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Monetary Policy and Global
Equilibria in a Production
Economy

Tim Hursey and Alexander L. Wolman

M acroeconomic models that are applied to the study of monetary
policy often exhibit multiple equilibria.1 Prior to the mid-1990s,
applied monetary theory typically modeled monetary policy in

terms of a rule for the money supply, and it was well understood that multi-
ple equilibria often arose under constant money supply policies. Starting in
the mid-1990s, applied work shifted to modeling monetary policy in terms
of interest rate rules. This was mainly because of the accumulating obser-
vations that central banks in fact operated with interest rate targets rather
than money supply targets. A particular class of interest rate rules—so called
“active Taylor rules,” featuring a strong response of the policy interest rate
to inflation—attracted special attention. In linearized models these policy
rules were shown to guarantee a locally unique nonexplosive equilibrium.
Benhabib, Schmitt-Grohé, and Uribe looked beyond the local dynamics in a
series of articles (e.g., 2001a, 2001b, 2002), and showed that active Taylor
rules could in fact lead to multiple equilibria. Whereas local analysis ignored
the zero bound on nominal interest rates, global analysis showed that the zero
bound implied the existence of a second steady-state equilibrium, with low
inflation and a low nominal interest rate. This second steady state proved to be
the “destination” for paths that had appeared explosive in the local analysis.
Benhabib, Schmitt-Grohé, and Uribe’s results attracted much attention in the
academic literature because the prevailing wisdom had held that active Taylor

The views in this paper are those of the authors and do not represent the views of the Federal
Reserve Bank of Richmond, the Federal Reserve Board of Governors, or the Federal Reserve
System. For helpful comments, the authors thank Huberto Ennis, Brian Gaines, Andreas Horn-
stein, and Thomas Lubik. E-mails: tim.hursey@rich.frb.org; alexander.wolman@rich.frb.org.

1 Michener and Ravikumar (1998) provide a taxonomy of multiple equilibria in monetary
models that predates the recent sticky-price literature.
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rules generated a unique equilibrium. More recently, the persistence of low
inflation and low nominal interest rates has brought attention to Benhabib,
Schmitt-Grohé, and Uribe’s work in policy circles. Most notably, Bullard
(2010) argued that monetary policy in the United States could unintentionally
be leading the economy to a steady state in which inflation is below its target.

This article provides an introduction to Benhabib, Schmitt-Grohé, and
Uribe’s work on multiple equilibria under active Taylor rules, using two simple
models. While the type of results presented here is not new, the specific
modeling framework—Rotemberg price setting in discrete time—is new, and
it fits neatly into the frameworks typically used for applied monetary policy
analysis. Furthermore, we provide computer programs in the open source
software R to replicate all the results in the article. The programs are available
at www.richmondfed.org/research/economists/bios/wolman bio.cfm.

Section 1 places the topic of this article in historical perspective. Section 2
shows the existence of multiple equilibria in a reduced-form model consisting
only of an active Taylor rule and a Fisher equation, assuming that the real
interest rate is exogenous and fixed. Section 3 describes the discrete-time
Rotemberg pricing model to be used in the remainder of the article. Steady-
state equilibria and local dynamics are described in Section 4, and global
dynamics are described in Section 5. Section 6 concludes.

1. HISTORICAL CONTEXT

Multiple equilibria is a common theme in monetary economics, and has been
at least since the work of Brock (1975). On the theory side, there has been a
steady stream of work on multiple equilibria since the 1970s. In contrast, em-
phasis on multiple equilibria in applied monetary policy research has fluctuated
as new theoretical results have appeared, the tools of analysis have evolved,
and economic circumstances have changed. The immediate explanation for
why the theoretical results described in this article have attracted attention in
policy circles—10 years after those results first appeared—involves economic
circumstances, namely the existence of low inflation and near-zero nominal
interest rates in the United States. There is a longer history, however, that
also involves the ascent of interest rate feedback rules and linearized New
Keynesian models, and the accompanying focus on active Taylor rules as a
descriptive and prescriptive guide to central bank behavior.

Beginning with Bernanke and Blinder (1992), quantitative research on
monetary policy in the United States rapidly shifted from modeling mone-
tary policy as controlling the money supply to modeling monetary policy as
controlling interest rates.2 At around the same time, Henderson and McKibbin

2 Bernanke and Blinder were not the first to suggest modeling monetary policy in terms of
interest rates. See for example McCallum (1983).
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(1993) and Taylor (1993) influentially proposed particular rules for the con-
duct of monetary policy. These rules involved the policy rate (federal funds
rate in the United States) being set as a linear function of a small number
of endogenous variables, typically including inflation and some measure of
real activity. Henderson and McKibbin focused on the normative aspects of
interest rate rules, whereas Taylor also argued that what would become known
as the “Taylor rule” actually provided a reasonable description of short-term
interest rates in the United States from 1986–1992.

