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1 Introduction

Bank runs and banking crises in general are an important economic phenomenon, both historically and

in recent years. Much has been written about these crises, including analyses of their possible causes and

of the magnitude of the economic disruptions that accompany them.1 We focus on one particular facet: the

effect of the possibility of bank runs on capital formation and thereby on economic growth. While there is

now a fair amount of empirical evidence on the effects of banking crises on economic growth, not much

theoretical work has been done on the subject. In this paper, we present an endogenous growth model

where bank runs occur with positive probability in equilibrium. This allows us to examine not only the

impact of an actual bank run, but also how the possibility of a run changes the decisions made by agents in

the economy and how these changes affect long-run economic growth.

Our model of the behavior of banks is in the tradition of Diamond and Dybvig’s [7] model, which

highlights the role of the banking system in creating liquidity by taking in short-term deposits and making

long-term investments. In particular, Diamond and Dybvig [7] show how demand-deposit contracts can

easily lead to a situation where there are two pure-strategy equilibria of the game played by a bank’s depos-

itors (the “post-deposit” game): one where a bank run occurs and one where there is no run. The optimal

contract for the bank to offer in the “pre-deposit” phase therefore depends critically on how an equilibrium

of the post-deposit game is selected. One approach is to assume that agents coordinate their actions on a

sunspot variable, a publicly observed random variable that is extrinsic in the sense that it has no effect on

the fundamentals of the economy.2 Peck and Shell [17] show that if a sunspot-induced run is sufficiently

unlikely, depositors can prefer a contract that permits runs, even when a broad set of possible deposit con-

tracts is considered.3 It is always feasible for a bank to choose a contract that is “run proof” in the sense

that it generates a unique, no-run equilibrium of the post-deposit game. However, choosing such a contract

is costly ex ante because it provides less risk sharing among the bank’s depositors. If the probability of a

run is small enough (below some critical value), depositors will prefer to have more risk sharing and to live

with the possibility of a run.

We keep our model of bank behavior as simple as possible, while retaining the spirit of the Peck-Shell

[17] analysis. In particular, we restrict banks to offer simple demand-deposit contracts in order to make the

problem tractable even with a large number of depositors. There is a substantial literature on the roles of the

1 Caprio and Klingebiel [5] provide evidence that the costs of such crises are very large. For example, they estimate the costs of
the Chilean and Argentine crises in the early 1980s to be 40% and 55% of GDP, respectively. For a large number of other crises,
they report costs in excess of 10% of GDP.
2 In a recent comprehensive study of modern banking crises, Boyd et al. [3] conclude that the available evidence strongly points
toward a sunspots-based explanation for the cause of these crises (see also Ennis [8]).
3 This type of result is shown for a restricted set of deposit contracts in Cooper and Ross [6].
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banking system and its microeconomic structure,4 and it is not our intention to contribute to these issues.

Rather, we aim to highlight the basic growth implications of bank runs that are likely to follow from any

model where the activities of the banking system matter for real allocations. The only critical aspect of our

model of the banking system is that, as in Peck and Shell [17], banks may choose a contract that admits a

run equilibrium in the post-deposit game.

Our model has overlapping generations of agents, each of whom lives for two periods. In each period,

young agents decide how much of their income to deposit in the banking system, with the remainder being

kept in a safe, liquid asset called storage. There is a large number of banks, and competition drives these

banks to offer the demand-deposit contract that maximizes the expected utility of depositors. A bank must

allocate the deposits it receives between storage and investment in new capital. Investment is illiquid in

the sense that much of its value is lost if the project is terminated early.5 Each bank takes as given an

equilibrium selection rule, which determines the probability of a run if the bank offers a contract that is

not run proof. Because all banks (and depositors) are identical, all banks will choose the same contract. In

addition, all depositors hold the same beliefs, and therefore either all banks will experience a run or none

will. We show how the possibility of a run influences the process of capital formation in three distinct ways.

The first is obvious: when a run occurs banks liquidate investment, which reduces the amount of new capital

created in that period. The second and third are more subtle. The possibility of a run leads agents to keep

some of their wealth outside of the banking system in order to self-insure against receiving nothing from

the bank during a run. In addition, banks tend to place a higher fraction of deposits into storage. Because

there is a large loss from liquidating investment, holding a more liquid portfolio allows a bank to serve a

larger number of customers during a run and hence provides depositors with better insurance against a run.

However, resources placed in storage (either by agents or by banks) do not produce new capital, and hence

both of these effects tend to decrease the level of the capital stock in the following period. Thus the mere

possibility of a bank run reduces capital formation, even when a run does not occur.

The long-run impact of the possibility of bank runs depends critically on whether the actions of banks

affect the long-run growth rate of the economy. We embed our banking model in an Ak model of growth,

6 which generates the following results. Because the path of real output is history dependent, a bank run

necessarily has a permanent effect. This implies that the true cost of a crisis is much larger than a short-run

4 Freixas and Rochet [13] provide a detailed summary and list of references for this literature.
5 This modification of the Diamond-Dybvig approach was used by Cooper and Ross [6], who showed that the possiblity of runs
could lead the bank to hold excess liquidity.
6 In this we follow Bencivenga and Smith [2], who studied the role of financial intermediaries in promoting growth. Our model
is in many ways similar to theirs, but they do not examine the possibility of bank runs. A key characteristic of the Ak model is
that it has no transitional dynamics, which greatly simplifies our computations. The model can be viewed as approximating the
balanced growth path of richer models.
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estimate (such as those given in the first paragraph above) would indicate.7 In addition, even small changes

in banks’ portfolios will change the long-run growth rate and therefore have large effects on the level of real

output over time.

An immediate implication of this analysis is that much of the cost of a bank run falls on future genera-

tions, whose preferences are not taken into account by banks competing for deposits in the current period.

To get a sense of the size of this external effect, we look at the problem of a social planner whose objective

is to maximize the discounted sum of the utilities of different generations. We restrict the planner to choose

from the same set of deposit contracts available to banks. Because the planner takes future generations into

account, the socially optimal contract differs from the equilibrium contract. In particular, the planner offers

less risk sharing among agents within a generation and places more resources into investment in order to

increase the growth rate of the economy. We calculate the critical (exogenous) probability of a bank run

above which the planner would choose a run-proof contract. This critical value decreases rapidly as the

weight placed on future generations is increased, and it reaches zero at a fairly low annual discount rate.

That is, even a very impatient planner is substantially less tolerant of runs than are banks in the competitive

economy, indicating that the intergenerational externalities in our model are large.

We also examine the issue of equilibrium selection in the post-deposit game in more detail, using an

approach that we have developed elsewhere (Ennis and Keister [9], [10]). The standard sunspots approach

assumes that the probability of a run is a fixed constant (as long as both equilibria exist). In our approach,

the probability of a run depends on the strength of the incentive for agents to run as measured by the risk

factor of the run equilibrium. (A low risk factor corresponds to a strongly risk-dominant equilibrium.)

