliers Ξ10−1, such that any processes {̂1} and {̂1} for  ≥ 0 that satisfy

conditions (3.8) for all  ≥ 0 (3.21) for all   0 and the initial condition (3.23), must also

satisfy the target criterion (3.30) for all  ≥ 0

The proof of this proposition is also given in Appendix A. To be more specific, the vector of

initial Lagrange multipliers with the asserted property is

Ξ10−1 ≡ 220−1 + 20−1[Γ(
−1)̂10 ] (3.31)

19The vectors ̄0− are columns of Ω0 (and of Ω for the next few periods as well); the forecasts

0−1[Γ(
−1)̂10 ] are needed to define the forecast revisions ̄0  that also constitute a column of Ω0 and

of subsequent Ω; and the lagged variables ̂10− are needed to determine the value of 0+1  as well as the value

of +1 for the next few periods, in addition to the evolution of the target variables from 0 onward.
20 In the case of more general specifications of the initial pre-commitments and/or the initial Lagrange multipliers

Ξ10−1 we can also show that it is necessary that (3.30) be satisfied for all  after some finite date; but this extension

of Proposition 4 is not necessary for the subsequent discussion, and hence is omitted.
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where −1 is the vector whose th element is equal to



−1 ≡ (−)1+−1+1+−1 −

̃−1−X
=1

(−)−0+̄− (3.32)

using the notation 0 for the th row of the matrix Φ Note that each element of Ξ10−1 is a linear

function of the vector of initial conditions 0−1 defined above. Proposition 4 is established by

showing that for this specification of the initial multipliers, the Lagrange multipliers defined by

(3.26) satisfy conditions (3.21) and (3.23) if and only if the evolution of the target variables is

consistent with (3.30) for each  ≥ 0

The rule (3.31) for selection of initial Lagrange multipliers as a function of the initial condition

0−1 is an example of a self-consistent rule, because of the following result.

Lemma 7 Suppose that Assumption 6 holds and let the bounded processes {̂1} and {̂1} for
 ≥ 0 satisfy conditions (3.8) for all  ≥ 0 (3.21) for all   0 and the initial condition (3.23),

where the initial Lagrange multipliers are given by (3.31). Then in each period  ≥ 0

2 ̂1 = Ξ1−1 (3.33)

where

Ξ1−1 ≡ 22−1 + 2−1[Γ(−1)̂1] (3.34)

The proof is in Appendix A. Since conditions (3.23) and (3.31) are just specializations to period

0 of the more general relations (3.33) and (3.34), it follows that the proposed rule for assigning the

initial Lagrange multipliers is self-consistent. Because of Proposition 2(c), this assignment of the

initial Lagrange multipliers as a function of the initial condition corresponds to a rule for assigning

initial pre-commitments ̄0 as a function of the initial condition (and the economy’s state in period

0), that will also represent a self-consistent rule, in the sense defined earlier.

Proposition 4 implies that fulfillment of the target criterion is a necessary condition for ful-

fillment of the FOCs, and hence a necessary condition for optimality, in the case of a problem

involving initial pre-commitments of the kind just discussed. But consistency of the paths of the

target variables with the target criterion (3.30) is also sufficient for satisfaction of the FOCs, as

established in the proof of the following proposition. Hence the target criterion (3.30) determines a

unique bounded solution for the equilibrium evolution of the endogenous variables, and by Propo-

sition 1(b), the evolution determined by this criterion represents a local linear approximation to

the optimal evolution, under the modified problem defined by initial Lagrange multipliers (3.31).

We thus obtain our main conclusion.
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Proposition 5 Suppose that Assumptions 1—6 are satisfied.

(a) Then the requirements that the evolution of the endogenous variables {̃} for  ≥ 0 be

consistent with the target criterion (3.30) for all  ≥ 0, and satisfy the bound ||̃|| ∞ where the

norm is defined as in (2.7), determine a unique solution for the path of these variables, given any

initial conditions 0−1

(b) Moreover, the unique solution determined by these criteria represents a local linear approx-

imation to the evolution {} that maximizes the modified objective function (1.9), in the case of
initial conditions close enough to consistency with the steady state and disturbance processes under

which  remains always close enough to ̄, if the initial Lagrange multipliers Θ0−1 are given by

Θ0−1 = Θ̄+  02Ξ0−1

where the multipliers Ξ10−1 are given by (3.31), and the multipliers Ξ20−1 (if this is not a null

vector) may be chosen arbitrarily.

(c) The rule (3.31) for the selection of the initial multipliers is self-consistent, in the sense that

(3.34) holds for all  ≥ 0 in the linear approximation to the solution to the above problem. Hence

the equilibrium determined by the target criterion (3.30) is optimal from a timeless perspective.

The proof is in Appendix A.

4 Application: Optimal Policy in an Exact New Keynesian Model

To illustrate how the proposed optimal target criterion can be derived in a nonlinear model in which

the objective of policy is assumed to be the maximization of household utility, we consider the exact

New Keynesian model presented in Benigno and Woodford (2005). While this very stylized model

abstracts from a number of the frictions often included in larger-scale models used for empirical

analysis or for practical policy recommendations, its relative simplicity allows us to illustrate clearly

how to derive the optimal target criterion in a fully analytical fashion, and provides intuition about

the proposed target criterion.

4.1 Model

We now provide a very succinct description of the model, leaving the details to Appendix E. In

this model, each household seeks to maximize its lifetime utility which depends in a time-separable

fashion on consumption of an aggregate of all goods and (negatively) on the amount of labor
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supplied. Each differentiated good is supplied by a single monopolistically competitive producer

who uses labor as the only variable input. As Benigno and Woodford (2005) show, the utility of

the representative household, which is also the policymaker’s welfare objective function, can be

expressed in the form (1.1) where the period  utility can be written as

 ( ) = (∆; ) ≡  (; )−  (; )∆

where  is aggregate production of the composite good, ∆ is a measure of price dispersion, and 

is a vector of exogenous variables (including shocks to technology, preferences, and fiscal policy).

Here both the utility from consumption and the disutility of labor supply have been expressed

as functions of the total quantity produced; the disutility of labor supply also depends on price

dispersion, as this affects the composition of output and hence the labor required to produce a

given amount of the composite good.

The producers are wage takers on the labor market and choose their prices to maximize the

present discounted value of future profits. As in Calvo’s (1983) model of staggered pricing, we

assume that producers fix the prices of their goods for a random interval of time, with a constant

fraction  ∈ [0 1) of prices remaining unchanged in any given period. Aggregating the producers’
optimal pricing decisions yields a short-run aggregate supply relation between inflation and output

of the form

1− Π−1

1− 
=

µ




¶ −1
1+

(4.1)

where Π ≡ −1 is the gross inflation rate and the variables and are given by the recursive

expressions

 = (1− ) ·  ( ) ·  + 

h
Π−1+1+1

i
(4.2)

 =

 − 1 ·  ( ) ·  + 

h
Π
(1+)
+1 +1

i
 (4.3)

Here  ∈ [0 1) is an exogenous sales tax rate;  ≥ 1 is an exogenous wage markup factor;   1 is
the elasticity of substitution across individual goods; and  ≥ 0 is the elasticity of the function 

with respect to increases in output. The law of motion of the measure of price dispersion is further

given by

∆ = ∆−1Π
(1+)
 + (1− )

Ã
1− Π−1

1− 

! (1+)
−1

 (4.4)

While the optimal intertemporal allocation of households’ expenditures determines period-

output as a function of expectations of future output, inflation and the nominal interest rate, this
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doesn’t constitute a constraint on the policy problem, as the central bank can always choose a

nominal interest rate that satisfies this equation. As a result, the only relevant constraints facing

the policymaker are given by (4.1)—(4.4), describing the necessary connections between the evolution

of aggregate real activity, inflation, and price dispersion. Using (4.1) to substitute for the variable

Π, we can express the resulting restrictions by a system of the form (1.2)—(1.3), where the vector

of endogenous variables is given by  ≡ [∆]
0   is a single function, and  is a pair of

functions. We thus have  = 4 endogenous variables,  = 3 equilibrium restrictions per period,

and  = 1 of these restrictions involves only contemporaneous or past variables. It is also useful to

note that in this model, the functions  take the special form

( ; +1) = ̌( )−  + Φ(+1)

where  ≡ []
0 is a subset of the endogenous variables, and ̌ and Φ are vectors of nonlinear

functions, each with two elements.

