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Abstract

We consider a competitive equilibrium matching model where technological
progress is embodied in new jobs. Jobs are slowly created over time and in equilib-
rium there is dispersion in job technologies. Workers can be employed in at most
one job. They decide on whether to participate in the labor market and on how
many hours to work when assigned to a job. This endogenously generates inequality
in wages and in labor supply. When the pace of technological progress accelerates
differences in job technologies widen and the technology gap with respect to the
frontier increases more in worse jobs. As a result, the balance of income and sub-
stitution effects on labor supply is asymmetric across jobs and it becomes optimal
to work longer hours in the top jobs and work less hours in the worst ones. With
a fixed cost of labor supply this implies that the participation rate falls as workers
work less often in order to avoid the worst jobs, and they supply longer hours on
average when employed. This model can explain the simultaneous fall in labor force
participation and the increase in working hours experienced by US male workers
since the mid 70s in a context of raising wage inequality. In addition, it can ex-
plain the differences across education groups. In the data, less educated workers see
both participation and hours fall. Our model predicts assortative matching, and
hence, less educated individuals have access to the worst jobs in the economy, those
that worsen the most with the increase in the speed of embodied technical change.
Hence, for these workers the returns on market work fall disproportionately and
they reduce labor supply in both margins.
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versity of Southampton, as well as by attendants in the following conferences: SED Meetings in Istanbul,
EEA Annual Meetings in Barcelona, the IV REDg DGEM Workshop in Barcelona, and the ”Frontier
Research on Markets with Frictions” conference in Montreal. Funding from Fundación Ramón Areces
is gratefully acknowledged. Postal address: CEMFI, Casado del Alisal 5, 28014 Madrid, Spain. E-mail:
c.michelacci@cemfi.es, pijoan@cemfi.es.



1 Introduction

Heterogeneity in jobs available is an important feature of the labor market: as argued by

Akerlof (1981), good jobs —like dam sites— are a scarce resource. A natural explanation

for this friction is that new technologies come embedded into new capital goods. For

instance, when a new microprocessor is invented and makes it into mass production only

the new computers come embedded with it, while the existing ones keep working with

their older processors. It would be expensive and wasteful to substitute all computers in

the economy by the new ones. Heterogeneity in jobs requires, additionally, that machines

cannot be lumped together into production such that each worker uses an average fraction

of all machines. Instead, job heterogeneity arises in an environment characterized by a

assignment friction: every worker can operate only one machine, and the economy has to

solve the matching between different machines and different workers.

This non-convexity generates an interesting allocation problem between the number

of jobs used in the economy and the time spent working in each of them. We study this

problem and show opposite movements of the intensive and extensive margins of labor

supply when there is an increase in the dispersion of job qualities. This is important

because of the observed increase in the speed of technical change — see Greenwood

and Yorokoglu (1997), Greenwood, Hercowitz, and Krusell (1997) and Violante (2002)—

or the polarization of the labor market —see Autor and Dorn (2011). The intuition

is as follows. Since jobs of different qualities co-exists in the economy, the aggregate

participation rate determines the quality of the worst technologies in use. When the

dispersion of jobs increases, the quality of the marginal machine worsens compared to the

frontier, and it is not worth to pay the fixed utility costs of operating it. Then, in order to

prevent consumption from falling the economy uses more intensively the good jobs, whose

productivity falls less compared to the frontier. The assignment friction is essential for

this result because it creates asymmetric income and substitution effects across different

jobs. Absent job heterogeneity, participation may also fall because of the low productivity

of the oldest machines. However, hours per worker could not increase because the change

in the distribution of machine qualities would exert income and substitution effects of the

same size, which cancel out under balanced growth path preferences.

We embed this framework into a neoclassical growth model with heterogeneous work-

ers. In a world without labor choices, the classical work of Becker (1973) tells us that

complementarity between machine quality and worker productivity ensures assortative

matching. However, endogenous labor supply makes the matching problem between jobs

and workers non-trivial and specific conditions for an assortative equilibrium are needed.
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In particular, an equilibrium with assortative matching requires that human capital dif-

ferences between worker types be large enough compared to consumption differences. The

reason for this is that, while higher human capital is relatively more attractive to better

jobs, the higher consumption of more skilled workers discourages their work effort due

to the standard income effect. Hence good jobs could find profitable to hire for some

periods less productive workers who would work more intensively. Consumption differ-

ences between worker types are an equilibrium outcome themselves. In terms of model

fundamentals, the condition for assortative matching will be satisfied if skill differences

between workers are large enough compared to job heterogeneity. This is because large

job heterogeneity would give more skilled workers a consumption advantage that does

nor reflect higher productivity. Whenever this condition is not satisfied, an assortative

equilibrium requires some redistribution in the economy. That is to say, it requires that

low skilled workers enjoy a sufficiently high amount of non-labor income such that they

are not willing to supply the extra hours that could lead them to better machines.

Next, we bring our model to the data in order to understand the simultaneous fall

in employment rates and increase in hours per male worker during the last 40 years in

a context of raising wage inequality. Our model explains the opposite movements in the

extensive and intensive margins of the labor supply as the efficient outcome of an economy

that experiences an increase in the speed of embodied technical change. In particular,

we paramaterize the model to account for the differences in employment rates, hours per

worker, labor income and consumption across education types in the 1970’s. Second,

the supply of workers of different education groups has changed dramatically. When we

feed in these two elements into the model, we can explain the observed fall of 8% in

the employment rate observed in the U.S. The model also predicts an increase in hours

per worker of 2.7%, which is a big share of the observed 3.2%. Furthermore, our model

economy explains the substitution from participation towards hours per worker both on

aggregate and by education group. It does so while accounting by a big fraction of the

increase in income inequality between education types, which comes as the result of the

dispersion of job opportunities between them.

The remaining of the article is organized as follows. In Section 2 we study an economy

with identical workers and the optimal allocation of working time between machines, and

the optimal number of machines operated. We also show how these allocations change

with an increase in the speed of embodied technical change and what is needed for the

opposite movements in the extensive and intensive margins. Then, in Section 3 we show

how to decentralize this economy. Section 4 introduces worker heterogeneity and studies

the conditions needed for an assortative equilibrium to exist. In Section 5 we evaluate the
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model ability to account for the labor market trends of the last 40 years. Finally, Section

6 concludes.

2 Job heterogeneity and labor supply

The economy is populated by a continuum of measure 1 of identical and infinitely-lived

workers. Time is continuous. At every instant in time t, a measure m < ∞ of new

machines of quality eqt become available. Without loss of generality we normalize m = 1.

We relax this assumption in Section 4. The constant q > 0 determines the speed of

embodied technical change.

We assume that every worker is matched with only one machine and a machine can

not produce with more than one worker at a time. This is the key friction of our economy,

which arises because workers and machines are indivisible. A machine of quality k when

matched with a worker who supplies n hours of work produces an output level given by

the homogenous of degree one function f (k, n). We restrict this production function to be

Cobb-Douglas with capital share α in order to have a balanced growth path with constant

participation rate and constant hours per worker.

2.1 Machine ages and qualities

Machines are in excess supply because the number of workers is fixed and new machines

become continuously available. This means that there is a critical age τ ∗ such that all

machines older than τ ∗ are scrapped. The distribution of ages is uniform on the support

τ ∈ [0, τ ∗]. Let p denote the aggregate participation rate, i.e. the fraction of workers that

participate to the labour market. Since every worker is paired to a machine, p is also the

measure of machines operated.1 Hence, the density of machines of any age is given by 1
p

and the fraction of machines in operation with age smaller than or equal to τ̄ is given by,

Pr (τ ≤ τ̄) =

∫ τ̄

0

1

p
ds =

1

p
τ̄

By definition, no machine older than τ ∗ is in operation. Clearly τ ∗ solves Pr (τ ≤ τ ∗) = 1,

which immediately implies that

τ ∗ = p.