When the risk factor is very low, an agent would choose to run for a wide range of beliefs about the actions

of other agents, and therefore we say that a run is relatively likely.8 The risk factor is determined largely by

the deposit contract. We show through examples that when an individual bank’s choice of contract affects

the probability of a run, banks hold a less liquid portfolio. This somewhat counterintuitive result stems

from the fact that in order to reduce the probability of a run, the bank must decrease the expected payoff

of running (relative to the payoff of waiting). When the bank places more funds in investment and fewer

in storage, the payoff of waiting increases if there is no run. The payoff of waiting if there is a run does

not change (it is zero). Lower liquidity levels therefore imply a higher expected payoff of waiting, which

leads agents to be more likely to wait and thereby lowers the probability of a run. As mentioned above, less

liquid bank portfolios lead to more capital formation and therefore to higher growth rates. Hence there is

7 Boyd, Kwak, and Smith [4] provide evidence that the effects of modern banking crises are indeed very long lived.
8 Ennis and Keister [9] show how an equilibrium selection rule of this form is the natural outcome of an adaptive learning
process in a stochastic environment.
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no tradeoff between growth and stability in this case; less liquid portfolios bring higher growth with fewer

bank runs.

The outline of the remainder of the paper is as follows. In the next section we describe our model in

detail. In section 3, we describe the equilibrium of the economy and use numerical methods to compute

some examples. We trace the growth implications of the possibility of bank runs under the standard sunspots

approach, and comment on the (intertemporal) social optimality of eliminating bank runs. In section 4, we

study a risk-factor-based equilibrium selection mechanism and its consequences for the decisions of banks

and the long-run behavior of the economy. In section 5 we conclude.

2 The Model

The economy consists of an infinite sequence of two-period-lived, overlapping generations, plus an ini-

tial old generation. There is a single consumption good in each period, which is produced using capital and

labor. Agents in the initial old generation are each endowed with k1 units of capital, and have preferences

that are strictly increasing in consumption during the single period of their life. In each time period t, where

t = 1, 2, ..., a continuum of agents with unit mass is born. Each of these agents is endowed with one unit of

labor when young and nothing when old, and each is either patient or impatient. Preferences are given by

v (c1,t, c2,t) =

½
b1 (c1,t)

γ

b2 (c1,t + c2,t)
γ

¾
if the consumer is

½
impatient

patient

¾
, (1)

where γ < 1 holds. A fraction φ of consumers know at birth that they are patient. We refer to these as type I

agents. The remaining (type II) agents will learn their preferences at the end of the first period of their lives,

while there is still time to consume that period but after investment decisions have been made.9 Each type II

agent in generation t is impatient with probability ut and patient with probability (1− ut). The realization

of types is independent across agents, so that ut is also the fraction of the population of type II agents in

generation t that is impatient. The value of ut is itself the realization of a random variable that gives the size

of the aggregate liquidity shock in each period; high values of ut correspond to high liquidity demand. We

assume that u is independently and identically distributed over time, and that the distribution has a density

function f .10

9 We are thus collapsing the first two periods of the Diamond and Dybvig [7] setup into the first period of a young agent’s life.
10 Most of our analysis could be done under the assumption that u is a known constant over time, as in Cooper and Ross [6].
However, as Diamond and Dybvig [7] point out, in this case a simple suspension-of-convertibility policy is a costless way to
eliminate the run equilibrium. When u is stochastic, however, the total suspension scheme is no longer optimal and the run
equilibrium can exist under the optimal contract, as shown in Peck and Shell [17].
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2.1 Production and investment

There is a large number of competitive firms who produce output using capital and labor as inputs according

to the production function

Yt = k
1−θ
t Kθ

t L
1−θ
t ,

where kt is the average capital-labor ratio in the economy at time t, which is taken as given by each indi-

vidual firm. Adding the capital externality is one way of preventing the marginal product of capital from

falling too low as the economy grows and hence of generating endogenous growth.11 There are many other,

more interesting models with this property, including models of inventive activity. The externality-based

approach allows us to keep the model simple and to abstract from transitional dynamics after a crisis, since

our economy will always be on a balanced growth path. Nevertheless, our banking model could easily be

embedded in a richer model of growth.

Capital is, of course, durable and therefore is one way for young agents to save. There are two other ways

of saving, which we refer to as “storage” and “investment.” One unit of consumption placed into storage

at time t yields one unit of consumption regardless of whether it is liquidated later in period t or held until

period t + 1. One unit of consumption placed into investment in period t yields R > 1 units of capital in

period t+ 1. This technology is the only way that new capital can be produced. If investment is liquidated

early (at the end of period t), it yields x < 1 units of consumption per unit invested. Hence investment is an

illiquid asset, which yields a higher return than storage if held to maturity but a lower return if liquidated

prematurely.

2.2 Timing of events

Period t begins with a stock of capital kt owned by old agents. This capital is rented out to firms, who

also employ young agents and thereby produce output. After production takes place, old agents sell the

undepreciated capital. Letting qt denote the price of capital, an old agent then has (rt + (1− δ) qt) units of

consumption for each unit of capital she had at the beginning of the period. She consumes all of this and

exits the economy.

Type I young agents know that they are patient and therefore will save all of their income in whatever

asset yields the highest return. The return to using a unit of consumption to purchase existing capital is

rt+1 + (1− δ) qt+1
qt

.

11 The assumption that the exponent on the externality term is exactly equal to labor’s share of income is, of course, special.
Antinolfi, Keister and Shell [1] identify it as a bifurcation point in the parameter space.
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The return from investing a unit of consumption in new capital formation is

R (rt+1 + (1− δ) qt+1) ≡ ψt+1.

The decision rule of a type I agent is therefore the following:

Invest in

 existing capital
either

new capital

 as qt

 >
=
<

 1

R
. (2)

Since both strategies yield capital in period t+1, the agent simply chooses the option that yields more units

of capital per unit of consumption invested.

The interesting investment problem is that of type II agents. These agents do not know their preferences

until after the opportunity to invest has passed and the market for capital has closed. As a result, they will

form coalitions that we call banks. The agents will choose how much of their income to deposit in a bank,

and the bank will place some of these resources in storage and the rest in investment in new capital.12 We

assume that income not deposited in a bank must be kept in storage. In other words, investment in capital

by type II agents must be intermediated. We also assume that banks offer simple demand-deposit contracts,

and that suspension of convertibility is not possible. Each depositor chooses to withdraw her funds from

the bank in either period t or period t + 1. Agents who choose period t arrive at the bank in random

order. A bank offers a fixed rate of return on deposits withdrawn in this period, and it must honor this

contractual obligation unless it has completely run out of resources.13 Whatever resources remain in period

t+ 1 are divided among the remaining depositors. The deposit contract offered by a bank can therefore be

summarized by three numbers: the fraction of an agent’s income that is to be deposited (denoted dt), the

fraction of deposits to be placed in storage (denoted ηt), and the return offered to agents who withdraw their

deposits in period t (assuming the bank has not run out of resources; we denote this return by a1,t). Together

with the time t wage rate, these three numbers completely determine the consumption of a depositor under

each possible contingency. Competition between banks implies that the equilibrium deposit contract will

be the one that maximizes the expected utility of depositors.