4.2 Characterizing the Optimal Target Criterion

By computing the nonlinear FOCs that characterize optimal policy, we show in Appendix E that

an optimal steady state exists, in which the price level remains stable so that Π = Π̄ = 1 and

price dispersion is zero (∆ = ∆̄ = 1). We then log-linearize the nonlinear structural equations and

FOCs around these steady-state values of the endogenous variables, and compute the canonical

decomposition of the matrix pencil ̄− ̄ This allows us to compute our target criterion.

It is easy to verify that the pencil ̄−̄ satisfies Assumption 2. We show in Appendix E that

the minimal degree associated with ̄−̄ is ̃ = 2 It then follows from Lemma 3 that there exist

nonsingular matrices  and  of dimensions 3× 3 and 4× 4 respectively that satisfy

¡
̄− ̄

¢0
= 

⎡⎣  () 0

0 02 −  02

⎤⎦
where  () is the (̃+ 1)× ̃ matrix pencil

 () =

⎡⎢⎢⎢⎣
 0

1 

0 1

⎤⎥⎥⎥⎦
and 02 −  02 is a matrix pencil of dimension 1× 1 with 2 =   1 and  02 = 1
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Given the dimension of 2 2 and the fact that |2|  1 it follows that  = 2 = 1 so that the

model has one inessential variable. Interestingly, while the model involves one predetermined en-

dogenous variable, namely the price dispersion measure ∆ this variable turns out to be inessential

in the model’s linearized dynamics. Hence, while  = 1 in the model, the number of predetermined

variables when the system of equation is written only in terms of “essential” variables is 1 = 0

Since 1 = 0 the general optimal target criterion (3.30) reduces to

 = 0

Given the definition of the variable  in (3.25), the optimal target criterion is backward-looking

0 =
h
1 −−1 −22

i
̂1

that is, a moving average of the current and past essential target gaps

̂1 =
h
− 0

i
−1 (  − ∗ ) 

To obtain the target gaps   − ∗ , we evaluate the second derivatives of  ()   () and the

objective function  () at the steady state. As shown in Appendix E, the optimal target criterion

takes the form

(1− )[ +  ( − −1)] = 0 (4.5)

where  ≡ log( ∗ ) is an “output gap” relative to a target level of output;  ∗ is a function of
the exogenous disturbances implicitly defined by the equation

 (
∗
  1; ) + Θ̄

0̌ ( ∗  ) = 0 (4.6)

where Θ̄ is the steady-state vector of Lagrange multipliers associated with the forward-looking

constraints. In the case that the flexible-price steady-state level of output is efficient,21 then the

zero-inflation steady state level of output ̄ is efficient, and Θ̄ = 0 In this special case,  ∗ is simply

the utility-maximizing level of output given technology, preferences and government purchases at

any point in time (defined by the FOC  (
∗
  1; ) = 0). It also corresponds in this case to the

flexible-price equilibrium level of output, if the distortion factors  and  are set equal to their

steady-state values. More generally,  ∗ is not quite the same as either the efficient level of output

or the flexible-price equilibrium level of output, but is closely related to both of them.

21This would in general require a negative steady-state sales tax  to offset the distortion due to market power on

the part of the monopolistically competitive producers. See Woodford (2003, chap. 6) for further discussion of this

case.
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Condition (4.5) requires that eventually

 + ( − −1) = 0 (4.7)

each period.22 Thus optimal policy can be characterized as a form of “flexible inflation targeting,”

in which deviations of the inflation rate from its optimal long-run value (zero) must at all times be

in proportion to projected changes in the output gap. In Appendix E, we characterize the optimal

value of the coefficient of proportionality  in terms of model parameters. Unless both the degree of

inefficiency of steady-state output and the share of output consumed by the government are large, 

will be a positive coefficient. In this case, the target criterion is similar to that implied by the kind

of linear-quadratic policy problem analyzed by authors such as Clarida et al. (1999). But here,

both the definition of the “output gap” and the weight  to be put on changes in the output gap are

derived from the micro-foundations of the model, rather than an ad hoc quadratic objective function

for the central bank; and the optimal target criterion involves additional transitory dynamics.

5 Concluding Remarks

We have considered a general class of nonlinear rational-expectations models in which policymakers

seek to maximize an objective function. We have proposed a procedure to derive a target criterion

that is: (i) consistent with the model’s structural equations, (ii) strong enough to imply a unique

equilibrium, and (iii) optimal, in the sense that a commitment to adjust the policy instrument at

all dates so as to satisfy the target criterion maximizes the objective function.

Some general remarks are possible on the form of the optimal target criterion (3.30). We have

established quite generally that there is a single composite target variable  such that the target

criterion can be expressed purely in terms of projections for the evolution of this variable. (This

depends, however, on our assumption that policy can vary equilibrium outcomes along only one

dimension per period.)

In general, the target criterion (3.30) has both backward-looking and forward-looking elements.

The degree to which it has one character or the other depends on the degree to which the structural

22 In the case of small initial price dispersion, ∆̂0−1 = O(2) as assumed in Benigno and Woodford (2005), it is
possible to choose the initial lagged Lagrange multipliers in a self-consistent way and obtain a modified policy problem

under which optimal policy will satisfy (4.7) from period 0 onward. However, that method cannot be extended to

deal with non-trivial levels of initial price dispersion (of order O()) without requiring transitory departures of the
left-hand side of (4.7) from its long-run value for most initial conditions, as implied by the target criterion derived

here.
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equations of the model are backward- or forward-looking. When the model’s constraints are purely

forward-looking – or more precisely, when the reduced system of equations written in terms of the

“essential” state variables contains no backward-looking structural relations (3.16), so that 1 = 0

– the criterion (3.30) reduces to

 = 0

In this case the optimal target criterion is necessarily purely backward-looking, i.e., it is a linear

relation between current and past values of the target variables ̂1. This is the case illustrated by

the example in section 4.

If, instead (as is more generally the case), lagged variables enter the structural equations, the

optimal target criterion involves forecasts as well, for a finite number of periods into the future. In

the opposite polar case in which the model’s constraints are purely backward-looking (i.e., they

do not involve expectations) – or at least this is true when the model is written in terms of the

essential variables only, so that 1 = ̃ – then the criterion (3.30) takes the form

+̃ = 0

Since +̃ involves elements of ̂1+ for 0 ≤  ≤ ̃ in this case the optimal target criterion is

purely forward-looking, in the sense that it involves only the projected paths of the target variables

̂1 in current and future periods. In the intermediate cases, the target criterion involves both

forecasts of target variables at least one period in the future and at least one lag of the target

variables (as well as, in general, forecasts from one or more prior periods). The number of periods

that the criterion requires one to look into the future is greater the larger is 1 (and in this sense,

the more backward-looking the model dynamics), and the number of periods from which past values

remain relevant to the target criterion is greater the greater is ̃− 1 (and in this sense, the more

forward-looking the model dynamics).

While we have noted that the target criterion can quite generally be stated in terms of projec-

tions for a single composite target variable , this variable will generally involve the paths (with

differing lags) of all of the “essential” state variables ∗1 However, there is a special case in which

the target criterion need only involve the projections for a small number of economically meaning-

ful variables, regardless of the complexity of the structural model. This is the case in which the

objective function (1.1) is purely quadratic, as assumed in the hypotheses of Lemma 2. While this

is unlikely to be true in a microfounded model in which the objective of policy is taken to be the

maximization of household expected utility, central banks are often interested in policies that are
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optimal from the point of view of some quadratic loss function involving a small number of targets,

though a very complex model of the economy may be used to evaluate how well alternative policies

achieve this objective. In the case that Lemma 2 applies, the composite target variable  is a linear

function of the paths of the  target variables −∗ that appear in the quadratic objective (3.3).
The procedure to derive an optimal target criterion has been illustrated in the context of a

simple nonlinear model, but it can be readily derived in larger empirical models using existing

numerical techniques. The optimal target criterion has been derived here in the context of models

in which policy can vary equilibrium outcomes along only one dimension per period ( = 1) The

setup proposed can however accommodate cases in which policy can vary the equilibrium along

multiple dimensions. In such cases, there would be   1 target criteria to satisfy each period. We

leave the detailed analysis of this general case for future work.
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A Proof of Lemmas and Propositions

A.1 Proof of Proposition 1

Here we show that there exists a unique bounded solution to the system of equations consisting of

the linearized structural equations (2.2)—(2.4) together with the linearized FOCs (2.5)—(2.6). If we

adjoin to these equations the identities

̃ = ̃ (A.1)