1For simplicity, we discuss the model with a constant participation rate p and constant age τ∗ of the
marginal machine. This does not constraint the solution of the model as we are going to focus on the
balanced growth path equilibrium, in which aggregate variables grow at a constant rate and aggregate
ratios are constant over time. See Section 3.5 for an exact definition.
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It is easy to map machine ages into machine qualities. The quality k̃τt of a machine of age

τ at time t is given by eq(t−τ). Hence, the quality k̃∗t of the worst machine in operation at

time t can be expressed as

k̃∗t = eq(t−τ
∗) (1)

and the ratio of qualities between the best and the worst machines in operation is given

by eqp.

Finally, it will be convenient to define the detrended machine quality as,

kτ ≡ k̃τt e
−qt = e−qτ

such that k∗ = e−qp and if we call k0 the detrended quality of the best machine, we have

k0 = 1.

Lemma 1 The distribution of detrended qualities of operating machines has support [e−qp, 1]

and it is log-uniform with density g (k) = 1
qp

1
k
.

2.2 The large household problem

We want to study the trade-off between using an extra machine from the scrap pool or

using the available machines more intensively. To characterize the efficient allocation we

set up a large household that cares equally for the utility of all its members and chooses

every period the number of household members to send to work, how much each of them

works and how much each of them consumes. Since all household members are identical

and we concentrate in preferences separable between consumption and leisure, the planner

will choose the same consumption for each of them. Also because of the homogeneity of

workers, the exact matching with machines is irrelevant and hence indeterminate. With

balanced growth preferences and production functions, there will be nothing dynamic

about this problem. Then, we can write the detrended planner problem in each period as

follows:

max
c,p,nτ

{
log c−

∫ p

0

v (nτ ) dτ

}
s.t. c ≤

∫ p

0

f (kτ , nτ ) dτ

where we have indexed workers by the age τ of the machine with which they are paired.

Note that c refers to detrended consumption.2 The individual disutility of working is

given by,

v (n) =

{
λ0 + λ1

n1+η

1+η
if n > 0

0 if n = 0
(2)

2See Section XX for a more formal derivation.
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where λ0 > 0 is a fixed cost of going to work while λ1 > 0 gives the cost of the variable

component. The parameter η regulates the Frisch elasticity.

Let µ be the lagrange multiplier of the aggregate resource constraint. Then, the first

order conditions for an optimum are quite standard:

1

c
= µ (3)

v′ (nτ ) = µ f2 (kτ , nτ ) (4)

v (n∗) = µ f (k∗, n∗) (5)

Equation (3) states that the value of an extra unit of income is equal to the marginal

utility of consumption. Equation (4) determines the work effort in every machine, which

we can express as:

nτ = φ (kτ , µ)

Since the utility cost of supplying hours of work is the same in all machines but the

marginal product of each hour is higher in newer machines (f12 > 0), this condition

states that work effort will be increasing in machine quality, so φ1 > 0. At the same

time, work effort will be increasing in the marginal utility of consumption µ, so φ2 > 0.

Finally, equation (5) determines the number of workers engaged in production by equating

the disutility —in terms of forgone leisure— of sending the marginal worker to work

and the value of the output produced in the marginal machine. The marginal utility of

consumption µ lowers the quality of the marginal machine and hence it raises the number

of workers p. The intuition is that when income is more valuable, it is worth operating

worse machines that produce less output.

2.3 An increase in the speed of embodied technical change

We want to understand the changes in allocations when we compare different balanced

growth path economies with different q. Proposition 5 below states the main results. But

before that, it is worth analyzing three intermediate results.

Lemma 2 Hours work n0 in the newest vintage of machines do not depend on the speed

of technical change q.

Lemma 2 comes directly from the normalization of the technology of each vintage.

Lemma 3 The ratio of hours worked between machines of any two vintages increases

with q.
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Lemma 3 states that when every newly produced vintage results in a larger improve-

ment compared to the previous one, in steady state the quality ratio between any two

vintages increases and so does the cross-sectional variance of machine qualities. Hence,

q not only drives the speed of embodied technical change but also the cross-sectional

dispersion of available technologies.

Lemma 4 Hours work n∗ in the marginal machine depend neither in the speed of technical

change q nor in the marginal utility of consumption µ.

The intuition for Lemma 4 is quite simple. Hours worked in each machine increase with

the the marginal product of labor, whereas participation rate increases with total output

produced in the marginal machine. The quality of the marginal machine, and hence the

speed of technical change q, does not affect hours work in the marginal machine because

under the Cobb-Douglas production function both the marginal product of labor and total

output increase with capital at the same rate. The marginal utility of consumption raises

equally the value of the output produced in all machines. This increases hours worked in

all machines and it also lowers the quality of the marginal machine. Both effects cancel

out because the marginal utility of consumption affects both margins equally.

With these results in place, we can state our main proposition

Proposition 5 An increase in q generates:

(a) A fall in consumption c

(b) An increase in the quality gap eqp between the top and marginal machines.

(c) A fall in the fraction of workers p

(d) An increase in hours per worker n

The intuition for part (a) is as follows. When q increases, capital quality relative to the

frontier, kτ = e−qτ , falls in every machine. According to the aggregate resource constraint,

if p and nτ do not increase, detrended aggregate output and consumption must fall. The

only way output and consumption could go up would be by a large enough increases in

the number p of machines used or by a large enough increase in hours worked per machine

nτ . But neither of them can happen simultaneously with an increase in consumption (and

a fall in its marginal utility µ). The hours equation (4) shows that when q increases, if

consumption c goes up, then nτ can only fall. Likewise the participation equation (5)

shows that when q increases, if consumption c goes up, participation must fall. The result
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(b) comes directly from the fall in consumption. With the increase in the value of income

µ the participation equation (5) shows that the quality of the marginal machine in use

should go down.

Finally, results (c) and (d) come from lemma 2. Notice that the increase in q decreases

hours and participation through the substitution effect. At the same time, through the fall

in consumption, the increase in q produces an income effect that would lead to increases

hours and participation. The trade-off between the extensive and intensive margins comes

from the fact that the substitution effect is increasing with the age of machines and

it is maximum at the marginal machine, whereas the income effect is the same in all

machines. Hence, the fall in quality at the marginal machine is much larger than the fall

in consumption (which comes from the average fall in quality through all machines), and

then the participation equation (5) leads to a fall in participation and the scrapping of the

worse machines. Instead, hours per machine increase in the newest machines because the

fall in quality is much lower than the fall in consumption. Therefore, the income effect of

the consumption fall generates an increase in hours per worker.

Figure 1: Hours worked per machine age

n*

n0

p p

ho
ur

s 
(n

τ )

Increase in q
(with µ constant)

machine age (τ)

n*

n0

p p p

ho
ur

s 
(n

τ )

Increase in µ

machine age (τ)

The solid line in the left panel represents hours worked in machines of different ages. An increase in q while holding

consumption constant lowers hours in all machines, more so at older ones. Participation p also falls. The right panel shows

the increase in hours worked due to a fall in consumption. The fall in consumption also increases participation.

Figure 1 gives a graphical representation of the economy and the change in q. The

solid line in the left panel represents hours worked in each machine vintage. Hours are

maximum at τ = 0 and fall exponentially with age until the lowest hours at the oldest

machine in use, which is of age p. An increase in q while holding consumption constant

generates a fall in hours in all machines except in the newest vintage. Hours in the

marginal machines also remain constant because the marginal machine becomes younger
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as the economy scraps previously used machines. The right panel shows the movement of

hours once we let consumption fall. The whole schedule moves upwards: overall, hours in

the newest machines increase and hours in the oldest ones fall. Overall, hours per worker

fall.

2.4 The model without the assignment friction

In this Section we show that the assignment friction is essential to generate opposite

movements in the extensive and intensive margins of labor supply upon an acceleration

of embodied technical change. To see this, we look at two different cases where the

assignment friction is absent.

Let’s assume that production can be described by a representative firm that employs all

machines as perfect substitutes and combines them with the labor services of all workers.

