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structural parameter values. If the initial condition involves inflation higher than
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1 Introduction

Over the last 15 years the New Keynesian framework has become predominant in the

world of applied monetary policy analysis. This framework is commonly characterized by

linear models with nominal rigidities and strong forward-looking elements, and which can

be rationalized as approximations to micro-founded dynamic equilibrium models. The

most common source of nominal rigidity in this framework is the Calvo (1983) pricing

model as described by Yun (1996).

The fact that some prices are predetermined in these models leads to a version of

Kydland and Prescott’s (1977) time-inconsistency problem for monetary policy. There

is a vast literature studying aspects of discretionary, i.e. time-consistent, policy in New

Keynesian models with Calvo pricing. But the typical practice in the New Keynesian

literature, exemplified by Clarida, Gali and Gertler (1999) and Woodford (2003), has

been to work with linear models approximated around a zero-inflation steady state. The

present paper studies discretionary optimal monetary policy in the underlying non-linear

model.1

The paper has two main results. First, the steady-state inflation rate can take a

wide range of magnitudes for reasonable values of the structural parameters. Under a

baseline calibration, discretionary equilibrium involves a steady-state inflation rate of

greater than 8 percent. The steady-state inflation rate depends non-monotonically on

the Calvo parameter. For low degrees of price rigidity, a small increase in rigidity is

associated with higher inflation. But for high degrees of price rigidity, a small further

increase in rigidity implies a lower steady-state inflation rate under discretionary policy.

There is a positive relationship between the desired markup and the steady-state inflation

rate, and between the labor supply elasticity and the steady-state inflation rate.

1In Yun’s (1996) version of the Calvo model there is price indexation, whereas the version in King

and Wolman (1996) has no indexation. We analyze the Calvo model without indexation.
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To give a sense of the magnitudes, the steady-state inflation rate varies between

essentially zero for extremely high price stickiness with a desired markup of 1.11, to

greater than 40 percent with a price non-adjustment probability of 0.67, a desired markup

of 1.33 and an infinite labor supply elasticity. Under commitment, the long-run inflation

rate is zero for all values of these parameters. Thus, the wide range of inflation rates

under discretion makes it difficult to infer the degree of commitment from observed

inflation rates. For instance, the model can predict a high steady-state inflation rate,

which would suggest that actual monetary policymakers have access to a commitment

technology. Or it can predict a low inflation rate in discretionary equilibrium, e.g. as

the result of inelastic labor supply, leaving little difference between the inflation rates

under commitment and discretion. Nonetheless, the results suggest that the commonly

applied zero-inflation approximation is inappropriate in the absence of a fiscal scheme to

eliminate the monopoly distortion.

Out of steady state, the presence of an endogenous state variable leads to a grad-

ual transition of inflation. Specifically, if the initial condition involves inflation higher

than steady state, discretionary policy generates an immediate drop in inflation followed

by a gradual increase to the steady state. In contrast, if the Calvo model is approxi-

mated around the zero-inflation steady state there is no state variable, so inflation jumps

immediately to zero.

Our second main result relates to an existing literature which has identified discre-

tionary policy as a source of multiple equilibria.2 Under discretionary policy, private

agents make decisions such as how much to save or what prices to set, based on their

expectations of future policy. Those decisions become embodied in state variables such

as the capital stock or prices, and in future periods a discretionary policymaker responds

to those state variables. Thus, there is the potential for a form of complementarity

2Here and throughout the paper, we restrict attention to Markov-perfect equilibria.
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between future policy and expected future policy. Viewed from another angle, the fact

that policy will react to endogenous state variables can be a source of complementarity

among private agents’ actions. Examples of such complementarity leading to multiple

equilibria can be found in Glomm and Ravikumar’s (1995) model of public and private

education, and in the modification of Kydland and Prescott’s (1977) flood control ex-

ample as described by King (2006). The link between discretionary policy and multiple

equilibria has been especially prominent in the monetary policy literature, among work

that has studied discretionary equilibrium in full-blown nonlinear sticky-price models.

Albanesi, Chari and Christiano (2003) show that multiple equilibria arise under discre-

tionary policy in a model in which a fraction of firms have predetermined prices. Khan,

King and Wolman (2001) and King and Wolman (2004) show that in Taylor-style models

with prices set for three and two periods respectively, multiple equilibria arise under dis-

cretion.3 The finding of multiple equilibria in these previous studies raises the question

of whether lack of commitment leads to multiple equilibria in the Calvo model as well.

We find that discretionary policy does not induce sufficiently strong complementar-

ity to generate equilibrium multiplicity in the Calvo model. This is surprising given the

basic similarity between the Calvo and Taylor models. In both models there is staggered

pricing, and the policy problem of choosing the money supply to maximize welfare in-

volves a static trade-off between the markup and a relative price distortion. What differs

across the two models is the dynamic aspect of the policy problem.

In the Taylor model with two-period pricing (as studied by King and Wolman (2004)),

the only intertemporal link is the nominal price set by the half of firms that adjust in the

3Siu (2008) extends King and Wolman’s (2004) analysis by incorporating elements of state-dependent

pricing and shows that Markov-perfect discretionary equilibrium is unique. Those papers assume that

monetary policy is conducted with a money supply instrument. In contrast, Dotsey and Hornstein (2009)

show that with an interest rate instrument there is a unique Markov-perfect discretionary equilibrium

in a Taylor model with two-period pricing.
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current period. The policymaker in the subsequent period chooses to adjust the money

supply proportionally with that predetermined price, and thus the price does not affect

the set of feasible outcomes for future policymakers. However, the expectation of this

future policy response leads to complementarity in firms’ price-setting decisions, and to

multiple equilibria.

In the Calvo model, in addition to the single nominal price set by firms in the cur-

rent period, the policymaker in the subsequent period inherits an entire distribution of

predetermined prices. The distribution can be summarized by a statistic we will call the

inherited relative price distortion. The future policymaker chooses to adjust the money

supply less than proportionally with the price set by firms in the present period, for two

reasons. First, firms that choose a high price have a small expenditure share in aggregate

consumption, so their price has a small effect on the overall price level. Indeed, we show

that if the money supply is set in proportion to the previous period’s price level, and thus

as a concave function of the previous period’s optimal price, there is a unique private-

sector equilibrium. Second, the future policymaker’s policy problem is influenced by the

inherited relative price distortion, which increases if adjusting firms in the present set a

higher price. The larger that distortion, the less the future money supply accommodates

increases in the current price level. Thus, as a result of the presence of many cohorts

of predetermined prices, the high degree of complementarity necessary for generating

multiple equilibria is broken.