Just as Taylor rules were attracting more attention, another shift was occur-
ring in the nature of quantitative research on monetary policy. Bernanke and
Blinder’s 1992 article had used vector autoregressions (VARs) for its empiri-
cal analysis and, in their policy analysis, Henderson and McKibbin employed
linear rational expectations models with some rule-of-thumb behavior. These
two approaches—VARs and linear rational expectations models—had become
standard in applied monetary economics for empirical analysis and policy
analysis, respectively. Beginning with Yun (1996), King and Wolman (1996),
and Woodford (1997), however, the tide shifted toward what Goodfriend and
King (1997) called New Neoclassical Synthesis (NNS) models. NNS models
represented a melding of real business cycle (RBC) methodology—dynamic
general equilibrium—with nominal rigidities and other market imperfections.
Nominal rigidities made the NNS models appealing frameworks for studying
monetary policy, and the RBC methodology meant that it was straightforward
to model the behavior of monetary policy as following a Taylor-style rule.

While NNS models, like RBC models, were fundamentally nonlinear, they
were typically studied using linear approximation. In linearized NNS mod-
els (as with their predecessors, the linear rational expectations models), the
question of existence and uniqueness of equilibrium generally was presumed
to be identical to the question of whether the model possessed unique stable
local dynamics in the neighborhood of the steady state around which one lin-
earized.3 In turn, the nature of the local dynamics depended on the properties
of the interest rate rule. Although specific conditions can vary across models,
the results in Leeper (1991) and Kerr and King (1996) were the basis for a
useful rule of thumb in many monetary models: Taylor-style interest rate rules
were consistent with unique stable local dynamics only if the coefficient on
inflation was greater than one; a coefficient less than one would be consistent
with a multiplicity of stable local dynamics. Taylor rules with a coefficient
greater than one became known as active Taylor rules, and the rule of thumb

3 For example, see Blanchard and Kahn (1980) or King and Watson (1998). In many eco-
nomic models, explosive paths for some variables are inconsistent with equilibrium. For example,
explosive paths for the capital stock can be inconsistent with a transversality condition (in non-
technical terms, consumers would be leaving money on the table), and explosive paths for real
money balances can violate the requirement of a nonnegative price level. See Obstfeld and Rogoff
(1983) for a discussion of these issues.
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that active Taylor rules guaranteed a unique equilibrium became known as the
Taylor principle.4 Passive Taylor rules, in contrast, are Taylor rules with a
coefficient on inflation less than one.

Some intuition for the Taylor principle comes from the much earlier work
of Sargent and Wallace (1975) and McCallum (1981). Sargent and Wallace
showed that if the nominal interest rate is held fixed by the central bank,
then in many models expectations of future inflation will be pinned down,
but the current price level is left indeterminate. McCallum followed up by
showing that if the nominal interest rate responds to some nominal variable it
is also possible to pin down the price level. The Taylor principle states that
multiplicity can occur if the nominal interest rate does not respond strongly
enough to inflation, consistent with the message of Sargent and Wallace and
McCallum.

With widespread understanding of the Taylor principle came empirical
applications by Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide
(2004). These authors argued that (i) violation of the Taylor principle could
help explain the macroeconomic instability of the 1970s, and (ii) a shift in
policy so that the Taylor principle did hold could help explain the subsequent
stability after 1982. Although this work brought multiple equilibria into the
mainstream of applied research on monetary policy, it proceeded under the
assumption that the local linear dynamics gave an accurate picture of the nature
of equilibrium. These articles also helped to cement the idea that the Taylor
principle characterized “good” monetary policy, because the Taylor principle
would guarantee that inflation stayed on target.

Beginning with their 2001a article, Benhabib, Schmitt-Grohé, and Uribe
(BSU) showed that when there is a lower bound on nominal interest rates,
the local dynamics can be misleading about the uniqueness of equilibrium
when monetary policy is described by an active Taylor rule. The details of
BSU’s argument will become clear below. The rough intuition is as follows.
Arguments for (local) uniqueness of equilibrium with active Taylor rules posit
that without shocks, the model has a unique equilibrium at the inflation rate
targeted by the interest rate rule. Any other candidate solutions to the model
equations would have the inflation rate exploding to plus or minus infinity,
or oscillating explosively. But many of these explosive paths would violate
the lower bound on the nominal interest rate. When that bound is imposed
and the model is studied nonlinearly, it becomes clear that (i) there is a sec-
ond steady-state equilibrium at a lower inflation rate, and (ii) there are many

4 Note that Leeper (1991) emphasizes that an active rule guarantees uniqueness only in con-
junction with an assumption about fiscal policy, specifically that fiscal policy takes care of balancing
the government budget. We maintain that assumption here. Benhabib, Schmitt-Grohé, and Uribe
(2002) discuss the implication of alternative assumptions about fiscal policy for multiple equilibria
induced by the zero bound on nominal interest rates.
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non-steady-state equilibria in which the inflation rate converges to the low-
inflation steady state in the long run.