̃+1 = ̃+1 (A.2)

then the system consisting of (2.2), (2.5), and (A.1)—(A.2) can be rewritten in matrix form as

̄+1 = ̄ − ̄̄ (A.3)

where  is the 2(+ )-dimensional vector

 ≡

⎡⎢⎢⎣
̃
̃−1

̃+1
̃

⎤⎥⎥⎦ 
̄ is a vector of exogenous disturbances that includes the elements of both ̃ and ̃−1, and

̄ ≡
∙

̄11 ̄12

+ 0

¸
 ̄ ≡

∙ −−1̄ 0
12 0

0 +

¸
(A.4)

where

̄11 ≡
∙
0 ̄

̄0 

¸
= ̄ 0

11 and ̄12 ≡
∙
0 −̄
0 0

¸


Here we use the fact that  is symmetric to obtain ̄11 = ̄ 0
11

In addition to conditions (A.3), the process {} must satisfy (2.3) and (2.6), and thus

 [ −−1] =  [̄ −−1̄] (A.5)

for all   0 where  is the (+ )× 2(+ ) matrix

 ≡
⎡⎣ 2 0 0 0
0 0 0 ̄1
0  0 0

⎤⎦ 
using the notation

2 ≡ [0 −]

for the ( − ) ×  matrix that selects the last  −  elements of any -vector. (The first  − 

rows correspond to conditions (2.6), the next  rows correspond to conditions (2.3), and the final

 rows state that the elements of ̃−1 cannot be affected by surprises in period .)

In period 0 the process must satisfy (2.4) and hence

 0 = 0  (A.6)
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where 0 is a vector of +  initial conditions

0 ≡
⎡⎣ Θ̃0−1

̄1̃0−1 + ̄̃0 − ̄0
̃0−1

⎤⎦ 
all of which are either predetermined or exogenous.

The following lemmas establish useful properties of the matrix pencil ̄ − ̄

Lemma 8 Given Assumptions 2(b) and 3, the matrix pencil ̄ −̄ is regular; that is, its deter-

minant is non-zero for at least some complex .

Proof. The determinant of ̄ − ̄ can be expressed as follows:

det
¡
̄ − ̄

¢
= det

∙
̄11 + −1̄ 0

12 ̄12

 −
¸

= det (−) · det
h¡
̄11 + −1̄ 0

12

¢− ̄12 (−)−1
i

=  (−1)+ · det £̄11 + −1̄ 0
12 + −1̄12

¤
=  (−1)+ · det

∙
0 ̄− −1̄

̄0 − −1̄ 0  + −10 + 

¸
 (A.7)

The matrix pencil ̄ − ̄ is regular provided that its determinant is non-zero for at least some

complex .

Suppose the determinant is instead zero for all  This means that there must exist finite-order

vector polynomials ( ()   ()) such that∙
0 ̄− −1̄

̄0 − −1̄ 0  + −10 + 

¸ ∙
 ()
 ()

¸
= 0 (A.8)

for all  6= 0 and ( ()   ()) are not both equal to zero for all  In addition, the solution
cannot involve  () = 0 For if there exists a function  () ≡ P

=0 
 satisfying (A.8) with

 () = 0 one must have
£
̄0 − −1̄ 0

¤
 () = 0 But this would imply that the function  () ≡P

=0 −
 must satisfy (2.9), violating Assumption 2(b). Hence we must have  () 6= 0Writing

 () ≡P∞
=0 

 (where all but a finite number of the  are zero), the first line of (A.8) implies

that the sequence {} satisfies the hypotheses of Assumption 3. The second line implies that

¡
−1

¢0 £
 + −10 + 

¤
 () = 0

for all  Writing this expression in the form
P+1

 =−(+1) 
  where  is the order of  ()  it

follows that we must have  = 0 for all  In particular, we must have 0 = 0 But 0 is just the
left-hand side of (2.13), so this violates Assumption 3. It follows that det

¡
̄ − ̄

¢
cannot be

zero for all 

It is then possible to factor the polynomial det[̄ − ̄ ] as

2(+)Y
=1

(− ) (A.9)

where for any , the complex numbers  and  are not both equal to zero. Let  be the number of

factors for which  6= 0 and ||  1 There must then be 2+2−  factors for which  6= 0
and || ≤ 1

This implies that the matrices ̄ and ̄ can be decomposed as stated in the following lemma.
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Lemma 9 Given Assumptions 2(b) and 3, there must exist non-singular 2(+)× 2(+) real
matrices ̄  ̄ such that

̄̄̄ =

∙
 0
0 Ω

¸
 ̄̄ ̄ =

∙
Λ0 0
0 2+2−

¸
 (A.10)

Here Ω is a (2+ 2− )× (2+ 2− ) real matrix for which all eigenvalues have modulus less
than or equal to 1 while Λ is an ×  real matrix for which all eigenvalues have modulus less than

1

Proof. Under Assumptions 2(b) and 3, Lemma 8 implies that ̄ − ̄ is a real regular matrix

pencil of dimensions (2+ 2) × (2+ 2)  It follows from Theorem 3 of Gantmacher (1959,

Chap. 12), or its version for a real canonical form proved in Appendix D, that there exist real

invertible matrices ̃  ̄ of dimensions (2+ 2)× (2+ 2) such that

̃̄̄ =

∙
 0

0 ̃

¸
 ̃̄ ̄ =

∙
̃ 0
0 

¸
(A.11)

where ̃ is an invertible matrix of the real Jordan form and ̃ is a real nilpotent matrix of the

Jordan form.

Let us factor the polynomial det
£
̄ − ̄

¤
as in (A.9) and let  (0 ≤  ≤ 2+ 2) be the

number of factors (− ) for which the complex numbers  = 0 while the numbers  are
necessarily nonzero. (Note that since the eigenvalues of ̄ − ̄ are the quantities  these 

factors correspond to the  “infinite” eigenvalues of ̄ −̄ .) The existence of a decomposition of
the form (A.11) implies that the factors of the characteristic polynomial det

£
̄ − ̄

¤
in (A.9)

are the same as those of

det
h
 − ̃

i
· det

h
̃− 

i


Since ̃ is nilpotent, det
h
 − ̃

i
must correspond to the  factors for which the  = 0 and

 6= 0 The matrix pencil  − ̃ is thus of dimensions ×  This implies that the matrix pencil

̃−  is of dimensions (2+ 2− )× (2+ 2− ) and its determinant is the product of the
2 + 2 −  factors (− ) for which the complex numbers  6= 0 (The matrix ̃ has thus

2+2− eigenvalues denoted by  all finite). Among these factors, let there be 2+2−
of them (with 0 ≤  ≤ ) for which  6= 0 and || ≤ 1, so that there are − factors for which
 6= 0 and ||  1 The latter −  factors necessarily have  6= 0 and ||  1.

Recalling that ̃ is in real Jordan from, this implies that it is possible to partition it as∙
̃1 0

0 ̃2

¸
where ̃1 ∈ R(−)×(−) is a block-diagonal matrix with eigenvalues satisfying ||  1  6= 0
and ̃2 ∈ R(2+2−)×(2+2−) is a block-diagonal matrix with eigenvalues satisfying || ≤ 1
 6= 0 Since all eigenvalues of ̃1 are nonzero, the matrix ̃1 is non-singular. Combining the −
factors associated with ̃1 with the  factors associated with the matrix pencil −̃ constitutes

 factors for which  6= 0 and ||  1
It follows that the 2 (+)× 2 (+) real matrix

̄ ≡
⎡⎣  0 0

0 ̃−11 0
0 0 2+2−

⎤⎦ ̃
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is non-singular and satisfies (A.10), where Ω ≡ ̃2 is a (2+ 2− )×(2+ 2− ) block-diagonal
matrix in real Jordan form with blocks corresponding to the factors of (A.9) for which || ≤ 1
This implies that

kΩk ≤ 1 (A.12)

The matrix Λ0 ≡
∙
̃ 0

0 ̃−11

¸
is a  ×  block-diagonal matrix in real Jordan form with  zero

eigenvalues (i.e., the eigenvalues of ̃ corresponding to the  factors (− ) for which  = 0),
and another − eigenvalues corresponding to the roots  6= 0 ||  1 Thus all  eigenvalues
of Λ satisfy ||  1 so that

kΛk  1 (A.13)

Because the inequality (A.13) is strict, there also exist values   1 such that

kΛk  1 (A.14)

In what follows, we shall consider a value of   1 that is small enough for both (1.14) and (A.14)
to hold.