After the bank sets the contract and type II agents have made their deposits, we move to what Peck and

Shell [17] call the “post-deposit game.” Each agent learns whether she is impatient or patient, and then

decides whether to go to the bank in period t or in period t + 1. Following the literature, we focus on
12 We do not allow banks to purchase existing capital. However, the extreme illiquidity of this asset will make purchasing it a
dominated strategy for banks in equilibrium.
13 Our contract is not fully optimal. Analyzing the optimal contract with a continuum of agents is problematic, in part because
increasing the consumption of an individual agent is costless. Peck and Shell [17] have a finite number of agents and show, in an
environment similar to ours, that there are bank runs in equilibrium. Our simple contracts lead to equilibrium bank runs in the
same spirit, and we believe that the gain from allowing more complex contracts would be small.

6



symmetric, pure strategy equilibria of the game. There are two possible equilibria of this type: one where

all agents go to the bank at the end of period t (a run) and one where only impatient agents go (no run). In

choosing the optimal deposit contract to offer, a bank needs to know how likely each of these outcomes is.

In order to formulate the bank’s problem, therefore, we need to have a theory of how an equilibrium of the

post-deposit game is selected. The standard approach in the literature is to assume that agents coordinate

their actions based on the realization of a sunspot variable. In particular, suppose that in period t a number

st is drawn from the uniform distribution on [0, 1]. This draw is extrinsic, in the sense that it is unrelated

to any other variables in the economy and is independent across periods. The realization st is publicly

observed; we refer to it as the sunspot signal. The standard approach is to assume that if both a run and a

no-run equilibrium exist in the post-deposit game, then all agents follow the decision rule “run if st ≤ π;

otherwise do not run” for some number π. Hence the sunspot signal serves to coordinate the actions of

agents on one of the equilibria. Peck and Shell [17] call this number π the “propensity to run” and take it to

be an exogenous parameter of the economy. If only one equilibrium exists, of course, the sunspot signal is

ignored. Our interest is in both this standard approach and a modified version of it in which the probability

of a run depends on the parameters of the deposit contract. We begin by defining an equilibrium selection

mechanism.14

Definition: An equilibrium selection mechanism (ESM) is a function that assigns a probability π to the run

outcome and (1− π) to the no-run outcome for each possible deposit contract. These probabilities must be

feasible, meaning that π = 0 holds if the run outcome is not an equilibrium for a particular contract, and

π = 1 holds if the no-run outcome is not an equilibrium.

In other words, an ESM assigns a probability distribution over the set of (symmetric, pure-strategy)

equilibria of the post-deposit game to each possible deposit contract.15 We should emphasize that we are

still taking a sunspots-based approach. The value of π given by the ESM determines the cutoff point for the

sunspot signal st, below which agents choose to run. Our definition is more general than the usual sunspots

approach in that we allow this cutoff point to vary with the parameters of the contract, instead of being a

fixed constant. We should also emphasize that while we speak of “selecting” between the two equilibrium

outcomes of the post-deposit game, the actual allocation in each outcome will depend on the (single) con-

tract chosen by banks. Hence the sunspot equilibrium allocation will not be a (mere) randomization over the

equilibrium allocations of the economy without sunspots. The possibility of a run will affect the contract

14 See Ennis and Keister [10] for a detailed discussion of the equilibrium selection mechanism approach.
15 Straightforward calculations show that if the banking contract is run proof, the no-run outcome is indeed an equilibrium of the
post-deposit game. In other words, for every banking contract at least one symmetric, pure-strategy equilibrium exists.
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chosen by the bank and will therefore affect the growth rate of the economy even in periods when a run

does not actually occur.16

The feasibility constraints on the ESM are simply a way of including two natural constraints on the

bank’s problem. As is common in the literature, a bank is able to choose a run-proof contract, in which

case the run equilibrium will not exist. For such contracts, the bank recognizes that π = 0 holds and hence

the no-run outcome will obtain. In addition, if a bank is not careful the contract might be such that patient

agents always prefer to run; this would usually be referred to as a violation of the incentive compatibility

constraint (which requires patient agents to prefer to wait if other patient agents are waiting). In this case

the ESM would deliver π = 1, and the bank would recognize that such a contract could only lead to a run.

Hence the incentive compatibility constraint is naturally embedded in the ESM approach. Beyond these two

restrictions, the function π reflects the properties of the equilibrium selection process, whatever that may

be.

2.3 The bank’s problem

We assume that there is free entry into banking, so that competition will drive banks to maximize the

expected utility of depositors. Before presenting the problem of a bank formed in period t, we introduce

some notation to simplify the statement of the objective function. Define

ve,t = (a1,tdt + (1− dt))γ , v`,t = (a2,tdt + (1− dt))γ , and v0,t = (1− dt)γ .

These terms are proportional to the utility enjoyed by depositors who: arrive at the bank in the first period

and are served, arrive at the bank in the second period and are served, and receive nothing from the bank,

respectively. Then the banks’ problem can be written as

max
(dt,ηt,a1,t)

π (dt, ηt, a1,t)

Z 1

0
(ub1 + (1− u) b2)

¡
utve,t + (1− ut)v0,t

¢
f (u)du+ (3)

(1− π (dt, ηt, a1,t))

Ã R ut
0 [ub1ve,t + (1− u) b2v`,t] f (u)du+R 1

ut

£
utb1ve,t +

¡
(u− ut)b1 + (1− u)b2

¢
v0,t
¤
f (u) du

!

16 Note that this would be true even if we allowed the return offered by banks in the first period to be sunspot-contingent, as
in Freeman [11]. Because deposit decisions and bank portfolio choices must be made before the sunspot signal is realized, the
growth rate will necessarily depend on the ex ante likelihood of a run.
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subject to

ut = min [(ηt/a1,t) , 1]

ut = min [((ηt + (1− ηt)x) /a1,t) , 1]

a1,t ≥ 0, 0 ≤ dt, ηt ≤ 1

and

a2,t =

½ ¡
ηt + (1− ηt)ψt+1 − ua1,t

¢
/ (1− u)

(ηt + (1− ηt)x− ua1,t)
¡
ψt+1/x

¢
/ (1− u)

¾
as
½

u ≤ ut
ut ≤ u ≤ ut

¾
.

Notice that the form of the utility function is such that income of a depositor (which will equal the wage)

cancels out of the objective and hence does not matter for the solution. This is important because, as the

economy grows, wages will grow. We see here that this growth does not affect the decision problem of

banks.