Initially, while the articles by BSU were widely cited, they did not at-
tract much attention in policy circles. This is somewhat surprising because
the articles were showing that a policy advocated in large part because it was
believed to deliver a unique equilibrium actually delivered multiple equilibria
in some models! Furthermore, a rule that violated the Taylor principle—a
passive rule—would actually be consistent with keeping inflation close to its
targeted value, even though there could be multiple equilibria with this prop-
erty. Recently however, the results in BSU have attracted substantial attention
in policy circles. The simultaneous occurrence of low inflation and low nom-
inal interest rates in the United States is suggestive of some of the equilibria
identified by BSU, so it is natural to wonder whether we are experiencing
outcomes associated with those global equilibria. Policymakers care about
this because the global equilibria involve average inflation below its intended
level.

2. A SIMPLE FRAMEWORK WITH ONLY NOMINAL
VARIABLES

As a simple framework for communicating some of the key ideas in BSU, this
section works through a two-equation model of the nominal interest rate and
inflation. That minimal structure is sufficient to illustrate the potential for the
local and global dynamics to diverge when monetary policy is given by an
active Taylor rule.

Assume that the real interest rate is exogenous and fixed, rt = r , whereas
the nominal interest rate (Rt) and the inflation rate (πt ) are endogenous.5

Expectations are rational. The model consists of a Fisher equation relating
the short-term nominal interest rate to the short-term real interest rate and
expected inflation,

Rt = rEtπt+1, (1)

and a rule specifying how the central bank sets the nominal interest rate—in
this case as a function only of the current inflation rate, with an inflation target
of π∗:

Rt = 1 + (
R∗ − 1

) (
πt/π

∗)γ , (2)

where

R∗ = rπ∗; (3)

5 Throughout the article, interest rates and inflation rates are measured in gross terms—that
is, a 4 percent nominal interest rate would be written as Rt = 1.04.
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that is, the targeted nominal interest rate is the one that is implied by the
steady-state Fisher equation when inflation is equal to its target.

The interest rate rule in (2) may look unfamiliar relative to standard linear
Taylor rules. We use the nonlinear rule because it will simplify the analysis in
the second part of the article.6 Furthermore, the linear approximation to the
rule in (2) around {R∗, π∗} is

Rt − R∗ = γ

(
R∗ − 1

π∗

) (
πt − π∗) , (4)

a simple inflation-only Taylor rule in which the coefficient on inflation is
γ (R∗ − 1) /π∗, and we assume that γ (R∗ − 1) /π∗ > r > 1. The stan-
dard local-linear approach around the point {R∗, π∗} involves combining the
linearized Taylor rule (4) with the linearized Fisher equation (Rt − R∗ =
(R∗/π∗) Et (πt+1 − π∗)), which yields an expectational difference equation
in inflation:

Et

(
πt+1 − π∗) = γ

(
R∗ − 1

R∗

) (
πt − π∗) .

For simplicity, assume perfect foresight—that is, the future is known with
certainty, so that Et (πt+1 − π∗) can be replaced with πt+1 − π∗. Perfect
foresight is clearly an unrealistic assumption, but it is a convenient one for
illustrating the difference between local and global dynamics. With perfect
foresight, we have

(
πt+1 − π∗) = γ

(
R∗ − 1

R∗

) (
πt − π∗) . (5)

By assumption the coefficient on πt − π∗ is greater than one—the rule obeys
the Taylor principle. Consequently, we can show that there is a unique non-
explosive equilibrium. Constant inflation at the targeted steady-state level
(πt = π∗) is clearly an equilibrium because it represents a solution to the
difference equation (5). If inflation in period t were equal to any number
other than π∗, inflation would have to follow an explosive path going for-
ward because the coefficient on current inflation is greater than one. Any such
explosive path would be ruled out as an equilibrium by assumption in the
standard local-linear approach.7

6 Imposing the zero bound on an otherwise linear rule creates a nondifferentiability, making
computation more difficult.

7 Since the model here is itself ad-hoc, we cannot complain about ruling out explosive paths
as equilibria by assumption. Depending on the particular model, explosive paths up or down may
or may not be equilibria—see footnote 3. What is important here is that the ad-hoc model we
wrote down is nonlinear, and the nonlinear analysis yields different conclusions about equilibrium
than the linear analysis.
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Figure 1 Steady-State Equilibria
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Steady-State Equilibria

It is obvious that {R∗, π∗} represents a steady-state solution to the Fisher and
Taylor equations ([1] and [2]). Less obviously, there is also a second steady-
state solution with a lower inflation rate and a lower nominal interest rate. To
see this, combine the steady-state Fisher and Taylor equations into a single
equation in π :

π = r−1
(
1 + (

R∗ − 1
) (

π/π∗)γ ) . (6)

Figure 1 displays a plot of the right-hand side of (6) (essentially the Taylor
rule) against the 45-degree line—which is also the left-hand side, or the Fisher
equation. The two intersections of the right-hand side and left-hand side rep-
resent the two steady-state equilibria. The targeted inflation rate is 2 percent,
and the other steady state involves slight deflation.