Hence, the aggregate stock of capital is given by,

K =

∫ ∞
0

kτdτ =

∫ ∞
0

e−qτdτ =
1

q

where we are using the fact that without the assignment friction there is no reason to

scrap old machines and hence all of them are used. Then, all workers are aggregated into

labor:

L = pn

Notice that there is no difference in production between adding an extra hour or adding

an extra worker. Finally, the aggregate resource constraint is given by,

c ≤ F (K,L) = F

(
1

q
, np

)
With the same objective function as in Section 2.2 we obtain the FOC

pF2

(
1

q
, np

)
1

c
= v′ (n)

nF2

(
1

q
, np

)
1

c
= v (n)

With a balanced growth path production function, hours n and number of workers p do

not depend on q and hence changes in q produce no change in labor supply. To see this,
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substitute consumption by the resource constraint:

1

n
(1− α) = v′ (n)

1

p
(1− α) = v (n)

where (1− α) is the labor share parameter in the Cobb-Douglas production function.

The reason for this result is standard. An increase in q changes the average quality

of aggregate capital. This exerts income and substitution effects on labor supply. The

former through the increase in the total output and the latter through the increase in the

marginal product of labor. These two effects cancel out under log preferences.

A less extreme case would be to consider that not all machines ever produced are in

use. Instead, we keep our assumption that one needs as many machines as workers, and

hence the oldest machines are scrapped. We still keep away from the assignment friction

and hence we think of a representative firm lumping together all machines and all workers.

In this case, aggregate capital would be given by:

K =

∫ p

0

kτdτ =

∫ p

0

e−qτdτ =
1

q

[
1− e−qp

]
and aggregate labor L would be as above. As before, p and n affect aggregate labor

equally. However, they now affect aggregate capital differently: the extensive margin

adds machines (albeit the worst ones) and hence it increases the capital stock, whereas

the intensive margin does not. Finally, the aggregate resource constraint is given by,

c ≤ F (K,L) = F

(
1

q

[
1− e−qp

]
, np

)
and the new FOC:

pF2

(
1

q

[
1− e−qp

]
, np

)
1

c
= v′ (n)

e−qpF1

(
1

q

[
1− e−qp

]
, np

)
1

c
+ nF2

(
1

q

[
1− e−qp

]
, np

)
1

c
= v (n)

Now the first order condition for participation takes into account that by adding an extra

worker we will be using an extra machine and hence increasing the capital stock by an

amount given by the quality of the marginal machine. Substituting again by the aggregate
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constraint we get:

1

n
(1− α) = v′ (n) (6)

α
k∗

K
+

1

p
(1− α) = v (n) (7)

Equation (6) determines hours per worker and it is independent of q for the same reasons

as above. Equation (7) determines participation. It shows that the return to the extra

worker depends on the ratio of machine qualities between the marginal machine and the

aggregate capital stock. This ratio is given by,

k∗

K
=

q

eqp − 1

an expression that falls with q as argued in the proof of part (c) of Proposition 5. Hence,

an increase in q decreases the value of an extra worker because it comes with a worse

machine, and hence it reduces participation.

3 Decentralization

A decentralized economy requires machines and workers to meet and take decisions with

the matching between them and the price for labor determined in equilibrium. We have

just seen that the optimal allocation gives the same consumption to all workers but

requires different work effort from them. In order to decentralize this solution we need

some way to insure workers. We opt to do it through saving and borrowing by infinitely-

lived workers that trade labor services in a spot market.

3.1 Firms

At any point in time t, a firm with a machine of age τ with quality k̃τt is paired with a

worker who supplies nτt hours of work to produce output according to a Cobb-Douglas

production function f with capital share α. The firm has to pay the worker a market

compensation that can depend on hours worked. The optimal demand for hours is then

chosen by solving:

π̃t

(
k̃τt

)
= max

nτt

{
f
(
k̃τt , n

τ
t

)
− w̃t(nτt )

}
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where π̃t denotes firm profits and w̃t(n
τ
t ) is the compensation for a worker that supplies

nτt units of labor. The first order condition is given by

eαqtf2 (kτ , nτt ) = w̃′t (nτt ) (8)

This optimality condition defines a labor demand function,

nτt = φ̃t (kτ )

which establishes that the amount of hours worked in every machine type depends on the

production function and on the wage function.

Recall that machines are in excess supply and that there is a critical level of capital

quality k̃∗t such that all machines of smaller quality are scrapped. Free entry must yield

zero profits to operating this machine and hence the wage paid to the worker in the worst

machine must satisfy:

w̃t (n∗t ) = eαqtf (k∗, n∗t ) (9)

where n∗t are the efficiency units of labor supplied by a worker matched to the worst

machine in operation, which since they satisfy equation (8), can be written as n∗t = φ̃t (k∗).

3.2 Matching

The equilibrium of the economy has to specify how workers and machines are matched

together. No party should have incentive to deviate from the equilibrium matching and

market should clear. To model the matching process we define two objects. Let pt,i denote

the time t probability that worker i participates in the labor market and p the aggregate

fraction of workers participating. Of course, in equilibrium:∫
[0,1]

pt,idi = p (10)

Also let ϕt,i (k) denote the probability that, conditional on participating in the labor

market, worker i is matched with a machine of de-trended quality smaller than or equal

to k. Clearly, in equilibrium ϕt,i must be zero for any k < k∗ and it has to satisfy the

condition that all machines of quality k ≥ k∗ are in use, which implies that∫
[0,1]

pt,i ϕt,i (k) di = p

∫ k

k∗
g (s) ds ∀k ≥ k∗ (11)
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where g (s) is the density function of machine qualities described in Lemma 1. The right

hand side of equation (11) gives the number of (non-scrapped) machines of quality equal

to or less than k. The left hand side gives the expected number of workers assigned

to machines of type equal to or less than k. Since there is a continuum of workers the

expectation is equal to the average.

We model the matching process as stochastic for convenience. Since workers are

infinitely lived and there are no borrowing constraints, this is without loss of generality

due to a law of large numbers.3 In the continuous time framework, one can always

interpret pt,i as the the fraction of time within a time interval that the worker chooses

to work, and ϕt,i (k) as the fraction of time within a time interval in which the worker is

allocated to machines of quality k or below.

3.3 Workers

Individuals maximize the present discounted value of their utility:

max
c̃t,i,nt,i,pt,i

∫ ∞
0

e−ρt [log c̃t,i − v (nt,i)] dt

where ρ > 0 is the subjective time discount rate, subject to the sequence of budget

constraints:
˙̃bt,i = w̃t,i (nt,i)− c̃t,i + rtb̃t,i (12)

where b̃t,i are assets, w̃t (nt,i) denotes labour income when supplying nt,i working hours

in the market, and rt is the interest rate. When the worker is not participating in the

labor market nt,i and w̃t (nt,i) are both equal to zero. All workers start with the same

wealth b0 and they can choose how much to consume and save every period as well as

how many hours of work they supply in the market. There are no liquidity constraints

and the consumption good is the numeraire.

By solving the worker’s problem we obtain the standard Euler equation for the con-

sumption path,
˙̃ct,i
c̃t,i

= r − ρ (13)

where ˙̃ct,i denotes the time derivatives, and the intratemporal condition for labor supply,

v′ (nt,i) =
1

c̃t,i
w̃′t (nt,i) . (14)

3We could have instead defined the matching process as a collection of deterministic functions speci-
fying the machine assigned to each worker from time 0 to ∞.
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Moreover it has to be the case that

v (nt,i) ≤
1

c̃t,i
w̃t (nt,i) , (15)

for workers to choose pt,i > 0. Whenever the inequality is strict pt,i = 1, and whenever it

holds as equality the worker is indifferent at time t about the participation probability.

