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Abstract

We study the workings of the factor analysis of high-dimensional data using arti�cial series
generated from a large, multi-sector dynamic stochastic general equilibrium (DSGE) model.
The objective is to use the DSGE model as a laboratory that allow us to shed some light on
the practical bene�ts and limitations of using factor analysis techniques on economic data. We
explain in what sense the arti�cial data can be thought of having a factor structure, study
the theoretical and �nite sample properties of the principal components estimates of the factor
space, investigate the substantive reason(s) for the good performance of di¤usion index forecasts,
and assess the quality of the factor analysis of highly dissagregated data. In all our exercises,
we explain the precise relationship between the factors and the basic macroeconomic shocks
postulated by the model.
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1. Introduction

Large factor models have been playing an increasingly important role in empirical macroeconomic

research. Their use is often motivated by the fact that modern dynamic general equilibrium models

postulate the existence of only a few common sources of �uctuations for all macroeconomic vari-

ables. Much of the research takes this fact a step further and identi�es the factor space with the

space of basic macroeconomic shocks. This interpretation is then exploited to carry out structural

factor analysis.1 Although the statistical workings of large factor models and of their forecast-

ing and structural applications are well understood by now, their macroeconomic content remains

largely unexplored. Usually, the existence of such a macroeconomic content is simply a matter

of assumption or believe. In particular, the relationship between the factor space and the space

of macroeconomic shocks has never been analyzed in the context of a theoretical macroeconomic

model. The reason is that few general equilibrium models describe the dynamics of a large enough

number of disaggregated macroeconomic series to provide the basis for a substantive analysis of

large factor models.

This paper studies the workings of the factor analysis of high-dimensional data using arti�cial

series generated from a dynamic stochastic general equilibrium (DSGE) model. The intention is

to use the fully-speci�ed DSGE model as a laboratory to understand the practical bene�ts and

limitations of using factor analysis techniques on economic data. We pursue this approach because

in contrast to actual economic data, whose generating process is unknown, the arti�cial data from a

model comes from a process that is known and under the control of the econometrician. As DSGE

model we use the highly disaggregated multi-sector model developed and estimated by Bouakez,

Cardia and Ruge-Murcia (2009). Several features of this model make it particularly suitable for

our analysis. First, it speci�es thirty heterogenous productive sectors that correspond to the two-

digit level of the Standard Industrial Classi�cation (SIC) and so it can generate a large number

of disaggregated series to which one can meaningfully apply factor analysis techniques. Second,

the model features aggregate shocks but also sector-speci�c shocks which may be transmitted to

other sectors through the input-output structure of the economy. Thus, as in the actual data, the

notion of what �factors�are is not trivial. Finally, although the model is (by de�nition) a stylized

representation of the economy, it is rich enough to shed some light on the application of factor

analysis to actual disaggregated data.

In this project, we explain in what sense the data generated from the model can be thought

of as having a factor structure, study the theoretical and �nite sample properties of the principal

1For two recent examples, see Boivin et al. (2009) and Forni et al. (2009).
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components estimates of the factor space, investigate the performance of di¤usion index forecasts,

and assess the quality of the factor analysis of highly dissagregated data. In all our exercises, we

explain the precise relationship between the factors and the basic macroeconomic shocks postulated

by the model.

We �nd that the three economy-wide shocks of Bouakez et al. (2009), namely the monetary

policy shock, the money demand shock and the leisure preference shock, can indeed be thought

of as factors because they non-trivially a¤ect most of the 156 variables generated by the model.

Moreover, the remaining 30 sectoral productivity shocks signi�cantly a¤ect only a small number

of the variables. However, despite the pervasiveness of the economy-wide shocks, the principal

components analysis has a hard time replicating the macroeconomic factor space. We document

and explain the di¢ culties that arise and assess the quality of the asymptotic approximation to the

distribution of the principal components, �nd it unsatisfactory, and analyze the reasons for such a

failure.

Further, we show that the di¤usion index forecasts of output growth and of aggregate in�ation

perform reasonably well on our simulated data. In particular, accurately estimating the macroeco-

nomic factor space turns out to be not essential for the quality of the forecasts of our data. We

decompose the di¤usion index forecast error into several components and study them in detail.

Finally, we use our data to investigate the workings of the factor augmented vector autore-

gression (FAVAR) analysis of disaggregated data. We are especially interested in the question of

whether the monetary policy impulse responses of the disaggregated series estimated by a FAVAR

�tted to our data accurately recover the true impulse responses. Somewhat surprisingly, we �nd

that the quality of the estimated impulse responses of the sectoral variables is very good.

The rest of the paper is organized as follows. Section 2, describes the data generating process.

(A very detailed description of the DSGE model and parameter values used to generate the arti�cial

data is also given in the Appendix.) Section 3 explains in what sense our data has a dynamic factor

structure and studies the relationship between the space of dynamic factors, represented by the

economy-wide shocks, and the space of dynamic principal components. Section 4 compares the

spaces spanned by the lags of the dynamic factors and by the population static and generalized

principal components. Section 5 studies the determination of the number of factors. Section 6

compares the population and sample principal components. Section 7, analyzes the di¤usion index

forecasts. Section 8 performs a FAVAR analysis of the monetary policy e¤ects on the disaggregated

variables. Finally, Section 9 concludes.
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2. Data generating process

The data generating process (DGP) is based on the large multi-sector DSGE model in Bouakez,

Cardia and Ruge-Murcia (2009) (BCR in what follows). Their model features thirty sectors or

industries that roughly correspond to the two-digit level of the Standard Industrial Classi�cation

(SIC). Sectors are heterogenous in production functions, price rigidity, and the combination of

materials and investment inputs used to produce their output. The productive structure is of the

roundabout form, meaning that each sector uses output from all sectors as inputs, although in a

manner consistent with the actual U.S. Input-Output and Capital-Flow Tables. In addition, sectors

are subject to idiosyncratic productivity shocks. There is a representative consumer who supplies

labor to all sectors, and derives utility from leisure, real money balances, and the consumption of

goods produced by all sectors.

Economic �uctuations arise from three aggregate (or economy-wide) shocks and thirty sectoral

shocks. The aggregate shocks are shocks to the representative consumer�s utility from leisure and

from holding real money balances, and a monetary policy shock, which is modeled as a shock to

the growth rate of the money supply. The thirty productivity shocks are sector-speci�c in that

they originally disturb only the production function of their own sector. However, as a result

of input-output interactions between sectors, idiosyncratic productivity shocks are transmitted to

other sectors and to economic aggregates. All the thirty-three shocks of the model are assumed

to follow independent univariate AR(1) processes. The model is described in more detail in the

Appendix. The values of the model parameters are those estimated by Bouakez, Cardia and Ruge-

Murcia (2009) using quarterly aggregate and sectoral U.S. data from 1964:Q2 to 2002:Q4 and are

listed in the Appendix as well.

We solve the log-linearized equations of the BCR model using the standard Blanchard and Khan

(1980) algorithm. Collecting the log-linear approximations to the equilibrium decision rules and

arranging them into the state-space form, we can write the state-space representation of the data

generating process:

Xt+1 = AXt +B"t (1)

Yt = CXt +D"t:

The meaning of the variables "t; Yt and Xt is as follows. The 33-dimensional vector "t consists of

the 30 unit-variance innovations to the sector-speci�c productivity shocks and three unit variance

innovations to the economy-wide shocks, namely the leisure preference shock, the money demand

shock and the monetary policy shock. The 156-dimensional vector of simulated data Yt consists of
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stacked 1�30 vectors of the percentage deviations from the steady state of the sectoral outputs, sec-
toral hours worked, sectoral wages, sectoral consumptions, and sectoral in�ations; scalar aggregate

output, hours worked, wages, consumption, and in�ation; and scalar rates of money growth and

nominal interest. The state vector Xt is a linear combination of sectoral and aggregate variables.

The choice of the state vector is not unique and it is usually made so that the dimension of the

matrix A is as small as possible. In our case, the smallest possible dimension is 101.2

For the numerical values of A;B;C and D in (1), we check that the innovations "t can be

recovered from the history of Yt; and thus, they are fundamental. Fernandez-Villaverde et al.

(2007) describe a simple criterion for checking the fundamentalness of innovations when D is a

square invertible matrix. In our case, D is 156�33 so that the criterion cannot be directly applied.
However, we can use the criterion for checking the fundamentalness of "t in the system

Xt+1 = AXt +B"t

~Yt = ~CXt + ~D"t;

where ~Yt = R0Yt; ~C = R0C, ~D = R0D and R is any 156�33 matrix. We choose R so that it consists
of the �rst 33 columns of matrix U from the singular value decomposition of D : D = USV:3 Then,

we form the matrix M = A� B ~D�1 ~C and check numerically that all its eigenvalues are less than

one in absolute value, which, according to Fernandez-Villaverde et al. (2007), insures that "t can

be recovered from the history of ~Yt � R0Yt; and therefore, from the history of Yt itself.

Equations (1) can be used to express the simulated data as an in�nite lag polynomial of the

innovations "t :

Yt =
h
CL (I �AL)�1B +D

i
"t � A(L)"t; (2)

where L is the lag operator. The i; j-th entry of the matrix coe¢ cient on the p-th power of L in

the polynomial A(L) equals the impulse response of the i-th variable in the data to a one-period

unit impulse in the j-th component of the innovation vector "t:

3. The dynamic factor structure and principal components

Let ft be the three-dimensional vector of economy-wide shocks. As was mentioned before, they are

modeled as independent AR(1) processes so that

ft = �ft�1 + �f"ft;

2We used MATLAB�s Control System toolbox command minreal to obtain the minimal state-space realization in
(1), which turned out to have a state vector of dimensionality 101.

3Such a choice maximizes the smallest eigenvalue of ~D ~D0 = R0DD0R among all R with kRk = 1; where kRk
denotes the square root of the largest eigenvalue of R0R:
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where "ft are the standardized innovations to the economy-wide shocks, �f are scaling parameters,

and � is a 3 � 3 matrix with the autoregressive coe¢ cients along the main diagonal and zero
everywhere else. We can decompose the MA(1) representation of the model (2) into a part that
depends on ft�j with j = 0; 1; :::; and the orthogonal part:

Yt = �(L) ft + et; (3)

where � (L) = Af (L)�
�1
f (I3 � �L) with I3 the 3 � 3 identity matrix, et = Ae (L) "et; "et is the

vector of the innovations to the sector-speci�c shocks, and Af (L) and Ae(L) are the parts of A(L)

corresponding to the economy-wide and sector-speci�c shocks, respectively.

In what follows, we will always standardize Yt so that the variance of each of its components

equals unity. It is convenient to introduce new notation for such a standardized Yt: Let W be

the inverse of the diagonal matrix with the standard deviations of the components of Yt on the

diagonal: Then, the standardized version of Yt equals Y
(s)
t = WYt; and it admits the following

decomposition

Y
(s)
t = �(s) (L) ft + e

(s)
t ;

where �(s) (L) =W� (L) and e(s)t =Wet:

Intuitively, we would call (3) a factor decomposition if the �factors� ft had a pervasive e¤ect

on the elements of Yt whereas the �idiosyncratic� terms eit did not have pervasive e¤ects on the

elements of Yt: Such requirements are in the spirit of all high-dimensional factor models starting

from the approximate factor model of Chamberlain and Rothschild (1983). We will now examine

how pervasive ft and "et are in our arti�cial data.

3.1 Pervasiveness

An intuitive measure of the pervasiveness of a given shock in a particular dataset can be obtained

as follows. For each variable in the dataset, compute the percentage of the variance of this variable

due to the given shock. Then, compute and plot the percentage y(z) of the variables in the dataset

for which the shock explains at least z% of the variance. Note that such a measure of pervasiveness

does not depend on whether we analyze Yt or its standardized version Y
(s)
t : Pervasive shocks

non-trivially a¤ect a large number of the variables in the dataset. Therefore, for such shocks, y(z)

should decrease slowly in z: In contrast, for non-pervasive shocks, we expect y(z) to be dramatically

decreasing to zero as z becomes slightly larger than zero.