The specific Taylor rule we chose for this example never allows the nomi-
nal interest rate to hit the zero bound. Alternatively, if we had chosen a typical
linear Taylor rule (Rt = max {R∗ + f (πt − π∗) , 0}), there would be a kink
in the steady-state Taylor curve at π = 1/r , and the second steady state would
be at π = π∗ − (1/f ) R∗. BSU (2001a) and Bullard (2010) contain pictures
of the analogues to Figure 1 implied by several different interest rate rules that
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Figure 2 Example of a Non-Steady-State Equilibrium
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all satisfy the Taylor principle at the targeted steady state, and all imply the
existence of a second steady state with lower inflation.

Example of a Non-Steady-State Equilibrium

The fact that there are two steady-state equilibria suggests that there may also
be equilibria in which inflation and nominal interest rates fluctuate. Returning
now to the nonlinear model, by combining the Fisher equation (1) and the
interest rate rule (2) and imposing perfect foresight, we have a first-order
difference equation for the inflation rate:

πt+1 = r−1
(
1 + (

R∗ − 1
) (

πt/π
∗)γ ) . (7)

This is the nonlinear analogue of (5). In contrast to the linearized model, we
can show that there is a continuum of nonexplosive equilibria.8 In Figure 2
we plot the right-hand side of (7): It is an identical curve to the solid line in

8 Note the sensitivity of this result to whether current or (expected) future inflation is the
argument in the policy rule. If the policy rule responds to πt+1 instead of πt , then the same two
steady-state equilibria exist; but the system is entirely static and, under perfect foresight, the two
steady-state equilibria are also the only two equilibrium values for inflation in any period. The



T. Hursey and A. L. Wolman: Monetary Policy and Global Equilibria 325

Figure 1. The dotted line is the 45-degree line, which is also the left-hand
side of (7). The intersections between the two lines are the steady states and,
starting with any initial inflation rate below the targeted steady state, we can
trace an equilibrium path using the solid line and the 45-degree line. For
example, from an initial inflation rate of 1.014, the vertical solid lines with
arrows pointing down indicate the successive values of inflation going forward.
Generalizing from this example, the figure shows that all perfect foresight
equilibria except for the targeted steady state converge to the nontargeted
steady state. In contrast, the conventional local linear approach applied to the
targeted steady state would conclude that the targeted steady state was the only
equilibrium—other solutions are locally explosive and would be ruled out by
assumption. Figure 2 conveys the essence of the literature that began with
BSU (2001a): Local analysis suggests a unique equilibrium, whereas global
analysis reveals that many solutions ruled out as explosive instead lead to a
second steady-state equilibrium.

Because the qualitative results involving a second steady state and multiple
equilibria will carry over into the model with an endogenous real interest
rate and endogenous output, it is interesting to discuss the economics behind
these results. In a neighborhood of the targeted steady state, the interest rate
rule responds to an upward (downward) deviation of inflation from target
by moving the interest rate upward (downward) more than proportionally.
This sets off a locally explosive chain: The Fisher equation (1) dictates that
an increase in the current nominal interest rate must correspond to a higher
future inflation rate, which then is met with a further increase in next period’s
interest rate, etc. One notable aspect of this process is that there is no sense
in which a higher nominal interest rate represents “tighter” monetary policy.
The model has only nominal variables, and a higher nominal interest rate must
correspond to higher expected inflation. In contrast, the Taylor principle is
often thought of as ensuring that an increase in inflation is met with a monetary
tightening, as represented by a higher nominal interest rate. In models with
real effects of monetary policy—such as the one discussed below—an increase
in the nominal interest rate does not have to correspond to higher expected
inflation. However, we have learned from the two-equation model that this
association of higher interest rates with tight monetary policy is not an inherent
ingredient in the local uniqueness and global multiplicity associated with the
Taylor principle.9

“economy” can bounce arbitrarily between those two values in a deterministic way. There may
also be rational expectations equilibria with stochastic fluctuations.

9 See Cochrane (2011) for a similar argument.
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3. A MODEL WITH REAL VARIABLES AND MONETARY
NONNEUTRALITY

The model above taught us that the Fisher equation together with a Taylor rule
that responds strongly to inflation can lead to multiple steady states and other
equilibria because of the lower bound on nominal interest rates. However,
the only endogenous variables in that model are nominal variables. One of
the simplest ways to endogenize real variables and introduce real effects of
monetary policy is with a version of the Rotemberg (1982) model, which has
quadratic costs of nominal price adjustment. In this model, there is a repre-
sentative household that takes all prices and aggregate quantities as given, and
chooses how much to consume and how much to work. There is a contin-
uum of monopolistically competitive firms that face convex costs of adjusting
their nominal prices, and there is a monetary authority that sets the short-term
nominal interest rate according to a time-invariant feedback rule.