Before describing the objective function, we introduce some additional notation and describe the con-

straints. Letαst (u) denote the fraction of the stored goods that are paid out in period t in the no-run outcome.

Similarly, let αit (u) denote the fraction of investment that is liquidated early and paid out in period t in the

no-run outcome. Both of these fractions depend on the contract (dt, ηt, a1,t). Because x < 1 < R holds,

the bank will never choose to pay agents withdrawing in period t with liquidated investment when stored

goods are available. In other words, αit > 0 implies αst = 1. Hence the fourth constraint defines ut as the

value of u at which, for the given values of ηt and a1,t, all stored goods have been given to withdrawing

agents but no investment has been liquidated (αst (ut) = 1 and αit (ut) = 0). The following constraint

defines ut as the value of u at which all investment has been liquidated and the bank has just run out of

resources (αst
¡
ut
¢
= αit

¡
ut
¢
= 1). If the realization of u is greater than ut, agents arriving at the bank in

period t+1 will receive nothing. The next two constraints are obvious bounds on the choice variables, and

the final constraint simply says that the resources remaining in the bank at period t+ 1 are divided equally

among the agents choosing to withdraw in that period.

Turning to the objective function, the first term gives the expected utility of an agent in the event of a

bank run (and therefore is multiplied by the probability of a run π). Because the agent’s place in line is

random and the first ut depositors to arrive are served during a run, ut also gives the individual probability

of being served. With probability u the agent will truly be impatient and hence have preference parameter

b1, while with probability (1− u) she will be patient and will have parameter b2. An agent who is served

receives the rate of return a1,t on her deposits, and every agent has (1− dt) units of consumption outside

of the banking system. The other term in the objective function gives the expected utility of a depositor

9



when there is no run (and therefore is multiplied by (1− π)). If the fraction of patient agents is less than ut,

the bank will not run out of resources and the agent will receive return a1,t if she is impatient. The return

received by a patient agent (a2,t) will depend on the number of impatient agents and is given in the final

constraint. If the fraction of impatient consumers is above ut, however, only ut of them will receive the

return a1,t. All other impatient agents, as well as all patient agents, will receive nothing from the bank and

have consumption (1− dt).
Of course, the bank always has the option of choosing a deposit contract such that only the no-run

outcome is an equilibrium. In such a case, any feasible ESM will assign π = 0. It will often be useful to

look at the best run-proof contract, which is the solution to

max
(dt,ηt,a1,t)

Z 1

0
[ub1ve,t + (1− u) b2v`,t] f (u)du (4)

subject to

ut = min [(ηt/a1,t) , 1]

0 ≤ a1,t ≤ ηt + (1− ηt)x, 0 ≤ ηt ≤ 1

and

a2,t =

½ ¡
ηt + (1− ηt)ψt+1 − ua1,t

¢
/ (1− u)

(ηt + (1− ηt)x− ua1,t)
¡
ψt+1/x

¢
/ (1− u)

¾
as
½

u ≤ ut
ut ≤ u ≤ 1

¾
.

The upper bound placed on a1,t in the second constraint guarantees that the bank will not run out of re-

sources in the first period (in other words, that ut = 1 holds). Therefore a patient agent will not run even if

she believes that all other patient agents are running, and hence the run outcome is not an equilibrium. We

should emphasize that this problem is contained within problem 3 above, through the feasibility constraint

on the selection mechanism π (dt, ηt, a1,t).

This problem is difficult to address analytically, but an upper bound for a1,t can clearly be chosen large

enough to not be binding. Hence the choice set is compact and, as long as the objective function is well-

behaved (in both of our approaches below it will be upper semicontinuous), a solution to the problem will

exist. We use
¡
d∗t , η∗t , a∗1,t

¢
to denote this solution.

3 Equilibrium

We now turn to the analysis of the equilibrium behavior of the economy. We first impose the market-

clearing conditions and derive the equilibrium law of motion for the capital stock as a function of the

contract offered by banks. We then use numerical methods to compute the solution to the bank’s problem
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and simulate the equilibrium behavior of the economy.

3.1 Market clearing and aggregate investment

Firms are competitive and therefore factors are paid their marginal products

w∗t = (1− θ)k
1−θ
t kθt

r∗t = θk
1−θ
t k

−(1−θ)
t .

In equilibrium all firms will choose the same capital-labor ratio, and hence kt = kt holds. The marginal

product of capital therefore reduces to the constant θ, which is why the economy is always on a balanced

growth path.

In the market for existing capital, supply is given by (1− δ)kt. If the price of capital qt were greater

than (1/R) , we have from 2 that demand for capital would be zero because new investment would yield

a higher return. Therefore the market would not clear. Suppose instead that qt were below (1/R) . Then

from 2 we have that type I agents would put all of their income into existing capital so that total demand for

existing capital would be equal to
φ (1− θ)kt

qt
.

The market-clearing price would then be given by

qt = φ
(1− θ)

1− δ
.

We assume that

φ ≥ 1− δ

1− θ

µ
1

R

¶
(5)

holds, which implies that the candidate price above is at least (1/R) , contradicting our original supposition.

The role of type I agents in this model is to hold the stock of existing capital (which is completely illiquid)

between periods. The assumption in 5 is simply that there are enough type I agents in the economy to

prevent existing capital from trading at a discount. (Otherwise, if the discount were large enough, banks

might want to invest in existing capital as well.) The only remaining possibility is then qt = (1/R) .

Under condition 5 this price clears the market because the demand for capital is perfectly elastic (and large

enough). We state this result as our first proposition.

Proposition 1 Assume condition 5. Then the equilibrium price of capital is given by

qt =
1

R
for all t.
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Since we have shown both rt and qt to be constant over time, the bank’s problem is exactly the same in

every period and the solution (d∗, η∗, a∗1) will be independent of time. In other words, banks will offer the

same deposit contract in every period.

We use iIt to denote investment in new capital made by an individual type I agent. This must be equal

to the income of the agent less her purchases of existing capital. Using the market-clearing condition for

existing capital, we can write the total investment in new capital by type I agents as

φiIt = φwt − qt (1− δ)kt

= (φ (1− θ)− (1− δ) /R) kt.

Finally, we need to calculate how much new investment is undertaken by banks. This will depend on the

fraction of depositors who arrive at the bank in the first period, which we denote µt. If there is no run, this

is equal to the fraction of depositors who are impatient. If there is a run, however, µt is equal to one by

definition. Therefore we have

µt =

½
ut
1

¾
in the event

½
no run

run

¾
.

We use bf to denote the probability measure associated with µ, which is generated by the density function

f and the selection mechanism π. Note that since π depends on the contract chosen by the bank, so does bf .

The amount of investment per type II agent is then given by

iIIt (µt) = d (1− η)
¡
1− αi (µt)

¢
wt.