Now let the matrices ̄  ̄ be partitioned conformably with the partitions in (A.10):

̄ =

∙
̄1
̄2

¸ }  rows
} 2+ 2−  rows

 ̄ =
£
̄1 ̄2

¤
(A.15)

where ̄1 and ̄2 are respectively 2 (+)×  and 2 (+)× (2+ 2− ) matrices It follows
from the non-singularity of ̄ and ̄ that the columns of

£
̄ 01 ̄ 02

¤
form a basis for R2(+) as

do the columns of
£
̄1 ̄2

¤
 Hence we can represent  as

 =
£
̄1 ̄2

¤ ∙ 



¸
 (A.16)

where  is of dimension  and  is of dimension 2+2−. The vectors ( ) can be uniquely
re-constructed from the vector , and vice versa.

The decomposition (A.10) defines stable and unstable subspaces for the matrix pencil ̄ −̄

In particular, for any  ≥ 1, let us define the −stable subspace D as the set of values 0 for which

there exists a deterministic sequence {} for  ≥ 0 consistent with this value of 0 , satisfying

̄+1 = ̄ (A.17)

for all  ≥ 0 and such that

lim
→∞  = 0 (A.18)

(In the case that  = 1 we shall call D ≡ D1 simply the stable subspace.) We then have the

following result regarding the dimension of this linear space.

Lemma 10 Given Assumptions 2(b) and 3, let D be the -stable subspace of the matrix pencil

̄−̄ corresponding to a value of  such that (A.14) holds. Then D is a linear space of dimension

, the dimension of the square matrix Λ in (A.10).
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Proof. Under Assumptions 2(b) and 3, Lemma 8 holds, and we can then rewrite (A.10) as:

̄1̄̄1 =  ̄1̄̄2 = 0 (A.19)

̄2̄̄1 = 0 ̄2̄̄2 = Ω (A.20)

and

̄1̄ ̄1 = Λ0 ̄1̄ ̄2 = 0 (A.21)

̄2̄ ̄1 = 0 ̄2̄ ̄2 = 2+2− (A.22)

We observe from these orthogonality relations that the inverse transformations can be written as

̄−1 =
£
̄̄1 ̄ ̄2

¤
 ̄ −1 =

∙
̄1̄

̄2̄

¸
 (A.23)

(Here we use the fact that because ̄ and ̄ are non-singular, we know that unique inverses exist.)

We can then pre-multiply the equations in (A.10) by ̄−1, using (A.23), to obtain:

̄̄2 = ̄ ̄2Ω (A.24)

̄̄1Λ
0 = ̄ ̄1 (A.25)

We can similarly post-multiply the equations in (A.10) by ̄ −1, using (A.23), to obtain:

Λ0̄1̄ = ̄1̄ (A.26)

̄2̄ = Ω̄2̄  (A.27)

Because ̄−1 and ̄ −1 must be non-singular matrices, we observe from (A.23) that ̄̄1 ̄ ̄2

̄ 0̄ 01 and ̄ 0̄ 02 must each be matrices of full rank.
Pre-multiplying (A.17) by ̄2 and using (A.27), we obtain

Ω̄2̄+1 = ̄2̄

for each  ≥ 0 Then using (A.16) to substitute for  on both sides of this equation, and using

(A.22), we obtain

Ω+1 = 

which in turn implies that

 = (
−1Ω)+1+1 (A.28)

for each  ≥ 0 Repeated application of (A.28) implies that

 = (
−1Ω)++ (A.29)

for arbitrary  ≥ 1 Then in the case of any sequence {} satisfying (A.18), (A.12) implies that
the right-hand side of (A.29) converges to zero for large . Hence we must have  = 0 for all  ≥ 0
in the case of any such sequence. Thus  must be a vector of the form  = ̄1 for all .

Pre-multiplying (A.17) by ̄1 and again using (A.16) to substitute for , one can similarly show

that

+1 = Λ
0

for all  ≥ 0 Given a vector 0
, this law of motion can be solved for the complete sequence {}

and hence for the implied sequence {} Since
 = (Λ

0)−000
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for any , it follows from (A.14) that (A.18) must be satisfied. Hence the −stable subspace D

consists of all vectors of the form 0 = ̄10
for some vector 0

. Since ̄ is invertible, this linear

space must be of dimension  (the number of columns of ̄1).

We turn now to a further characterization of the dimension . Since ̄−̄ is a regular pencil,

a pair ( ) determines an eigenvalue  of ̄ − ̄ if det[̄ − ̄ ] = 0 and  −  = 0 (In
particular, a pair ( ) determines an infinite eigenvalue of ̄ − ̄ if det[̄ − ̄ ] = 0 and
 6= 0  = 0) Because of the symmetries in the elements of the matrices ̄ and ̄ , the eigenvalues

of the pencil ̄ − ̄ also satisfy the following symmetry.23

Lemma 11 Given Assumptions 2(b) and 3, the set of values of  =  for which det[̄−̄ ] =
0 is such that if  belongs to the set, so do the numbers −1 and the complex conjugates ̄ and
−1 In particular, if the equation holds for  = 0 (and arbitrary ), then it also holds for  = 0
(and arbitrary ).

Proof. Given Assumptions 2(b) and 3, Lemma 8 implies that the matrix pencil ̄ − ̄ is

regular. Hence the matrix pencil ̄ − ̂ where ̂ ≡ 12̄ is also regular. Let us define the

2 (+)× 2 (+) matrix

 ≡
∙

0 +
−+ 0

¸


and observe that

̄ 0̄ = ̂ 0̂

so that the transposed matrix pencil (̄ − ̂)0 is symplectic. It follows that the generalized
eigenvalues of the transposed pencil (̄ − ̂)0 are symmetric with respect to the unit circle (see
Theorems 4 and 5 of Pappas, Laub and Sandell, 1980): if  ∈ C is a generalized eigenvalue of the
real matrix pencil (̄ − ̂)0, then so are −1 and the complex conjugates ̄ −1 In particular,
if  = 0 is an eigenvalue of (̄ − ̂)0 so is  =∞

Since det[̄ − ̂ ] = det[̄ 0 − ̂ 0] for all  it follows that if  ∈ C is an eigenvalue of

(̄ − ̂), then so are −1 and the complex conjugates ̄ −1 Moreover, det[̄ − ̂ ] = 0 if
and only if det[̄ − 12̄ ] = 0 Hence  is a generalized eigenvalue of (̄ − ̄) if and only if
−12 is a generalized eigenvalue of the transformed pencil (̄ − ̂). It then follows that −1
̄ and −1 must also be generalized eigenvalues of (̄ − ̄)

Lemma 12 Given Assumptions 1(b), 2(b) and 3, the dimension of the square matrix Λ in the
decomposition (A.10) must be exactly  =  +  Hence the matrix pencil ̄ − ̄ has exactly

+  generalized eigenvalues satisfying ||   and another +  generalized eigenvalues (some

of which may be infinite) satisfying ||  1 and the stable subspace D is of dimension +  The

dimension of the square matrix Ω is also +  and this matrix satisfies

kΩk   (A.30)

Proof. Assumption 1(b) implies that for any initial conditions close enough to consistency with the

optimal steady state, there must exist a solution to the first-order conditions (for the deterministic

23This demonstration that the eigenvalues come in “reciprocal pairs” extends to our environment a standard result

in the theory of linear-quadratic optimal control (e.g., Hansen and Sargent, 2010, chap. 8).
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case in which  = ̄ at all times) in which (1.14) holds. It follows that for arbitrary initial conditions

0  there must be a sequence {} satisfying the linearized FOCs (A.17) for all  ≥ 0 such that

0 is consistent with (A.6), and such that {} is a bounded sequence.24 It is then furthermore
possible to choose a   1 (possibly slightly smaller than the  referred to in Assumption 1(b))
such that (A.18) is satisfied. For a small enough choice of   1, (A.14) must hold as well. Hence
there must exist   1 for which (A.14) holds, and such that for any initial conditions 0 , there
exists a vector 0 in the −stable subspace D consistent with (A.6).