3.4 Financial markets

Firms are owned by workers. In particular, workers own shares st,i of the diversified

portfolio of firms, which entails the payment of aggregate firm profits,

Πt = p

∫ 1

k∗
π̃t
(
eqts
)
g (s) ds

Let p̃t denote the price of equity shares at time t. The amount of wealth b̃t,i of worker i

at time t is given by,

b̃t,i = p̃tst,i

Since there are no borrowing constraints in place st,i can be negative, that is, short selling

is allowed. Of course, in equilibrium ∫
[0,1]

b̃t,idi = p̃t (16)

Since all workers start up with the same financial wealth b0 it means they all start with

the same share of firm ownership s0. The interest rate in the budget constraint (12) is

given by the dividend flow and the capital gains,

rt =
˙̃pt
p̃t

+
Πt

p̃t
(17)

and integrating this expression, the equity price p̃t is equal to the discounted flow of

profits:

p̃t =

∫ ∞
t

e−
∫ s
0 (ru−rt)duΠsds (18)

3.5 Balanced growth path equilibrium

We focus the analysis on the balanced growth path equilibrium. All time periods are

identical and we shall see that in steady state output, consumption, assets and the price
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of equity shares grow at the constant rate x = αq, hours and the participation rate p

are constant and the interest rate is given by the modified golden rule, r = ρ + x. To

characterize the steady state we consider the de-trended variables c ≡ e−xtc̃t, b ≡ e−xtb̃t

and p ≡ e−xtp̃t, and the de-trended functions w (n) ≡ e−xtw̃t (nt), φ (k) ≡ φ̃t (k), and

π (kτ ) ≡ e−xtπ̃
(
k̃τt

)
.

Definition 1 A balanced growth path equilibrium for this economy is characterized by a

price of equity shares p, a wage function w (n), individual participation probabilities pt,i,

assignment functions ϕt,i (k), an aggregate participation rate p, an interest rate r and

individual consumption, saving and working plans and firm labor demands φ (k) such that

(a) Workers solve their optimization problem, that is, equations (12), (13), (14), and

(15) are satisfied.

(b) Firms solve their optimization problem, that is, equation (8) is satisfied,

(c) The free entry condition (9) in production is satisfied,

(d) The labor market clears, that is, equations (10) and (11) hold,

(e) The capital market clears, that is, equation (16) holds,

(f) Aggregate consumption and output grow at the same constant rate,

(g) Individual consumption is identical across workers,

(h) By Walras law, the goods market clears; that is, aggregate output is equal to aggregate

consumption.

Notice that to characterize the balanced growth path equilibrium we need to charac-

terize simultaneously the wage function and the assignment function. We conjecture the

following wage function,

w (n) =

{
a0 + a1

n1+η

1+η
if n > 0

0 if n = 0
(19)

and an assignment such that workers are allocated to different machines during their

working life with the constraint that all workers obtain the same permanent income. In

equilibrium workers matched with better machines should work longer hours. Since all

workers are identical, this can be sustained in equilibrium only if workers obtain the same

permanent income. To understand why this has to be the case, argue by contradiction
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and consider an assignment that puts worker i more often than worker j to work with

a good machine. Then worker i will have greater labor income and greater consumption

that will disincentive the supply of hours of worker i relative to worker j through the

income effect. But then the firm that hires worker i would make greater profits by hiring

worker j instead, because he would be willing to supply the same amount of hours as

worker i would do but at a cheaper price. As we will see below, the conjectured wage

function makes workers indifferent about how many hours to work at any given point in

time and hence workers matched to better machines are ready to supply more hours of

work. There are many different assignments that can satisfy our conjecture, all yielding

the same consumption path and the same lifetime utility for all workers. Without loss of

generality, we will focus on symmetric equilibria.4

Definition 2 A symmetric balanced growth path equilibrium is a balanced growth path

equilibrium in which, at every time period t

(a) The participation probability pt,i is the same for all individuals,

(b) The assignment function ϕt,i (k) is the same for all individuals

Note that if the participation probabilities and the assignment functions have to be

the same for all workers, then equations (10) and (11) imply

pt,i = p and ϕt,i (k) = ϕ (k) =

∫ k

k∗
g (s) ds ∀k ≥ k∗

which makes clear that the individual participation probabilities and the individual as-

signment functions must be independent of time.

3.6 Equilibrium properties

To understand the nature of the equilibrium, let’s have a look at the worker’s problem.

The Euler equation (13) and the balanced growth path condition determine the interest

rate as the modified golden rule,

r = ρ+ x (20)

4An alternative way of decentralizing the allocations of the first best would be to allow for complete
markets, that is to say, to allow workers to write contracts contingent on the outcome of the assignment
and participation lotteries. This would make that at any given period of time all workers had the same
level of wealth. In our formulation workers will differ in their level of wealth at any period of time because
of their different assignment trajectories so far.
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Integrating the Euler equation (13) and using (20) gives us the standard condition for the

consumption path:

c̃t,i = c0,ie
xt ⇒ ct,i = c0,i (21)

Now, we can replace the disutility of work (2), the wage function (19) and the optimal

consumption path (21) into the condition for optimal labor supply (14) to obtain,

λ1 =
a1

c0,i

(22)

This equation tells that, at any given point in time, all workers are indifferent about the

amount of hours they work because the value of an extra unit of time spent in leisure and

the value of an extra unit of time of work grow at the same rate as the amount of working

time increases. When paired to a good machine a worker experiences a high utility cost of

giving up scarce time for leisure, but he is paid accordingly to compensate for these extra

hours. Hence, work effort in a given period is undetermined as in Prescott, Rogerson, and

Wallenius (2006). However, this does not mean that lifetime work effort is undetermined:

given a market price a1, equation (22) determines c0,i and this puts a constraint in lifetime

work effort through the permanent income (see equation (52) below). Notice also that

this condition is identical for all individuals, which implies that all individuals consume

the same amount,

ct,i = c0,i = c0 (23)

We focus the analysis on the case where the participation rate is positive but strictly

less than one, p ∈ (0, 1). This implies that (15) holds as an equality, which after using

(19) and (22), yields

λ0 =
a0

c0

(24)

which says that the fixed utility cost of entering the labour market is equal to the utility

gain of participating to the labour market and supplying zero units of labour. Again, at

any given point in time the worker is indifferent between going to work or not.

Combining equations (22) with (24) we obtain that the two wage parameters are linked

in equilibrium:

a0 =
λ0

λ1

a1 (IE)

Finally, note that since c0,i is the same across individuals (see equation 22) so is the

present value of income. In addition, given the functional form of the equilibrium wages

(19), so is the present value of the discounted sum of disutility of working. Hence, all
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workers get the same utility regardless of the equilibrium working history that they are

allocated to.

3.7 Equivalence

Finally, we need to show that the allocations generated by this equilibrium correspond to

the ones in Section 2.

Proposition 6 The allocations of the conjectured balanced growth path equilibrium in

Definition 1 also solve the large household problem.

3.8 The effects of an increase in q

Due to the equivalence result, the changes in allocations in the decentralized economy

will be as in the large household problem. Since detrended consumption falls, equations

(22) and (24) say that so will the wage parameters a0 and a1. It remains to be seen what

happens with labor income inequality.

Let’s call LIt the ratio between the labor income in the top machine and in the marginal

machine at time t,

LIt =
w̃t (n0

t )

w̃t (n∗t )

This is a measure of income inequality, and it is very easy to see that it increases with q.

The basic ideas is that, as seen in Proposition 5, an increase in q increases the quality gap

between the top and bottom machines, which commands and increase in the dispersion

of hours worked and hence of compensation.

Proposition 7 When q increases labor income inequality as measured by LI increases.

4 Heterogeneity in workers and the matching problem

We now analyze the model where workers differ in their skills and possibly in their non

labor income. We assume that there are N types of workers with skill level hi > hi+1. We

normalize h1 to one. The mass of type i workers is zi ∈ (0, 1) so that
∑N

i=1 zi = 1. We

assume that workers with human capital hi supply efficiency units of labour according to

e = h1−θ
i nθ, i = 1, 2, . . . , N.

This specification allows the existence of a steady state with constant growth. For simplic-

ity we work with the model without trend. To allow for differences in non-labor income
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we assume that workers of different types may differ in their initial wealth b0,i.