Our paper is closely related to Anderson, Kim and Yun (2010). They study opti-

mal allocations without commitment in the Calvo model.4 In contrast, our framework

4Yun (2005) and Adam and Billi (2007) also study optimal allocations in non-linear versions of the

Calvo model. Yun includes a fiscal instrument for offsetting the markup distortion, which eliminates

the time-inconsistency problem, and implies that in the steady state inflation is zero. The transition

dynamics in Yun’s model are affected by the state variable as they are in our analysis. Adam and Billi

take into account the non-linearity arising from the zero bound on nominal interest rates in an otherwise
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involves a discretionary policymaker choosing the money supply. The former approach

cannot be used to investigate the possibility of multiple private-sector equilibria for a

given policy action. Anderson, Kim and Yun’s solution method, like ours, is based on

Chebyshev collocation. While they study a slightly different region of the parameter

space, the nature of their solutions is consistent with our findings. Unlike the two-period

Taylor model, where the choice of whether to study a planner’s problem or a policy prob-

lem can mean the difference between uniqueness and multiplicity, in the Calvo model

this choice yields identical results for the examples we have studied.

The paper proceeds as follows. The next section relates our analysis to the early

literature on discretionary monetary policy. Section 3 contains a description of the Calvo

model. Section 4 defines a discretionary equilibrium in the model. Section 5 presents

our numerical results, emphasizing the issue of multiplicity or lack thereof. Section 6

contains a sensitivity analysis. Section 7 concludes.

2 Relation to early literature

Although the literature on time-consistency problems for monetary policy is vast, it is

comprised of two seemingly disparate branches. Much of the literature – and most of

the profession’s intuition – is derived from the seminal work by Kydland and Prescott

(1977) and Barro and Gordon (1983). They studied reduced-form macroeconomic models

in which the frictions giving leverage to monetary policy were not precisely spelled out.

In contrast, the sticky-price models popularized in the last 15 years are precise about

those frictions. While there has been a great deal of work on discretionary policy in

sticky-price models, the connection between that work and the seminal papers remains

poorly understood. In this section we explain how our analysis of discretionary monetary

policy in the Calvo model relates to Barro and Gordon (1983) (hereafter, BG), which

linear New Keynesian model.

6



elaborated on Kydland and Prescott’s (1977) framework.

In BG, under discretion the central bank takes expectations of inflation as given when

choosing a policy action that directly determines actual inflation. Under commitment the

policymaker would take into account the endogeneity of expectations in all but an initial

period. Because surprise inflation can raise output, and because of distortions that

make output inefficiently low, discretion leads to an equilibrium inflation rate that is

higher than would be optimal with commitment. Modern staggered pricing models such

as the Calvo model also give rise to a time-consistency problem: monopoly distortions

make output inefficiently low – as in BG – and with some prices predetermined, surprise

inflation can raise output – as in BG. However, an important difference between BG

and analysis of discretionary monetary policy in staggered pricing models arises from

the fact that staggered pricing models explicitly incorporate intertemporal choices by

private agents.

At the heart of time-consistency problems for monetary policy is the notion that a

discretionary policymaker takes as given private agents’ expectations, but in equilibrium

those expectations accurately incorporate the policymaker’s optimal behavior. In BG,

although the model contains multiple periods, the expectations just referred to are cur-

rent expectations about current policy. The only dynamics in BG occur through serial

correlation in exogenous shocks. Without other intertemporal links, the policy problem

is a static one in BG: treating expectations as fixed, higher inflation is costly in its own

right but brings about a beneficial reduction in unemployment. In equilibrium, private

expectations are validated, and the policymaker balances the static marginal cost and

marginal benefit of additional inflation.

Staggered pricing models are inherently dynamic: because prices may stay in effect

for multiple periods, the optimality condition for price setting incorporates expectations

of future conditions. Prices set in the past thus incorporate expectations of current
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policy actions. In the current period, a discretionary policymaker chooses her action

taking as given those expectations, which are embedded in the predetermined prices.

Looking forward, the policymaker knows that her actions will “directly” affect prices

set in the current period. Those prices in turn affect the state of the economy in the

future, introducing an explicit intertemporal element into the policy problem. Whereas

in BG equilibrium requires that current policy actions be consistent with current period

expectations, in staggered pricing models equilibrium requires that current policy actions

be consistent with expectations formed in the past.

The intertemporal nature of price setting also means that staggered pricing models

generally contain one or more state variables that can be affected by a policymaker, even

under discretion. While today’s policymaker takes as given past prices, today’s policy

action affects current prices, which in turn affect the distribution of prices inherited by

the policymaker next period. The distribution of predetermined prices affects the feasible

outcomes for next period’s policymaker. Thus, the discretionary policymaker does not

face a purely static tradeoff between inflation and real activity; that tradeoff is present,

but it is complicated by the fact that the current policy action affects tomorrow’s state,

and thus tomorrow’s value function. Regarding this intertemporal element of the policy

problem, one of the main points of this paper is that different staggered pricing models

have different implications for equilibrium under discretionary monetary policy.

The static output-inflation tradeoff present in staggered pricing models is similar

to the one in BG, as mentioned above. However, because the Calvo model and other

staggered pricing models are optimizing models, one can be explicit about the source

of that tradeoff. Monopolistic competition makes output inefficiently low. How can

inflation increase output? With some prices predetermined, a one-time surprise increase

in the money supply that creates inflation does not fall evenly on all firms. If money

demand is interest inelastic, firms that can adjust their price will not do so aggressively,
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and there will be an overall reduction in the markup and an increase in output. Loosely

speaking, the larger is the money surprise, the higher is the inflation and the larger is

the beneficial effect on the markup and output. Because the inflation is generated by

only a fraction of the firms however, higher inflation is associated with larger dispersion

of relative prices. Such dispersion leads to inefficient allocation of spending across goods

because, in the absence of heterogeneity among firms, it is efficient for all firms to produce

the same quantities. In staggered pricing models then, the policy tradeoff involves the

ability of surprise inflation to reduce the markup against the cost of surprise inflation in

distorting relative prices.

3 The Calvo model

This section describes the dynamic general equilibrium model with Calvo pricing. It is

characterized by a representative household that values consumption and dislikes sup-

plying labor, a constant-velocity money demand equation, a competitive labor market,

a continuum of monopolistically competitive firms producing goods for which house-

holds have constant elasticity of substitution preferences, and a monetary authority that

chooses the money supply. Each firm faces a constant probability of price adjustment.

We assume that the model’s exogenous variables are constant; thus, there is no uncer-

tainty about fundamentals. The money supply is an endogenous variable.