It follows from our characterization of the −stable subspace in the proof of Lemma 10 that
there must exist a vector 0

such that

[̄1] 0
= 0  (A.31)

It is easily seen that any values for the +  elements of 0 can be arranged through a suitable

specification of the  −  elements of Θ̃0−1 the  elements of ̄0  and the  elements of ̃0−1
Hence the right-hand side of (A.31) can be any element of R+ Then in order for a solution to

exist for arbitrary initial conditions, it is necessary that

rank ̄1 = +  (A.32)

This requires that  ≥ + 

We further note that the decomposition (A.10) implies that the generalized eigenvalues of the

pencil ̄ −̄ consist of the 2+2−  eigenvalues  of the matrix Ω and the reciprocals of the
 eigenvalues  of the matrix Λ Lemma 10 implies that for each eigenvalue  of Λ  must also
be a generalized eigenvalue of the pencil ̄ − ̄ ; and since | |  1 this must be a generalized
eigenvalue with modulus less than  and therefore an eigenvalue of Ω rather than the reciprocal
of any eigenvalue of Λ Hence for each eigenvalue  of Λ  must be an eigenvalue of Ω This
requires that Ω be of at least the dimension of Λ and hence that  ≤ +  Therefore  = + 

exactly. The matrix Ω is of dimension +  and its eigenvalues all satisfy ||   which implies

(A.30).

Finally, it follows that [̄1] must be a non-singular square matrix, so that (A.31) can be solved
for 0

for any specification of the initial conditions 0 . Since the largest eigenvalue of Λ must have
a modulus strictly less than 1 any initial condition of the form 0 = ̄10

gives rise to a sequence

{} satisfying (A.18) for  = 1. Hence this linear space of dimension  +  corresponds to the

stable subspace.

In the proof of Lemma 12, it has already been established that for any initial conditions 0 

there exists a deterministic solution {} to the linearized FOCs that converges exponentially to
the steady state for large . This result can then be directly extended to the case of bounded

fluctuations in the exogenous disturbances {̃} yielding the result stated in the proposition.
Given a bounded stochastic process {̃} for the exogenous disturbances and a vector 0 of

initial conditions, we are interested in stochastic processes {} such that (i) {} is bounded; (ii)
(A.3) is satisfied for all  ≥ 0; (iii) (A.5) is satisfied for all   0; and (iv) 0 satisfies (A.6).

Pre-multiplying (A.3) by ̄2 we can show as in the proof of Lemma 10 that

Ω̄2̄+1 = ̄2̄ − ̄2̄̄

or equivalently that

[( −Ω−1)̄2̄] = ̄2̄̄

24Note that convergence in the exact nonlinear dynamics only implies that the sequence must not explode in the

linearized dynamics, since the rate of convergence might asymptotically decrease to zero.
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Using (A.16) to substitute for  this can alternatively be written

[( −Ω−1)] = ̄2̄̄ (A.33)

Because of (A.30), the operator  − Ω−1 is invertible on the linear space of bounded processes
{}, so that for any disturbance process such that ||̄||  ∞ (A.33) has a unique solution such

that |||| ∞ given by

 = [( −Ω−1)−1̄2̄̄] (A.34)

Similarly, pre-multiplying (A.3) by ̄1 and using (A.16) to substitute for  yields

+1 = Λ
0 − ̄1̄̄ (A.35)

Using (A.16) to substitute for  in (A.5), and shifting the time index by one period, yields

̄1 [+1 −+1] =  [̄ −−1̄]− ̄2 [+1 −+1]

for each  ≥ 0 Since ̄1 is an invertible square matrix (as shown in the proof of Lemma 12),

this can be solved uniquely for +1. Substituting expression (A.35) for the conditional expectation

+1 in this equation, and the solution (A.34) for both +1 and its conditional expectation, we

obtain a law of motion of the form

+1 = Λ
0 + +1 (A.36)

for all  ≥ 0 where {} is a process satisfying ||||  ∞ that has been uniquely determined as a

function of the evolution of the exogenous disturbances.

Finally, using (A.16) to substitute for 0 in (A.6) we obtain

̄10
= 0 − ̄20 

Using the solution (A.34) to substitute for 0 in this equation, the invertibility of ̄1 implies

that this equation has a unique solution for 0
for any specification of the initial conditions 0 and

the process for the exogenous disturbances. Given this initial condition for 0
 the law of motion

(A.36) can then be integrated forward, yielding a unique solution for the evolution of {} for all
 ≥ 0 It follows from (A.14) and the fact that ||||  ∞ that this solution will satisfy ||||  ∞

Our solutions for the processes { } then imply a unique solution for the process {} using
(A.16), and the bounds satisfied by the two solutions imply that |||| ∞ as well. Hence there is

a unique solution satisfying this bound. QED.

A.2 Proof of Lemma 2

Using the definition of  and the fact that the matrix is symmetric, we may rewrite the objective

function (3.3) as

 (; ) = −
1

2

£
00 − 2∗ ()00 + ∗ ()

0∗ ()
¤

so that

1 (; ) = − £0 − ∗ ()
0¤0 (A.37)

1
£
(1 (; ))

0¤ = −0

2
£
(1 (; ))

0¤ =  [∗ ()] 
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The fact that the targets ∗ () are achievable implies that in steady state, 1
¡
̄ ̄
¢
= 0 using

(3.4) and (A.37). It then follows from (1.13) that

̄0
¡
̄ − ̄

¢
= 0

Assumption 2(b) then implies that ̄ = 0 so that   and  () reduce to

 = −0  = 0  () = 
£
∗

¡
̄
¢¤ · 

The target variables and target values are then given by

  = 0̃ =  ( − ̄) 

∗ = 
£
∗

¡
̄
¢¤ · ̃

where ̄ ≡ 0̄ Performing a first-order approximation to ∗ ()  we obtain

∗ ≡ ∗ () = ∗
¡
̄
¢
+
£
∗

¡
̄
¢¤ · ̃ +O(2)

so that, using (3.4), we have £
∗

¡
̄
¢¤ · ̃ = ∗ − ̄ +O(2)

Using this, we can express the “target gaps”   − ∗ as

  − ∗ =  ( − ̄) + (∗ − ̄) +O(2) =  ( − ∗ ) +O(2)

A.3 Proof of Lemma 3

The fact that the pencil ̄− ̄ is of rank    implies that the columns are linearly dependent,

i.e., that there exists  () such that £
̄− ̄

¤
 () = 0 (A.38)

for all  though by Assumption 2,  () is of order greater than zero. Let 1 ≥ 1 be the minimal
order of solution  () that exists to (A.38). (A solution of finite order 1 necessarily exists.) Then
Theorem 4 of Gantmacher (1959, chap. 12) implies that the pencil ̄− ̄ is strictly equivalent to

a pencil of the form "
1 ()

0 0

0 
(1)
2 − 

(1)
2

#
where 

(1)
2 − 

(1)
2 is a pencil for which the equation

[
(1)
2 − 

(1)
2 ] ̂(1) () = 0 (A.39)

has no solution of order less than 1

If (A.39) nonetheless has a nonzero solution of minimal order 2 ≥ 1 then Theorem 4 of

Gantmacher can be applied again to the pencil 
(1)
2 −(1)2  Proceeding in this way, one eventually

transforms the pencil ̄−̄ into a pencil of the form shown in (3.6), where the sequence of indices
satisfies

 ≥  ≥ 2 ≥ 1 ≥ 1
and [2 − 2] is a pencil for which the equation

[2 − 2] ̂ () = 0
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has no nonzero solution, i.e., the columns are linearly independent.

By the same argument as in the proof of Lemma 4, Assumption 2 implies that there is also no

vector ̂ () 6= 0 such that
̂ ()0 [2 − 2] = 0

i.e., the rows of the pencil are also linearly independent. Hence [2 − 2] must be a square pencil
of some dimension ×  (Note that it is possible that  = 0 i.e., that 2 and 2 are null matrices.)

Adding up the columns of the matrix in (3.6), one observes that

X
=1

 +  = 

Adding up the rows, one similarly observes that

X
=1

( + 1) +  = 

from which it follows that the number of  blocks must equal  = − 

This theorem implies that there exist nonsingular square matrices   of dimensions × and

× respectively that satisfy (3.6).

A.4 Proof of Lemma 4

There is no vector ̂2 () 6= 0 such that ̂2 ()0 [2 − 2] = 0 for all  For if there did, the vector

 () = −1
∙

0
̂2 ()

¸
6= 0

would satisfy (2.9), and this would violate Assumption 2. This implies that the pencil 2 − 2
must be of rank  which (since it is a square pencil of dimension × ) implies that it is a regular

pencil.