Figure 1 shows the pervasiveness measures y(z) for all the 33 shocks of the BCR model. As one

would intuitively expect, the economy-wide shocks ft stand out as much more pervasive than the

sector-speci�c shocks. The leisure preference shock is the most pervasive: It explains more than

5



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of the variance explained

P
er

ce
nt

ag
e 

of
 th

e 
va

ria
bl

es

Pervasiveness of different innovations

Leisure preference

Monetary policy

Money demand

Figure 1: Pervasiveness of di¤erent shocks in BCR model.

30% of variance for about 2/3 of all the variables in our dataset. The monetary policy shock is also

pervasive, explaining 30% of the variance for more than 40% of the variables. The money demand

shock is the least pervasive of the three. Even so, it explains more than 10% of the variance for

more than 25% of the variables. The next most pervasive shock is the productivity shock in the

agricultural sector: It explains more than 10% of the variance for only about 3.8% of variables.

We can extend our measure of pervasiveness to a frequency-by-frequency measure. In principle,

we can de�ne a measure of pervasiveness y(z; !) for "j as the percentage of the components of Y

for which the percentage of the variance at frequency ! explained by "j is less than z: However, it

would be di¢ cult to report such a pervasiveness measure for the 33 shocks on the same plot. We,

therefore, restrict our attention to a pervasiveness measure corresponding to three frequency bands:

low frequencies, business cycle frequencies and high frequencies. We de�ne the low frequency band

as the set of all frequencies which correspond to cycles of more than 8 years per period, the business

cycle frequencies as those corresponding to cycles in between 2 and 8 years per period, and the

high frequencies as those corresponding to cycles of less than 2 years per period.

We de�ne yLFj (z) as the percentage of such i 2 fi = 1; 2; :::; 156g for whichZ
!2LF

jAij (!)j2 d! �
z

100

33X
j=1

Z
!2LF

jAij (!)j2 d!;

where Aij(L) is the i; j-th component of A(L) in (2). That is, yLFj (z) is the percentage of the
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Figure 2: Frequency-by-frequency pervasiveness of di¤erent shocks in the BCR model.

variables for which shock j is responsible for at least z% of the variance at low frequencies. We

similarly de�ne yBFj (z) and yHFj (z) for business cycle and high frequencies.

Figure 2 shows plots of yLFj (z) (upper panel), yBFj (z) (middle panel) and yHFj (z) (lower panel).

We see that for low frequencies only two shocks are pervasive: the leisure preference shock and the

monetary policy shock. For business cycle frequencies all three economy-wide shocks are pervasive.

However, the leisure preference shock is considerably less pervasive than the money demand shock

and, especially, than the monetary policy shock. For high frequencies, the pervasiveness of the

leisure preference shock almost completely disappears, whereas the monetary policy and money

demand remain pervasive.

Hence, for our data, di¤erent frequencies correspond to di¤erent shocks being pervasive. More-

over, the number of the pervasive shocks varies from frequency to frequency. This observation

suggests that, from the empirical perspective, it may be desirable to relax the assumption of the

generalized dynamic factor models that the number of the exploding eigenvalues of the spectral

density matrix of the data remains the same for all frequencies.

3.2 Heterogeneity

The pervasiveness of the economy-wide shocks is a necessary but not su¢ cient condition for success-

ful recovery of the space spanned by all lags and leads of such shocks by the principal components
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analysis. For such a recovery, the economy-wide shocks must generate heterogeneous enough re-

sponses from the observed variables. The reason is that the model Y (s)t = �(s) (L) ft + e
(s)
t is

equivalent to Y (s)t = ~�(s) (L) ~ft + e
(s)
t ; where ~�

(s) (L) = �(s) (L)U(L); ~ft = U(L�1)0ft and U(L)

is a so-called Blaschke matrix (see Lippi and Reichlin, 1994), that is a matrix of polynomials in

L such that detU (z) 6= 0 for z on the unit circle and U (z)U(z�1)0 = I; where the bar over a

polynomial matrix denotes the polynomial matrix with complex conjugated coe¢ cients. Therefore,

for the successful recovery, not only ft; but also ~ft must be pervasive. If the columns of � (L)

are not heterogeneous enough so that some of their linear combinations with coe¢ cients that are

polynomials in L is small (in terms of the sum of squares of all the coe¢ cients on the di¤erent

powers of L), then one can choose U(L) so that at least one component of ~ft is not pervasive, and

therefore, the principal components analysis will not accurately recover the space spanned by all

lags and leads of ~ft; and hence of ft.

Furthermore, for successful recovery of the space spanned by all lags and leads of the economy-

wide shocks by the principal components analysis, the responses from the observed variables to the

sector-speci�c shocks must be heterogeneous enough. Indeed, if such a responses were similar, then

there would exist a linear combination of the sector-speci�c shocks that generate a particularly

large response from the observed variables. The variance of the data explained by such a linear

combination would be large, and therefore, it could be confused for a genuine factor by the principal

components analysis.

A convenient tool for the joint analysis of pervasiveness and heterogeneity is the eigenvalues

of the spectral density matrices of the factor and idiosyncratic components of the data. Such

eigenvalues are invariant with respect to the di¤erent choices of Blaschke matrices U(L) in the

above equations. Let Sf (!) be the spectral density matrix of �(s) (L) ft: The largest eigenvalue of

Sf (!) measures the maximum amount of the variation of the (standardized) data at frequency !

explained by a white-noise shock ~f1t that belongs to the space spanned by the lags and leads of the

economy-wide shocks. The second largest eigenvalue of Sf (!) measures the maximum amount of

the variation of the data at frequency ! explained by a white-noise shock ~f2t which is orthogonal

to ~f1t at all lags and leads and which belongs to the space spanned by the lags and leads of the

economy-wide shocks. The third largest eigenvalue of Sf (!) is the last non-zero eigenvalue of

Sf (!) because there are only three economy-wide shocks in our model. This eigenvalue measures

the minimum amount of the variation of the data at frequency ! explained by a white-noise shock
~f3t that belongs to the space spanned by the lags and leads of the economy-wide shocks. The three

non-zero eigenvalues of Sf (!) can be viewed as one-dimensional summaries of the pervasiveness of

the shocks ~f1t; ~f2t and ~f3t: If ~f3t is not pervasive in the sense that the third largest eigenvalue of
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Figure 3: The three largest eigenvalues of Sf (!) (solid lines), the largest eigenvalue of Se(!) (dashed
line), and the largest eigenvalues of Sf1(!); Sf2(!) and Sf3(!) (dotted lines):

Sf (!) is relatively small uniformly over ! 2 [0; 2�); then the responses from the observed variables

to the economy-shocks ft must be not heterogeneous. We would hope that the principal components

analysis accurately recovers the space spanned by all lags and leads of the economy-wide shocks

only if the third largest eigenvalue of Sf (!) is larger than the largest eigenvalue of the spectral

density matrix Se (!) of the idiosyncratic component e
(s)
t uniformly over ! 2 [0; 2�):

Figure 3 shows that only the largest eigenvalue of Sf (!) is uniformly larger than the largest

eigenvalue of Se (!) over ! 2 [0; 2�):4 The second largest eigenvalue of Sf (!) is smaller than the
largest eigenvalue of Se (!) for relatively high frequencies ! > 1; which correspond to �uctuations

with periods smaller than 2� quarters. The third largest eigenvalue of Sf (!) is uniformly smaller

than the largest eigenvalue of Se(!) over ! 2 [0; 2�): Hence, we expect (an imperfect) recovery of
at most two orthogonal linear �lters of the three-dimensional factor ft by the principal components

analysis.

The dotted lines on Figure 4 show the largest eigenvalues of the spectral densities Sf1 (!) ;

Sf2 (!) and Sf3 (!) of the components of the observables that correspond to the monetary policy

shock, to the money demand shock and to the leisure preference shock, respectively. These eigen-

4The horizontal and the vertical scales of the graph are made logarithmic to enhance visibility.
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values are all larger than the largest eigenvalue of Se (!) at frequencies ! > 0:1; which correspond to

�uctuations with periods smaller than 20� quarters, including business cycles, which typically are

thought as having periods no larger than 8 or 10 years. Nevertheless, we expect that the business

cycle components of the economy-wide shocks cannot be recovered by the principal components

analysis. The reason is that the e¤ects of the economy-wide shocks on the observables are not

heterogeneous enough, which is re�ected in the fact that the third largest eigenvalue of Sf (!) is

substantially smaller than the minimum of the largest eigenvalues of Sf1 (!) ; Sf2 (!) and Sf3 (!)

for all ! 2 [0; 2�):
We checked that the largest eigenvalue of Se (!) is very close to the maximum of the largest

eigenvalues of the spectral densities Sei (!) ; i = 1; :::; 30 of the thirty components of the data

corresponding to the sector-speci�c shocks. Therefore, the potential problem with the principal

components analysis is indeed caused by the similarity in the e¤ects of the economy-wide shocks

and not by a possibility that a particular linear �lter of the sector-speci�c shocks have an unusually

strong e¤ect on the observables. Similarly, in actual economies di¤erent aggregate shocks may

also generate similar dynamics on (a subset of) observable variables. For example, in a money-

growth targeting regime, changes in monetary aggregates would have similar e¤ects on, say, output

variables, regardless of whether they are the result of changes in the monetary base by the central

bank or in lending behavior by commercial banks.

3.3 The content of the dynamic principal components

Estimation of the pervasive factors and the factor loadings in large factor models is often based on

the sample principal components analysis. In this subsection, we perform the population principal

components analysis to determine the theoretical limit to the principal-component-based extraction

of the pervasive shocks for our standardized data.

As mentioned above, we expect (an imperfect) recovery of at most two orthogonal linear �lters

of the three-dimensional factor ft because the dynamic e¤ects of the economy-wide shocks on the

observables are not heterogeneous enough. Speci�cally, we expect the �rst two dynamic principal

components to be close to some �lters of ft; and the third dynamic principal component to have a

very large sector-speci�c part. We now check this conjecture.

Recall that the dynamic principal components of Y (s)t are de�ned as follows.5 Let SY (!) be

the spectral density matrix of the standardized data and let �j (!) and pj (!) be its j-th largest

eigenvalue and the corresponding unit-length row eigenvector, respectively, so that pj (!)SY (!) =

�j (!) pj (!). Consider the Fourier expansion for pj (!) : pj (!) = (1=2�)
P1
k=�1 Pjke

�ik!; where

5See, also, Brillinger (1981, Ch. 9) and Forni et al. (2000).
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Pjk =
R �
�� pj (!) e

ik!d!: Let pj (L) equal (1=2�)
P1
k=�1 PjkL

k: Then, the j-th dynamic principal

component of Y (s)t is de�ned as �jt � pj (L)Y (s)t . Or, in terms of the innovations to the economic

shocks:

�jt � Gj(L)"t; (4)

where Gj(L) = pj (L)WA (L) :

The relationship (4) can be easily and usefully visualized in the frequency domain. Let "t =R �
�� e

i!tdZ" (!) be the spectral representation of the innovation process "t so that ei!tdZ" (!) can

be thought of as the !-frequency component of "t: Then, the spectral representation of �jt has

form:

�jt =

Z �

��
ei!tGj (!) dZ" (!) :

Hence, the !-frequency component of �jt is the linear combination of the !-frequency components

of the innovations "t with the weights equal to the entries of vector Gj (!) � (Gj;1 (!) ; :::; Gj;33 (!)) :
The functions (1=2�) jGj;k (!)j2 with k = 1; :::; 33 are the spectral densities of the projections of the
�rst dynamic principal component on the spaces spanned by all lags and leads of the innovations

"t;k with k = 1; :::; 33; respectively.

Figure 4 shows the graphs of (1=2�) jG1;k (!)j2 : For some k; the spectral densities are particu-
larly large while for others they are small. We indicate which innovation the dominating densities

correspond to. For example, the low frequency component (less than one cycle per 20� quarters,

which is about 15 years) of the �rst dynamic principal component of the data is strongly dominated

by the leisure preference innovation. For business cycle frequencies, the monetary policy innovation

becomes dominant.6

The sum of the areas under the graphs of Figure 4 corresponding to the monetary policy, the

money demand and the preference innovations measure the variance of the projection of the �rst

principal component on the space spanned by all lags and leads of the corresponding economy-wide

shocks. Such a variance constitutes 97.6% of the overall variance of the �rst dynamic principal

component.

For the second dynamic principal component, the variance of its projection on the space spanned

by all lags and leads of the economy-wide shocks is still a respectable 82.6% of its overall variance.