In other words, new capital formation depends on the amount an agent deposits in the bank, the fraction of

deposits placed in investment, and the fraction of that investment that is not liquidated prematurely. The

law of motion for the capital stock is then given by

kt+1 = (1− δ) kt +R
¡
φiIt + (1− φ) iIIt (µt)

¢
.

Since both iI and iII (µt) are linear functions of kt we have the following result.

Proposition 2 For any period t and stock of capital kt, the equilibrium growth rate of capital (kt+1/kt) is
a random variable g(µ) independent of t. Furthermore, we have

g(µ) ≡ R (1− θ)
£
φ+ (1− φ)

¡
1− η)d(1− αi (µ)

¢¤
, (6)
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where µ is a random variable with probability measure bf . The function αi (µ) is given by

αi (µ) =

 0 if µ < u
(µa1 − η) / ((1− η)x) if u < µ < u

1 if µ > u
.

In summary, the difference equation describing the dynamic behavior of kt is linear and stochastic. Notice

that since d, η and the function αi are the same in every period, the growth rate is a time-invariant, weakly

decreasing function of the realization of µ. In equilibrium, aggregate output is given by Yt = kt and hence

the growth rate of output is the same as the growth rate of the capital stock in this economy.

Because of the complexity of the bank’s problem 3, properties of this difference equation are difficult

to derive analytically. We now compute solutions numerically and simulate the equilibrium behavior of the

economy.

3.2 Implications for growth

In this subsection we investigate the growth implications of the possibility of bank runs by computing a

representative example of the model presented above. In particular, consider the utility function 1 with

the following parameter values: γ = 0.4, b1 = 2.5 and b2 = 1. We take the capital share of income θ

to be equal to 0.4 and a 20% depreciation rate (δ = 0.2). The return on investment is given by the pair

(R = 3, x = 0.3). We set the liquidation value of investment x relatively low because for values of x

closer to unity the bank finds liquidated investment a not-too-costly instrument for providing consumption

to impatient agents. We want to make a clear distinction between storage (which yields consumption goods)

and investment (which yields capital), and a low value of x is useful for this purpose. The total return on

investment when not liquidated early is then given by

ψ = R (r + (1− δ)q) = 2.0

We assume that the value of u, the proportion of impatient agents in the population, is drawn from a beta

distribution with parameters (3, 9). The mean value of u is then 0.25 and the standard deviation is around

0.12. If the variance of u is set very high, the effects of bank runs will not be substantially different from

the effects of regularly occurring high liquidity-demand shocks. Bank runs, however, are extreme events

and the way to capture this with our other assumptions is to assume a relatively low variance of u.

Given these parameter values and an ESM, we solve the bank’s problem numerically.17 We first consider

the standard sunspots story, where the probability of a run is a fixed number for all deposit contracts under

which both equilibria exist. It should be kept in mind that for a sufficiently high value of the probability of
17 All calculations are done in Fortran. The source code is available from the authors upon request.
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a run, banks might choose a run-proof contract (i.e., the contract that solves 4). In the present example, this

will occur if the exogenous probability of a bank run is above 11.9 %.18

In Table 1 we present the solution of the bank’s problem for different levels of the probability of a bank-

run. Note that the fraction of income that agents keep outside of the banking system (1− d) is increasing

in the probability of a run. The more likely it is that an agent will receive nothing from the bank, the

more money she will want to keep “under the mattress.” This disintermediation effect is compounded by

the fact that the fraction of liquid assets in the bank’s portfolio is also increasing. As the probability of a

run increases, it becomes more likely that the bank will have to liquidate investment early. But since the

liquidation value is relatively low, the bank prefers to hold more of the liquid asset (storage) to deal with a

run if it occurs. Together, the movements in d and η lead to substantially less investment in new capital.

Table 1

Prob. of Run (π) d η a1 Prob[u ≥ u] Prob[u ≥ u]
0.00 0.998 0.449 1.141 0.127 0.0179
0.04 0.983 0.465 1.164 0.119 0.0182
0.06 0.972 0.474 1.177 0.115 0.0184
0.08 0.958 0.483 1.189 0.111 0.0185

The last two columns of the table show the probability that the bank will liquidate some investment

early (Prob[u ≥ u]) and the probability that the bank will have to suspend payments in period t after

running out of resources (Prob[u ≥ u]), both conditional on the bank not suffering a run. We see that as

the probability of a run increases and the bank chooses a more liquid portfolio, the probability that it will

have to liquidate investment early in the no-run situation falls (from 12.7% of the time to 11.1%). The

higher level of liquidity also implies that the bank will have to suspend payments less often when there is

no run, although quantitatively this effect is very small. Note, however, that the unconditional probability

of suspension clearly increases with the probability of a run.

As a benchmark case, we take the probability of a bank run to be equal to 0.06 (when both equilibria

exist). Figure 1 shows the time series of the logarithm of the stock of capital for this economy in a represen-

tative 50-period simulation. It shows how a bank run causes an abrupt fall in the level of capital formation

in the economy. However, not all of the major downturns in this figure are due to bank runs. In periods

where the number of impatient agents ut is very high, the bank liquidates some investment early to pay

these agents, and this liquidation creates some of the observed fluctuations in the stock of capital. There are

four bank runs during these fifty periods, at t = 11, 29, 36, and 38. There is no bank-run, for example, at

18 The best run-proof contract has some interesting characteristics. For the parameter values being considered (and for a wide
range around them) this contract has a relatively low level of storage in the bank’s portfolio and a relatively low return on early
withdrawals. This will be important in our discussion of the intertemporal optimality of bank runs in section 3.3.
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t = 17 and 43.19

Figure 1: Sample time series for capital

In Table 2 we present the average growth rate of capital conditional on not having a run, as well as the

unconditional average growth rate. These numbers are the result of 20 simulations of 50 periods each. We

consider a period in this model to represent 5 years and we report the annual growth rates.20

Table 2

Prob. of Run Growth Conditional on No Run Unconditional Growth
0.00 5.59% 5.59%
0.04 5.03% 4.85%
0.06 4.72% 4.44%
0.08 4.40% 4.03%

Note that the unconditional growth rate of the economy tends to be lower for economies with a higher

probability of a bank run. Two effects combine to generate this fact. First, the average growth rate in periods

when there is no run is lower because agents keep more resources outside of the banking system and because

19 During the 50 years of the National Banking Era (1863-1914), there were five major bank panics: 1873, 1884, 1890, 1893, and
1907. The Federal Reserve System was established after that, partly as a response to those regular periods of crisis.
20 Miron ([15]) studied banking panics in the U.S. during the period 1890-1908. He estimates that the probability of a financial
panic in any given year was around 0.30. We are considering much lower probabilities of sunspot-driven runs in our computations.
However, two factors make our numbers reasonable. First, the banking system in our model may experience distress due to
unusually high levels of the proportion of impatient agents u. In fact, conditional on no run, early liquidation of investment will
occur in 11.5% of the periods in our calibration (see Table 1). Some of these events would be included in Miron’s definition of a
panic. Second, the period studied by Miron seems to be a period with unusually high frequency of runs. Miron also reports the
growth rate of output during these 18 years. The growth rate conditional on no run was 6.82% and the unconditional growth rate
was 3.75% (see our Table 2 for comparison).
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banks place a lower fraction of deposits into investment. This is the effect isolated in the middle column

of the table. Second, bank runs induce early liquidation when they occur, and that also reduces capital

formation on average. Both of these effects are detrimental for long-run growth.