It follows from Theorem 3 of Gantmacher (1959, Chap. 12), or its version for a real canonical

form proved in Appendix D, that 2 − 2 can be reduced to a strictly equivalent pencil of the

form ∙
 − ̂0 0

0 ̂ 0 − −

¸
(A.40)

where ̂0 ∈ R× (0 ≤  ≤ ) is a nilpotent matrix of the Jordan form (i.e., with ones on the first

super diagonal and zeros everywhere else), and ̂ 0 ∈ R(−)×(−) is a block-diagonal matrix of the
real Jordan form. We can without loss of generality arrange the Jordan blocks of ̂ 0 as

̂ 0 =
∙
̂ 0
11 0
0  0

¸
where the invertible matrix ̂11 contains the eigenvalues with modulus greater than or equal to 

and  contains only eigenvalues with modulus less than . Premultiplying the pencil (A.40) by

the invertible block-diagonal matrix ⎡⎣  0 0

0 (̂ 0
11)
−1 0

0 0 −2

⎤⎦
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yields a strictly equivalent matrix pencil of the form (3.20), where all eigenvalues of

0 =
∙
̂0 0

0 (̂ 0
11)
−1

¸


have modulus less than or equal to −1 and all eigenvalues of  have modulus less than . It

remains only to determine the dimensions of  and 

The existence of a decomposition of the form (3.20) implies that the factors of the characteristic

polynomial  ( ) defined in Assumption 4 are the same as those of

det
£
 − 0

¤ · det £ 0 − 
¤


This implies the existence of a factorization of the form (3.12), where the {} are the eigenvalues
of  and the {} are the eigenvalues of  It follows that  must be of dimension 2 × 2 and 

must be of dimension ( − 2)× ( − 2)  Finally, since by Assumption 4(b), ||  1 for all  all
eigenvalues of  must have modulus strictly smaller than 1

A.5 Proof of Proposition 2

Premultiplying (3.15) by  0
2 yields the pair of equations

1+1 = 01 + 0
21Γ2̃ (A.41)

 02+1 = 2 + 0
22Γ2̃ (A.42)

using the decomposition (3.20), defining

 ≡
∙
1
2

¸
≡ ¡−12 ¢0 ∗2 (A.43)

and partitioning  0
2 ≡

∙
 0
21

 0
22

¸
conformably with the partition of 

Because all eigenvalues of  0 have modulus less than , and {̃} is bounded for all dates
 ≥ 0− 1, there is a unique process {2} consistent with (A.42) and such that ||2|| ∞ namely

2 = −
∞X
=0

( 0) 0
22Γ2̃+  (A.44)

Then in any period , given the past, current and expected future values of the exogenous

disturbance process, and given the lagged expectations of 2−1∗2 equation (3.17) determines
the value of  0

12
∗
2 while equation (A.44) determines the value of 2 and hence of 

02 We
then have a system of equations of the form∙

 0
1£

0 −2
¤
 0
2

¸
2

∗
2 =

∙
 0
12

∗
2

 02

¸
to solve for 2

∗
2 where all elements of the matrix on the right-hand side have been computed.

Since the matrix on the left-hand side is invertible by Assumption 5, this system has a unique

solution for 2
∗
2 Using this solution, we can in turn solve for

1 = [ 0]  0
22

∗
2
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Combining this solution for 1 with (A.44), we have a unique solution for the entire vector 

given values of 2−1∗2 and the evolution of the exogenous disturbances. And given the value
of  in any period, equations (A.41) and (A.42) uniquely determine the values of  [1+1] and
 [

02+1] respectively. This allows us to uniquely determine

2
∗
2+1 = −1

2

∙
1+1

 [
02+1]

¸


Thus starting from given initial conditions 20−1∗20  we can uniquely solve for 0  use this to
uniquely solve for 20

∗
20+1

 use this to uniquely solve for 0+1 and so on recursively, eventually

obtaining a unique solution for the entire process {}  and hence a unique solution for the entire
process {∗2}  using the relation ∗2 = 02

This solution {∗2} is the only solution such that ||∗2||  ∞ if any solution exists. But one

easily verifies that it is indeed such a solution. By construction, (3.17) is satisfied each period, and

also both (A.41) and (A.42), which suffice to imply that (3.15) is satisfied each period. Moreover,

the fact that all eigenvalues of  have modulus less than 1 implies that the process {} constructed
in this way satisfies ||||  ∞ so that the associated process {∗2} satisfies ||∗2||  ∞ Hence all

conditions for a solution are satisfied.

A.6 Proof of Lemma 5

Suppose that (3.2) holds for any period   0 and suppose that Assumption 2 holds. Lemma 3

then implies that there exist matrices  that define the decomposition (3.6), i.e., a decomposition

of the form (3.10). Assumption 4 then allows us to decompose conditions (3.2) into separate

subsystems as well. It follows from (3.11) that∙
̂1
̂2

¸
= 

∙
 01 0
0  02

¸" ¡
−11

¢0
0

0
¡
−12

¢0 # ∙ ̃1
̃2

¸

=

∙
1 0 2 0
0 1 0 2

¸" ¡
−11

¢0
̃1¡

−12
¢0
̃2

#
so that

̂1 =
£
1 0

¤ ¡
−11

¢0
̃1 +

£
2 0

¤ ¡
−12

¢0
̃2 (A.45)

̂2 =
£
0 1

¤ ¡
−11

¢0
̃1 +

£
0 2

¤ ¡
−12

¢0
̃2 (A.46)

Equations (A.45) and (A.46) respectively imply that

̂1 −−1̂1 =
£
1 0

¤ ¡
−11

¢0 ¡
̃1 −−1̃1

¢
(A.47)

̂2 −−1̂2 =
£
0 1

¤ ¡
−11

¢0 ¡
̃1 −−1̃1

¢
 (A.48)

Recall from Assumption 4 that both
£
1 2

¤
and

£
1 2

¤
are invertible matrices, and

define the matrices 1 2 1 and 2 as in (3.13). Note that it follows from these definitions that

11 = 1  12 = 0 21 = 0 22 = ̃−1 (A.49)

11 = 2  12 = 0 21 = 0 22 = −2  (A.50)

Premultiplying (A.47) by 2 yields (3.21); premultiplying (A.48) by2 yields (3.22). Hence (3.21)-

(3.22) must hold for all   0
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Conversely, suppose that (3.21)-(3.22) hold in some period   0 Using (A.45), (3.21) implies

that £
 0

¤ ¡
−12

¢0 ¡
̃2 −−1̃2

¢
= 0

Similarly, using (A.46), (3.22) implies that£
0 

¤ ¡
−12

¢0 ¡
̃2 −−1̃2

¢
= 0

Together, these conditions imply that¡
−12

¢0 ¡
̃2 −−1̃2

¢
= 0

which implies (3.2). Hence (3.2) must hold for all   0

A.7 Proof of Proposition 3

In order to prove Proposition 3, we make use of the following preliminary result.

Lemma 13 Suppose that there exist matrices  that define a decomposition of the form (3.10),

and that Assumptions 2, 4 and 5 hold. Then the  ×  matrix∙
2£

2 0
¤
2

0
2

¸
(A.51)

is invertible.

Proof. Let  be an arbitrary vector of length , partitioned as in (A.43). By Assumption 5,

knowing the values of the vectors  0
12

0
2 and [0 ] 

0
22

0
2 allows one to reconstruct the entire

vector 2
0
2 and hence all elements of

 0
22

0
2 =

∙
1

 02

¸


Since the elements of [0 ]  0
22

0
2 =  02 provide information only about the elements of 2, it

must be that each of the 2 independent directions of variation of the elements of 1 affects the

elements of  0
12

0
2 in an independent direction. Thus Assumption 5 implies that the 2 × 2

matrix

Ξ ≡  0
12

0
2

∙
2
0

¸
(A.52)

is invertible.

Next, let ̂ be another arbitrary vector of length , and let

̌ ≡ −1
2 ̂ ≡

∙
̌1
̌2

¸


One observes that

2
0
2̂ =

£
2

0
22

¤
̌ =

∙
 0
0 

¸
̌ =

∙
̌1
̌2

¸


Then in the case that

̂ = 1  (A.53)

for some vector  of length 2 it follows that ̌1 = Ξ
0 where Ξ is defined in (A.52).
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Because Ξ (and hence Ξ0) is invertible, if for any ̂ of the form (A.53), ̌1 = 0, it follows that
 = 0 and hence that ̂ = 0 But it follows from (A.50) that a vector ̂ has a representation

of the form (A.53) if and only if 2̂ = 0 Hence if any vector ̂ satisfies both 2̂ = 0 and
̌1 = 0 it must satisfy ̂ = 0 Alternatively, if it satisfies both the linear restrictions 2̂ = 0
and [ 0]2

0
2̂ = 0 it must be a zero vector. It follows from this that the matrix (A.51) must be

invertible.