However, for the third dynamic principal component, this number is much smaller: 16.8%. In fact,

most of the variance of the third dynamic principal component is explained by the innovations to

6The logarithmic scale of the horizontal axis of the graph creates the impression that the �rst dynamic principal
component of the data is totally dominated by the leisure preference innovation, which is not the case. The monetary
policy innovation explains a comparable portion of the variance of the �rst dynamic principal component to that
explained by the preference innovation.
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Figure 4: Spectal densities of the projections of the �rst dynamic principal component on the spaces
spanned by all lags and leads of the innovations "t;k with k = 1; :::; 33:

the agricultural, coal mining and textile mill productivity shocks. The variance of its projection on

all lags and leads of these shocks constitutes 67.0% of its overall variance.

Hence, as we had qualitatively expected, the projection of the two �rst dynamic principal

components on the space spanned by all lags and leads of the economy-wide shocks is not much

di¤erent from the dynamic principal components�s themselves. However, the economy-wide content

of the third dynamic principal component is very weak. It should be noted here that the �rst two

dynamic principal components explain 80.6% of the variance of the data-generating process while

the share of the third dynamic principal component is only 2.4%. Therefore, the agricultural,

coal mining and textile mill production shocks do not really have much in�uence on the economic

dynamics as might appear from their substantial share in the dynamics of the third dynamic

principal component. The point we would like to stress is simply that the space of the lags and

leads of the �rst three dynamic principal components is substantially di¤erent from the space of

the lags and leads of the economy-wide shocks ft:

Can we interpret the �rst dynamic principal component as a univariate index summarizing

the most relevant information in the history of the economy-wide shocks? The answer to this

question depends on whether the projection of the �rst dynamic principal component on the

space spanned by leads only of the economy-wide innovations is reasonably small. Let G1;k (!) =
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(1=2�)
P1
s=�1G1;k;se

�is! be the Fourier expansion for G1;k (!) : Let us de�ne

G+1;k (!) � (1=2�)
X1

s=0
G1;k;se

�is!

G�1;k (!) � (1=2�)
X�1

s=�1
G1;k;se

�is!:

Then, the variance of the projection of the �rst dynamic principal component on the leads only of

the economy-wide innovations equals

(1=2�)

Z �

��

����G�1;mp (!)���2 + ���G�1;md (!)���2 + ���G�1;lp (!)���2� d!;
where k = mp;md and lp for monetary policy, money demand and leisure preference shock inno-

vations, respectively. We have computed this number: It equals 33.5% of the variance in the �rst

dynamic principal component which is due to both the leads and the lags of the economy-wide

innovations. The largest part of this percentage (69.9% of it) comes from
���f�1;lp (!)���2 : That is, the

�rst dynamic principal component has a relatively large projection on the subspace spanned by the

future of the leisure preference shock. This �nding suggests that in actual applications, the �rst

dynamic principal component may be an imperfect index of the information contained in history

of aggregate shocks.

4. Static factors and principal components

In practice, it is often assumed that the dependence of the observables on the factors can be

captured by �nite lag polynomials. That is, it is assumed that the maximal order of the component

polynomials of �(s) (L) in Y (s)t = �(s) (L) ft + e
(s)
t is �nite and equal to, say, h: This assumption

allows researchers to represent the dynamic factor model in static form by interpreting the h lags

of the dynamic factors as additional �static factors�. Then, the static principal components or the

generalized principal components (see Forni et al., 2005) can be used to recover the static factor

space. One advantage of such an approach relative to the dynamic principal components method

is that the obtained estimates of the factor space are guaranteed to be orthogonal to the space of

the future factor innovations and hence, can be used for forecasting.

The �rst question we address in this section is whether a few lags of ft capture most of the

information about Y (s)t contained in �(s) (L) ft: One way to answer this question is to repeat the

above pervasiveness analysis with �(s) (L) replaced by a �nite lag polynomial matrix ~� (L) : We

de�ne ~� (L) so that the coe¢ cients of its components ~�ij (L) = ~�ij;0 + ~�ij;1L+ :::+ ~�ij;hL
h equal

the coe¢ cients of the linear projection of Y (s)it on fjt; fj;t�1; :::; and fj;t�h. Figure 5 reports the

pervasiveness graph (dashed line) for the leisure preference shocks copied from Figure 1 superim-

posed with the ��nite-lag pervasiveness graphs�for di¤erent values of h = 0; 1; 2; 3 and 4: Precisely,
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Figure 5: Pervasiveness of the e¤ect of few lags only of the leisure preference shock on the observ-
ables.

we plot the graphs of the �nite-lag pervasiveness functions ~ylp(z) de�ned as the percentage of the

components Y (s)it of Y (s)t for which the variance of the linear projection on the space spanned by

flp;t; :::; flp;t�h constitutes at least z% of the total variance of Y (s)it :

Note that the area under the graph (divided by 1002) equals the average fraction of the variance

of Y (s)it explained by ~�i;lp (L) flp;t with the average taken over i = 1; 2; :::; 156:We see that, in terms

of the explanatory power, not much is lost by projecting the observables on the contemporaneous

only (h = 0) leisure preference shock. To see this, compare the dashed and solid lines. As h

increases, small improvements to the explanatory power take place. The largest improvement

corresponds to the transition from h = 0 to h = 1:

Most of the changes to the graphs as h rises happen for y > 60: The reason is that this section

of ordinates happens to correspond to sectoral in�ations (section with y > 80) and sectoral wages

(80 > y > 60). The contemporaneous leisure preference shock has essentially zero explanatory

power for all the in�ation indexes and very little explanatory power for sectoral wages. However,

the one-period lagged leisure preference shock captures almost all the e¤ect (still very small) of the

entire history of the leisure preference shocks on in�ation (the one-lag graph almost coincides with

the dashed line when y > 80). It also considerably helps to explain the level of wages.7

7 It is likely that one lag of the leisure preference shock would have almost as much of the explanatory power as
the entire history of the leisure preference shock for the wage in�ations (as opposed to the wage levels). We, however,
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Figure 6: Pervasivenss of the e¤ect of few lags only of the monetary policy shock on the observables.

Figures 6 and 7 are the equivalents of Figure 5 for the monetary policy and the money demand

shocks, respectively. The improvement in the explanatory power when h increases from 0 to 1 is

more substantial than in the case of the leisure preference shock. However, further increases in

h do not increase the explanatory power of the monetary policy factor much and do not increase

the explanatory power of the money demand factor at all. Overall, we conclude that replacing

the entries of �(s)(L) with �nite lag polynomials so that the entries corresponding to the leisure

preference shock become scalars and the entries corresponding to the monetary policy and money

demand shock become polynomials of degree one, would not do much harm to the explanatory

power of �(s)(L)ft:

From the empirical perspective, our results provide support for the strategy of using a parsimo-

nious number of lags to summarize the information about the observable variables that is contained

in � (L) ft for the purpose of factor extraction and forecasting. However, the �correct�number of

lags is an open question that requires the development of appropriate information criteria.

have included the levels rather than di¤erences of wages in our dataset. As a result, there is a large discrepancy
between the solid lines and the dashed line in the 80 > y > 60 range of Figure 5.
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Figure 7: Pervasivenss of the e¤ect of few lags only of the money demand shock on the observables.

4.1 The content of the principal components

Since, as we saw above, only a very few lags of ft substantially add to factors�explanatory power, we

can approximate the dynamic factor decomposition (4) by the following static factor decomposition.

Letmpt;mdt and lpt denote the monetary policy, money demand and leisure preference components

of ft: We de�ne a vector of static factors Ft as

Ft = (mpt;mpt�1;mdt;mdt�1; lpt)
0

and write:

Y
(s)
t = 	Ft + �t;

where (	i1;	i2) is the vector of the coe¢ cients of the linear projection of Y
(s)
it on mpt and mpt�1;

(	i3;	i4) is the vector of the coe¢ cient of the linear projection of Y
(s)
it on mdt and mdt�1; and 	i5

is the coe¢ cient of the linear projection of Y (s)it on lpt. We do not include lpt�1 into Ft because, as

can be seen from Figure 5, the lag of the leisure preference shock has very little explanatory power

in our model. The lags of the monetary policy and money demand shocks have larger explanatory

power and we include them into Ft:

In practice, Ft is not observed, and the space spanned by its components is estimated by the

space spanned by the �rst �ve principal components of Y (s)t : Below, we study the di¤erence between
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Figure 8: Portion of the variance of di¤erent components of the vector of static factors Ft ex-
plained by the projection on the spaces spanned by the �rst several (static, population) principal
components.

the two spaces. We focus on the population principal components to see what the theoretical limit

to the principal-component-based estimation of Ft is.

We would expect the principal components work well if all �ve non-zero eigenvalues of	E (FtF 0t)	
0

are substantially above the largest eigenvalue of E�t�
0
t: Unfortunately, this is not the case. Our

computations show that the eigenvalues of 	E (FtF 0t)	
0 equal 64.54, 30.49, 5.45, 1.46, and 0.003.

But the largest eigenvalue of E�t�
0
t equals 21.68, which is larger than three out of the �ve eigenvalues

of 	E (FtF 0t)	
0:

Then, what do the �rst �ve population principal components of Y (s)t correspond to? Figure 8

reports the variances of the projections of the components of Ft (normalized to have unit variance

each) on the space spanned by the �rst r population principal components of Y (s)t as functions of

r: Had the space of the �rst �ve principal components spanned the same space as the components

of Ft; the variances of the projections would each be equal to one at r = 5.

From the �gure, we see that the spaces spanned by the components of Ft and by the �rst �ve

principal components are substantially di¤erent. Only the leisure preference shock component of

Ft is accurately �recovered�by the principal components. The money demand shock content of the

space of the principal components is particularly insigni�cant. However, the money demand shock
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starts to be non-trivially present in the principal components�space when r becomes larger than

six.

A possibility remains that the �rst �ve principal components span the same space as �ve lin-

ear �lters of ft; which are di¤erent from the mpt;mpt�1;mdt;mdt�1 and lpt that we (somewhat

subjectively) chose above to represent static factors. That this possibility does not realize can be

seen from the following calculation. We compute the proportions of the variances of the �rst �ve

principal components explained by their projections on the space spanned by the entire history of

ft: The computed proportions turn out to be: 96.6%, 98.3%, 80.8%, 76.9%, and 24.6% for the �rst,

second, third, fourth, and �fth principal components, respectively.8 Therefore, the �fth principal

component has very little to do with the history of the economy-wide shocks.

4.2 The content of the generalized principal components

In this section, we would like to know whether the space of the generalized principal components

proposed by Forni et al. (2005) better match the space of Ft than the space of the static principal

components. Recall that the (population) generalized principal components are de�ned as follows.

Let SY (!) be the spectral density matrix of the standardized data and let �j (!) and pj (!) be

its j-th largest eigenvalue and the corresponding unit-length row eigenvector, respectively, so that

pj (!)SY (!) = �j (!) pj (!). Consider the sums

S� (!) �
qX
j=1

�j (!) pj (!)
0
pj (!)

S� (!) �
nX

j=q+1

�j (!) pj (!)
0
pj (!)

where q is the number of dynamic factors, and compute

��0 =

Z �

��
S� (!) d!

��0 =

Z �

��
S� (!) d!:

We set q = 3 because there are three economy-wide shocks in the model. Then, the j-th (population)

generalized principal component of Y (s)t relative to the couple
�
��0 ;�

�
0

�
is de�ned as ZjY

(s)
t ; where

Zj are the solutions of the generalized eigenvalue equations

Zj�
�
0 = �jZj�

�
0; (5)

8Compare these to the proportions of the variances of the �rst �ve principal components explained by their
projections on the space spanned by mpt;mpt�1;mdt;mdt�1 and lpt only: 82.3%, 88.5%, 41.8%, 45.3%, and 10.5%.
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Figure 9: Portion of the variance of di¤erent components of the vector of static factors Ft explained
by the projection on the spaces spanned by the �rst several (population) generalized principal
components.

for j = 1; 2; :::; n, with the normalization constraints Zj�
�
0Z

0
j = 1 and Zi�

�
0Z

0
j = 0 for i 6= j; and

with �1 � �2 � ::: � �n:
For our data generating process, the problem (5) is ill-posed in the sense that very small changes

in ��0 may result in large changes in the solutions. This is so because the matrix �
�
0 turns out to

have a large number of eigenvalues numerically close to zero. One way to proceed, which Forni et

al. (2005) choose to follow, is to replace ��0 by the matrix with the same diagonal, but with zero

o¤-diagonal elements. We do such a replacement in what follows.