3.3 On the optimality of eliminating bank runs

For our chosen parameter values, the equilibrium contract has the property that bank runs can occur with

positive probability. If the model consisted of only a single generation of agents, we could then say that

it is socially optimal to allow bank runs to occur because the equilibrium contract maximizes the expected

utility of type II agents (and has no effect on type I agents). However, the above analysis shows that the

deposit contract used at time t affects all future generations through its effect on the growth rate of the

capital stock. When there are many generations, the intertemporal impact of a bank run can be large, as is

evident from Figure 1. A social planner who places sufficient weight on future generations may therefore

prefer a deposit contract that eliminates the possibility of runs. In other words, a sufficiently patient planner

may prefer a deposit contract that offers (substantially) less risk sharing within each generation, but that

generates a higher average growth rate by placing more resources into investment and by making the bank

immune to runs. In this subsection, we investigate the conditions under which such a planner would allow

bank runs to occur with positive probability.

There is, of course, no clear criterion for aggregating utilities across generations. We take a simple

approach which allows us to illustrate our point. Suppose that the planner places equal weight on all

members of a given generation, and discounts the expected utility of generation t agents by βt, for some

β ∈ [0, 1). We restrict the planner to choose a simple deposit contract in each period, which implies that

the set of feasible allocations for the planner is the same as the set of feasible allocations in the competitive

economy. For a given deposit contract, let v (a1, η, d) denote the value of the objective function in 3. Then

the expected utility of a generation t agent at birth is given by

type I : b2 (ψ (1− θ)kt)
γ ,

type II : v (dt, ηt, a1,t) ((1− θ) kt)
γ .

To simplify the notation, we define z ≡ b2ψ
γ. Then for a given value of β we can write the planner’s

maximization problem as

max
{dt,ηt,a1,t}

E0

" ∞X
t=1

βt−1 (φz + (1− φ) v (dt, ηt, a1,t)) (1− θ)γ kγt

#
(7)
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subject to

kt+1 = g (dt, ηt, a1,t;µt)kt,

where the function g is given in 6.

In order for social welfare to be well-defined, we need for β to be less than the inverse of the maximum

feasible growth rate of per-period utility (so that 7 is finite along every feasible path). Because we are

restricting the planner to simple deposit contracts, the maximum growth rate would be obtained if all of

young agents’ income were placed in investment and there were no liquidation in any period. In this case

the growth rate of capital would be (1− θ)R in every period, and therefore we assume that

β < β ≡ 1

[(1− θ)R]γ

holds. For the parameter values used in the example above, we have β = 0.79,which corresponds to annual

discounting of about 4.6%.

We can replace the capital stock at time t with a product of past growth rates, so that we have

kγt = k
γ
1g (d1, η1, a1,1;µ1)

γ · · · g ¡dt−1, ηt−1, a1,t−1;µt−1¢γ .
Since the random variables µt are independent across periods, so are the random variables g (dt, ηt, a1,t;µt)

γ .

Using this and the fact that there is an upper bound on the growth rate of capital, we can rewrite the planner’s

problem as21

max (1− θ)γ kγ1

∞X
t=1

βt−1
¡
Πt−1s=1g (ds, ηs, a1,s)

γ¢ (φz + (1− φ) v (dt, ηt, a1,t))

where g (dt, ηt, a1,t)
γ ≡ E0 [g (dt, ηt, a1,t;µt)γ] . Hence, the solution to the planner’s problem must satisfy

the following Bellman Equation

U = max
(d,η,a1)

{φz + (1− φ) v (d, η, a1) + βg (d, η, a1)
γ U} ,

which implies that the optimal values of (d, η, a1) are time invariant (i.e., the planner will choose the same

contract in every period). Using this fact, we can further simplify the planner’s objective function to

max
(d,η,a1)

(φz + (1− φ) v (d, η, a1)) (1− θ)γ kγ1
1− βg (d, η, a1)

γ . (8)

Note that g (d, η, a1) is necessarily less than the maximal feasible growth rate of the economy, and therefore

21 The upper bound on the growth rate of capital implies that we can find an upper bound for the sequence of partial sums, and
therefore this equation follows from the Dominated Convergence Theorem.
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the expression in 8 is a finite number.

We want to ask under what conditions a social planner maximizing 8 would choose a contract that allows

bank runs to occur. In particular, for a given value of β, we want to find the cutoff value bπ such that the

planner would choose a run-proof contract for any π ≥ bπ. We solve 8 numerically, imposing a grid of

possible values for (d, η, a1) and using monte carlo simulation to approximate g for each possible contract.

The equilibrium described above (see Table 1) corresponds to the planner’s allocation when β = 0, in

which case bπ = 11.9% holds. Using these same parameter values, Figure 2 plots bπ for a grid of values of β

between zero and β.

Figure 2: The cutoff value bπ for different social discount rates

The figure shows how the cutoff value falls rapidly as β is increased. In other words, even a very impatient

planner is substantially less tolerant of bank runs than are banks in the competitive economy. There are

two effects that combine to generate this result. First, a more patient planner will set a higher average

growth rate. This is achieved by placing more assets into investment and by lowering the return on early

withdrawals. As discussed above (see especially footnote 18), these are precisely the features of the best

run-proof contract. Hence the contract chosen by the planner will be closer to being run proof than the

equilibrium contract is, which implies that the planner sees a lower cost of choosing a run-proof contract

than competitive banks do. Second, a more patient planner also assigns a higher benefit to eliminating runs,

since much of the burden of a run falls on generations in the distant future. These two effects combine to
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imply that a more patient social planner will switch to a run-proof contract for a lower value of π, as the

figure demonstrates.22

For values of β above 0.15, the optimal contract when π = 0 holds is already run-proof. That is, even

if agents’ beliefs are such that bank runs will not occur, a planner who is at least this patient will choose

a contract that gives a low enough payment to early withdrawers to eliminate the run equilibrium. Again

interpreting a period in the model as representing five years, this value of β corresponds to an annualized

discount factor of 0.684, or annual discounting of almost 32%. We interpret this as evidence indicating that,

at least in the context of this example, it is very likely that bank runs would not exist in the allocation chosen

by a “reasonably” patient social planner.