The representative household has preferences over consumption (ct ) and
(disutility of) labor (ht ) given by

∞∑
t=0

βt (ln (ct ) − χht) . (8)

There is a competitive labor market in which the real wage is wt per unit of
time. The consumption good is a composite of a continuum of differentiated
products (ct (z)), each of which are produced under monopolistic competition:

ct =
(∫ 1

0
ct (z)

ε−1
ε dz

) ε
ε−1

. (9)

Households own the firms. An individual household’s budget constraint is

ct + R−1
t Bt/Pt = wtht + Bt−1/Pt + �t/Pt , (10)

where �t represents nominal dividends from firms, Pt is the price of the com-
posite good, and Bt is the quantity of one-period nominal discount bonds. As
above, Rt is the gross nominal interest rate. The household’s intratemporal
first-order conditions representing optimal choice of labor input and consump-
tion are given by

λtwt = χ, (11)

and

λt = 1/ct , (12)

and the intertemporal first-order condition representing optimal choice of
bondholdings is given by

λt

Pt

R−1
t = β · λt+1

Pt+1
. (13)



T. Hursey and A. L. Wolman: Monetary Policy and Global Equilibria 327

In these equations, the variable λt is the Lagrange multiplier on the budget
constraint for period t—it can also be thought of as the marginal utility of
an additional unit of consumption at time t . Note that the intertemporal first-
order condition (13) corresponds to the Fisher equation from the first model,
with the real interest rate now endogenous and given by

rt = β−1 ct+1

ct

.

Firms face a cost
(
ξ t

)
in terms of final goods of changing the nominal

price of the good they produce (z):

ξ t (z) = θ

2

(
Pt (z)

Pt−1 (z)
− 1

)2

. (14)

Because goods are produced both for consumption and for accomplishing
price adjustment, the market-clearing condition is

yt = ct + θ

2
(πt − 1)2 , (15)

where yt denotes total output of the composite good, πt denotes the gross
inflation rate (Pt/Pt−1), and we have imposed symmetry across firms, meaning
that all firms choose the same price.

An individual firm chooses its price each period to maximize the expected
present value of profits, where profits in any single period are given by revenue
minus costs of production minus costs of price adjustment. The demand
curve facing each firm is yt (z) = (Pt (z) /Pt)

−ε yt , so the profit maximization
problem for firm z is

max
Pt+j (z)

∞∑
j=0

βj

(
λt+j

λt

)[
Pt+j (z)

Pt+j

(
Pt+j (z)

Pt+j

)−ε

yt+j

−wt+j

(
Pt+j (z)

Pt+j

)−ε

yt+j − θ

2

(
Pt+j (z)

Pt+j−1 (z)
− 1

)2
]

.

The first term in the square brackets is the real revenue a firm earns charging
a price Pt+j (z) in period t + j ; it sells

(
Pt+j (z) /Pt+j

)−ε
yt+j units of goods

for relative price Pt+j (z) /Pt+j . The second term in the square brackets (in
the second line of the expression) is the real costs the firm incurs in period
t + j , number of goods sold multiplied by average cost, which is equal to
marginal cost and to the real wage because labor productivity is constant and
equal to one. Finally, the third term in the square brackets is the real cost of
adjusting the nominal price from Pt+j−1 (z) to Pt+j (z). Note that the price
chosen in any period shows up only in two periods of the infinite sum. Thus,
the part of the objective function relevant for the choice of a price in period t
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is

Pt (z)

Pt

(
Pt (z)

Pt

)−ε

yt − wt

(
Pt (z)

Pt

)−ε

yt

−θ

2

(
Pt (z)

Pt−1 (z)
− 1

)2

− β

(
λt+1

λt

)
θ

2

(
Pt+1 (z)

Pt (z)
− 1

)2

.

The first-order condition is

(1 − ε)
1

Pt

(
Pt (z)

Pt

)−ε

yt + εwt

1

Pt

(
Pt (z)

Pt

)−ε−1

yt

−θ
1

Pt−1 (z)

(
Pt (z)

Pt−1 (z)
− 1

)
+ β

(
λt+1

λt

)
θ
Pt+1 (z)

Pt (z)
2

(
Pt+1 (z)

Pt (z)
− 1

)
= 0.

If we multiply both sides by Pt and impose symmetry—that is, assume that
all firms choose the same price in any given period, the expression simplifies
to

(1 − ε) yt + εwtyt

−θπt (πt − 1) + β

(
λt+1

λt

)
θπt+1 (πt+1 − 1) = 0.