Finally, for quantitative reasons, we add three new elements to the model. First,

machine qualities depreciate over time at the rate δ, so that the detrended quality of a

machine of age τ is given by kτ = e−(q+δ)τ . Second, we allow for the measure m of new

machines entering the economy every period to be different from one, so that the density

of available machines of any age is given by 1/m. And third, in addition to the utility

cost of going to work λ0 we add a monetary fixed cost of going to work ω. This monetary

cost may reflect work-related expenditures as commuting costs, clothing or eating out,

but we can also interpret it as a opportunity cost. In particular, many public transfers

(like unemployment benefits or disability and early retirement pensions) depend on not

working. We make this cost independent of the skill level because we want to introduce

into the model the fact that, at the margin, when a low-skilled worker chooses whether

to work an extra year or not, the income difference between working or not working will

be much smaller than for a skilled worker.

4.1 The conjectured BGP equilibrium

We conjecture an equilibrium where:

(a) The assignment of workers to machines is such that there is assortative matching:

the best machines are given to the workers with skill h1, then the best machines left

are assigned to workers of skill group h2, and so forth.

(b) Within the same skill type, the allocation of machines to workers requires a balanced

rotation of workers between machines such that all workers of the same type obtain

the same permanent income.

(c) workers of different skills are offered different wage schedules given by

w (hi, n) =

{
a0i + a1i

n1+η

1+η
, if n > 0

0 if n = 0
(25)

where a0i and a1i are shorthands for a0 (hi) and a1 (hi).

Without loss of generality, we will focus on the symmetric equilibrium such that all

workers of a given type face the same participation probability and the same assignment

function. Hence, i will denote worker type, not individual. We will see in Section 4.6 that

this equilibrium configuration requires that the skill differences between worker types are

large enough compared to their consumption differences. This will happen whenever (a)
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the skill differences between worker types are large enough compared to the differences

between machine qualities, or (b) there is some redistribution in the economy, that is

to say, the share of consumption not coming from labor income is higher for low skilled

workers.

To describe the assignment with more precision we introduce some more notation. Let

pi denote the participation probability of workers of type i. Then the number of machines

assigned to workers of type i is given by pizi. The maximal duration of a machine operated

by workers of type 1 will be given by

τ ∗1 =
p1z1

m

while workers of type i will operate machines with age in the interval
[
τ ∗i−1, τ

∗
i

]
with

τ ∗i =

∑i
j=0 pjzj

m
= τ ∗i−1 +

pizi
m

(26)

where we define τ ∗0 = 0 and p0z0 = 0. Let’s define k∗i as the quality of the worst machine

assigned to workers of type i. It is easy to prove that

Lemma 8 For type i workers, the distribution of detrended qualities of operating ma-

chines has support
[
k∗i , k

∗
i−1

]
= [e−(q+δ)τ∗i , e−(q+δ)τ∗i−1 ] and it is log-uniform with density

gi (k) = m
(q+δ)pizi

1
k

Finally, let’s characterize the equilibrium matching function. Let’s define ϕi (k) as

the cdf that determines, for a worker of type i, the probability of being matched with a

machine of de-trended quality k or less conditional on being selected to work. This cdf

has to be zero for k < k∗i and k > k∗i−1. Moreover it has to satisfy that all machines of

quality k∗i−1 > k ≥ k∗i are in use by workers of skill type i. Hence,

ϕi (k) =

∫ k

k∗i

gi (s) ds ∀k ∈ [k∗i , k
∗
i−1] (27)

4.2 Firms

A firm with capital k paired with a worker with human capital hi will choose its demand

of hours by solving,

π (k, hi) = max
n

{
kα
(
h1−θ
i nθ

)1−α − w (hi, n)
}
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After rearranging, this gives the following demand function for hours:

n = φ (k, hi) =

[
(1− α) θkαh

(1−α)(1−θ)
i

a1i

] A
1+η

(28)

with

A =
(1 + η)

1− (1− α) θ + η
> 1.

Note that the optimal demand of hours is increasing with the worker’s skills hi and

decreasing with the worker’s cost of compensating hours, a1i. A given firm with capital k

will demand more hours from a higher skilled-worker if the former compensates the latter.

That is to say,

φ (k, hi) > φ (k, hi+1) ⇔
(

hi
hi+1

)(1−α)(1−θ)

>
a1i

a1i+1

(29)

Of course, if the relation (29) holds, a firm with capital k would produce more output

when hiring a higher skilled worker. However, a necessary condition for output to be

increasing in worker quality is weaker, and it states that only efficiency units of labor

need to be increasing with worker type. Hence,

y (k, hi) > y (k, hi+1) ⇔
(

hi
hi+1

)(1−α)(1−θ)

>

(
a1i

a1i+1

)A−1
A

(30)

4.3 Free entry

In equilibrium we must have that

π (k∗i , hi) = π (k∗i , hi+1) , ∀i ≥ 1 (31)

and that

π (hN , k
∗
N) = 0 (32)

The first condition says that at the critical technological gap τ ∗i a firm should be indifferent

between hiring a type i worker or type i + 1. The second condition says that at the

critical technological gap τ ∗N a firm should make zero profits. This last is really a free

entry condition that arises because in the model there is an excess supply of machines

relative to workers.

20



4.4 Aggregates

Let Yi denote the average output produced by workers of type i = 1, 2, . . . , N at any given

point in time, i.e.

Yi = pi

∫ k∗i−1

k∗i

y(s, hi)gi (s) ds i = 1, 2, . . . , N

Notice that this quantity is not multiplied by zi. So Yi denotes average output per worker

of type i and hence aggregate output Y in the economy is given by

Y =
N∑
i=1

ziYi

Since optimal output y (k, hi) is equal to

y (k, hi) =

[
(1− α) θ

a1i

]A−1

h
(1−α)(1−θ)A
i kαA (33)

one obtains a closed form expression for Yi:

Yi = pi

[
(1− α) θ

a1i

]A−1

h
(1−α)(1−θ)A
i Ei

[
kαA
]

(34)

where

Ei
[
kαA
]

=

∫ k∗i−1

k∗i

sαAgi (s) ds =
m

αA (q + δ) pizi

(
k∗αAi−1 − k∗αAi

)
=

m

αA (q + δ) pizi

(
1− e−αA(q+δ)

pizi
m

)
e−αA(q+δ)τ∗i−1

denotes the output part that comes from the machine qualities assigned to workers of

type i.

Likewise, let Πi denote average firm profits generated by workers of type i and hence

aggregate profits are equal to

Π =
N∑
i=1

ziΠi (35)

Since firm profits are equal to

π(k, hi) =
1

A
y (k, hi)− a0i (36)
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we have that

Πi = pi

∫ k∗i−1

k∗i

π(s, hi)gi (s) =
1

A
Yi − a0ipi, i = 1, 2, . . . , N (37)

Finally, let Li denote the average labor income obtained by workers of type i. Then,

given (25) and (28) we can write:

Li = pi

∫ k∗i−1

k∗i

w (hi, φ (s, hi)) g (s) ds = a0ipi +
(1− α) θ

(1 + η)
Yi i = 1, 2, . . . , N (38)

Notice that (38) together with (37) immediately imply that Li + Πi = Yi.

4.5 Workers

Now, let’s turn to the problem of a given household i. Following derivations analogous to

the one-type model of Section 3, the intensive and extensive margin first order conditions

are given by:

λ1 =
a1i

c0,i

i = 1, 2, . . . , N (39)

λ0 +
ω

c0,i

=
a0i

c0,i

i = 1, 2, . . . , N (40)

The first equation states that all workers are indifferent about the amount of hours they

work at a given point in time. The second equation says that the utility gains of partici-

pating to the labour market and supplying zero units of labour compensate the worker for

the fixed cost of entering the labour market. We have a strict equality because we focus

the analysis on the case where the participation rate for any type of workers is positive

but strictly less than one, pi ∈ (0, 1). By combining (39) with (40) we obtain that

a0i − ω =
λ0

λ1

a1i i = 1, 2, . . . , N (IEH)

We can think of equation (39) determining consumption for workers of type i given

the wage parameter a1i. As in the one type model, we can write consumption of type i

workers as being equal to permanent income,

ci = ρ

[
b0i +

∫ ∞
0

e−ρt

(
pi

∫ k∗i−1

k∗i

w (hi, φ (s, hi)) dϕi (s)

)
dt− pi

ρ
ω

]
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and using the matching function (27)

ci = ρb0i + pi

∫ k∗i−1

k∗i

w (φ (s, hi) , hi) g (s) ds− piω

Note that the second term in the right hand side tells us that the present value of labor in-

come for workers of type i is equal to the cross-sectional average of labor income generated

by workers of this same type. In particular, this second term is equal to Li in equation

(38). Let’s denote by µi, i = 1, 2, . . . , N , the share of aggregate profits appropriated by a

worker of type i. Of course it will have to be the case that

N∑
i=1

ziµi = 1 (41)

Then equation (17) and the balanced growth path conditions imply that ρb0,i = µiΠ.