3.1 Households

There is a large number of identical, infinitely-lived households. They act as price-takers

in labor and product markets, and they own shares in the economy’s monopolistically

competitive goods-producing firms. Households’ preferences over consumption (ct) and
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labor input (nt) are given by

∞∑
j=0

βj

[
ln(ct+j)− χ

n1+µ
t+j

1 + µ

]
, β ∈ (0, 1) , µ ≥ 0, χ > 0,

where consumption is taken to be the Dixit-Stiglitz aggregate of a continuum of differ-

entiated goods

ct =

[∫ 1

0

ct(z)
ε−1

ε dz

] ε
ε−1

, ε > 1. (1)

The consumer’s flow budget constraint is

Ptwtnt + Rt−1Bt−1 +

∫ 1

0

dt (z) dz ≥ Ptct + Bt,

where wt is the real wage, Rt is the one-period gross nominal interest rate, Bt is the

quantity of one-period nominal bonds purchased in period t, dt (z) is the dividend paid

by firm z, and Pt is the nominal price of a unit of consumption. The aggregator (1)

implies the demand functions for each good,

ct (z) =

[
Pt (z)

Pt

]−ε

ct, (2)

where Pt (z) is the price of good z. The price index is given by

Pt =

[∫ 1

0

Pt(z)1−εdz

] 1
1−ε

. (3)

From the consumer’s intratemporal problem, we have the efficiency condition

χctn
µ
t = wt, (4)

and from the intertemporal problem we have

ct+1

ct

= β

(
Rt

πt+1

)
,

where πt ≡ Pt/Pt−1 denotes the gross inflation rate between periods t − 1 and t. We

assume that households hold money equal to the quantity of nominal consumption:

Mt = Ptct. (5)
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It will be convenient to write the money demand equation normalizing by the lagged

price level:

mt ≡ Mt

Pt−1

= πtct. (6)

We will refer to mt as the normalized money supply.

3.2 Firms

Each firm z ∈ [0, 1] produces output yt (z) using a technology that is linear in labor

nt (z), the only input, with a constant level of productivity that is normalized to unity:

yt (z) = nt (z) .

The nominal profits in period t of a firm charging price Xt are

d (Xt; Pt, ct, wt) = Xt

(
Xt

Pt

)−ε

ct − Ptwt

(
Xt

Pt

)−ε

ct.

When a firm adjusts its price, it maximizes the present discounted value of profits, which

we denote Vt. Because each firm adjusts its price with constant probability 1−α in any

period, the value of a firm upon adjustment is given by

Vt = max
Xt

{ ∞∑
j=0

Qt,t+jα
jd (Xt; Pt+j, ct+j, wt+j)

}
, (7)

where Qt,t+j is the j-period ahead discount factor for nominal cash flows. With house-

holds owning firms, Qt,t+j is determined by the sequence of one-period nominal interest

rates as

Qt,t+j =
1∏j

k=1 Rt−1+k

= βj

(
Pt

Pt+j

) (
ct

ct+j

)
,

where
∏0

k=1 Rt−1+k = 1. The factor αj is the probability that a price set in period t will

remain in effect in period t + j. Note that Vt is the present value of profits associated

with charging the price Xt. When the firm has an opportunity to adjust after period

t, it will reoptimize, and thus those states are not relevant for determining the optimal
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price in period t. The optimal price is determined by differentiating (7) with respect to

Xt. We will denote the profit-maximizing value of Xt by P0,t and we will denote by p0,t

the nominal price P0,t normalized by the previous period’s price level, which serves as an

index of the predetermined prices in period t:

p0,t ≡ P0,t

Pt−1

.

Thus, we write the first order condition from (7) as,

P0,t

Pt

=
p0,t

πt

=

(
ε

ε− 1

) ∑∞
j=0 (αβ)j (Pt+j/Pt)

ε wt+j∑∞
j=0 (αβ)j (Pt+j/Pt)

ε−1 . (8)

The real wage is equal to real marginal cost here because firm-level productivity is

assumed constant and equal to one. With the constant elasticity aggregator (1) a firm’s

optimal markup of price over marginal cost is constant and equal to ε/(ε− 1). Because

the firm cannot adjust its price each period, if the real wage or the inflation rate are

not constant then the firm’s markup will vary over time. The optimal pricing equation

(8) indicates that the firm chooses a constant markup over an appropriately defined

weighted average of current and future marginal costs. Note that the economy-wide

average markup is simply the inverse of the real wage.

The optimal pricing condition can be written recursively by defining two new vari-

ables, Nt and Dt, that are related to the numerator and denominator of (8), respectively:

Nt = πε
t (wt + αβNt+1) , (9)

Dt = πε−1
t (1 + αβDt+1) , (10)

then,

p0,t =

(
ε

ε− 1

)
Nt

Dt

. (11)

Because of Calvo pricing, the price index (3) is an infinite sum,

Pt =

[ ∞∑
j=0

(1− α) αjP 1−ε
0,t−j

] 1
1−ε

, (12)
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but it can be simplified, first writing it recursively,

Pt =
[
(1− α) P 1−ε

0,t + αP 1−ε
t−1

] 1
1−ε ,

and then dividing by the lagged price level:

πt =
[
(1− α) p1−ε

0,t + α
] 1

1−ε . (13)

3.3 Market clearing

Goods market clearing requires that the consumption demand for each individual good

is equal to the output of that good:

ct (z) = yt (z) , (14)

and labor market clearing requires that the labor input into the production of all goods

equal the supply of labor by households:

∫ 1

0

nt(z)dz = nt. (15)

In the Calvo model, the labor market clearing condition is

nt =
∞∑

j=0

(1− α) αjnj,t, (16)

where nj,t is the labor input employed in period t by a firm that set its price in period

t−j. Combining this expression with the goods market clearing condition (14), then using

the demand curves (2) for each good, and dividing the expression by the consumption

aggregator yields

nt

ct

=
∞∑

j=0

(1− α) αj

(
P0,t−j

Pt

)−ε

, (17)

which can be written recursively as

nt

ct

= (1− α) πε
t

[
p−ε

0,t +

(
α

1− α

)
nt−1

ct−1

]
. (18)
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This equation contains two predetermined variables, but it is only their ratio that mat-

ters. We define a new variable

∆t−1 ≡ nt−1

ct−1

, (19)

and this inherited relative price distortion will serve as the single state variable.5 The

labor market clearing condition (18) can now be written as

∆t = (1− α) πε
t

[
p−ε

0,t +

(
α

1− α

)
∆t−1

]
. (20)

We are interested in studying Markov-perfect equilibria (MPE) with discretionary

monetary policy. In an MPE, outcomes depend only on payoff-relevant state variables;

trigger strategies and any role for reputation are ruled out. Hence, it is important to

establish what the relevant state variables are. Although there are an infinite number

of predetermined nominal prices (P0,t−j, j = 1, 2, ...), for the MPE a state variable is

relevant only if it affects the monetary authority’s set of feasible real outcomes. It

follows that in an MPE the normalized money supply will be a function of the single

state variable ∆t−1. Henceforth, when we refer to a “discretionary equilibrium” it should

be understood that the equilibrium is Markov perfect.