Using the goods market clearing condition (15) and the household’s opti-
mality conditions, the previous equation simplifies to a form that we will refer
to as the New Keynesian Phillips Curve:10

(πt − 1) πt =
(

ct

θ
+ (πt − 1)2

2

)
(1 − ε + χεct )

+βEt

(
ct

ct+1
(πt+1 − 1) πt+1

)
, (16)

where πt is the gross inflation rate.
Finally, monetary policy is given by a nominal interest rate rule similar

to what was used in the two-equation model, with the one difference that the
interest rate responds to expected future inflation instead of to current inflation:

Rt = 1 + (
π∗/β − 1

) (
πt+1/π

∗)γ . (17)

Recall that in the two-equation model, using a policy rule identical to (17)
would render the model entirely static, whereas the rule that responds to current
inflation introduces dynamics. In the current model, optimal pricing already
introduces dynamics, so we choose to use the future-inflation version of the
policy rule.11 Combining the policy rule with the household’s intertemporal

10 We should note that the term “New Keynesian Phillips Curve” typically refers to the lin-
earized version of (16).

11 Note that with current inflation in the policy rule, the steady states do not change and
it would be possible to study dynamic equilibria in the same way we do here—tentative results
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first-order condition (13), using the definition of the inflation rate to eliminate
the price level, and using the household’s intratemporal first-order condition
(12) to eliminate λ, we have(

ct

π t+1ct+1

)−1

= β
(
1 + (

π∗/β − 1
) (

πt+1/π
∗)γ ) . (18)

The model has now been reduced to two nonlinear difference equations (16)
and (18) in the variables ct , π t , ct+1, and πt+1.

4. LOCAL DYNAMICS AROUND STEADY-STATE EQUILIBRIA

As with the ad-hoc model in Section 2, there are two steady-state equilibria.
That there are two steady-state equilibrium inflation rates is immediately ap-
parent from (18)—in a steady state it is identical to (6). One of the steady
states has inflation equal to the targeted inflation rate π∗, and the other steady
state has a lower inflation rate.12 The steady-state levels of consumption are
determined by (16).

To study dynamic equilibria, we follow the same steps as in the two-
equation model, beginning with the linearized model and then moving on to
the exact nonlinear model. The two dynamic equations (16) and (18) can be
represented as [

F (ct , ct+1, π t , π t+1)

G (ct , ct+1, π t , π t+1)

]
=
[

0
0

]
,

where

F (ct , ct+1, π t , π t+1) =
(πt − 1) πt −

(
ct

θ
+ (πt − 1)2

2

)
(1 − ε + χεct )

−β

(
ct

ct+1
(πt+1 − 1) πt+1

)

G (ct , ct+1, π t+1) = πt+1ct+1 − βct

(
1 + (

π∗/β − 1
) (

πt+1/π
∗)γ ) .

suggest that qualitatively similar results apply with current inflation in the policy rule. Our approach
in this article is positive rather than normative. For a policymaker choosing a rule, whether multiple
equilibria arise would be one important consideration in that choice.

12 This statement relies again on γ being sufficiently large. In contrast, for low enough γ

such that R′ (π∗) < 1, the second steady state will involve inflation higher than π∗.
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Table 1 Parameter Values

β 0.99
ε 6
θ 17.5
χ 5
γ 90
π∗ 1.005

Linearizing around the steady state with the targeted inflation rate (denoted
[c∗, π∗]) yields[

F2 (c∗, c∗, π∗, π∗) F4 (c∗, c∗, π∗, π∗)
G2 (c∗, c∗, π∗) G3 (c∗, c∗, π∗)

](
ct+1 − c

πt+1 − π

)
≈

−
[

F1 (c∗, c∗, π∗, π∗) F3 (c∗, c∗, π∗, π∗)
G1 (c∗, c∗, π∗) 0

](
ct − c

πt − π

)
, (19)

where Hj (s) denotes the j th partial derivative of the generic function H (),
evaluated at s.

The existence and uniqueness of a nonexplosive equilibrium in the lin-
earized model depends on the eigenvalues of the Jacobian matrix J , given
by

J = −
[

F2 (.) F4 (.)

G2 (.) G3 (.)

]−1 [
F1 (.) F3 (.)

G1 (.) 0

]
.

Neither ct nor πt are predetermined variables, so the condition for a unique
nonexplosive equilibrium is that both eigenvalues of J be less than one in
absolute value. Because we are not able to provide a general proof of the
parameter conditions under which equilibrium exists and is unique, we turn to
a numerical example, which we will stay with for the rest of the article.13 Table
1 contains the parameters for that example; they are chosen to be consistent
with a 2 percent annual inflation target (the model is a quarterly model), a 4
percent real interest rate, a markup of 20 percent, and a coefficient in the Taylor
rule of 1.33 when the Taylor rule is linearized around the targeted steady state.
In addition, our choice of θ implies that price adjustment costs are less than
2