Hence, we can write,

ci = µiΠ + Li − piω i = 1, 2, . . . , N

This tells us that consumption for workers of group i is equal to their labor income plus

their share of aggregate profits.

4.6 Verifying the equilibrium

To prove that the conjectured assignment is indeed an equilibrium we have to show that

firms with capital of high quality are satisfied with hiring top workers and that they do

not have incentives to deviate and hire a low skilled worker. That could happen if low

skilled workers, because their consumption is lower, were ready to work long hours for

small wages in such a way that this more than compensated their lower skills.

Proposition 9 below states that if the human capital ratio between skill types is large

enough compared to their consumption ratio, then firms never have incentives to hire

workers less qualified than the ones assigned to them in equilibrium because the disin-

centive effect of higher consumption of highly skilled workers is not large enough to undo

their productive advantage.

Proposition 9 π (k, hi) ≥ π (k, hi+1) for k ∈
[
k∗i , k

∗
i−1

]
if and only if the following con-

dition holds (
hi
hi+1

)(1−α)(1−θ)

>

(
ci
ci+1

)A−1
A

(42)
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Note that this condition is equal to equation (30) —which guarantees that a firm

produces more output with a higher skilled worker— after replacing a1i by its equilibrium

value in (39).

This condition is useful because it allows us to verify whether the conjectured assign-

ment is indeed an equilibrium. However, since the consumption ratio is an equilibrium

outcome itself, the condition is not very useful to gain intuition. To understand it bet-

ter, let’s look at a case without participation decision, λ0 = 0 and without redistribution.

We describe an allocation as without redistribution when the consumption ratio between

worker types is equal to their ratio of permanent labor incomes. In our model this situa-

tion will arise if (a) profits are not given back to workers, µi = 0, or (b) profits generated

in machines allocated to workers of type i are given back to workers of the same type i,

µi = Πi/Π. In this case we can express the consumption ratio as:

ci
ci+1

=

(
hi
hi+1

)(1−α)(1−θ)
(
Ei
[
kαA
]

Ei+1 [kαA]

)1/A

Hence, better workers enjoy more consumption due to both their higher skills and the

better machines they are allocated to. Now, equation (53) becomes,

(
hi
hi+1

)(1−α)(1−θ)

>

(
Ei
[
kαA
]

Ei+1 [kαA]

)A−1
A

This tells us that an equilibrium with assortative matching requires the skill advantage of

workers of type i to be large enough to compensate the higher income that workers of type

i obtain due to being allocated to better machines. If the dispersion of machine qualities

tends to zero, assortative matching arises due to the standard complementarity between

skill types and machine quality: higher skilled workers would always be paired with better

machines because they work the same amount of hours —income and substitution effects

due to h cancel out— and their skill advantage ensures that they supply more efficiency

units of labor. Instead, if the dispersion of machine qualities is large compared to the

differences in worker skills, then highly skilled workers suffer a negative income effect in

working hours due to the rents of good machines that is not offset by their higher skills.

In this situation for an assortative matching to be an equilibrium the economy requires

some redistribution, that is to say, it requires that the consumption ratio between types
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be smaller than their labor income ratio:

ci
ci+1

= ζ
Li
Li+1

with ζ < 1

which in the model is achieved by setting µi > Πi/Π for less skilled workers.

5 A quantitative exercise

There is much evidence that the pace of investment specific technological progress has

speeded up, see Greenwood and Yorokoglu (1997), Greenwood, Hercowitz, and Krusell

(1997) and Violante (2002). In our model this corresponds to an increase in q. We now

analyze the effects of an increase in q.

5.1 Calibration

To analyze the quantitative relevance of the mechanisms described in the previous sec-

tion, we solve the model with 4 types, corresponding to different education groups: college

graduates, workers with some college education but no college degree, high school grad-

uates and high school drop outs. With four types we have a total of 18 independent

parameters. We are going to set 8 of them directly and for the other 10 we will need

to compute statistics within the model in equilibrium. In Table 1 there is a summary of

parameter values and calibration targets.

5.1.1 Parameters set directly

We choose an annual discount rate ρ of 4% and a curvature parameter for the disutility

of hours η of 2. These values are more or less standard. We set the depreciation rate δ

equal to 6%.5 Following Greenwood, Hercowitz, and Krusell (1997) we map the rate of

growth of capital-embodied technical change, q in our model, to the rate of fall of the

quality adjusted price of capital. Hornstein, Krusell, and Violante (2007) document that

the quality adjusted price of capital fell at an average rate of 2% before the 70’s and

4.5% in the late 90’s. The value for m is chosen to match the average age of private fixed

assets in the mid 60’s of 11.5 years, as reported by the Bureau of Economic Analysis.6

Note that the age of the oldest machine is given by p/m and the distribution of ages is

uniform, hence the average age of machines in the economy is given by p
2m

. Since p will

5We take this value from the estimate of Nadiri and Prucha (1996)
6See Table 2.10 at http://www.bea.gov/national/FA2004/
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Table 1: Parameter values and calibration targets

Model parameter Calibration target
symbol value Statistic value

preferences
ρ 0.04 −
η 2 −
λ0 0.61 average employment to population ratio 0.84
λ1 10.08 average hours per employed person 43.4

technology
δ 0.06 −
q 0.02 rate of fall of price of investment goods 0.02
m 0.03652 average age of fixed assets (in years) 11.5
α 0.46 capital share 0.33
θ 0.83 difference in participation between groups 1 and 4 0.12

population
z1 0.15 population share of group 1 0.15
z2 0.11 population share of group 2 0.11
z3 0.31 population share of group 3 0.31
z4 0.43 population share of group 4 0.43
h2 0.83 consumption for group 2 relative to group 1 0.82
h3 0.75 consumption for group 3 relative to group 1 0.73
h4 0.64 consumption for group 4 relative to group 1 0.61
µ2 1.03 labor income for group 2 relative to group 1 0.75
µ3 0.92 labor income for group 3 relative to group 1 0.68
µ4 1.07 labor income for group 4 relative to group 1 0.52

Note. Group 1 refers to college graduates, group 2 refers to high school graduates with some college education, group 3

refers to high school graduates and group 4 to high school dropouts. All statistics are computed over population aged 25-65.

Population shares from the 1970 U.S. Census. Consumption and relative income from 1980 CEX.
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be a calibration target (see below), m can be chosen directly.7 The shares zi of workers

of each type are taken from the U.S. Census in 1970 corresponding to males aged 25-65.

5.1.2 Parameters set in equilibrium

We want the model to deliver in equilibrium a series of properties from the data. In

particular, we want the model to reproduce the average participation rate of the economy,

the average hours per worker, the aggregate labor share and then differences in hours,

participation, labor income and consumption between types of workers. Our empirical

strategy is to choose as many moments from data as parameters we need to set. Hence,

we will choose a subset of these moments and use the other ones as over-identifying

restrictions to assess the model.

We choose λ0 and λ1 to match average participation and average hours per worker.

We measure both quantities in the 1970 U.S. Census for males aged 25-65 and we obtain

an employment ratio of 0.84 and 43.4 weekly hours per employed worker. We choose α

to match the labor share of gdp, which we set to the standard value of 2/3. All these are

very standard choices.