Figure 9 is the equivalent of Figure 8 for the case of the generalized principal components. The

two �gures are very similar. The proportions of the variances of the �rst �ve generalized principal

components explained by their projections on the space spanned by the entire history of ft are equal

to 89.5%, 93.2%, 55.9%, 55.9% and 5.5%. These �gures suggest somewhat smaller macroeconomic

content of the generalized principal components relative to the static principal components, for

which the analogous �gures reported above are: 96.6%, 98.3%, 80.8%, 76.9%, and 24.6%.9

We conclude this section by summarizing its main �nding: for our data generating process,

9The proportions of the variances of the �rst �ve generalized principal components explained by their projections
on the space spanned by mpt;mpt�1;mdt;mdt�1 and lpt only are: 73.3%, 91.9%, 42.1%, 38.4%, and 4.5%. Compare
these to the analagous numbers 82.3%, 88.5%, 41.8%, 45.3%, and 10.5% for the static principal components.
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the information about the space of the macroeconomic shocks and their most important lags is

scattered through a relatively large number of principal components. Knowing the �rst �ve principal

components is not su¢ cient to accurately recover the �ve shocks and lags. Knowing more principal

components helps such a recovery. For example, in our exercises, the portion of the variance of the

money demand shock and its lag explained by their projections on the space spanned by the �rst r

principal components increase from below 20% for r = 5 to more than 60% for r = 7 or (in case of

the generalized PC) r = 8: The principal component space of the same dimension as the number

of shocks and their important lags may poorly approximate the �macroeconomic space�.

5. Number of factors

The true number of factors may be interpreted in many di¤erent ways in the DSGE model of

Bouakez et al. (2009). In this sense, the model replicates the same ambiguity that we �nd in

actual applied research. Depending on the goal of the analysis, we might want to estimate di¤erent

number of factors. Sometimes, the relevant goal of the analysis is to determine the number of basic

macroeconomic shocks in�uencing the dynamics of a large number of macroeconomic indicators.

In this section, we therefore ask the following question. What is the relationship between the

number of dynamic factors estimated from the data simulated from the model and the number of

the economy-wide shocks in this model, which is three?

We use the Bai-Ng (2007) and Hallin-Liska (2007) criteria to estimate the number of factors

in 1000 di¤erent simulations of our data with n = 156 and T = 120. Before applying the criteria,

we demean and standardize the simulated data. First, we apply the Hallin-Liska (2007) method.

The choice of the tuning parameters of the Hallin-Liska method is as follows. In Hallin and Liska�s

(2007) notation, we use the information criterion ICT2;n with penalty p1(n; T ); set the truncation

parameter MT at
h
0:7
p
T
i
and consider the subsample sizes (nj ; Tj) = (n� 10j; T � 10j) with

j = 0; 1; 2; 3 so that the number of the subsamples is J = 4: The cross-sectional units excluded

from the subsamples are determined randomly. We chose the penalty multiplier c on a grid 0:01 : 3

wiht increment 0:01 using Hallin and Liska�s second �stability interval�procedure. We applied the

Hallin-Liska method to 1000 di¤erent simulations of our data, choosing the subsamples randomly

each time and setting the maximum number of dynamic factors at 8. Out of 1000 times, the method

�nds one dynamic factor 4 times, two dynamic factors 100 times, three dynamic factors 274 times,

four dynamic factors 259 times, �ve dynamic factors 180 times, six dynamic factors 109 times, and

seven dynamic factors 74 times.

Next, we use the Bai-Ng (2007) method to determine the number of dynamic factors. We set

the maximum number of static factors at 10; and, in the notation of Bai and Ng (2007), use either
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D̂1;k or D̂2;k statistic for either the residuals or the standardized residuals of a VAR(4) �tted to

the estimated factors, and consider � = 0:1 and m = 2; 1 and 0:5. Table 1 summarizes our �ndings

for di¤erent choices of the tuning parameters.

Table 1: Number of times di¤erent estimates of the number of factors appeared in 1000 simulations
Residuals Not standardized Standardized

Statistic used D̂1;k D̂2;k D̂1;k D̂2;k
m 2 1 0.5 2 1 0.5 2 1 0.5 2 1 0.5

Estimate Number of times appeared in 1000 simulations
1 1000 1000 754 1000 1000 437 1
2 246 555 368 3
3 8 595 18 342 1
4 36 330 1 614 49
5 555 85 41 542 10
6 97 495 392 292
7 385 16 620
8 34 78

Bai and Ng estimates based on the standardized residuals are less conclusive than their estimates

based on raw residuals, which suggest that there is one, or perhaps, two dynamic factors in the data.

When the standardized residuals are used in the Bai and Ng procedure, the estimated number of

dynamic factors depends very much on the parameter m; which regulates the scale of the threshold

below which the eigenvalues of the sample correlation matrix of residuals are interpreted as small

enough to conclude that the corresponding eigenvalues of the population correlation matrix of the

errors of the VAR(4) equal zero. The dependence of the conclusions on the choice of the threshold

was the motivation for Hallin and Liska to design their second stability interval procedure. In

our Monte Carlo experiment, the Hallin-Liska estimates of the number of factors vary, the most

frequent estimates being three, four and �ve dynamic factors.

Finally, we test di¤erent hypotheses about the number of dynamic factors using Onatski�s (2009)

test. Figure 10 reports the cumulative empirical distributions of the p-values computed in 1,000

Monte Carlo experiments for the test of 0 factors vs. 1 factor, 1 factor vs. 2 factors, 2 factors vs. 3

factors, and so forth. The steeply increasing cumulative distribution function (c.d.f.) corresponds

to the null of zero factors, which indicates that the probability of rejection of this null is much

larger than the size of the test. The next steepest c.d.f. is for the null of one factor. Note that we

are still rejecting the null hypothesis with probability much larger than the size. The third steepest

c.d.f. is not steep. So if we were to perform the test in a single �typical�monte Carlo simulation of

the data, we would likely accepted either the hypothesis of one dynamic factor, or the hypothesis
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Figure 10: The Monte Carlo cumulative empirical distributions of the p-values for Onatski�s (2009)
test of 0 factors vs. 1 factor, 1 factor vs. 2 factors, 2 factors vs. 3 factors, etc.

of two dynamic factors.

All the above methods of the determination of the number of factors are based on the idea that

the number of exploding eigenvalues of the spectral density matrix of the data as n!1 equals the

true number of factors. However, as Figure 3 shows, only two of the �economy-wide eigenvalues�

are larger than the largest �idiosyncratic eigenvalue�. Hence, whenever the above criteria estimate

more than two factors, the reason for such an estimate is not that the criterion is sensitive enough to

detect the third macroeconomic shock from the noisy signal. The reason is simply that the criterion

classi�es some sector-speci�c sources of variation as in�uential enough to call them factors.

As was mentioned above, in practice, the dynamic factor models are often represented in the

static form and then estimated by principal components. Before the estimation, the number of

static factors should be determined. As in the case of the dynamic factors, the number of static

factors can be interpreted in many di¤erent ways, and di¤erent loss functions imply di¤erent optimal

estimates of this number. If the goal is to determine the number of macroeconomic shocks and their

lags which su¢ ce to accurately describe the systematic components of the data, then, perhaps, the

desired estimate is �ve as discussed above.

A basic informal method for the determination of the number of factors was proposed by Cattel

(see Cattel, 1966). It uses the visual analysis of the scree plot, which is the line that connects the
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Figure 11: Monte Carlo distribution of the scree plot for the data simulated from the BCR model.

decreasing eigenvalues of the sample covariance matrix of the data plotted against their respective

order numbers. In practice, it often happens that the scree plot shows a sharp break where the

true number of factors ends and �debris�corresponding to the idiosyncratic in�uences appears.

Figure 11 shows the 15 largest eigenvalues (normalized so that the largest eigenvalue is 1) of

the sample correlation for our simulated dataset. The boxplots represent the sample distribution

of the 15 largest eigenvalues (based on 1000 Monte Carlo simulations). By looking at the scree, a

researcher would sometimes think that there is only one static factor in the data and sometimes

that there are two or three such factors.

Next, we apply Bai and Ng�s (2002) criteria PCp1; PCp2; PCp3; ICp1; ICp2; ICp3; and BIC3;

and Onatski�s (2005) ED criterion to determine the number of static factors in each of the 1,000

Monte Carlo simulations of our data generating process (DGP).10 We consider three choices of the

maximum number of static factors: rmax = 5; rmax = 10 and rmax = 15: For all the three choices,

the criteria PCp1; PCp2; PCp3; ICp1; ICp2 and ICp3 estimate the number of static factors equal

to rmax: Criteria BIC3 and ED produce estimates which are smaller than rmax in most of the

considered cases.

The sample distributions of the estimates corresponding to BIC3 and ED (in the Monte Carlo

sample of 1,000 simulations) are shown in Figure 12. The number of factors estimated by BIC3;

10Again, we demean and standardize the simulated data prior to applying Bai and Ng�s criteria and ED:
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Figure 12: The Monte Carlo distributions of the BIC3 and ED estimates of the number of static
factors.

although smaller than rmax in most of the cases, still very much depends on rmax: In contrast, the

results of ED are rather insensitive to rmax: In most of the Monte Carlo experiments, the number

of static factors estimated by ED is either 2 or 3.

Our �ndings so far can be summarized as follows. For our DGP, the economy-wide shocks do

have a pervasive e¤ect on a large number of generated variables. However, the e¤ects of these

shocks are not heterogeneous enough to identify the space of the macroeconomic �uctuations with

the space of the few linear �lters of the data explaining most of its variance. Although most of the

common dynamics of the data can be explained by the current economy-wide shocks and a very few

of their lags, the space spanned by these shocks and lags is substantially di¤erent from the space

of the population principal components of the same dimensionality. The �rst few of the principal

components depend almost entirely on the macroeconomic shocks and their lags. However, the

more distant principal component have a large sector-speci�c content. The information about the

space of the economy-wide shocks and their lags is spread through a relatively large number of the

population principal components.
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6. Sample vs. population principal components

In practice, factors are estimated by sample principal components. Hence, even if the spaces of

factors and population principal components coincided, there would be a discrepancy between the

true and estimated factor space because sample and population principal components di¤er. In

this section, we ask how large such a discrepancy would be for our data generating process. To

answer this question, we rede�ne the true static factors of our standardized data as their population

principal components. That is Fjt = (1=
p
�0j)v

0
0jY

(s)
t ; where �0j is the j-th largest eigenvalue and

v0j is the corresponding eigenvector of the population covariance matrix of Y
(s)
t : As before, we

simulate 1,000 datasets Y1; :::; Y120: For each simulation, we compute matrix 1
120

P120
t=1 Y

(s)
t Y

(s)0
t , its

eigenvalues �j and the corresponding eigenvectors vj .11 Then the sample principal components are:

F̂jt = (1=
p
�j)v

0
jY

(s)
t : They estimate the �true�static factors Fjt:

6.1 Regressions of F̂ on F

First, for each of F̂1t; :::; F̂6t, we compute the average R2 in the regression of F̂jt on the constant

and F1t; :::; F6t. For j = 1; :::; 6; the corresponding numbers are: 1, 1, 0.98, 0.91, 0.73, and 0.57. We

clearly see that the more distant static factors are more poorly estimated. When we regress F̂jt on

Fjt and a constant only, we get the following average R2 for j = 1; :::; 6: 0.89, 0.65, 0.67, 0.49, 0.22,

and 0.16. Note that the higher average R2 in the regressions of F̂jt on F1t; :::; F6t relative to the

regressions of F̂jt on Fjt is not a consequence of the fact that the �true�static factors are identi�ed

only up to a non-singular transformation. In our case, they are identi�ed up to a sign because we

de�ne them as the population principal components. This phenomenon deserves further serious

exploration, which we leave for future research.