3.4 Monetary authority and timing

The monetary authority chooses the money supply, Mt. In a discretionary equilibrium

the money supply will be chosen each period to maximize present-value welfare. We

assume the sequence of actions within a period is as follows:

1. Predetermined prices (P0,t−j, j > 0) are known at the beginning of the period.

2. The monetary authority chooses the money supply.

5We call ∆t−1 the inherited relative price dispersion because from (17) it summarizes the dispersion

in predetermined relative prices.
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3. Firms that adjust in the current period set their prices, and simultaneously all

other period-t variables are determined.

Timing assumptions are important in models with staggered price-setting. Transpos-

ing items 2 and 3 or assuming that firms and the monetary authority act simultaneously

would change the nature of the policy problem and the properties of equilbrium.

4 Discretionary equilibrium in the Calvo model

In a discretionary MPE the policymaker chooses the money supply as a function of the

state, taking as given the behavior of future policymakers. The policymaker also takes

into account that firms adjusting in the current period will behave optimally in response

to the policy action, as implied by our timing assumption. In addition, the policymaker

takes into account all the other relevant private-sector equilibrium conditions. In equi-

librium, the future policy that is taken as given is also the policy chosen by the current

policymaker.

4.1 Equilibrium for arbitrary monetary policy

As a preliminary to studying discretionary equilibrium, it is useful to consider stationary

equilibria for arbitrary monetary policy – that is, for arbitrary functions m = Γ (∆).

To describe equilibrium for arbitrary policy we use recursive notation, eliminating time

subscripts and using a prime to denote a variable in the next period. The nine variables

which need to be determined in equilibrium are N , D, p0, π, ∆′, w, c, m and n, and the

nine equations are (i and ii) the laws of motion for N (9) and for D (10); (iii) the optimal

pricing condition (11); (iv) the price index (13); (v) the labor market clearing condition

or law of motion for the relative price distortion (20); (vi) the labor supply equation (4);

(vii) money demand (6); (viii) the policy rule m = Γ (∆); and (ix) the definition of the

relative price distortion (19).

15



A stationary equilibrium can be expressed as two functions of the endogenous state

variable ∆. The two functions N (∆) and D (∆) must satisfy the two functional equations

N (∆) = πε [w + αβN (∆′)] , (21)

D (∆) = πε−1 [1 + αβD (∆′)] , (22)

where the other variables are given recursively by the following functions of ∆:

p0 =

(
ε

ε− 1

)
· N (∆)

D (∆)
, (23)

π =
[
(1− α) p1−ε

0 + α
]1/(1−ε)

, (24)

∆′ = πε
[
(1− α) p−ε

0 + α∆
]
, (25)

m = Γ (∆) . (26)

c =
m

π
(27)

w = χcnµ, (28)

n = ∆′c. (29)

Given an arbitrary policy of the form m = Γ (∆), functions N () and D () that satisfy

(21)−(29) represent a stationary equilibrium.

4.2 Discretionary equilibrium defined

A discretionary equilibrium is a particular stationary equilibrium with policy given by

a mapping from the state to the money supply, m = Γ∗ (∆), in which the following

property holds. If the current-period policymaker and current-period private agents take

as given that all future periods will be described by a stationary equilibrium associated

with Γ∗ (∆), then the current-period monetary authority maximizes welfare by choosing

m = Γ∗ (∆) for every ∆.

More formally, a discretionary equilibrium is a policy function Γ∗ (∆) and a value
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function v∗ (∆) that satisfy

v∗ (∆) = max
m

{
ln c− χ

n1+µ

1 + µ
+ βv (∆′)

}
(30)

Γ∗ (∆) = arg max
m

{
ln c− χ

n1+µ

1 + µ
+ βv (∆′)

}

when v () = v∗ (). The maximization is subject to (24)−(29) and optimal pricing by

adjusting firms,

p0 =

(
ε

ε− 1

)
· πε [w + αβN (∆′)]
πε−1 [1 + αβD (∆′)]

, (31)

where the functions N () and D () satisfy (21) and (22) in the stationary equilibrium

associated with Γ∗ (∆). Note the subtle difference between (31) and (21)−(23): in (31),

which is the constraint on the current policymaker, we have not imposed a stationary

equilibrium. The policymaker takes as given that the future will be represented by a

stationary equilibrium, but is constrained today only by the private-sector response to

whatever money supply she chooses.

4.3 Computing a discretionary equilibrium

We approximate the value function and the expressions for N () and D () with Chebyshev

polynominals. This computational method involves selecting a degree of approximation

I, and then searching for values of v∗i and Γ∗i , for i = 1 . . . I, that solve (30) at the grid

points for the state variable ∆i defined by the Chebyshev nodes.6 As an initial guess for

v (), N () and D () we use the discretionary equilibrium for the static model – the final

period of a finite horizon model – and then solve the optimization problem (30). If the

value function and policy function that solve the optimization problem are identical to

the guess, then they form a discretionary equilibrium.7 If not, the starting values are

6In the example of the baseline calibration given in the next section, we use a degree of approximation

I = 10 on the interval [1, 1.3] for the state variable.

7Specifically, iteration j is the final iteration if ||vj − vj−1||∞ and ||Γj − Γj−1||∞ are smaller than

the tolerance level 10−8. To assess the accuracy of a solution, the difference between the left hand side
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updated by pushing out the initial guess one period into the future, and assuming the

one-period-ahead policy and value functions are the ones that solved the optimization

problem.

5 Properties of discretionary equilibrium

There are three levels to a complete description of a discretionary equilibrium. At the

highest level is the equilibrium transition function for the state variable, ∆′ (∆), the

associated policy function, m = Γ∗ (∆), the value function, v∗ (∆), and equilibrium

functions for the other endogenous variables. The next level is the objective function for

the policymaker: for a given value of the state variable, how does welfare vary with the

policy instrument m, and what are the trade-offs that drive the shape of the objective

function? Finally, for given values of the state variable and the policy instrument, what

is the nature of the private-sector equilibrium? Each of these levels is discussed in turn.