4 Risk-Factor-Based Equilibrium Selection

So far we have taken the standard sunspots approach to equilibrium selection, where a bank takes the

probability of a run as exogenously given and believes that it cannot influence the probability by changing

the composition of its portfolio. However, it seems intuitively plausible that the portfolio chosen by banks

might actually be a useful predictor of the likelihood of a run. In other words, if banks choose a contract

that is “closer” to being run proof, it seems reasonable to think that the probability of having a run might go

down. In this section, we examine a more general ESM where the probability of a run can vary continuously

with the deposit contract chosen by banks. It seems entirely reasonable to think that the outcome of the

post-deposit game can depend on the relative payoffs obtained by an agent in the alternative scenarios, even

when both outcomes are Nash equilibria. This is, in fact, precisely the idea that motivates the use of risk

dominance as an equilibrium selection mechanism (Harsanyi and Selten [14]).23 However, risk dominance

selects a single equilibrium for each contract that the bank could choose. In other words, whereas the

sunspots approach assigns a fixed probability to the run equilibrium (whenever it exists), risk dominance

assigns a probability of either zero or one, depending on the contract. We find this unappealing because it

implies that the bank can rule out runs entirely by choosing a contract that makes the no-run equilibrium

barely risk dominant, while a very similar contract would lead to a run with certainty. In our approach, a

run is more likely to occur when the equilibrium is risk dominant, but still can occur when it is not. In

other words, we keep the idea that under certain circumstances a bank run is, to some extent, a chance

event. However, the likelihood of this chance event now depends on the contract offered by banks. Starting

22 Paal and Smith [16] use this type of approach to examine optimal monetary policy in an environment similar to ours. They
investigate a trade-off between current-period insurance and long-run growth that closely resembles the one studied here.
23 See Temzelides [18] for an evolutionary justification of using risk dominance as the equilibrium selection mechanism in a
model with bank runs.
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from any contract that permits a run equilibrium, slightly reducing the relative payoff of running will slightly

reduce the probability of a run. Of course, there are still contracts for which a bank run cannot happen, or for

which only a run can happen; these are the situations where only one equilibrium exists in the post deposit

game. However, we believe that when both equilibria exist, each one can obtain and therefore should be

assigned positive probability. Hence our approach retains the probabilistic property of the standard sunspots

approach while allowing the portfolio decision of banks to influence the probability of a run.

An important question that arises under this approach is whether the probability of a run on an individual

bank is determined by the economy-wide average contract or by the contract offered by that particular bank.

We know from the previous section that an individual bank can rule out a run on its assets by choosing a

run-proof contract. If the bank does not choose a run-proof contract, however, it is not clear whether the

probability that it faces a run should be determined by the “stability” of the banking system as a whole or

by the individual bank’s actions. We call the former case systemic run, and the latter idiosyncratic run. In

the systemic case, all banks experience a run with the same probability, which is determined by the average

deposit contract in the economy. Individual banks behave competitively in that they take this average, and

hence the probability of a run, as given. This implies that individual banks behave exactly as in the previous

section; they maximize the expected utility of depositors for a given value of π. The difference is that the

probability of a run is no longer exogenous; rather, it is determined by the rational-expectations condition

that requires the probability of a run that banks take as given to be equal to the probability assigned by the

ESM to the contract that they all choose.

In the idiosyncratic case, on the other hand, the probability that an individual bank faces a run is deter-

mined by its own deposit contract. As above, depositors in all banks believe that low realizations of the

sunspot signal st means “run.” Bank i’s contract determines the cutoff value of πi such that a run on that

bank occurs for st ≤ πi. In equilibrium, all banks will choose the same contract and hence either all banks

will experience a run or none will. In this sense the runs will appear to an outside observer to be systemic.

The critical difference is that banks in the idiosyncratic case will internalize the effect of the deposit contract

they offer on the probability of a run, and this will lead to a lower equilibrium probability of a run.24 In this

section we compare the equilibrium of an economy where runs are systemic with that of an economy where

runs are idiosyncratic.

We formalize the dependence of the probability of a run π on the properties of the deposit contract by

assuming that π is a decreasing function of the risk factor of the run equilibrium. We begin by defining the

24 The equilibrium with idiosyncratic runs can also be interpreted as at the within-period-t social optimum when runs are
systemic. Because of the exernalities present in the systemic case, all depositors would be made better off if all banks switched to
this contract.
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risk factor.25

Definition: The risk factor of the run equilibrium is the smallest probability ρ such that if a patient agent

believes that all other agents will run with probability strictly greater than ρ, then running is her unique

optimal action.

Roughly speaking, the risk factor measures how “willing” a patient agent is to run to the bank early

when she is uncertain about the actions of other patient agents. When she is deciding whether or not to

run, a patient agent still does not know the size of the aggregate liquidity shock ut, which determines the

payoff she will receive if she waits. She does, however, have one piece of information: her preferences were

drawn from a Bernoulli distribution whose parameter is ut. Therefore she updates her prior beliefs about

ut (given by the density function f from which ut was drawn) based on this observation using Bayes’ rule.

Following Peck and Shell [17], we use fp to denote the posterior distribution, which represents the belief of

every patient agent. The risk factor of the run equilibrium is then determined by the following expression,

ρ
£
uve +

¡
1− u¢ v0¤+ (1− ρ)

"Z u

0
vefp (u) du+

Z 1

u

·
u

u
ve +

µ
1− u

u

¶
v0

¸
fp (u)du

#

= ρv0 + (1− ρ)

"Z u

0
v`fp (u) du+

Z 1

u
v0fp (u) du

#
,

where the vj terms are as defined in the previous section. The left-hand side of this expression is the

expected value for a patient agent of running to the bank when she believes that with probability ρ everybody

else will run. The right-hand side is the expected value of not running given the same belief. The expression

says that if a patient agent assigns probability ρ to the event of a run on the bank, she is indifferent between

running and not running. If she assigns a higher probability to a run, she would strictly prefer to run. We

assume that the higher the risk factor of the run equilibrium, the lower the probability of a run. Whatever

determines the individual agent’s prior belief about the possibility of a run, the higher the risk factor ρ, the

lower is the likelihood that this belief will be greater than ρ, and hence the lower is the likelihood that the

agent would decide to run.

Holding other things constant, the risk factor of the run equilibrium is decreasing in the return offered

on period t withdrawals a1. Higher values of a1 increase the incentive for agents to withdraw their funds

from the bank early. Higher values also make not running less attractive because even if there is no run,

the bank will have fewer resources in period t + 1 and hence a2 will be lower. The relationship between

the risk factor and η, the fraction of the bank’s portfolio that is in storage, is not monotonic. If η is very

25 See Young [20] for an extended discussion of risk factors and risk dominance.

21



low, then with high probability the realization of ut will be such that investment is liquidated. In such a

situation, increasing η decreases the amount of liquidation and therefore increases the amount of resources

available in the second period. This makes waiting a more attractive strategy, and as a result the risk factor

is increasing in η. If, on the other hand, η is very high, then with high probability the realization of ut will

be such that no investment is liquidated. In this case decreasing η would increase the resources available in

the second period, and hence the risk factor is decreasing in η. For moderate values of η, the risk factor is

fairly flat and the effects of a change in a1 will typically dominate the effects of a change in η.