The substantial decrease in the R2 with j in the individual regressions of F̂jt on Fjt is consistent

with Onatski�s (2005) �nding that the coe¢ cient in the regression of a principal component estimate

of a weak factor on the factor itself is substantially biased towards zero. The weaker the factor, the

larger the bias and the smaller the R2:

6.2 Accuracy of the asymptotic approximation

Next, we consider the accuracy of Jushan Bai�s (2003) asymptotic approximation to the �nite

sample distribution of F̂t =
�
F̂1t; :::; F̂kt

�0
. Let X be an n by T matrix of our simulated stan-

11 In practice, the standardized data would be obtained by using estimated standard deviations of the raw data
series. Here, however, we abstract from this fact and use Y (s)

t ; which are standardized by the true standard deviations.
This allows us to focus on the di¤erence between the population and sample principal components caused only by
the di¤erence between the eigenstructures of EY (s)

t Y
(s)0
t and 1

120

P120
t=1 Y

(s)
t Y

(s)0
t :
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dardized data
h
Y
(s)
1 ; :::; Y

(s)
T

i
. Let Ft = (F1t; :::; Fkt)

0 be the true factors de�ned as the popula-

tion principal components, let F = [F1; :::; FT ]
0, and let �0 be the true factor loadings, that is

�0 = [
p
�01v01; :::;

p
�0kv0k]: Bai�s Theorem 1 says that, as long as certain asymptotic regularity

conditions are satis�ed12 and
p
n=T ! 0; for each t; we have:

p
n
�
F̂t �H 0

n;TFt

�
d! N (0;�t) ; (6)

where

Hn;T �
�00�0

n

F 0F̂

T
V �1nT ;

VnT � diag
�
�̂1; :::; �̂k

�
is the diagonal matrix of the �rst k of the largest eigenvalues of XX 0= (nT ) ;

�t = V
�1Q�tQ0V �1; V is the diagonal matrix of eigenvalues of �

1=2
� �F�

1=2
� ; �F being the probabil-

ity limit of F 0F=T and �� being the probability limit of �00�0=n; Q = V 1=2	0�
�1=2
� with 	 having

columns equal to the normalized eigenvectors of �1=2� �F�
1=2
� ; �t = limn!1(1=n)

Pn
i=1

Pn
j=1 �

0
i�

00
j Ee

(s)
it e

(s)
jt

and e(s)it are the idiosyncratic components in the factor model.

In fact, the above asymptotics used in our setting implies that

p
n
�
F̂t �H 0

n;TFt

�
p! 0: (7)

This is because �t = 0: Indeed, let us denote the matrix [v01; v02; :::; v0k] as V0k and the matrix

diag (�01; �02; :::; �0k) as S0k: Then, �0 = V0kS
1=2
0k and Ft = S

�1=2
0k V 00kY

(s)
t : Since n is �xed (but

large) in our experiment, we cannot meaningfully take the limit of (1=n)
Pn
i=1

Pn
j=1 �

0
i�

00
j Ee

(s)
it e

(s)
jt

as n ! 1: The best we can do is to set �t = (1=n)
Pn
i=1

Pn
j=1 �

0
i�

00
j Ee

(s)
it e

(s)
jt : But Ee

(s)
t e

(s)0
t =

E
�
Y
(s)
t Y

(s)0
t

�
� V0kS0kV 00k: Therefore,

�t = (1=n)�0
0
h
E
�
Y
(s)
t Y

(s)0
t

�
� V0kS0kV 00k

i
�0

= (1=n)S
1=2
0k V

0
0k

h
E
�
Y
(s)
t Y

(s)0
t

�
� V0kS0kV 00k

i
V0kS

1=2
0k

= (1=n)S
1=2
0k

h
S
1=2
0k E

�
FtF

0
t

�
S
1=2
0k � S0k

i
S
1=2
0k

= (1=n)S0k
�
E
�
FtF

0
t

�
� Ik

�
S0k = 0:

We can check how accurate the asymptotic approximation (7) is in our case. Following the

above Monte Carlo structure, we simulated 1,000 datasets and computed
p
n
�
F̂t �H 0

n;TFt

�
for

each Monte Carlo replication. Figure 13 shows the median, and the 25 and 75 percentiles of the

empirical distribution of the 1,000 Monte Carlo replications of
p
n
�
F̂t �H 0

n;TFt

�
when only one

factor is estimated. We see that the approximation (7) works very poorly. Not only the interquartile

12These conditions are asymptotic and, strictly speaking, cannot be checked in any �nite sample such as ours.

26



0 20 40 60 80 100 120
­3

­2

­1

0

1

2

3
MC percentiles of factor estimation error

time

Figure 13: The interquartile range and the median of the empirical distribution of the 1,000 Monte

Carlo replications of
p
n
�
F̂t �H 0

n;TFt

�
:

range of the empirical distribution of the Monte Carlo replications is wide, the distribution also

has very fat tails in the sense that the moments of this distribution are large. For example, the

standard deviation of
p
n
�
F̂t �H 0

n;TFt

�
is more than 4 for most of t = 1; 2; :::; 120:

Of course, if a researcher only had data simulated from our model but did not know the model

itself, she would not know that �t = 0 and would estimate it. In his Monte Carlo experiments, Bai

(2004) estimates �t by �̂t = V �1nT (1=n)
Pn
i=1 ê

2
it�̂i�̂

0
iV

�1
nT ; where êit = Xit � �̂iF̂ 0t and �̂0 = F̂ 0X=T:

To assess the quality of the asymptotic approximation (6), Bai (2004) computes the standardized

estimate

gt = �̂
�1=2
t

p
n
�
F̂t �H 0

n;TFt

�
(8)

and compares the empirical distribution of gt (for a �xed t) with the standard normal distribution.

We use Bai�s strategy below. For the moment, we consider the case of only one factor. One

problem with such an exercise would be a double (imperfect) cancellation of errors. The quantity
p
n
�
F̂t �H 0

n;TFt

�
would not be close to zero as we saw from Figure 13, but �̂t will also be far

from zero because (1=n)
Pn
i=1 �̂i�̂

0
iê
2
it would not be close to (1=n)

Pn
i=1

Pn
j=1 �

0
i�

00
j Ee

(s)
it e

(s)
jt since

the cross-sectional serial correlation is ignored and since T is not much larger than n:

When we plot the median and 25% and 75% percentiles of the Monte Carlo distribution of gt as

functions of t = 1; :::; T = 120; the resulting graph turns out to be similar to that on Figure 13. To

27



­15 ­10 ­5 0 5 10 15
0

0.1

0.2

0.3

0.4
Standardized factor error estimate vs. N(0,1)

Figure 14: The Monte Carlo distribution of g60 relative to the distribution of the standard normal
random variable.

save space, we do not report this graph. Instead, we show the histogram for the 1,000 replications

of ft when t = T=2 = 60 on Figure 14. The histogram is scaled so that the sum of the areas of all

the bars equals 1 and interimposed with the standard normal density.13

When several factors are estimated, the situation remains bad. The way in which the asymptotic

approximation is not accurate varies with the explanatory power of the factor. Figure 15 shows

the histograms for the Monte Carlo distributions of the components of gt when four factors are

estimated. We see that the standard normal asymptotic approximation to the empirical distribution

of g1t is relatively accurate, but the empirical distributions of g2t; g3t and g4t have progressively

fatter tails relative to the standard normal approximation. We link such a deterioration of the

quality of Bai�s asymptotic approximation to the decreasing explanatory power of more distant

factors.14

We conclude that the asymptotic theory of the principal components estimates available to

date does not provide a good approximation to the distribution of the estimates for our data

13The range of the horizontal axis is truncated at [-15,15] to improve visibility.
14Onatski (2005) describes a di¤erent asymptotic approximation designed speci�cally for the case when the factors

are weak, as seems to be the case in our present exercise. However, Onatski�s formulas are derived for the case of
neither cross-sectional nor serial correlation in the idiosyncratic terms and cannot be used here. In our opinion,
derivation of the alternative weak factor asymptotics for the case of correlated idiosyncratic terms is an important
task. We leave it for future research.
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Figure 15: Monte Carlo distributions of g1;60; g2;60; g3;60; and g4;60 relative to the theoretically
derived standard normal distribution.

generating process. To the extent that the data generating process we consider is similar to actual

macroeconomic datasets, this �nding calls for a new asymptotic theory, perhaps, based on the

assumptions which better correspond to the �nite sample situation.

7. Di¤usion Index Forecasting

Large factor models are often used as statistical devices which motivate and explain di¤usion index

forecasting. Stock and Watson (2002) propose the following factor model framework for forecasting

variable yt+1 using a high-dimensional vector Yt of predictor variables:

yt+1 = � (L) ft + 
 (L) yt + "t+1 (9)

Yit = �i (L) ft + eit; (10)

where � (L) ; 
 (L) and �i (L) are lag polynomials in non-negative powers of L, ft are a few economy-

wide shocks in�uencing a wide range of variables Yit, and E ("t+1jft; yt; Yt; ft�1; yt�1; Yt�1; :::) = 0:
It turns out that equations (9)-(10) �t in our theoretical model quite well. For example, if we set

yt equal to output growth or to aggregate in�ation, and if we set ft equal to the three-dimensional

vector of economy-wide shocks: the monetary policy, the money demand and the leisure prefer-

ence shocks, then the linear forecasts of yt+1 based on the history of yt and ft are nearly opti-

mal so that, although the assumption E ("t+1jft; yt; Yt; ft�1; yt�1; Yt�1; :::) = 0 is violated because
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E (yt+1jft; yt; ft�1; yt�1; :::) 6= E (yt+1jft; yt; Yt; ft�1; yt�1; Yt�1; :::), the degree of the violation is
very small. Precisely, using the state space representation (1) for our model, we numerically com-

pare the variance of the optimal forecast error "ot+1 = yt+1 � E (yt+1jft; yt; Yt; ft�1; yt�1; Yt�1; :::)
with the variance of the forecast error "t+1 = yt+1�E (yt+1jft; yt; ft�1; yt�1; :::). For output growth
we �nd that

V ar (yt+1)� V ar ("t+1)
V ar (yt+1)� V ar

�
"ot+1

� = 0:991; (11)

which means that the history of yt and ft alone captures 99.1% of all forecastable variance in yt+1:

For aggregate in�ation, the corresponding �gure is 98.9%.

The reason why we use the above measure of forecast accuracy as opposed to, say, the mean

squared forecast error ratio V ar ("t+1) =V ar
�
"ot+1

�
is that in our model, output growth and aggre-

gate in�ation are not easily forecastable. For example, for output growth, the ratio V ar
�
"ot+1

�
=V ar (yt+1)

equals 0.8484 (for in�ation, the similar number is 0.8616) so that only 15.2% of the variance of

output growth (and 15.8% of the variance of aggregate in�ation) is forecastable at one quarter hori-

zon. Therefore, had we used V ar ("t+1) =V ar
�
"ot+1

�
as a measure of sub-optimal forecast accuracy,

any reasonable forecast would produce a number in between 1 and (0:8484)�1 = 1:179 (the latter

number would correspond to zero forecast) making the measure not particularly informative.

In our model, the factors represented by the three economy-wide shocks have large forecasting

power relative to other predictors. For example, the forecast of output growth based on its own

history and the history of aggregate in�ation captures 79% of the forecastable variance, whereas the

forecast based on the history of ft alone captures 98.8% of the forecastable variance. For aggregate

in�ation, its forecast based on the own history and the history of output growth captures 75.5%

of the forecastable variance, whereas the forecast based on the history of ft alone captures 97.4%

of the forecastable variance. Hence, the di¤usion index forecasts substantially outperform small

VAR forecasts in our model, at least theoretically. Further analysis of the predictive power of ft

shows that the forecasts based on the separate histories of the monetary policy shocks, money

demand shocks and leisure preference shocks capture 47.8%, 46.6% and 4.4%, respectively, of the

forecastable variance of output growth. For aggregate in�ation, the similar numbers are 75.5%,

11.6% and 10.2%.

In practice, to implement (9)-(10), an important simplifying assumption that the lag polynomi-

als � (L), 
 (L) and �i (L) are of �nite order is usually made. Equation (10) is replaced by a static

factor representation: Yit = �iFt + eit; and equation (9) is replaced by

yt+1 = �1 + �1(L)Ft + 
1 (L) yt + "t+1; (12)

where �1(L) and 
1 (L) are polynomials of �nite order. Then, the static factors Ft are estimated
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by the sample principal components and the coe¢ cients of the above forecasting equation are

estimated by ordinary least squares (OLS) of yt+1 on F̂t; yt and a few of their lags.