Unless otherwise stated we use the following baseline calibration, interpreting a period

as a quarter: ε = 10, β = 0.99, α = 0.67, µ = 0, χ = 4.5. Some of these parameters

are typical values used in the applied monetary policy literature. With β = 0.99 the

annualized real interest rate is 4.1 percent. With ε = 10 the steady-state markup is

approximately 11 percent at low rates of inflation. Prices remain fixed with probability

α = 0.67, which means that the expected duration of a price is three quarters. The

calibration of µ and ε is chosen to facilitate comparison with King and Wolman (2004).

and the right hand side of (30) is calculated using that solution on a grid of 100,000 points that do not

include the Chebyshev nodes. Under the baseline calibration, this residual function has a maximum

absolute approximation error of 2.38−4.
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5.1 Equilibrium as a function of the inherited relative price distortion

Figure 1 plots the transition function for the state variable as well as the function map-

ping from the state to the inflation rate in a discretionary equilibrium in Panel A. The

first thing to note is that there is a unique steady-state inflation rate of approximately

8.6 percent annually.8 Two natural benchmarks against which to compare the steady

state of the discretionary equilibrium are the inflation rate with highest steady-state

welfare and the inflation rate in the long run under optimal policy with commitment.

Following King and Wolman (1999), we refer to these benchmarks as the golden rule and

the modified golden rule respectively. For our baseline parameterization, the golden-rule

inflation rate is just barely positive (less than one tenth of a percent) and the modified

golden-rule inflation rate is zero – the latter result is parameter-independent.

In addition to showing the steady state, Panel A illustrates the dynamics of the

state variable, which exhibit monotonic convergence to the steady state. This means

that a policymaker inheriting a relative price distortion that is large (small) relative

to steady state finds it optimal to bequeath a smaller (larger) relative price distortion

to her successor. Together with the monotone downward-sloping equilibrium function

for inflation, it follows that the inflation dynamics in the transition from a large (small)

relative price distortion and high (low) inflation rate involve an initial discrete fall (jump)

in inflation and a subsequent gradual increase (decrease) to the steady state.9

Panel B of Figure 1 displays the policy variable (m) and welfare (v) as functions

of the state variable in the discretionary equilibrium (m is indicated on the left scale

8Note that in the model π is a gross quarterly inflation rate, but the figures and the text refer to

annualized net inflation rates obtained as π4 − 1.

9Yun’s (2005) analysis of the Calvo model displays similar transition dynamics of inflation. But in

his model, the steady-state inflation rate under optimal policy is zero, so the transition from a steady

state with positive inflation inevitably involves a period of deflation.
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Figure 1: Equilibrium as a function of the state
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and welfare on the right scale).10 Both functions are downward sloping. Intuition for

the welfare function’s downward slope is straightforward. Eq. (19) shows that the

current relative price distortion represents the inverse of average productivity. But the

current relative price distortion is also a summary statistic for the dispersion in relative

prices. The higher is the inherited relative price distortion, the higher is the inherited

dispersion in relative prices, and through (20) this contributes to a higher dispersion

in current relative prices. Higher dispersion in current relative prices in turn reduces

current productivity, reducing welfare.

It is less straightforward to understand the downward sloping policy function, m =

Γ∗ (∆). At a superficial level, it seems consistent with the state transition function for

m to be decreasing in ∆: if equilibrium involves the relative price distortion declining

from a high level, then a large inherited relative price distortion ought to be met with a

relatively low normalized money supply, so that newly adjusting firms do not exacerbate

the relative price distortion. However, in order to develop the intuition for Γ∗ (∆) more

fully it is necessary to examine the nature of the policy problem in equilibrium.

5.2 Policymaker’s objective function

Figure 2 displays the policymaker’s objective function (Panel A) and the current period

component of the objective function (Panel B) for two values of the state variable (1

and 1.04). Both panels display functions that are concave, and the unique maximum is

achieved with lower values of m for the higher value of the state. The future component

of value, βv (∆′) in (30), is not plotted, but it is decreasing in m for all values of ∆. From

Figure 2 then, the fact that m is a decreasing function of ∆ seems to be associated with

10In Panel B of Figure 1 and in Figure 2 we have not converted welfare into more meaningful

consumption-equivalent units because the magnitudes are very small. The consumption-equivalent wel-

fare measures in these figures would vary by less than 0.02 percent.

21



the state variable’s influence on the current-utility component of welfare. As discussed

in King and Wolman (1999, 2004), real effects of monetary policy in models such as this

one work through the relative price distortion (∆′) and the average markup of price over

marginal cost (1/w here). Thus, examining the behavior of these two distortions can

help clarify why the current component of the objective function is maximized with a

lower m the higher is ∆.
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Figure 2: Policymaker’s objective function

Figure 3 plots the markup distortion (Panel A) and the relative price distortion (Panel

B) as a function of m for the same two values of the state variable. In both cases higher

22



values of m correspond to a lower markup and a higher relative price distortion. This

feature is the essential short-run policy trade-off in the Calvo (or Taylor) model: a higher

money supply will bring down the markup at the cost of increasing the relative price

distortion. From Figures 2 and 3 it is apparent that as the state variable increases, the

trade-off shifts in favor of the relative price distortion. That is, the policymaker chooses

lower m at higher values of ∆ because the decrease in the markup that would come from

holding m fixed at higher ∆ is more than offset by welfare costs of a higher relative price

distortion ∆′.
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Figure 3: Distortions as functions of m
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What is the intuition for increased sensitivity of the relative price distortion to m at

higher levels of inherited relative price dispersion (∆)? Although we cannot explicitly

solve for the relationship between the relative price distortion and the money supply, we

can study the relationship between the relative price distortion and the relative price

chosen by adjusting firms. Assuming (correctly) a positive relationship between equilib-

rium p0 and m, this relationship is informative for understanding why the relative price

distortion can be viewed as driving the shape of the policy function.

Combining the market clearing condition (25) with the transformed price index (24)

yields

∆′ =
(1− α) p−ε

0 + α∆[
α + (1− α) p1−ε

0

]ε/(ε−1)
. (32)

From this expression it follows that the sensitivity of the relative price distortion to the

relative price of adjusters is increasing in the state:

∂2∆′

∂p0∂∆
=

εα (1− α) p−ε
0[

α + (1− α) p1−ε
0

]1+[ε/(ε−1)]
> 0. (33)

Figure 4 illustrates the relationship between ∆′ and p0 given by (32) for ∆ = 1 and

∆ = 1.04. The current relative price distortion is a locally convex function of the relative

price set by adjusting firms.11 If there is no inherited relative price dispersion (∆ = 1)

then the relative price distortion is minimized at p0 = 1, whereas for higher inherited

dispersion the relative price distortion is minimized at a lower value of p0. As (33) states,

a larger ∆ also corresponds everywhere to a steeper relative price distortion with respect

to p0. Summarizing our argument then: as the state variable increases, the current

policymaker would incur increasing welfare losses due to relative price distortions if she

did not react by choosing m so that price setters set a lower relative price. We have

11The relative price distortion as a function of p0 becomes flat and thus concave at high values of p0;

for high enough p0 customers have negligible demand for the goods sold by adjusters, and additional

price increases have no effect on the relative price distortion.
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not plotted the relationship between m and p0, but in a discretionary equilibrium it is

positive and nearly linear. So this reasoning leads to a policy that sets m as a decreasing

function of ∆.
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Figure 4: Relative price distortion as function of p0