10 percent of output.
At the targeted steady state, the local (nonexplosive) dynamics are unique,

in a trivial sense. The Jacobian’s eigenvalues are 0.99771321 ± 0.12791602i,
which means that both eigenvalues have absolute value 1.0059. Local to the

13 If the targeted inflation rate were zero (π∗ = 1) then it would be straightforward to
characterize uniqueness conditions analytically—this is the standard New Keynesian Phillips Curve.
With a nonzero inflation target there are price-adjustment costs incurred in steady state, and the
analysis is less straightforward.
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targeted steady state, the fact that both eigenvalues have absolute value greater
than one and are imaginary means that any solution to the difference equation
system (19) other than the steady state itself oscillates explosively. In the
linearized model the local dynamics are the global dynamics, so the only
nonexplosive solution is the targeted steady state itself.

Suppose instead that we linearize around the low-inflation steady state.
There the Jacobian’s eigenvalues are 1.1291231 and 0.89509305. This eigen-
value configuration, with one explosive root and one stable root (less than
one), means that there is a saddlepath: Given an initial value for c (or an
initial value for π ), there is a unique initial value for π (or for c) such that the
economy will converge from that point to the steady state with low inflation.
If either inflation or consumption were predetermined variables, then this sad-
dlepath would describe the unique equilibrium at any point in time. Because
neither variable is predetermined, the saddlepath represents one dimension of
equilibrium indeterminacy at any point in time. That is, any value of c (or π )
is consistent with equilibrium in period t , but as was stated above, once that
value of c (or π ) has been selected, the associated value of π (or c) is pinned
down, as is the entire subsequent equilibrium path.14

The conventional linearization approach to studying NNS models, as fol-
lowed, for example, by King and Wolman (1996), involves implicitly ignoring
the steady state with low inflation. In that approach it is presumed that the
only relevant steady state is the targeted one. From the same kind of reasoning
used in the discussion following (5), the explosiveness of paths local to the
targeted steady state means there is a unique nonexplosive equilibrium, the
steady state itself. One can then proceed to study the properties of the model
when subjected to shocks, for example to productivity or monetary policy.
However, the fact that there are two steady states suggests that it may be re-
vealing to investigate the global dynamics. Furthermore, if one extrapolates
the local dynamics around the two steady states, it leads to the conjecture that
paths that explode locally from the targeted steady state may in fact end up as
stable paths converging at the low-inflation steady state. This is indeed what
we will find in studying the global dynamics.

5. GLOBAL DYNAMICS

Studying the model’s global dynamics means analyzing the nonlinear equa-
tions ([18] and [16]). We will combine the nonlinear equations with informa-
tion about the local dynamics to trace out the global stable manifold of the
low-inflation steady state. The global stable manifold is the set of inflation and

14 Because we are dealing here with perfect foresight paths, the discussion of period t really
should apply only to an initial period, prior to which the perfect foresight assumption does not
apply. After that initial period the equilibrium outcomes are unique.
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consumption combinations such that if inflation and consumption begin in that
set, there is an equilibrium path that leads in the long run to the low-inflation
steady state. While this approach may not yield a comprehensive description
of the perfect foresight equilibria, it will provide a coherent picture of how
the two steady states relate to the dynamic behavior of consumption and infla-
tion.15 We will find that the local saddlepath can be understood as part of a path
(the global stable manifold) that begins arbitrarily close to the targeted steady
state and cycles around that steady state with greater and greater amplitude
before converging monotonically to the low-inflation steady state.

From Local to Global

Before plunging into the global dynamics, it may be helpful to take stock of
our knowledge. There are two steady-state equilibria, one with the targeted
inflation rate (π∗) and one with a lower inflation rate (πl). The levels of
consumption in the two steady states are c∗ and cl . Local to the targeted steady
state, all dynamic paths oscillate explosively. Local to the low inflation steady
state many paths explode and one path converges to that steady state. To go
further, we will combine the forward dynamics local to the low inflation steady
state with the nonlinear backward dynamics. This approach will allow us to
compute the global stable manifold of the low-inflation steady state. Since all
paths diverge around the targeted steady state, no analogous approach can be
applied there.

As described above, the local dynamics around {cl, π l} involve a unique
path in {c, π} space that converges to the steady state. If we begin with a point
on that path, very close to the low-inflation steady state, and then iterate the
nonlinear system backward, we can trace out the global dynamics associated
with the saddlepath—the global stable manifold. We now describe this process
algorithmically.