Now, we have to determine hi for three types, µi for three types and θ. We choose hi

and µi to match relative consumption and relative labor income respectively. The reasons

are as follows. Equation (22) shows that consumption of every skill group is determined

by a1i and equation (IE) shows that a1i and a0i move together. Hence, differences in

consumption are determined by differences in a0i. Note that a0i is determined with the

free entry conditions (31) and (32), and that these equations imply a positive and strong

relationship between a0i and hi. Then, taken a0i and a1i as given, equation (??) shows that

any change in non-labor income given by µi will be offset by a change in opposite direction

in labor income Li via a change in labor supply. Hence, µi can be set to relative labor

income between types or relative participation rates or relative hours per worker. The

problem with our calibration strategy is that we do not observe differences in consumption

in 1970. The first year that we can use is 1980 with the CEX. For differences in labor

income we have two options: first, use the CPS for 1970. This option has the problem

that the sampling and year are different from the one we use for consumption. Second,

use the CEX for 1980. This option makes the consumption and income data consistent

7In any case, the value of m in the model is irrelevant, or in other words, machine ages are irrelevant.
What matters is the spread of machine qualities, not the spread of ages. If we change m and hence
average machine age, we can pick new values of α, θ and hi such that the economy is unchanged. In

particular, if we keep constant α/m, (1− α) θ and h
(1−α)(1−θ)
i all the relevant statistics of the model

economy remain unchanged.
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but pays the cost that we impose into the model the labor income inequality of 1980

instead of 1970. We take this second choice because labor inequality did not start to raise

until the mid 70’s and the big increase occurred during the 80’s. Hence, we compute labor

income differences between household heads aged 25-65 and consumption differences of

households with head of the same age. Finally, we have to set θ. We choose to set θ

to match the difference in participation rates between college graduates and high school

drop outs. Therefore, we have not set the actual participation rates by education group

neither the hours per worker of each education group.

5.2 Results

Table 2: Labor supply

Data Model
Statistic 1970 ∆00−70 1970 ∆q

Participation rate 0.84 -0.08 0.84 -0.08
College graduates 0.90 -0.03 0.92 -0.06
Some college 0.88 -0.08 0.83 -0.08
High school graduates 0.88 -0.15 0.86 -0.07
High school dropouts 0.78 -0.23 0.79 -0.09

Hours per worker 43.4 +3.2% 43.4 +2.7%
College graduates 44.1 +4.7% 47.8 +4.4%
Some college 44.0 +1.8% 47.0 +4.1%
High school graduates 44.0 -0.6% 44.6 +3.1%
High school dropouts 42.4 -1.3% 40.1 +1.1%

Due to the acceleration in the pace of investment specific technological progress, the

return to skill increase and wage inequality rises, see Table 3. This is a side effect of the

matching friction: small differences in in skill gets amplified by an increase in the disper-

sion of machines quality. Table 2 also show that the average hours per worker increases

with the increase being relatively more pronounced for relatively skilled workers. Table

2 the participation rate declines with the decline being more pronounced for relatively

unskilled workers. This is in line with the data although the relative changes by skill

in the model are smaller than in the data. Table 3 also show that the increase in con-

sumption inequality has been small relative to the increase in permanent labor income

inequality. This is because low skilled workers receives a substantial amount of non labor

income in the form of transfers. This suggests that there is substantial redistribution in

the US economy. According to Budŕıa, Dı́az-Giménez, Quadrini, and Ŕıos-Rull (2002)
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25% of total income of low educated workers comes from transfers (data from Survey of

Consumer Finances).

Table 3: Consumption, labor income and wages

Data Model
Statistic 1970 2000 1970 ∆q

Average consumption
College graduates 1.00 1.00 1.00 1.00
Some college 0.84 0.77 0.84 0.83
High school graduates 0.76 0.68 0.76 0.74
High school dropouts 0.68 0.54 0.68 0.66

Average labor income
College graduates 1.00 1.00 1.00 1.00
Some college 0.75 0.61 0.75 0.72
High school graduates 0.68 0.51 0.68 0.64
High school dropouts 0.52 0.35 0.52 0.47

Hourly wages
College graduates 1.00 1.00 1.00 1.00
Some college 0.80 0.66 0.84 0.83
High school graduates 0.75 0.55 0.77 0.75
High school dropouts 0.62 0.42 0.72 0.70

6 Conclusions
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A Theorems and proofs

Lemma 1 The distribution of detrended qualities of operating machines has support [e−qp, 1]

and it is log-uniform with density g (k) = 1
qp

1
k .

Proof: Notice first that the distribution of the age of operating machines is uniform with

support [0, p]. The detrended quality of a machine of age τ can be expressed as kτ = e−qτ . This

implies that the age of a machine, τ can be expressed as the ratio of the log of its quality and

q: τ = −1
q log kτ . This can be used to express the cdf of machine qualities G (k):

G (k) ≡ Pr
(
k̃ ≤ k

)
= Pr

(
log k̃ ≤ log k

)
= Pr

(
− log k̃

q
≥ − log k

q

)

= 1− Pr

(
τ ≤ − log k

q

)
= 1 +

log k

qp

and hence, the pdf is given by,

g (k) =
1

qp

1

k
.

We can easily check that the density integrates to one over the support of machine qualities

[e−qp, 1]: ∫ 1

e−qp
g (s) ds =

∫ 1

e−qp

1

qp

1

s
ds =

1

qp
(0 + qp) = 1

�

Lemma 2 Hours work n0 in the newest vintage of machines do not depend on the speed of

technical change q.

Proof: This is self-evident from the definition of machine quality relative to frontier: k0 = 1.

�

Lemma 3 The ratio of hours worked between machines of any two vintages increases with q.

Proof: Let’s take two ages τa and τb. The ratio of hours worked in machines of those ages

can be obtained by dividing the hours equation (4):

v′ (nτa)

v′ (nτb)
=
f2 (kτa , nτa)

f2 (kτb , nτb)

Using our functional forms and rearranging leads to,

nτa

nτb
= e

α
η+α

q(τb−τa)
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Lemma 4 Hours work n∗ in the marginal machine depend neither in the speed of technical

change q nor in the marginal utility of consumption µ.

Proof: Take equation (4) and evaluate it for hours n∗ at the marginal machine. Divide it

by the participation equation (5). This yields a solution for hours in the marginal machine given

by,
v′ (n∗)

v (n∗)
=
µ

µ

f2 (k∗, n∗)

f (k∗, n∗)
=

1− α
n∗

�

Proposition 5 An increase in q generates:

(a) A fall in consumption c

(b) An increase in the quality gap eqp between the top and marginal machines.

(c) A fall in the fraction of workers p

(d) An increase in hours per worker n

Proof: Our economy is characterized by the three first order conditions and the aggregate

resource constraints. Let’s rewrite them here as,

u′ (c) = µ (43)

v′ (nτ ) = µ f2

(
e−qτ , nτ

)
(44)

v (n∗) = µ f
(
e−qp, n∗

)
(45)

c =

∫ p

0
f
(
e−qτ , nτ

)
dτ (46)

and let’s use (44) to write an implicit function of hours,

nτ = φ
(
e−qτ , µ

)
(47)

where we have already seen that φ1 > 0 and φ2 > 0. Now, let’s prove each part in turn:

(a) Note that totally differentiating the resource constraint (46) we obtain,[
1− u′′ (c)

∫ p

0
f2φ2dτ

]
dc = f∗dp+

[∫ p

0
(f1 + f2φ1) (−τeqτ ) dτ

]
dq
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and totally differentiating the participation equation (45):

dc = α
u′ (c)

u′′ (c)
[pdq + qdp]

Combining these two equations we obtain:[
1− u′′ (c)

∫ p

0
f2φ2dτ −

u′′ (c)

u′ (c)

]
dc =

[∫ p

0
(f1 + f2φ1) (−τeqτ ) dτ − qp

f∗

]
dq

The term in brackets in the left hand side is positive and the one in the left is negative.

Hence, dc
dq < 0.

(b) Notice that the participation equation (45) requires that whenever µ goes up (which

happens when c falls) then qp has to increase too.