5.3 Properties of private-sector equilibrium

Our computational approach has led to finding a single discretionary equilibrium. The

preceding discussion highlighted some of the properties of the equilibrium for particular

parameters. Although we have not proved that the equilibrium is unique, in the many

examples studied in this paper we have found no evidence of multiple equilibria.12 This

is in stark contrast to the Taylor model with two-period price setting, in which King

12Starting from the example of the baseline calibration, more than 40 other examples were computed,

with a range of values of α, ε and µ. Details are available from the authors.
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and Wolman (2004) proved the existence of multiple discretionary equilibria, which they

traced to multiple private-sector equilibria.
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Figure 5: Pricing best response function: State = 1.04, m = 0.20

To help explain why multiplicity of private-sector equilibrium is less prevalent in

the Calvo model, we turn to the best-response function for price-setting firms. The

best-response function describes an individual firm’s optimal price as a function of the

price set by other adjusting firms. Figure 5 plots a typical best-response function in

a discretionary equilibrium of the Calvo model, using the baseline calibration. It has a

unique fixed point, and is concave in a neighborhood of the fixed point.13 In contrast, the

13Our computations have not revealed multiple fixed points in equilibrium. However, we have encoun-

tered rare instances of multiple fixed points for sub-optimal values of m. In Figure 5 there is a convex

region of the best-response function to the left of the fixed point. In the case of multiple fixed points,

the convex region of the best-response function intersects the 45-degree line twice, with a third fixed

point located on the concave portion.
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best-response function in the two-period Taylor pricing model is upward sloping, strictly

convex and generically has either two fixed points or no fixed points (see Appendix A

for more details of the Taylor model).

The different shape of the best response function under Calvo pricing is associated

with a different relationship between firms’ current optimal price and the future nominal

money supply. This relationship is nonlinear, unlike in the Taylor model, for two reasons.

First, the relationship between the optimal price and the future index of predetermined

prices is nonlinear. Second, the optimal price determines the real future state variable

to which future policy responds. We consider in turn how both these reasons weaken the

complementarity between the price of optimizing firms.

First, suppose that the future policymaker were to set a constant m, raising the

nominal money supply in proportion to the index of predetermined prices. In the Taylor

model, where such a policy is optimal, the price set by adjusting firms is the index of

predetermined prices, so the future nominal money supply rises linearly with the price

set by adjusting firms. Understanding that this future policy response will occur, and

that the price it sets today will also be in effect in the future, an individual firm’s best

response is to choose a higher price when all other adjusting firms choose a higher price.

In the Calvo model, in contrast, next period’s index of predetermined prices comprises

an infinite number of lagged prices, of which the price set by adjusting firms today is just

one element. Under a constant m policy, the effect of an increase in prices set today on

next period’s nominal money supply depends on the effect of such an increase on next

period’s index of preset prices. That index of preset prices – which is just today’s price

index – is highly sensitive to low levels of the price set by firms today, and relatively

insensitive to high levels of the price set by firms today. That is because goods with high

(low) prices have a low (high) expenditure share and thus receive a low (high) weight in

the price index. As the price set by firms goes to infinity, it has no effect on the index
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of preset prices and no effect on tomorrow’s nominal money supply.

Thus, in the Calvo model a constant m policy would lead to a nominal money supply

that is increasing and concave in the price set by adjusting firms. Because a higher future

money supply leads firms to set a higher price today, concavity of the future money

supply corresponds to decreasing complementarity between the prices set by adjusters.

This intuition is confirmed by the following result for the infinite labor supply elasticity

case, which is the baseline calibration.

Proposition 1 Suppose the money supply is always set according to a constant m policy,

regardless of the state, and let µ = 0. Then the Calvo model has a unique private-sector

equilibrium.

Proof. See Appendix B.

The second reason for weaker complementarity in the Calvo model is that the rela-

tionship between the current optimal price and the future nominal money supply depends

on the future state variable. Indeed, the policy maker does not hold m constant, instead

lowering it with the state (see Figure 1.B). The response of next period’s normalized

money supply to the price set by adjusting firms today therefore depends on the rela-

tionship between p0 and ∆′. Equation (32) implies that for high (low) values of p0 the

future state is increasing (decreasing) in p0, holding fixed the current state:

∂∆′

∂p0

=
εα (1− α) p−ε−1

0[
α + (1− α) p1−ε

0

]1+[ε/(ε−1)]
(∆p0 − 1) . (34)

Given that equilibrium m is decreasing in ∆, future m is decreasing in p0 for high values

of p0 and increasing in p0 for low values of p0. That is, a higher price set by adjusting

firms– if it is greater than 1/∆ – translates into a higher value of the future state, and

thus a lower value of the future normalized money supply. At low values of p0 this

relationship is reversed: increases in p0 reduce the future state, and the policymaker

would respond by raising future m.
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Summarizing the argument: in the Taylor model the normalized money supply is

constant in equilibrium, and this results in an increasing convex best-response function

with multiple fixed points. In the Calvo model, if policy kept the normalized money

supply constant there would be a unique equilibrium: complementarity would be weaker

at high p0 than in the Taylor model, because next period’s index of predetermined prices

responds only weakly to p0 at high levels of p0. Because the normalized money supply

is not constant in the Calvo model, the complementarity is weakened even further; m is

decreasing in the state, and future m is decreasing in p0 for high p0.

Both parts of this argument rely on the fact that there are many cohorts of firms

with predetermined prices in the Calvo model. In the first part, the effect of prices set

by adjusting firms on tomorrow’s index of predetermined prices depends on the level of

those prices set today, because consumers can shift their expenditures to the cohorts that

set prices in previous periods. In the second part, the presence of many predetermined

prices gives rise to the state variable, through which the future policymaker is dissuaded

from accommodating large increases in the current price level. Thus, the existence of

many cohorts of prices seems to be key to explaining why the Calvo model does not

have the same tendency toward multiple discretionary equilibria as the Taylor model

with two-period pricing. This reasoning suggests however that a Taylor model with

longer duration pricing might not have multiplicity, because the same opportunities to

substitute would be present. Unfortunately, it is computationally infeasible to study

discretionary equilibrium in a Taylor model with long-duration pricing, unless one uses

linear approximation methods as in Dotsey and Hornstein (2003).