We have already seen that the space of principal component is substantially di¤erent from the

space of macroeconomic static factors represented by mpt;mpt�1;mdt;mdt�1 and lpt: There are

substantial di¤erences both at population and sample levels. At the population level, the macro-

economic space is substantially di¤erent from the space of the population principal components.

At the sample level, the sample principal components imperfectly estimate the space of the popu-

lation principal components (but, as is seen from Figure 15, the discrepancy is mostly due to the

estimation of the less in�uential population principal components).

Although the di¤erence between the macroeconomic and principal component spaces may be

harmful for structural analysis, it may not matter for di¤usion index forecasts. In this subsection,

we explore this possibility in detail. We focus on the special case of (12):

yt+1 = �+ �
0Ft + "t+1; (13)

with no lags of yt+1 and no lags of Ft as predictor variables. We set15

Ft = (mpt;mpt�1;mdt;mdt�1; lpt; lpt�1) : (14)

Let us denote the vector of the �rst six population principal components of vector Y (s)t as PCt;

and let us denote the vector of the �rst six sample principal components of Y (s)t ; t = 1; :::; T; asdPCt: We estimate the coe¢ cients � and � in (13) by the OLS regression of yt+1; t = 1; :::; T � 1
on a constant and dPCt; and use the estimates to form the forecast:

ŷT+1jT = �̂+ �̂
0dPCT :

Then, we decompose the forecast error into four di¤erent parts as follows:

yT+1 � ŷT+1jT = yT+1 � E (yT+1jYT ; YT�1; :::)| {z }
�1

+

E (yT+1jYT ; YT�1; :::)� E� (yT+1jFT )| {z }
�2

+

E� (yT+1jFT )� E� (yT+1jPCT )| {z }
�3

+

E� (yT+1jPCT )� ŷT+1jT| {z }
�4

:

15We have included lpt�1 in the set of static factors because, as was mentioned in the discussion of Figure 5, it
helps to explain the variance of in�ation series.
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The �rst part (�1) is the completely unforecastable part, which is the error of the best mean

squared forecast of yT+1 given the entire history of the observables. The second part (�2) is the

di¤erence between the best forecast and the linear forecast based on the current value of the six

static factors de�ned by (14). From the discussion above, we know that the linear forecast based

on the entire history of ft (and hence, of Ft) is very close to the optimal. So if we �nd that �2 is

large, then this would be due to the truncation of the lag length of � (L) in (9). The third part,

�3; does not need to be orthogonal to �2 because the information contained in PCT is not a part

of the information contained in FT : In fact, the forecast E� (yT+1jPCT ) may be even better than
E� (yT+1jFT ) : This would be the case, for example, if the hypothetical di¤usion indexes useful for
forecasting yT+1 were to partially rely on important sector-speci�c information, and if PCT were

to absorb such information. Finally, the fourth part of the error, �4; is due to replacing the linear

forecast E� (yT+1jPCT ) by a non-linear forecast ŷT+1jT = �̂+ �̂
0dPCT : Since E� (yT+1jPCT ) is not

optimal forecast, it is not necessarily true that �4 is orthogonal to �2 and/or �3: In particular, the

estimation errors in �̂; �̂; anddPCT may, in principle, improve the quality of the forecast. Typically,
however, we would expect the estimation errors to hurt the forecasting quality, although, according

to the asymptotic theory developed by Bai and Ng (2006), such a negative in�uence would be

expected to be negligible for large n and T:

We assess the accuracy of the forecast ŷT+1jT of output growth and of aggregate in�ation and

the properties of the corresponding error decompositions into �1; :::; �4 in the following Monte Carlo

experiment. We simulate a large number of datasets of cross-sectional size n = 156 and temporal

size 120:We use the �rst 119 values of the simulated series for estimating and the last value for the

forecast quality assessment. First, we compute the percentage of the forecastable variance captured

by di¤erent forecasts. Precisely, we compute

dV ar (yT+1)� dV ar ("T+1)dV ar (yT+1)� dV ar �"oT+1� ;
where "oT+1 is the error of the optimal forecast E (yT+1jYT ; YT�1; :::) and "T+1 is either the error of
the (infeasible) forecast E� (yT+1jfT ; fT�1; :::) ; or the error of the (infeasible) forecast E� (yT+1jFT ) ;
or the error of the (infeasible) forecast E� (yT+1jPCT ) ; or the error of the (feasible) forecast ŷT+1jT :
The value of dV ar ("T+1) for the latter three forecasts equals the sample Monte Carlo variance (based
on 40,000 Monte Carlo replications of the data-generating process) of �1 + �2; �1 + �2 + �3; and

�1 + �2 + �3 + �4; respectively. The results of our computations are reported in Table 2.16

We see that for output growth, there is little loss from basing the forecast on the current

16The �gures in the third row of the table, corresponding to the forecast E� (yT+1jfT ; fT�1; :::) ; were theoretically
obtained and were reported above. We repeat them here for convenience.
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Table 2: The percentage of the forecastable variance captured by di¤erent forecasts.
Type of forecast Output growth In�ation

Optimal 100% 100%
E� (yT+1jfT ; fT�1; :::) 98.8% 97.4%
E� (yT+1jFT ) 90.8% 79.8%
E� (yT+1jPCT ) 92.2% 84.8%
ŷT+1jT 38.0% 18.3%

and one-period-lagged macroeconomic shocks, which constitute the entries of FT ; relative to the

entire history of the macroeconomic shocks ffT ; fT�1; fT�2; :::g : However, for aggregate in�ation,
the corresponding loss is larger (see the drop from 97.4% to 79.8% in the third row of Table 2).

Next, basing forecast on the �rst six population principal components of the data rather than

on (the six-dimensional vector of the macroeconomic static factors) FT somewhat improves the

forecasting power. Finally, the need for estimating the principal components and the coe¢ cients

in the forecast equations lead to very substantial drops in the forecasting power for both output

growth and aggregate in�ation.

Our Monte Carlo estimates of the covariance matrix of the di¤usion index forecast components

�1; �2; �3; and �4 (based on 40,000 Monte Carlo replications and normalized by the variance of the

forecasted series) are as follows:

dV ar (�) =
0BB@
0:848 0 0 0
0 0:014 �0:014 0:004
0 �0:014 0:027 �0:005
0 0:004 �0:005 0:086

1CCA
for output growth, and

dV ar (�) =
0BB@
0:862 0 0 0
0 0:028 �0:030 �0:006
0 �0:030 0:053 0:006
0 �0:006 0:006 0:093

1CCA
for aggregate in�ation. As expected, �1; being the error of the optimal forecast, is not correlated to

either of �2; �3; or �4: The variance of �1 is substantially larger than the variances of �2; �3; and �4;

which re�ects the fact that the output growth and aggregate in�ation series are poorly forecastable

in our data. However, the variance of �2 + �3 + �4; which can be interpreted as the part of the

variance of the di¤usion index forecast which is due to its suboptimality is not negligible relative

to the variance of �1: For output growth, dV ar (�2 + �3 + �4) constitutes 11.1% of dV ar (�1). For
aggregate in�ation, dV ar (�2 + �3 + �4) constitutes 13.1% of dV ar (�1) :
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8. Structural FAVAR analysis

The availability of large datasets and recent advances in the methodology has shifted the center

of empirical macroeconomic analysis from structural Vector Autoregressions (VAR) to structural

factor analysis. Factor Augmented Vector Autoregressions (FAVAR) introduced by Bernanke et al.

(2005) have been successfully applied to study the e¤ects of monetary policy (Bernanke et al., 2005),

the e¤ects of the Euro on the monetary transmission mechanism (Boivin et al., 2008), the extent

of price stickiness (Boivin et al., 2009), the sources of global business cycle (Bagliano and Morana,

2009), the economic e¤ects of oil price and credit market shocks (Lescaroux and Mignon, 2009, and

Gilchrist et al., 2009), the transmission of international shocks (Mumtaz and Surico, 2009), and

the term structure of interest rates (Moench, 2008). An alternative, but closely related, structural

factor model approach has been used to analyze the transmission of the common euro-area shocks

to new EU member states (Eickmeier and Breitung, 2006), the e¤ects of monetary policy (Forni et

al., 2009, and Forni and Gambetti, 2009), and the sectoral-aggregate decomposition of technological

shocks (Foester et al, 2008).

The main advantage of the structural factor analysis over the traditional structural VARs is

that it uses much richer datasets. Macroeconomic shocks are often non-fundamental relative to a

small set of variables utilized by structural VARs. Therefore, the recovered shocks di¤er from the

true ones. The di¤erence results in anomalies such as the price puzzle, the liquidity puzzle, etc.

In contrast, macroeconomic shocks are much less likely to be non-fundamental relative to a large

set of variables utilized by structural factor analysis. Hence, the true shocks are recovered and the

anomalies disappear.17

Another advantage of the structural factor analysis is the possibility to analyze the e¤ects

of the structural shocks on the disaggregated series. Bernanke et al. (2005) use a FAVAR to

estimate the impulse responses of 20 di¤erent macroeconomic indicators to a monetary policy

shock. Boivin, Giannoni and Mihov (2009) (BGM) use a FAVAR to study the impulse responses

of the disaggregated prices to a monetary policy shock. They conclude that the response of the

sectoral prices to the monetary policy shock is gradual, so that the macroeconomic component of

the sectoral prices is sticky, which is an important �nding validating a large body of theoretical

research based on the assumption of sticky prices.

In this section, we would like to assess the quality of the FAVAR analysis of the impulse responses

of disaggregated macroeconomic series to the monetary policy shock. We will assume that the shock

is observable and will include it into the FAVAR as one observable factor, correctly ordered �rst

17See Fernandez-Villaverde et al. (2007) and Forni et al. (2009) for two detailed recent discussions of the non-
fundamentalness issue.
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in the causal chain relating it to the other (unobserved) factors. This way, we abstract from the

problems that may be caused by the incorrect identi�cation of the shock, and focus only on the

problems speci�cally related to the fact that the factor model is an imperfect representation of the

underlying DSGE model. We start by estimating �ve latent factors in our simulated data, assuming

that the sixth factor is the monetary policy shock, which we assume to be observed. We choose

to consider �ve latent factors to make our FAVAR analysis similar to that in BGM. We will also

analyze the changes which would result from di¤erent assumptions about the number of factors.

To extract the latent factors from our data we use the same methodology as BGM. Precisely, �rst,

we obtain the initial estimates of the �ve factors using the principal components method. Then,

we regress our data on the so extracted factors and on the monetary policy shock. We compute an

auxiliary dataset, which is our initial data net of the estimated monetary policy shock component,

and extract �ve factors from such an auxiliary dataset. Then, we again regress our initial data on

the newly extracted factors and on the monetary policy shock. After that, we compute an auxiliary

data set, which is our initial data net of the estimated monetary policy shock component and so on.

We make 20 iterations (more than enough for the convergence) and take the factors and loadings

estimated in the last iteration as our �nal estimates.

8.1 E¤ects of monetary policy shocks

We proceed with a description of the response of our data series to a shock to money growth.

As explained above, we treat the monetary policy shock as an observable correctly ordered in the

causal chain, so there is no issue of inaccurate recovery of the monetary policy shock by a VAR.

In particular, our analysis below does not attempt to explain the workings of the FAVAR solving

puzzles such as the price puzzle. We are only concerned with the accuracy of the FAVAR estimates

of the impulse responses of disaggregated series to the correctly identi�ed monetary policy shock.

Figure 16 shows the impulse responses of aggregate consumption, aggregate in�ation, aggregate

output and aggregate hours to a one standard deviation increase in the rate of money growth.

We identify the shock by ranking money growth �rst in the causation chain. That is, in contrast

to BGM, the money growth rate is assumed not to be contemporaneously a¤ected by any other

variables because, in the model, money growth is an exogenous process.