We may now proceed with the proof of Proposition 3. Let {̂2} be any process satisfying
||̂2||  ∞ Because (3.6) is a decomposition of the form (3.10), Lemma 4 guarantees that if

Assumption 2 and 4 are satisfied, then there exist non-singular matrices 2 2 such that (3.20)

holds. Then premultiplying (3.9) by 2 and using (3.20) yields

̌1 = ̌1+1 − ̌1 (A.54)

̌2+1 = (−1)̌2 + ̌2 (A.55)

where

̌ ≡
∙
̌1
̌2

¸
≡ −1

2 ̂2

∙
̌1
̌2

¸
≡ 2̂2

Because all eigenvalues of  have modulus less than 1 (A.54) has a solution for {̌1} such that
||̌1|| ∞ given by

̌1 = −
∞X
=0

()̌1+  (A.56)

Then in any period , the value of

̌1 = [ 0]2
0
2̂2

is given by (A.56), while the value of 2̂2 is given by (3.22). Thus the values of both ̌1 and

2̂2 are given as functions of variables that are exogenous and/or predetermined in period  But

Lemma 13 implies that the mapping from the linear space of vectors ̂ to the values of ̌1 and2̂

is an isomorphism, so this system of equations can be uniquely solved for the value of ̂2We thus

obtain a unique solution for ̂2 as a linear function of −1̂2 and the ̌1+ for  ≥ 0
This solution for ̂2 allows us to solve for ̌2 and substituting this into (A.55) yields a value

for ̌2+1 as a linear function of −1̂2 ̌2 and the ̌1+ for  ≥ 0 The solution (A.56)
implies that

̌1+1 = −
∞X
=0

()̌1++1

Hence we can solve for the complete vector ̌+1 as a linear function of −1̂2 and the exogenous
state. Alternatively, we can solve for ̂2+1 = 2̌+1 as a linear function of −1̂2 and the
exogenous state. Thus starting from an initial condition 0−1̂20  we can solve for ̂20 and
0̂20+1; using this solution we can solve for ̂20+1 and 0+1̂20+2; and so on recursively.

Thus it is possible to solve for the complete evolution {̂2} for all  ≥ 0 given the initial

condition 0−1̂20 and the evolution of the exogenous state. By construction (A.54) and (A.55)
are satisfied for each  ≥ 0 which implies that (3.9) is satisfied for each  ≥ 0 Likewise, (3.22) is

satisfied for each   0 by construction. Thus we obtain a process {̂2} that satisfies both (3.9)
for all  ≥ 0 and (3.22) for all   0 Moreover, because all eigenvalues of 

−1 have modulus less

than 1 (A.55) implies that the constructed solution satisfies ||̂2|| ∞
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A.8 Proof of Lemma 6

Consider the case of unidimensional policy so that  =  = 1 and thus  = ̃

Suppose that (3.8) hold for all  ≥ 0 The first element of the vector of FOCs (3.8) can be

written

−1̂(1)1 = ̂
(1)
1 (A.57)

while the -th element (for 2 ≤  ≤ ̃) can be written as

−1̂()1 = ̂
()
1 −̂

(−1)
1+1  (A.58)

This system of equations can be solved recursively for the {̂()1} yielding

̂
()
1 = 

£
Γ
¡
−1

¢
̂1
¤

(A.59)

for each 1 ≤  ≤ ̃ where Γ () is the -th row of the matrix polynomial Γ ()  This gives the
vector of conditions (3.26).

The (̃+ 1)-st element of the vector of FOCs (3.8) states that

̂
(̃)
1+1 = ̂

(̃+1)
1  (A.60)

Substituting solution (A.59) for ̂
()
1 , we obtain

̂
(̃+1)
1 = 

£
−1Γ̃

¡
−1

¢
̂1
¤

(A.61)

which implies (3.27). Here we use the fact that

 ()0 = (−)̃ £0̃+1 − −1Γ̃
¡
−1

¢¤
where 0̃+1 is a 1× (̃+ 1) vector of the form 0̃+1 ≡ [00 1]  Thus both (3.26) and (3.27) must
hold in all periods  ≥ 0

To prove the converse, suppose that the processes {̂1} and {̂1} satisfy (3.26) and (3.27)
in all periods  ≥ 0 Condition (3.26) implies (A.59) for each 1 ≤  ≤ ̃ which in turn implies

condition (A.57), and condition (A.58) for each 2 ≤  ≤ ̃ These are just the first ̃ elements of

the vector of FOCs (3.8). Condition (3.27) implies (A.61), which together with the case  = ̃ of

(A.59) implies (A.60). This is just the (̃+ 1)-st element of the vector of FOCs (3.8). Thus the
entire vector of conditions (3.8) must hold in each period  ≥ 0.

A.9 Proof of Proposition 4

To prove Proposition 4, it will be useful to appeal to the following Lemma.

Lemma 14 Suppose that the processes {̂1} and {̂1} satisfy (3.26) for all  ≥ 0 Then for any

1 ≤  ≤ ̃ and any  ≥ 0

+−1 −−1+−1 = −(−)−
h
̂
()
1 −−1̂

()
1

i
 (A.62)

where ̂
()
1 is the -th element of the vector ̂1 When  = 0 the expression 0−1̂

()
10

is taken to

refer to the historical expectations 0−1[Γ(−1)̂10 ].
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Proof. Using the definition (3.25) we have

+−1 −−1+−1 = 

h
̂
(1)
1+−1 − −1̂ (2)1+−2 + +

¡−−1¢−1 ̂ ()1i
−−1

h
̂
(1)
1+−1 − −1̂ (2)1+−2 + +

¡−−1¢−1 ̂ ()1i
=

¡−−1¢−1 ©

£
Γ
¡
−1

¢
̂1
¤−−1

£
Γ
¡
−1

¢
̂1
¤ª

= −(−)−
h
̂
()
1 −−1̂

()
1

i


Here, the first equality uses the definition of  ()0  and the fact that ̂1− = −1̂1− for any
 ≥ 1 The second equality uses the definition of Γ ()  denotes by Γ () its -th row. The third
equality uses (3.26). In the case that  = 0 the replacement of −1

£
Γ
¡
−1

¢
̂1
¤
by −1̂

()
1

is justified under the definition of 0−1̂
()
10

proposed above.

We may now proceed with the proof of Proposition 4. Condition (3.8) implies that (3.26) and

(3.27) must hold for all  ≥ 0, using Lemma 6. The fact that (3.26) holds implies that (A.62) must

also hold for all  ≥ 0 using Lemma 14.

Let us first consider any period  ≥ 0 + ̃− 1 Then

+1 =

̃−1X
=1

(+1−+1 −−+1) +−(̃−1)+1

=

̃−1X
=1

(−)−(1+)
h
̂
(1+)
1+1− −−̂

(1+)
1+1−

i
 (A.63)

Here the second line uses (A.62) to replace the first term on the right-hand side of the first line,

and uses (3.27) to eliminate the second term.

Given Assumption 6, (3.21) implies that the entire vector
£
̂1 −−1̂1

¤
can be reconstructed

from its first 1 elements, using

̂1 −−1̂1 =
∙
1
Φ

¸ £
̄1 −−1̄1

¤
(A.64)

for any  ≥ 0 + 1 where ̄1 is the vector consisting of the first 1 elements of ̂1 Using (A.64)
to substitute for the terms on the right-hand side of (A.63), we obtain

+1 =

̃−1X
=1

− (−)−(1+) 0
£
̄1+1− −−̄1+1−

¤
=

̃−1X
=1

(−)−(1+) 0+1−

= (−)−1
̃−1X
=1

0Ω

 (A.65)

= (−)−1  [ΦΩ] 
which establishes (3.30). Here we use the notation 0 for the -th row of Φ and the notation Ω


 for

the -th column of Ω In addition, the second line uses Lemma 14 to substitute for the elements
of ̄1+1− −−̄1+1− , and definition (3.28), while the third line uses the definition of Ω
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Let us now consider any period 0 ≤   0 + ̃− 1 Then

+1 =

−0X
=1

(+1−+1 −−+1) +0+1

= (−)−1
−0X
=1

0Ω

 +0+1  (A.66)

where the second line is obtained using the same reasoning as was used to derive (A.63) and (A.65).