In earlier work, we have shown how an adaptive learning process in a stochastic environment naturally

generates an equilibrium selection mechanism in which the probability of an equilibrium is strictly decreas-

ing in a stochastic version of its risk factor (see Ennis and Keister [9]). Because our goal here is to examine

the basic implications that follow from this approach, the exact relationship between the risk factor of the

run equilibrium and the probability of a run is not very important. Rather than specifying a learning model,

we posit a simple linear relationship of the form

π(ρ) = m− h · ρ,

where m and h are constants that allow us to calibrate the equilibrium probability π to a reasonable num-

ber. Note that when h = 0 holds, this equilibrium selection mechanism reduces to the standard sunspots

approach studied earlier. We use this specification to compare the equilibrium of two different economies,

one where bank runs are systemic and the other where runs are idiosyncratic. We continue our analysis

using the example introduced in the previous section. We assume that m = 0.1 and h = 0.06.26 Table 3

shows the equilibrium deposit contracts and growth rates for the two economies.

Table 3

d∗ η∗ a∗1 π∗ Growth Conditional
on No Run

Unconditional
Growth

Idiosyncratic Runs 0.953 0.415 1.037 0.0797 5.33% 4.97%
Systemic Runs 0.952 0.487 1.195 0.0875 4.28% 3.87%

As expected, when runs are idiosyncratic banks choose a contract that implies a higher risk factor for

the run equilibrium and thereby lowers the probability of a run π∗. A bank does this by lowering a1 and η.

These adjustments in the contract may seem counterintuitive at first, but they are a direct consequence of

26 If the slope of the function π is very high, the bank will have an incentive to make ρ high enough to eliminate the runs. We
are interested in studying situations where runs are possible and we hence calibrate the value of h to be relatively small. Note that
with these parameter values, the ESM is not continuous at the endpoints. Moving from a contract that is run proof to one with a
risk factor slightly less than one, for example, will lead to a jump in the value of π from zero to 0.05. By making π a nonlinear
function of ρ, we could easily make the ESM continuous without changing the results that we report below. We view the linear
function used here as a local approximation that is valid as long as ρ does not change too much.
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the equilibrium selection process we are considering. By lowering a1 and η, the bank lowers the contingent

payoff from running to the bank and increases the payoff of waiting to withdraw in the second period of life.

The lower value of a1 allows the bank to put more resources into investment without having to liquidate

more often. This leads to a larger return for agents who arrive in the second period. Notice that this is the

opposite of the narrow-banking proposal of Friedman [12]. Friedman argued that demand deposits should

be backed entirely by safe, short-term assets (such as storage in our model). This would enable a bank to

meet all of its obligations during a run, which would in turn prevent a run from happening. The problem

with this approach is that preventing the bank from undertaking investment is costly because investment

offers a much higher return than storage (see Wallace [19]). Our analysis shows that a better approach for

a bank facing the possibility of a run is to structure the contract to reward agents heavily for waiting. This

involves holding fewer liquid assets and putting more resources into (illiquid) investment.

The last two columns give the implications of these differences in the equilibrium deposit contract for

the growth rate of the economy. The economy with idiosyncratic runs has both a higher level of investment

and a lower return on early withdrawals. These two facts tend to increase the growth rate of the economy in

periods without a run. In such periods, the economy with idiosyncratic runs grows at an average rate that is

105 basis point higher than the economy with systemic runs. Furthermore, the economy with idiosyncratic

runs has a lower equilibrium probability of a run. Taking this into account, the economy with idiosyncratic

runs grows on average around 110 basis points faster.

In Tables 4 and 5 we further study the economy with idiosyncratic runs. Table 4 shows that when h (the

sensitivity of the equilibrium selection function to the risk factor of the run equilibrium) is higher, a bank

chooses less liquidity and a lower return on early withdrawals. These two changes have the direct effect of

increasing capital formation and hence increasing the growth rate of the economy. In addition, the change

in the contract reduces the probability of bank runs, and this further increases the long-run average growth

rate. In other words, the more influence an individual bank’s portfolio has on the likelihood of runs, the

faster the economy will grow.

Table 4

(m,h) d∗ η∗ a∗1 π∗ Growth
(0.1, 0.06) 0.953 0.415 1.037 0.0797 4.97%
(0.1, 0.07) 0.954 0.405 1.019 0.0754 5.15%

In Table 5 we present the equilibrium outcome for different values of the return on the investment

technology and the liquidation cost.
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Table 5

(R, x) d∗ η∗ a∗1 π∗ Growth
(3.00, 0.3) 0.953 0.415 1.037 0.0797 4.97%
(3.25, 0.3) 0.958 0.397 1.007 0.0773 6.94%
(3.00, 0.4) 0.962 0.381 1.056 0.0807 5.37%

The growth rate is higher for higher values of R for several reasons. The first is apparent from 6: when

a fixed amount of investment yields more capital, the economy will grow faster. The second reason is also

standard: when investment offers a higher return, banks will choose to invest more. However, in our model

there is also a third effect: an increase in investment implies that banks are giving a relatively higher payoff

to agents in the second period, and hence the risk factor of the run equilibrium is higher. Thus the change

in banks’ portfolios also decreases the probability of a bank run, which increases the long-run average

growth rate even more. In this way the model provides an amplification mechanism for differences in the

productivity of investment.

In economies where the liquidation cost of investment is lower (higher values of x), a bank would

again choose to place more resources in investment. However, the bank would increase the return for early

withdrawals because early liquidation is less costly. This second effect tends to decrease the risk factor

of running, and hence in this case the probability of a run increases. Here the two effects are pointing in

opposite directions with respect to long-run growth: more investment tends to raise the average growth rate,

while a higher frequency of bank runs lowers it. In our example the first effect dominates, because the

movement in η is larger than the change in π. As a result, the long-run average growth rate goes up.

5 Conclusion

In this paper, we bring together two major strands of the macroeconomic literature: we study the implica-

tions of bank runs for long-run economic growth. We identify three important ways in which the possibility

of a bank run affects the growth process: (i) agents tend to lower their participation in the banking system,

creating a disintermediation effect, (ii) banks tend to adjust their portfolio of investments towards more liq-

uid, less productive assets, and (iii) when a bank run occurs, early liquidation of investment reduces capital

formation. These three effects make both the occurrence and the mere possibility of bank runs detrimental

for economic growth. We also show how the cost of a bank run today falls primarily on future generations.

As a result, there is a large intergenerational externality and even a fairly impatient social planner would

choose to implement arrangements that avoid bank runs altogether. Finally, we examine a model where an

individual bank can influence the probability that it experiences a run by changing its portfolio in a way

that makes running less attractive to depositors. We show that in this case, banks choose lower levels of
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liquidity, which increases the rate of economic growth.
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