1. To find a point on the local saddlepath of the low-inflation steady state,
follow the approach described in Blanchard and Kahn (1980). First,
decompose the Jacobian matrix J into its Jordan form: J = P�P −1,
where � is a diagonal 2 × 2 matrix whose diagonal elements are the
eigenvalues of J, and where P is a 2 × 2 matrix whose columns are
the eigenvectors of J. Next, rewrite the system in terms of canonical
variables x1,t and x2,t , which are linear combinations of ct and πt :[
x1,t x2,t

]′ = P [ct − cl π t − πl]′. The system is[
x1,t+1
x2,t+1

]
=
[

λ1 0
0 λ2

] [
x1,t
x2,t

]
. (20)

15 While we have not proved that the global stable manifold contains all perfect foresight
equilibria, we conjecture this to be the case.
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Note that at the steady state cl, π l , we have x1,l = x2,l = 0. Recall that
one of the roots (λ1, λ2) is greater than one. Without loss of generality,
assume that λ1 > 1. Any point on the local saddlepath must have
x1,t = 0, because x1,t+j = λ1x1,t+j−1, and if x1,t �= 0 then x1,t+j could
not approach 0 as j → ∞. Select one such point within an ε ball of
the low-inflation steady state and call that point {cT , πT }. Set t = T .

2. From (18) we have

ct−1 = ct

β

(
πt

1 + (π∗/β − 1) (πt/π∗)γ

)
.

3. Compute πt−1 by solving (16):(
1 − 1

2
(1 − ε (1 − χct−1))

)
π2

t−1 − ε (1 − χct−1) πt−1−(
ct−1

θ
(1 − ε (1 − χct−1)) + β

(
ct−1

ct

(π t − 1) πt

))
= 0. (21)

With ct−1, ct , and πt all known, (21) is a quadratic equation in πt−1. The
presence of two solutions is rooted in the properties of the firm’s profit-
maximization problem—while there is a unique profit-maximizing price,
there are multiple solutions to the first-order condition. Only the
positive root of the quadratic is consistent with the firm maximizing
profits—the negative root typically implies a negative gross inflation
rate, which would imply a negative price level.

4. Set t = t − 1, return to step 2.

Figure 3 describes the results of iterating backward for 450 periods in
steps 2 through 4. The figure is in c, π space. It plots the two steady states
and the global stable manifold of the low-inflation steady state, constructed as
just described. The arrows represent forward movement in time, as opposed
to the backward movement that characterizes the algorithm. The algorithm
starts at a point close to the low-inflation steady state and goes backward in
time. The figure shows that the only path that converges to a steady-state
equilibrium initially involves spirals around the targeted steady state and ends
with monotonic convergence to the low-inflation steady state. The figure
provides us with a unified understanding of the local results around the two
steady states. From the local dynamics we learn that all paths local to the
targeted steady state oscillate explosively. From Figure 3, we see that one of
those paths is not globally explosive, instead converging at the low-inflation
steady state. This path is what we refer to as the global stable manifold.
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Figure 3 Global Stable Manifold of Low-Inflation Steady State
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6. CONCLUSION

Since late 2008, both inflation and nominal interest rates have been extremely
low in the United States. These facts have focused attention on ideas motivated
by the theory in BSU (2001a, 2001b, 2002): An active Taylor rule, together
with a moderate inflation target, could have the unintended consequence of
leading the economy to undesirably low inflation with a near-zero nominal
interest rate. The article by St. Louis Federal Reserve Bank President James
Bullard (2010) represents the leading example of this attention.

The aim of this article was to provide an accessible introduction to the ideas
in BSU (2001a). Much of the literature in this area uses models that are either
set in continuous time or that assume prices are flexible. In contrast, the model
in this article is set in discrete time and has sticky prices. Discrete time reduces
mathematical tractability, but makes it easy to compute specific solutions; in
addition, the quantitative literature on monetary policy overwhelmingly uses
discrete time models. Sticky prices are also a central element in the applied
monetary policy literature. In adapting BSU’s analysis to a discrete-time
framework with sticky prices, we have seen that the general conclusions of
their work also apply to the specific example we have analyzed. First, with
an active Taylor rule, the presence of a lower bound on the nominal interest
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rate leads to the presence of two steady states, one at the targeted inflation
rate and one at a lower inflation rate. Second, the targeted steady state, which
is a unique equilibrium according to the conventional local analysis, instead
is the source for a global stable manifold of the low-inflation steady-state
equilibrium.

In closing we will offer some caveats regarding using the kind of analysis in
this article to interpret current economic outcomes. It is tempting to conclude
from Figure 3 that the low-inflation steady state is “more likely” because it does
possess a stable manifold while the targeted steady state does not. However,
the model only tells us what equilibria exist, not how likely they are to occur.
It is also tempting to conclude from this work that policy may be unwittingly
leading the economy to the unintended steady state. However, the theoretical
analysis is based on perfect information about the model and the equilibrium
by all agents. It is interesting to think about situations where policymakers
and private decisionmakers do not understand the structure of the economy,
but that is not the situation analyzed here. Finally, we should stress that before
using this kind of framework for quantitative analysis, it would be desirable
to enrich the model to incorporate capital accumulation. The behavior of the
capital stock plays a key role in interest rate determination, and at this point
it is an open question whether the kind of dynamics described here carry over
to models with capital accumulation.
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