For the given historical expectations 0−1 let Ξ10−1 be given by (3.31) where 0−1 is the
vector whose -th element is given by (3.32). With this definition, (3.23) together with (3.8) and

Lemma 6 imply that

2
£
̂10

¤
= 20−1

£
̂10

¤
+ 220−1

Premultiplying by  −122 and noting that Φ ≡ − −122 21 this yields

[−Φ ̃−1 ]
£
̂10 −0−1̂10

¤
= 0−1

which can alternatively be written

[Φ (−̃−1)]0 = 0−1 (A.67)

using Lemma 14 and definition (3.28).

For any 1 ≤  ≤ ̃− 1 the -th row of (A.67) can be written

0̄0 − (−)1+ [00+1+−1 −0−10+1+−1]

= (−)1+ 0−10+1+−1 −
̃−1−X
=1

(−)− 0+̄0−

or alternatively,

(−)1+ 00+1+−1 =
̃−1−X
=0

(−)− 0+̄0− =
̃−1X
=

(−) 0Ω0+−1

Thus if we let  = + 1− 0 we find that

0+1 = (−)−1
̃−1X

=−0+1
0Ω


 

Using this to substitute for the final term on the right-hand side of (A.66), we obtain

+1 = (−)−1
̃−1X
=1

0Ω

 

so that (3.30) is satisfied for each 0 ≤   0 + ̃ − 1 Since we have already shown that (3.30)

holds for any  ≥ 0 + ̃− 1 it follows that (3.30) is satisfied for each  ≥ 0
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A.10 Proof of Lemma 7

For period 0 conditions (3.33) and (3.34) hold by assumption, given the initial condition (3.23)

and the initial Lagrange multipliers (3.31) Next, (3.8) implies ̂1 = [Γ(
−1)̂1] at all dates

 ≥ 0, by Lemma 6. Using this, conditions (3.21) in turn imply that

2 ̂1 = 2−1̂1 = 2−1[Γ(−1)̂1]

for all   0 Equation (3.33) thus holds in all period  ≥ 0 where Ξ1−1 is given by (3.34) in
period  = 0 and

Ξ1−1 = 2−1[Γ(−1)̂1]

for all   0 To prove that (3.34) holds at all dates, we need to show that 22−1 = 0 for all
periods   0

Given the initial Lagrange multipliers Ξ10 defined in (3.31) and using Proposition 4 implies
that (3.30) must hold at all dates  ≥ 0 Condition (3.30) then implies that for any  ≥ 0 and any

1 ≤  ≤ ̃− 1

+1+−1 =  [+−1+1+−1] = (−)−1 tr[ΦΩ+−1]

= (−)−1 

h
(−)−1 01̄+−1 +   + (−)−(̃−1) 0̃−1̄++1−̃

i
= (−)−1

h
(−)− 0̄ +   + (−)−(̃−1) 0̃−1̄++1−̃

i
= (−)−(1+)

̃−1−X
=0

(−)− 0+̄− (A.68)

Using this to substitute for −1+1+−1 in (3.32), we obtain



−1 = 0−1̄ = 0

for all   0 and any 1 ≤  ≤ ̃− 1 It follows that −1 = 0 and hence that 22−1 = 0 for all
  0.

A.11 Proof of Proposition 5

Proposition 4 implies that fulfillment of the target criterion is a necessary condition for fulfillment

of the FOCs, and hence a necessary condition for optimality, in the case of a problem involving any

initial conditions 0−1 and initial Lagrange multipliers Ξ10−1 defined by (3.31). But consistency
of the paths of the target variables with the target criterion (3.30) is also sufficient for satisfaction

of the FOCs, as established by the following lemma.

Lemma 15 Suppose that Assumption 6 holds and that the evolution of the target variables {̂1}
for  ≥ 0 satisfies the target criterion (3.30) for all  ≥ 0 given the initial conditions 0−1 Then
there exists a Lagrange multiplier process {̂1} for  ≥ 0 that satisfies conditions (3.8) for all

 ≥ 0 (3.21) for all   0 and the initial condition (3.23), where the vector Ξ10−1 is defined by
(3.31).

Proof. Let the process {̂1} be given by (3.26) for all  ≥ 0 Note that if 1  ̃ satisfaction of

(3.30) for all  ≥ 0 implies that

+̃ = [+̃−1+̃] = (−)−1tr[ΦΩ+̃−1 ] = 0
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for any  ≥ 0 using the fact that ̄+ = 0 for any  ≥ 0 and any  ≥ 1 But if 1 = ̃ Ω is a
null matrix, and (3.30) also implies that +̃ = 0 in this case as well. Hence the target criterion
(3.30) implies condition (3.27). Then by Lemma 6, the fact that (3.26) and (3.27) hold for all  ≥ 0
implies that (3.8) holds for all  ≥ 0

Recall from (A.68) that condition (3.30) also implies

+1+−1 = (−)−(1+)
̃−1−X
=0

(−)− 0+̄−

for any  ≥ 0 and any 1 ≤  ≤ ̃− 1 It follows that for all   0 and all 1 ≤  ≤ ̃− 1:

+1+−1 −−1+1+−1 = (−)−(1+) 0̄

so that

 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−) [ −−1]
...

(−)1 [+1−1 −−1+1−1]
(−)1+1[+1 −−1+1 ]

...

(−)̃[+̃−1 −−1+̃−1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

∙
1
Φ

¸
̄

Premultiplying by 2 implies in turn that

2 = [21 22]

∙
1
Φ

¸
̄ = 0

for any   0 For the process {̂1} given by (3.26) for all  ≥ 0 we can apply Lemma 14 to

express  as

 = −
£
̂1 −−1̂1

¤
for all  ≥ 0 Since 2 = 0 for any   0 equation (3.21) must hold for all   0

To show that the initial condition (3.23) also holds, where the vector Ξ10−1 is defined by (3.31),
note that (A.68) implies

(−)1+ 00+1+−1 =
̃−1−X
=0

(−)− 0+̄0−

for any 1 ≤  ≤ ̃− 1 Subtracting 
0
̄0 + (−)1+ 0−10+1+−1 on both sides (where again

expectations taken at date 0 − 1 denote historical forecasts) yields

−0̄0 + (−)1+ [00+1+−1 −0−10+1+−1] = −0−1
where 


0−1 is the -th element of the vector 0−1 defined in (3.32). Since the previous expression

holds for any 1 ≤  ≤ ̃− 1 we may rewrite it in matrix form as

[−Φ ̃−1 ]0 = −0−1

using definition (3.28). Using again definition (3.28) and Lemma 14 we can equivalently rewrite

this as

[−Φ ̃−1 ]
£
̂10 −0−1̂10

¤
= 0−1
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or as

2̂10 = 20−1
£
̂10

¤
+ 220−1

after premultiplying on both sides by 22. Using (3.26) to replace ̂10 with 0

£
Γ(−1)̂10

¤
on

the right-hand side yields the initial condition (3.23), where the vector Ξ10−1 is defined by (3.31).

The Lagrange multiplier process referred to in the lemma is given by (3.26). Since (3.30) implies

(3.27), it follows directly from Lemma 6 that these multipliers satisfy (3.8) for all  ≥ 0 It then

remains only to show that (3.21) and (3.23) are satisfied as well, by reversing the steps used to

derive (3.30) from these conditions in the proof of Proposition 4.

Combining Lemma 15 with Proposition 3, one sees that in the case of any bounded process {̂ }
consistent with the target criterion (3.30) for all  ≥ 0 there necessarily exists a bounded multiplier

process {̂} for  ≥ 0 that satisfies conditions (3.1) for all  ≥ 0 and (3.2) for all   0, and

that is consistent with given initial multipliers Θ̃0−1 as long as the vector Θ̃0−1 is consistent with
(3.31). Moreover, since by Proposition 1(a), there is a unique bounded solution to these equations

consistent with the given initial multipliers, there must be a unique bounded process {̂ } consistent
with the target criterion (3.30) for all  ≥ 0 (If there were multiple paths {̂ } consistent with
the target criterion, each of these would have to correspond to a different solution to the FOCs

consistent with the same initial multipliers (3.31).25 But this would contradict Proposition 1(a).)

Hence the target criterion (3.30) determines a unique bounded solution for the equilibrium

evolution of the endogenous variables. By Proposition 1(b), the evolution determined by this

criterion represents a local linear approximation to the optimal evolution, under the modified

problem defined by initial Lagrange multipliers (3.31). Finally, this way of choosing the initial

multipliers as a function of the initial conditions 0−1 is self-consistent, by Lemma 7.
25Note that the initial multipliers Ξ20−1 can be chosen arbitrarily, and so could be chosen to be the same in the

case of each of these solutions.

59