Although our computations have found only one equilibrium in every case, it is impor-

tant to note that we have not proved uniqueness of equilibrium. However, Proposition

1 gives us some confidence that the numerical results do generalize: the constant m

policy, which is key to proving that there are multiple private sector equilibria in the
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Taylor model, implies a unique private sector equilibrium in the Calvo model. If, as we

suppose, Markov Perfect equilibrium is unique, the nature of equilibrium ought to be

invariant to (i) the policy instrument and (ii) whether we solve a planner’s problem, in

which the planner picks allocations directly as in Anderson, Kim and Yun (2010). For

our baseline parameterization we have confirmed that the same steady-state inflation

rate obtains whether the policy instrument is the money supply or the nominal interest

rate. In addition, we have replicated the steady-state inflation rate of 2.2 percent for

the baseline case with α = 0.75, ε = 11, and µ = 1 reported in Anderson, Kim and Yun

(2010), for both interest rate and money supply instruments.

6 Inflation sensitivity to structural parameters

Steady-state inflation under the baseline calibration exceeds 8 percent, as mentioned

before. Since there is not widespread agreement about the proper values for the price

non-adjustment probability α, the desired markup ε/(ε−1), or the labor supply elasticity

1/µ, Figure 6 displays the steady-state inflation rate as a function of α (Panel A), ε/(ε−1)

(Panel B) and 1/µ (Panel C).

As the figure shows, the steady-state inflation rate in a discretionary equilibrium

varies between essentially zero for extremely high price stickiness with a desired markup

of 1.11, to greater than 40 percent with a price non-adjustment probability of 0.67, a

desired markup of 1.33 and an infinite labor supply elasticity. These results show that

the Calvo model does not provide a clear-cut answer to the question, how big is the

inflation bias?

The steady-state inflation rate is increasing in the price non-adjustment probability

for low α and decreasing for high α, with a maximum inflation rate of 10.1 percent

reached when α = 0.71. The steady-state inflation rate is monotonically increasing in

the desired markup and the labor supply elasticity.
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In interpreting these figures, the policymaker’s trade-off between the relative price

distortion and the markup is central. In a steady-state equilibrium, the policymaker is

optimizing. Thus, the marginal benefit from decreasing the markup through a higher

inflation rate is offset by the marginal cost associated with a larger relative price distor-

tion. At higher degrees of price stickiness, the policymaker has greater leverage over the

markup. Thus, as we move to the right in Panel A, the marginal benefit of higher current

inflation at a given steady-state inflation rate is increasing. In order to counteract this

larger marginal benefit, there must be a larger marginal cost through the relative price

distortion. At low levels of price stickiness this larger marginal relative-price-distortion

cost requires a higher inflation rate. But as we move to very high levels of price sticki-

ness, the higher price stickiness itself accomplishes the required increase in the marginal

cost of inflation. Thus, equilibrium occurs at lower inflation rates.

Panels B and C of Figure 6 display a monotonically increasing relationship between

inflation and the desired markup and between inflation and the labor supply elasticity.

The same reasoning applies to these relationships. As the desired markup or the labor

supply elasticity increases, the monetary authority has more leverage over the markup,

so the marginal benefit of higher inflation that arises from its ability to reduce the

markup is increasing. In order to balance this larger marginal benefit, there must be a

larger marginal relative-price-distortion cost of inflation. That in turn requires a higher

steady-state inflation rate.

7 Concluding remarks

The Calvo model linearized around a zero-inflation steady state yields the New Keynesian

Phillips curve, which has become the leading framework for applied monetary policy anal-

ysis. While there have been numerous analyses of discretionary monetary policy using the

New Keynesian Phillips curve, little attention has been devoted to understanding discre-
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tionary equilibrium in the underlying (non-linear) Calvo model. This paper has aimed to

further such understanding. Discretionary equilibrium involves a positive steady-state in-

flation rate, and the steady-state inflation rate varies non-monotonically with the degree

of price stickiness; together these results suggest that the zero-inflation approximation

is inappropriate in the absence of a fiscal scheme to eliminate the monopoly distortion.

We also compared discretionary equilibrium in the Calvo model to the Taylor model

with two-period pricing. The complementarity inherent in the Taylor model (King and

Wolman, 2004) is substantially weakened in the Calvo model, typically leading to a

unique private-sector equilibrium. The choice between superficially similar models (Calvo

and Taylor) can thus have important implications for policy analysis, here for the nature

of equilibrium when the policymaker cannot commit to future plans.

Our finding of large variation in the steady-state inflation rate across parameter values

raises the question of whether exogenous price adjustment is a reasonable assumption.

One could argue that the Calvo model should only be studied local to a steady state –

only there is it reasonable to assume fixed price adjustment probabilities – and thus that

LQ approaches to discretionary equilibrium are appropriate. Another view, which we

favor, is that the very nature of the discretionary policymaker’s problem merits a global

analysis. If the results cast doubt on the Calvo pricing assumption, the proper response

is not to change the analysis from global to LQ, but to use a different model such as one

where firms’ likelihood of price adjustment is allowed to vary with economic conditions.

It seems inevitable that expanding our analysis to an environment with state-dependent

pricing would add state variables to the problem, but it is surely a worthwhile topic for

future research.14

14Siu (2008) studies discretionary policy in a model with some state-dependence, limiting the state

space by allowing firms to adjust costlessly after two periods.
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Appendix A: Background results from the Taylor model

In the Taylor model each firm sets its price for two periods. The description of the

representative household remains unchanged, but the value of a firm upon adjustment is

given by

Ṽt = max
Xt

{d (Xt; Pt, ct, wt) + Qt,t+1d (Xt; Pt+1, ct+1, wt+1)} ,

and the optimal price satisfies the first order condition,

P0,t

Pt

=

(
ε

ε− 1

)
· wt + β (Pt+1/Pt)

ε wt+1

1 + β (Pt+1/Pt)
ε−1 .

Whereas in the Calvo model the index of predetermined prices was given by Pt−1, in

the Taylor model there is just one predetermined price, P0,t−1. Normalizing the optimal

price and the price index by P0,t−1 and using the definitions p̃0,t ≡ P0,t/P0,t−1 and pt ≡
Pt/P0,t−1, we have

p̃0,t

pt

=

(
ε

ε− 1

)
· wt + β (p̃0,tpt+1/pt)

ε wt+1

1 + β (p̃0,tpt+1/pt)
ε−1 . (35)

As in the Calvo model, this condition indicates that the firm chooses a constant markup

over a weighted average of current and future marginal costs.

Labor supply is given by equation (4). Money demand (5) is normalized by the lagged

optimal price instead of the lagged price level

m̃t ≡ Mt

P0,t−1

= ptct. (36)

We eliminate the predetermined variable from the price index,

Pt =

(
1

2
P 1−ε

0,t +
1

2
P 1−ε

0,t−1

) 1
1−ε

,

by dividing by the lagged optimal price:

pt =

(
1

2
p̃1−ε

0,t +
1

2

) 1
1−ε

. (37)
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The labor market clearing condition yields

nt =
1

2

1∑
j=0

nj,t

nt

ct

=
1

2
pε

t

[
(p̃0,t)

−ε + 1
]
. (38)

There is one predetermined nominal price (P0,t−1), but there are no state variables in

the labor market clearing condition.