The dashed lines in Figure 16 correspond to the medians, 5% and 95% percentiles of the Monte

Carlo distribution (we make 1000 Monte Carlo replications) of the FAVAR estimates of the impulse

responses. The solid lines corresponds to the theoretical impulse responses. We see that the

estimated impulse responses are similar to the theoretical ones. However, on average, they decay

somewhat faster than the theoretical impulse responses.
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Figure 16: Impulse responses of di¤erent aggregate variables to a one standard deviation shock to
money growth innovation. Dashed lines: 5, 50 and 90 percentiles of the monte carlo distribution of
estimated impulse responses. Solid lines: theoretical impulse responses.

Figures 17, 18, 19, 20 and 21 report the impulse responses of sector-speci�c consumptions,

in�ations, outputs, hours, and wages, respectively, to a shock of one standard deviation in the

rate of money growth. The estimated impulse responses remain similar to the theoretical ones.

However, the uncertainty caused by the estimation becomes large for some variables and sectors.

8.2 Di¤erent number of factors

Here we repeat the above analysis using a di¤erent number of latent factors in the FAVAR. Figure

22 shows the impulse responses of the aggregate variables to the monetary policy shock when the

number of latent factors is only 1. Somewhat surprisingly, the �gure looks very similar to Figure 16,

which is based on �ve latent factors. To facilitate the comparison, we show the impulse responses

percentiles from Figure 16 as dotted lines on Figure 22.

The entire Monte Carlo distribution of the impulse responses estimated using a FAVAR with

one latent factor is somewhat shifted upward relative to the distribution of the impulse responses

estimated using a FAVAR with �ve latent factors. This shift is much more noticeable at longer

horizons. On average, the Monte Carlo distribution of the impulse responses based on the 5-

factor FAVAR has somewhat lower variance than that of the responses based on a 1-factor FAVAR.

However, overall, the di¤erences are small.
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Figure 17: Estimated and theoretical impulse responses of sectoral consumptions to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of
the estimated impulse responses.
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Figure 18: Estimated and theoretical impulse responses of sectoral in�ations to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of
the estimated impulse responses.
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Figure 19: Estimated and theoretical impulse responses of sectoral outputs to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of
the estimated impulse responses.
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Figure 20: Estimated and theoretical impulse responses of sectoral hours to monetary policy shock.
The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of the
estimated impulse responses.
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Figure 21: Estimated and theoretical impulse responses of sectoral wages to monetary policy shock.
The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of the
estimated impulse responses.
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Figure 22: Impulse responses of di¤erent aggregate variables to a one standard deviation shock to
money growth innovation. Dashed lines: 5, 50 and 90 percentiles of the monte carlo distribution
of impulse responses estimated using FAVAR with 1 latent factor. Solid lines: theoretical impulse
responses. Dotted lines: 5, 50 and 90 percentiles of the monte carlo distribution of impulse responses
estimated using FAVAR with 5 latent factors.
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Figures 23, 24, 25, 26 and 27 superimpose the impulse responses of sectoral consumptions,

in�ations, outputs, hours and wages estimated by a FAVAR with 1 factor (dashed lines) and by a

FAVAR with �ve factors (dotted lines). We see that many sectoral impulse responses are estimated

much better by a FAVAR with 5 factors than by a FAVAR with 1 factor.

Table 3 shows how the accuracy of the impulse response estimation depends on the number

of factors in more detail. For each sector and each particular category of variables, we compute

the mean squared error of the impulse response estimate based on FAVARs with 1 through 6

latent factors. The mean squared error is cumulative over the �rst 8 periods of the response. Its

computation is based on 1,000 Monte Carlo replications. We divide all the obtained mean square

errors by the corresponding mean squared error of the estimate from a FAVAR with 1 factor. Then,

for each category of variables, we report the average and standard deviations (in parentheses) of

these ratios over 30 di¤erent sectors.

Table 3: Means and standard deviations (over 30 sectors) of the Monte Carlo mean squared errors
of the impulse responses estimated by FAVARs using di¤erent number of latent factors. The mean
squared errors are cumulative over the �rst 8 periods. They are normalized so that the mean
squared error of the estimates obtained from a FAVAR based on a single factor equals one.

Number of factors Consumption In�ation Output Hours Wages
1 1 1 1 1 1
2 0:73

(0:16)
0:89
(0:33)

0:75
(0:19)

0:80
(0:13)

0:24
(0:04)

3 0:80
(0:23)

0:70
(0:28)

0:85
(0:26)

0:88
(0:14)

0:27
(0:05)

4 0:69
(0:23)

0:54
(0:41)

0:88
(0:27)

0:90
(0:13)

0:28
(0:06)

5 0:61
(0:20)

0:55
(0:44)

0:84
(0:24)

0:91
(0:12)

0:29
(0:06)

6 0:58
(0:20)

0:55
(0:44)

0:83
(0:24)

0:93
(0:13)

0:29
(0:07)

We see that using two latent factors instead of one substantially improves the quality of the

FAVAR estimates of the impulse responses of variables in all the categories. The improvement

is especially dramatic for sectoral wages. Further increasing the number of factors gives mixed

results. For output, hours and wages, the quality of the estimated impulse responses deteriorates,

while for consumption and in�ation, it further improves. This �nding is consistent with the �nding

above that the information about the true macroeconomic factors is spread through a relatively

large number of principal components even though the main portion of the macroeconomic factors�

variation is captured by the �rst two or three principal components.
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Figure 23: Estimated and theoretical impulse responses of sectoral consumptions to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution
of the impulse responses estimated by FAVAR with 1 factor. The dotted line correspond to the
estimation by FAVAR with 5 factors.
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Figure 24: Estimated and theoretical impulse responses of sectoral in�ations to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution
of the impulse responses estimated by FAVAR with 1 factor. The dotted line correspond to the
estimation by FAVAR with 5 factors.

45



0

10

20
x 10

­3Agriculture

0
5

10

x 10
­3Metal Mining

0

10

20
x 10

­3Coal Mining

­2
0
2
4
6

x 10
­3Oil and Gas

0

0.01

0.02

Nonmet. m ining

0
0.02
0.04
0.06

Construction

0

10

20
x 10

­3Food

­5

0

5
x 10

­3Tobacco

0

0.01

0.02

Textile m ill

0

10

20
x 10

­3Apparel

0

0.02

0.04

Lumber&wood

0
0.01
0.02
0.03

Furniture&fix

0
5

10
15

x 10
­3Paper

0

0.01

0.02

Printing&publ.

0
5

10
15

x 10
­3Chemicals

0
5

10

x 10
­3Oil refining

0

0.01

0.02

Rubber&plastic

0

0.01

0.02

Leather

0
0.01
0.02
0.03

Stone,clay,glass

0

0.02

0.04

Primary Metal

0
0.01
0.02
0.03

Fabricated met

0
0.01
0.02
0.03

Nonelectr mach

0
0.01

0.02

Electr. mach.

0
0.01
0.02
0.03

Transp. equip

0
0.01
0.02

Instruments

5 10
0

10

20
x 10

­3Misc. Manuf

5 10
0

0.01

0.02

Transp.&Util

5 10
0

0.01

0.02

Trade

5 10
0
5

10

x 10
­3FIRE

5 10
0

0.01

0.02

Other Services

Figure 25: Estimated and theoretical impulse responses of sectoral outputs to monetary policy
shock. The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution
of the impulse responses estimated by FAVAR with 1 factor. The dotted line correspond to the
estimation by FAVAR with 5 factors.
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Figure 26: Estimated and theoretical impulse responses of sectoral hours to monetary policy shock.
The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of the
impulse responses estimated by FAVAR with 1 factor. The dotted line correspond to the estimation
by FAVAR with 5 factors.
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Figure 27: Estimated and theoretical impulse responses of sectoral wages to monetary policy shock.
The dashed lines correspond to 5, 50 and 95 percentiles of the Monte Carlo distribution of the
impulse responses estimated by FAVAR with 1 factor. The dotted line correspond to the estimation
by FAVAR with 5 factors.
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9. Conclusions

In this paper, we have used a highly-dissagregated, multi-sector DSGE model as a laboratory to

shed some light on the application of factor analysis to economic data. As in actual applications,

we have access to a large number of disaggregated series with rich dynamics and face a certain

ambiguity as to what �factors�are. However, in contrast to actual applications, we know the true

data generating process and this knowledge allow us to explore the macroeconomic content of factor

analysis and to assess the practical bene�ts and limitations of applying these statistical tools to

real-world data.

We �nd that among the three aggregate and thirty sectoral shocks in the model, only the former

may be thought of as factors in the sense that they non-trivially a¤ect most of the 156 variables

in the dataset. This result supports the view, implicit in most of the applied research, that the

factor space may be associated with the space of basic macroeconomic shocks. However, despite

the pervasiveness of the aggregate shocks, the principal components analysis has a di¢ cult time

replicating the macroeconomic factor space. Also, the asymptotic approximation to the distribution

of the principal components is relatively poor when applied to our sample size, which, as it happens,

is of the length typically used in most applied studies. The application of standard procedures to

determine the number of factors deliver di¤erent results depending on the criteria used and auxiliary

parameters. Development of sensible procedures for assessing the relative quality of the critera in

the situation when the concept of the true factor is not well-de�ned, as in our application, is left

for future research.

On the other hand, we �nd that di¤usion index forecasting performs reasonably well on our

simulated data and that factor augmented vector autoregressions (FAVAR) accurately recover the

true impulse responses to a monetary policy shock at least when it is treated as an observable

correctly ordered in the causal chain. These two results provide support the use of factor analysis

techniques for forecasting, nowcasting, and policy analysis.
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A The Multi-Sector Model

This Appendix describes the multi-sector model and parameter values used to generate the arti�cial

data used in our analysis. The model is that developed by Bouakez, Cardia and Ruge-Murcia (2009)

and we follow closely their presentation. For additional details on the model and its econometric

estimation, we refer the reader to their article.

1.1 Production and Intermediate Consumption

Output is produced in J heterogenous sectors. In each sector there is a continuum of monopolistically-

competitive �rms that produce a di¤erentiated good but are identical otherwise. Firms in di¤erent

sectors face di¤erent nominal frictions, and use di¤erent production functions, and combinations of

material and investment inputs. These assumptions imply that the equilibrium will be symmetric

within sectors but asymmetric between sectors.

Firm l in sector j produces output yljt using the technology

yljt = (z
j
tn
lj
t )
�j (kljt )

�j (H lj
t )


j ; (15)

where zjt is a sector-speci�c productivity shock, n
lj
t is labor, k

lj
t is capital, H

lj
t is materials inputs,

and �j ; �j ; 
j 2 (0; 1) and satisfy �j + �j + 
j = 1. The sectoral productivity shock follows the

process

ln(zjt ) = (1� �zj ) ln(zjss) + �zj ln(z
j
t�1) + �zj ;t;

where �zj 2 (�1; 1); ln(z
j
ss) is the unconditional mean, and the innovation �zj ;t is identically and

independently distributed (i:i:d:) with zero mean and variance �2
zj
.

Materials inputs are an aggregate of goods produced by all �rms in all sectors. In particular,

H lj
t =

JY
i=1

�
��ij
ij (hlji;t)

�ij ; (16)

where

hlji;t =

�
1R
0

�
hljmi;t

�(��1)=�
dm

��=(��1)
; (17)

hljmi;t is the quantity of materials purchased from �rm m in sector i, �ij 2 (0; 1) is a weight that

satis�es
JP
i=1
�ij = 1; and � > 1 is the elasticity of substitution between goods produced in the same

sector.