(c) We need to work a bit with our functional forms. We can write (47) as

nτ = φ
(
e−qτ , µ

)
=

(
µ

1− α
λ1

) 1
η+α

e
− αq
η+α

τ
(48)

Then let’s rewrite the resource constraint (46) as,

c =

∫ p

0

(
µ

1− α
λ1

) 1−α
η+α

e
−αq(1+η)

η+α
τ
dτ

Solving for the integral and substituting µ by 1/c we arrive at,

c
1+η
η+α =

(
1− α
λ1

) 1−α
η+α η + α

αq (1 + η)

[
1− e−

α(1+η)
η+α

qp
]

(49)

Now, we can rewrite the participation equation (45) as,

v (n∗) =
1

c
e−αpq (n∗)1−α

which let us write consumption as

c = e−αpq
(n∗)1−α

v (n∗)
(50)

substituting back into the resource constraint (49) we obtain

[
(n∗)1−α

v (n∗)

] 1+η
η+α

=

(
1− α
λ1

) 1−α
η+α η + α

αq (1 + η)

[
e
α(1+η)
η+α

qp − 1

]

The left hand side is a bunch of constants. The right hand side is increasing in p. If we can
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show that the right hand side is also increasing in q, then it must be the case that dp
dq < 0.

To see that the right hand side is increasing in q notice that the sign of its derivative with

respect to q is the same as the sign of the derivative of the function

z(q) =
eγ0q − 1

q
(51)

where γ0 = α(1+η)
η+α p > 0. The derivative of this function has the same sign as

g(q) = γ0e
γ0qq − eγ0q + 1.

which is positive. To see that g(q) is positive one can notice that g(0) = 0 and that g(q)

is increasing in q for all q > 0:

g′(q) = γ2
0e
−γ0qq

(d) We define average hours per worker,

n ≡ 1

p

∫ p

0
nτdτ

Substituting nτ by expression (48) and integrating the resulting equation we can rewrite,

n =

(
1

c

1− α
λ1

) 1
η+α η + α

α

1

qp

[
1− e−

α
η+α

qp
]

Substituting out consumption from equation (50) we obtain,

n =

(
v (n∗)

(n∗)1−α
1− α
λ1

) 1
η+α η + α

α

1

qp

[
e

α
η+α

qp − 1
]

Hence, average hours per worker n are increasing in the quality gap qp. Sine part (b) of

this proposition shows that qp is increasing in q, it must be the case that hours per worker

increase with q.

�

Proposition 6 The allocations of the conjectured balanced growth path equilibrium in Definition

1 also solve the large household problem.

Proof: To prove this result we just need to show that the BGP equilibrium yields conditions

(4), (5) and the aggregate resource constraint of the problem in Section 2.2.

• To show that equation (4) holds, just combine the optimal demand of hours by firms (8)

with the optimal supply by workers (14). And note that equations (23) and (22) state
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that c̃t,i = c0. Hence,

v′ (nτ ) =
1

c0
f2 (kτ , nτ )

• To show that equation (5) holds, just combine equations (9) with (15) and also substitute

consumption at t to obtain,

v (n∗) =
1

c0
f (k∗, n∗)

• To show that the aggregate resource constraint holds, we integrate forward the period

budget constraints (12) to obtain,∫ ∞
0

e−rtc̃t,idt = b0 +

∫ ∞
0

e−rtw̃t (nt,i) dt

Then given (21) and (20), we obtain

c0,i = ρ

[
b0 +

∫ ∞
0

e−ρtw (nt,i) dt

]
which is the standard permanent income condition that determines consumption c0,i.

Now, note that the labor income wτ (nτ,i) at any period of time is stochastic as it depends

on the assignment. However, given a law of large numbers the present value of labor

income is equal to the cross-sectional average of labor income, which is not stochastic. To

see this note that the present value of labor income can be written as∫ ∞
0

e−ρtw (nt,i) dt =

∫ ∞
0

e−ρt
(
p

∫ 1

k∗
w (φ (s)) dϕ (s)

)
dt =

p

ρ

∫ 1

k∗
w (φ (s)) g (s) ds

where we have imposed the conditions for the symmetric equilibrium.

Initial wealth is given by the price of shares p0, which according to expression (18) equals

the discounted present value of profits,

b0 = p0 =

∫ ∞
0

e−rtΠtdt =
p

ρ

∫ 1

k∗

[
f (s, φ (s))− w (φ (s))

]
g (s) ds

Hence the detrended consumption level at every point in time is given by the detrended

sum of output produced in all machines at every point in time,

c0 = p

∫ 1

k∗
f (s, φ (s)) g (s) ds (52)

�

Proposition 7 When q increases labor income inequality as measured by LI increases.
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Proof: We can write labor income in t at a machine of given age τ as w̃t (nτt ) = w̃t

(
φ̃t (kτ )

)
.

Then,

LIt =
w (φ (1))

w (φ (e−qp))
=

λ0
λ1

+ φ(1)1+η

1+η

λ0
λ1

+ φ(e−qp)1+η

1+η

where for the last equality we have used the equilibrium wage equation (19) and the equilibrium

relationship between a0 and a1 in (IE).

Now, Proposition 5 shows that when q increase the quality gap eqp also increases. Hence,

the detrended quality e−qp of the marginal machine goes down and LI goes up. �

Lemma 8 For type i workers, the distribution of detrended qualities of operating machines has

support
[
k∗i , k

∗
i−1

]
= [e−(q+δ)τ∗i , e−(q+δ)τ∗i−1 ] and it is log-uniform with density gi (k) = m

(q+δ)pizi
1
k

Proof: The first part of the Lemma follows directly from Lemma 1. To prove the second

part notice first that the distribution of the age of machines operated by workers of type i is

uniform with support
[
τ∗i−1, τ

∗
i

]
. The detrended quality of a machine of age τ can be expressed

as kτ = e−(q+δ)τ . This implies that the age of a machine, τ can be expressed as the ratio of

the log of its quality and (q + δ): τ = − log kτ/ (q + δ) . This can be used to express the cdf of

machine qualities Gi (k) for type i workers:

Gi (k) ≡ Pr
(
k̃ ≤ k

)
= Pr

(
log k̃ ≤ log k

)
= Pr

(
− log k̃

q + δ
≥ − log k

q + δ

)

= 1− Pr

(
τ ≤ − log k

q + δ

)
= 1−

∫ − log k
q+δ

τ∗i−1

1

τ∗i − τ∗i−1

ds

= 1 +
m

pizi

(
log k

q + δ
− τ∗i−1

)
and hence, the pdf is given by,

gi (k) =
m

(q + δ) pizi
· 1

k
.

We can easily check that the density integrates to one over the support of machine qualities

[e−(q+δ)τ∗i , e−(q+δ)τ∗i−1 ]:

∫ e
−(q+δ)τ∗i−1

e−(q+δ)τ∗
i

gi (s) ds =

∫ e
−(q+δ)τ∗i−1

e−(q+δ)τ∗
i

m

(q + δ) pizi

1

s
ds =

m

(q + δ) pizi

[
− (q + δ) τ∗i−1 + (q + δ) τ∗i

]
= 1.

�

Proposition 9 π (k, hi) ≥ π (k, hi+1) for k ∈
[
k∗i , k

∗
i−1

]
if and only if the following condition
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holds (
hi
hi+1

)(1−α)(1−θ)
>

(
ci
ci+1

)A−1
A

(53)

Proof: Note that the free entry conditions (31) state that π (k, hi) = π (k, hi+1) whenever

k = k∗i . For k > k∗i the inequality of the lemma will be met if and only if as capital quality

increase, profits increase more for the firm with the better worker. That is to say, we require,

∂π (k, hi)

∂k
≥ ∂π (k, hi+1)

∂k

Going to the profit function (36) and the output function (33) we see that the above inequality

requires,

h
(1−α)(1−θ)A
i

aA−1
1i

≥
h

(1−α)(1−θ)A
i+1

aA−1
1,i+1

Finally, equation (22) gives an expression for a1i and a1,i+1 as a function of consumption that

leads to,

ci+1

ci
≥
(
hi+1

hi

)( 1−θ
θ )(1+η)

�
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