In the Taylor model, the five equations (4) and (35)−(38), together with the behavior

of future policymakers, implicitly define the set of feasible values for wt, ct, nt, pt and

p̃0,t attainable by the current-period monetary authority. The current-period monetary

authority chooses the money supply, or equivalently m̃t, the money supply normalized

by the predetermined price. Unlike the Calvo model, no state variables constrain the

monetary authority in an MPE. The lagged optimal price P0,t−1 matters for the levels of

nominal variables, but is irrelevant for the determination of real allocations.

King and Wolman (2004) use a price-setting firm’s best-response function to study

discretionary equilibria in the Taylor model. That function is the optimal pricing condi-

tion (35) rewritten so that the right hand side is in terms of current and future m̃ and

current and future p̃0:

p̃0 =

(
εχ

ε− 1

)
· [(1− θ′) m̃ + θ′m̃′p̃0] ,

where

θ′ ≡ β [p̃0 p(p̃′0)/p(p̃0)]
ε−1

1 + β [p̃0 p(p̃′0)/p(p̃0)]
ε−1 .

For any value of m̃, King and Wolman show that for fixed m̃′ and p̃′0 the best-response

function is monotonically increasing and strictly convex with two fixed points or no fixed

points (there is a knife-edge case with a unique fixed point). The presence of two fixed

points for arbitrary m̃ means that there are multiple discretionary equilibria, indexed

by the distribution over the two fixed points of the best-response function (these fixed
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points vary with the distribution). In a discretionary equilibrium there are endogenous

fluctuations over the two fixed points.

King and Wolman stress that the complementarity necessary for multiple fixed points

is associated with the fact that under discretion, the policymaker in the next period is

certain to raise the nominal money supply proportionally with the price set by firms in

the current period. An individual firm in the current period responds positively to the

price set by other firms in order to avoid being stuck next period with high demand and

a nominal price that is low relative to nominal costs. In the Taylor model, this effect is

relatively weak at low values of p0 and relatively strong at high values of p0. Another

way to view the complementarity is between future policy and expected future policy:

if firms expect a higher nominal money supply in the future, they will set a higher price

today, and the future policymaker will accommodate with a higher money supply.

Appendix B: Proof of Proposition 1

This appendix presents the proof of Proposition 1. Recall from equation (13) that

inflation is the following function of the optimal reset price

π(p0,t) =
[
(1− α)p1−ε

0,t + α
] 1

1−ε ,

which has the following properties:

π′(p0,t) = (1− α)
[
(1− α) + αpε−1

0,t

]− ε
ε−1 = (1− α)

[
π(p0,t)

p0,t

]ε

> 0 (39)

π′′(p0,t) = −α(1− α)επ(p0,t)
2ε−1p

3(ε−1)
0,t < 0. (40)

Let T denote the final period, so NT+1 = DT+1 = 0. Then:

NT =

(
ε

ε− 1

)
π(p0,T )ε−1 [χmT + αβNT+1π(p0,T )] =

(
εχ

ε− 1

)
π(p0,T )ε−1mT , (41)

DT = π(p0,T )ε−1 [1 + αβDT+1] = π(p0,T )ε−1, (42)
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and the pricing best-response function is

p̂0,T =
NT

DT

=

(
εχ

ε− 1

)
mT . (43)

The outcomes p0,T , NT , and DT do not depend on the state because monetary policy does

not depend on the state. Moreover, there can be no complementarity in price setting

in period T , because the pricing best-response function (43) of any given firm does not

depend on other firms’ price decisions.

Note from (41) that NT = NT (mT , p0,T ) and from (42) that DT = DT (p0,T ). We can

now analyze the period T − 1 pricing best-response function to determine whether there

is a unique fixed point.

NT−1 =

(
ε

ε− 1

)
π(p0,T−1)

ε−1 [χmT−1 + αβNT (mT , p0,T )π(p0,T−1)]

DT−1 = π(p0,T−1)
ε−1 [1 + αβDT (p0,T )] .

Hence, the period T − 1 best response function is

p̂0,T−1 =

(
ε

ε− 1

)[
χmT−1

1 + αβDT (p0,T )
+

αβNT (mT , p0,T )π(p0,T−1)

1 + αβDT (p0,T )

]
(44)

The optimal price does not depend on the state because the monetary policy function

and the functions NT and DT do not depend on the state. To see that the best response

function has a unique fixed point, first write it as

p̂0,T−1 = AT−1(p0,T )mT−1 + BT−1(mT , p0,T )π(p0,T−1),

where AT−1(p0,T ) > 0 and BT−1(mT , p0,T ) > 0 because mT > 0. It follows from (39) and

(40) that

∂p̂0,T−1

∂p0,T−1

= BT−1π
′(p0,T−1) > 0

∂2p̂0,T−1

∂p2
0,T−1

= BT−1π
′′(p0,T−1) < 0
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Because the best response function is always positive and concave it has a unique fixed

point. Therefore, there exists a unique private-sector equilibrium in period T − 1.

Write NT−1 = NT−1(mT−1,mT , p0,T−1, p0,T ) and DT−1 = DT−1(p0,T−1, p0,T ). In period

T − 2 we obtain

NT−2 =

(
ε

ε− 1

)
π(p0,T−2)

ε−1 [χmT−2 + αβNT−1(mT−1,mT , p0,T−1, p0,T )π(p0,T−2)]

DT−2 = π(p0,T−2)
ε−1 [1 + αβDT−1(p0,T−1, p0,T )] .

Hence the period T − 2 best response function can be written as

p̂0,T−2 = AT−2(p0,T−1, p0,T )mT−2 + BT−2(mT−1,mT , p0,T−1, p0,T )π(p0,T−2),

where AT−2 > 0 and BT−2 > 0 because mT−1, mT > 0. By the same arguments as above

there is a unique fixed point in period T − 2.

Repeating the same steps, we can show that for period t,

Nt =

(
ε

ε− 1

)
π(p0,t)

ε−1 [χmt + αβN(mt+1,mt+2, . . . , p0,t+1, p0,t+2, . . .)π(p0,t)]

Dt = π(p0,t)
ε−1 [1 + αβD(p0,t+1, p0,t+2, . . .)] .

The period t best-response function therefore can be written as

p̂0,t = At(p0,t+1, p0,t+2, . . .)mt + Bt(mt+1,mt+2, . . . , p0,t+1, p0,t+2, . . .)π(p0,t),

where At > 0 and Bt > 0 because mt+1, mt+2, . . . > 0.

Therefore, by backward induction, there is a unique private-sector equilibrium asso-

ciated with the arbitrary constant m policy.
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