The capital stock is directly owned by the �rm and evolves according to

kljt+1 = (1� �)k
lj
t +X

lj
t ; (18)
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where � 2 (0; 1) is the rate of depreciation andX lj
t denotes an investment technology that aggregates

di¤erent investment goods into units of capital. In particular,

X lj
t =

JY
i=1

�
��ij
ij (xlji;t)

�ij ; (19)

where

xlji;t =

�
1R
0

�
xljmi;t

�(��1)=�
dm

��=(��1)
; (20)

xljmi;t is the quantity of investment goods purchased from �rm m in sector i, and �ij 2 (0; 1) is

a weight that satis�es
JP
i=1
�ij = 1: The prices of the composites Hj

t and X
j
t are, respectively,

QH
j

t =
JQ
i=1
(pit)

�ij and QX
j

t =
JQ
i=1
(pit)

�ij , where

pit =

0@ 1Z
0

(pmit )
1��dm

1A1=(1��) (21)

and pmit is the price of the good produced by �rm m in sector i:

Firms face convex costs when adjusting their capital stock and nominal prices. The capital-

adjustment cost takes the form

�ljt = �(X
lj
t ; k

lj
t ) =

�

2

 
X lj
t

kljt
� �
!2
kljt ; (22)

where � > 0: The real per-unit cost of changing the nominal price is

�ljt = �(p
lj
t ; p

lj
t�1) =

�j

2

 
pljt

�ssp
lj
t�1

� 1
!2
; (23)

where pljt is the price of the good produced by �rm l in sector j; �ss is the steady-state aggregate

in�ation rate and �j > 0 is a sector-speci�c parameter.
The �rm�s problem is to maximize

E�

1X
t=�

�t��
�
��
�t

� 
dljt
Pt

!
; (24)

where dljt are nominal pro�ts, Pt is the aggregate price index (see below), � 2 (0; 1) is a discount
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factor and �t is the consumers�marginal utility of wealth. Nominal pro�ts are

dljt = pljt

�
cljt +

JP
i=1

1R
0

xmilj;tdm+
JP
i=1

1R
0

hmilj;tdm

�
� wljt n

lj
t �

JP
i=1

1R
0

pmit x
lj
mi;tdm�

JP
i=1

1R
0

pmit h
lj
mi;tdm

��ljt QX
j

t � �ljt p
lj
t

�
cljt +

JP
i=1

1R
0

xmilj;tdm+
JP
i=1

1R
0

hmilj;tdm

�
;

(25)

where cljt is �nal consumption, wljt is the nominal wage, and xmilj;t and h
mi
lj;t are respectively the

quantities sold to �rm m in sector i as materials input and investment good. The solution of the

�rm�s problem delivers optimal demand functions for materials and investment inputs:

xljmi;t = �ij
�
pmit =p

i
t

��� �
pit=Q

Xj

t

��1
X lj
t ;

hljmi;t = �ij
�
pmit =p

i
t

��� �
pit=Q

Hj

t

��1
H lj
t :

For these demand functions,
JP
i=1

1R
0

pmit x
lj
mi;tdm =

JP
i=1
pitx

lj
i;t = QX

j

t X lj
t and

JP
i=1

1R
0

pmit h
lj
mi;tdm =

JP
i=1
pith

lj
i;t = Q

Hj

t H lj
t .

1.2 Final Consumption

Consumers are identical, in�nitely lived, and their number is constant and normalized to one. The

representative consumer maximizes

E�

1X
t=�

�t�� (log(Ct) + �t log(Mt=Pt) + �t log(1�Nt)) ; (26)

where Ct is consumption, Mt is the nominal money stock, Nt is hours worked, and �t and �t are

preference shocks. These shocks follow the processes

ln(�t) = (1� ��) ln(�ss) + �� ln(�t�1) + ��;t;

ln(�t) = (1� ��) ln(�ss) + �� ln(�t�1) + ��;t;

where ��; �� 2 (�1; 1); ln(�ss) and ln(�ss) are unconditional means, and the innovations ��;t and
��;t are i:i:d: with zero mean and variances �2� and �

2
�; respectively.

Consumption is an aggregate of all available goods:

Ct =

JY
j=1

(�j)��
j

(cjt )
�j ; (27)

52



where �j 2 (0; 1) and satis�es
JP
j=1

�j = 1; and

cjt =

0@ 1Z
0

�
cljt

�(��1)=�
dl

1A�=(��1) ; (28)

with cljt the �nal consumption of the good produced by �rm l in sector j: Hours worked are an

aggregate of the hours supplied to each �rm in each sector:

Nt =

0@ JX
j=1

(njt )
(&+1)=&

1A&=(&+1) ; (29)

where & > 0 and njt =

1Z
0

nljt dl is the number of hours worked in sector j; with n
lj
t being the number

of hours worked in �rm l in sector j: The aggregate price index is de�ned as

Pt =

JY
j=1

(pjt )
�j ; (30)

where

pjt =

0@ 1Z
0

(pljt )
1��dl

1A1=(1��) : (31)

The consumer�s dynamic budget constraint (in real terms) is

JX
j=1

1Z
0

 
pljt c

lj
t

Pt

!
dl + bt +mt +

JX
j=1

1Z
0

 
aljt s

lj
t

Pt

!
dl =

JX
j=1

1Z
0

 
wljt n

lj
t

Pt

!
dl +

Rt�1bt�1
�t

+
mt�1
�t

+

JX
j=1

1Z
0

 
(dljt + a

lj
t )s

lj
t�1

Pt

!
dl +

�t
Pt
;

where bt = Bt=Pt is the real value of nominal bond holdings, mt = Mt=Pt is real money balances,

sjt�1 are shares in a mutual fund j = 1; : : : ; J , Rt is the gross nominal interest rate on bonds that

mature at time t+ 1; �t is the gross in�ation rate between periods t� 1 and t; �t is a government
lump-sum transfer, and ajt and d

j
t are, respectively, the price of a share in, and the dividend paid

by, the mutual fund j.

Utility maximization delivers the optimal demand function

cljt = �
j

 
pljt

pjt

!�� 
pjt
Pt

!�1
Ct: (32)
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Using this demand function and the de�nition of the price indices, it is easy to show that
JP
j=1

1R
0

pljt c
lj
t dl =

JP
j=1

pjtc
j
t = PtCt:

1.3 Monetary Policy

Money is supplied by the government according to Mt = �tMt�1; where �t is the stochastic gross

rate of money growth. The rate of money growth follows the process

ln(�t) = (1� ��) ln(�ss) + �� ln(�t�1) + ��;t;

where �� 2 (�1; 1); ln(�ss) is the unconditional mean, and the innovation ��;t is i:i:d: with zero
mean and variance �2�. Monetary injections are transferred to consumers lump-sum so that the

budget constraint

�t=Pt = mt �mt�1=�t (33)

is always satis�ed.

1.4 Aggregation

In equilibrium, net private bond holdings equal zero because consumers are identical, the total

share holdings in sector j add up to one, and �rms in the same sector are identical. Hence, the

private sector�s budget constraint is

JX
j=1

pjtc
j
t

Pt
+mt =

JX
j=1

wjtn
j
t

Pt
+

JX
j=1

djt
Pt
+
mt�1
�t

+
�t
Pt
: (34)

Substituting in the government budget constraint (33) and multiplying through by the price level

yield
JX
j=1

pjtc
j
t =

JX
j=1

wjtn
j
t +

JX
j=1

djt : (35)

De�ne the value of gross output produced by sector j

V jt � p
j
t

 
c
j

t +
JX
i=1

xij;t +
JX
i=1

hij;t

!
; (36)

and the sum of all adjustment costs in sector j

Ajt = �
j
tQ

Xj

t +�jtp
j
t

 
c
j

t +

JX
i=1

xij;t +

JX
i=1

hij;t

!
: (37)
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Then, aggregate nominal dividends are

JX
j=1

djt =
JX
j=1

V jt �
JX
j=1

wjtn
j
t �

JX
j=1

QX
j

t Xj
t �

JX
j=1

QH
j

t Hj
t �

JX
j=1

Ajt : (38)

The nominal value added in sector j is denoted by Y jt and is de�ned as the value of gross output

produced by that sector minus the cost of materials inputs

Y jt = V
j
t �QH

j

t Hj
t : (39)

Substituting (38) and (39) into (35), using
JP
j=1

pjtc
j
t = PtCt; and rearranging yield

JX
j=1

Y jt = PtCt +

JX
j=1

QX
j

t Xj
t +

JX
j=1

Ajt : (40)

That is, aggregate output equals private consumption plus investment and the sum of all adjustment

costs in all sectors.

1.5 Parameter Values

Bouakez, Cardia and Ruge-Murcia (2009) consider thirty sectors that roughly correspond to the

two-digit Standard Industrial Classi�cation (SIC). These sectors are listed in Table 1, along with

the Major Group categories that they include, their consumption weights (�j), the estimates of their

production function parameters (that is, �j ; �j ; and 
j) and the estimate of their price rigidity

parameters (�j).

Table 2 contains the capital adjustment cost parameter (�) and the parameters of the shock

processes. Note that shock heterogeneity is limited to the Division level of the SIC. That is, the

authors assumed one distribution each for agriculture (Division A), all mining sectors (Division B),

construction (Division C), all manufacturing sectors (Division D), and all services sectors (Divisions

E through I). However, since draws are independent across sectors, shock realizations will be

di¤erent in di¤erent sectors, whether they are in the same Division or not.

The discount rate (�) ; depreciations rate (�), and elasticity of substitution between goods

produced in the same sector (�) were set to 0:997; 0:02; and 8; which are standard values in the

literature. Finally, the input weights �ij and �ij were computed as the share of sector i in the

materials and investment input expenditures by sector j; respectively, using data from the Use

Table and Capital Flow Table of the 1992 U.S. Input-Output (I-O) accounts.

55



Table 1. Model Parameters

SIC Consumption Production Function Price
Sector Codes Weights �j �j 
j Rigidity

Agriculture 01� 09 0:02 0:261 0:142 0:597 0:001
Metal Mining 10 0:01 0:328 0:306 0:366 4:81
Coal Mining 12 0:01 0:432 0:194 0:374 2:80
Oil and Gas Extraction 13 0:01 0:176 0:456 0:368 0:056
Nonmetallic Mining 14 0:01 0:314 0:254 0:432 81:42
Construction 15� 17 0:01 0:394 0:052 0:554 140:7
Food Products 20 0:12 0:161 0:084 0:755 189:9
Tobacco Products 21 0:01 0:146 0:290 0:564 0:001
Textile Mill Products 22 0:01 0:229 0:067 0:704 13:78
Apparel 23 0:04 0:325 0:060 0:615 666:7
Lumber and Wood 24 0:01 0:247 0:100 0:653 70:88
Furniture and Fixtures 25 0:02 0:365 0:079 0:557 158:3
Paper 26 0:02 0:261 0:136 0:603 1:46
Printing and Publishing 27 0:01 0:398 0:124 0:478 24:72
Chemicals 28 0:03 0:237 0:183 0:581 0:199
Oil Re�ning 29 0:03 0:091 0:103 0:806 1:80
Rubber and Plastics 30 0:01 0:323 0:091 0:586 4:79
Leather 31 0:01 0:326 0:089 0:585 330:7
Stone, Clay and Glass 32 0:01 0:369 0:125 0:507 21:33
Primary Metal 33 0:01 0:229 0:084 0:687 507:5
Fabricated Metal 34 0:01 0:346 0:104 0:549 0:009
Nonelectric Machinery 35 0:01 0:361 0:112 0:527 0:001
Electric Machinery 36 0:02 0:350 0:127 0:523 0:005
Transportation Equip. 37 0:05 0:283 0:080 0:637 42:75
Instruments 38 0:01 0:460 0:100 0:440 0:001
Misc. Manufacturing 39 0:01 0:327 0:117 0:555 4:29
Transport and Utilities 40� 49 0:21 0:314 0:248 0:437 151:1
Trade 50� 59 0:25 0:500 0:148 0:352 423:8
FIRE 60� 67 0:01 0:283 0:356 0:361 0:004
Other Services 70� 87 0:01 0:427 0:195 0:378 0:305

Note: FIRE stands for �nance, insurance and real estate. The consumption weights are based on

Horvath (2000, p. 87). The production function parameters were estimated using the KLEM data

set collected by Dale Jorgenson. Sectoral price rigidities were estimated by the Simulated Method

of Moments. See Bouakez, Cardia and Ruge-Murcia (2009) for additional details.
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Table 2. Other Model Parameters

Description

Capital adjustment parameter 4:710
AR coe¢ cient of productivity shock

Agriculture 0:922
All mining sectors 0:827
Construction 0:852
All manufacturing sectors 0:949
All service sectors 0:763

SD of productivity innovation
Agriculture 0:111
All mining sectors 0:063
Construction 0:024
All manufacturing sectors 0:033
All service sectors 0:020

AR coe¢ cient of labor supply shock 0:984
SD of labor supply innovation 0:012
AR coe¢ cient of money demand shock 0:711
SD of money demand innovation 0:186
AR coe¢ cient of monetary policy shock 0:456
SD of monetary policy innovation 0:008

Note: Taken from Table 7 in Bouakez, Cardia and Ruge-Murcia (2009).
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