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Abstract

Communication and no-communication versions of a two-stage principal-agent model are

compared. The models contain a risk-averse agent and two sources of private information,

a shock to preferences followed by a productive action. Both models are formulated as

linear programs, which are then used to compute solutions to examples. In simple cases,

a sufficient condition for communication to be valuable is derived. In these cases, com-

munication improves risk-sharing in bad states of the world. In more complicated cases,

computed examples demonstrate how communication may also alter labor supply. Further

examples demonstrate how action and consumption lotteries may separate agents by their

shock. Survey evidence and Þeld work on contractual arrangements between farmers and

landowners in an Indian village is used to motivate the class of models. Suggestive evidence

on communication from the same sources is also described.
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1 Introduction

This paper investigates the effects of communication in a class of multi-stage principal-

agent models. It provides analytical results for simple cases, develops numerical methods

to investigate more complicated cases, and reports on Þeld research that attempted to

measure interim shocks and communication in tenant-landowner agricultural contracts.

The environment consists of a risk-averse agent who receives a shock to his marginal

disutility of labor. After receiving the preference shock, the agent takes a hidden action

which affects the probability distribution of a publicly-observed output. Three models are

considered: one where the preference shock is public information, one where it is hidden

information but the agent may send unveriÞable reports to the principal, and one where the

shock is also hidden information but the agent may not communicate to the principal at

all. Sending a report is equivalent to selecting from a menu of contracts and is potentially

beneÞcial because compensation schedules can be tailored to the shock the agent receives.

Comparison of the latter two models is the main focus of this paper.

The main analytical result demonstrates how communication alters compensation sched-

ules in order to improve consumption risk sharing. In the Þnite-action case, a suffi-

cient condition for communication to be valuable is that the optimal solution to the no-

communication model be characterized by an incentive constraint that does not bind on

the type with the high marginal disutility of effort. For reasons similar to that of Penno

(1984), the communication contract improves welfare because it can include more insurance

for this type without negatively affecting incentives. In contrast, if this incentive constraint

binds then communication may or may not be valuable.

These results contrast with those of Melumad and Reichelstein (1989) and Demougin

(1989). In an environment with a risk-neutral agent, they Þnd that an invertible technology

is a sufficient condition for communication to be valueless. With an invertible technology,
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no-communication contracts span the space of expected consumptions and thus can dupli-

cate the incentives faced by a risk-neutral agent in any communication contract.

Other analytical results in the literature contain results for the case where the hidden

information is fully revealed by speciÞc outputs. Christensen (1981) describes consumption

allocations as a function of outputs and Lagrangian multipliers. He argues that commu-

nication is valuable if there is a positive probability that hidden information is revealed

ex post to the principal. Christensen�s claim is proven in Baiman and Evans (1983). Suh

(1990) proves that communication is valuable and characterizes allocations for a simple

environment where, again, the hidden information is fully revealed by speciÞc outputs.

The results in the literature depend on assumptions like risk neutrality or full revela-

tion of the hidden information. To obtain further results, this paper develops numerical

methods. In particular, it provides linear programs which can be solved to Þnd optimal

allocations for arbitrary speciÞcations of preferences and technology. Solutions to exam-

ples are computed and then used for inter-model comparisons. To accomplish this, sets of

preference shocks, actions, outputs, and consumptions are gridded into Þnite numbers of

elements. Randomization is allowed in contractual terms.

In developing these numerical methods, the following results are provided. First, the

communication model is formulated in terms of interim utilities. These interim utilities are

a more efficient way to account for off-equilibrium strategies than the standard formulation

provided in Myerson (1982). The result is a linear program with a much smaller number of

constraints than in the standard formulation. Second, a revelation-principle like argument

is provided to formulate the no-communication model as a linear program.

Next, the linear programs for all three models are used to solve numerical examples.

The examples are used to address various features of the models. An example with changing

labor supply is solved. Another example, where action lotteries are used to help separate

types is provided. The Þnal example studies a case where the shock is to the agent�s risk
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aversion. In this example, consumption lotteries are used to distinguish agents by their

shock.

While this paper is primarily a theoretical and computational exercise, the choice of

models is motivated by data collected from surveys of tenant-landowner contracts from

an Indian village. The data is not used to test the models in a statistical sense. The

data is closer to Þeld research as often used by anthropologists and sociologists. It is used

to argue that multi-stage principal-agent models capture important features of economic

environments and that communication occurs, when feasible, between the principal and

the agent.

Finally, it should also be noted that these class of models are applicable to a variety of

other environments. They can be used to study managerial accounting or reporting from

subdivisions to distant corporate headquarters. They are also applicable to bank regulation.

In an attempt to more Þnely identify the riskiness of banks� assets, bank capital regulation

has moved towards requiring banks to report to regulators the risks they face and basing

capital requirements on these reports. Since it is difficult for regulators to verify these

reports, bank regulators face similar problems to those discussed in this paper. See, for

example, Rochet (1999).

2 Data

This section uses data on tenant-landowner relationships to argue that multi-stage models

capture important features of agricultural production. The data comes from the results of a

set of questionnaires described in Townsend and Mueller (1998).1 They regularly surveyed

eight of thirteen identiÞed cropping groups in the Indian ICRISAT village of Aurepalle

for the duration of the 1990 farming season.2 These cropping groups are partnerships

1Additional information on the cropping groups was gathered from interviews with villagers conducted
by the author during August 1994.

2For more information on Aurepalle and the other ICRISAT villages see Walker and Ryan (1990).
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of 2-5 members who jointly farm plots of land. The surveys collected information on a

variety of topics. For the purposes of this paper, only the evidence on interim shocks and

communication is used and the cropping group is treated as a single individual. This latter

assumption is driven by the nature of the data, though there are conditions, described

in Prescott and Townsend (1999), under which the group member�s preferences can be

aggregated into that of a single individual.

2.1 Interim shocks

Agricultural production requires several sequential operations. Land must be plowed and

sowed. Fertilizer and pesticides may be applied. At different times during the season

weeding may be required. Finally, the output must be harvested at the end of the season.

The timing of these operations is dependent on weather and soil conditions. For example,

according to respondents delays in planting seed after the rains can lead to substantial

declines in crop yields.

The surveys provide information on the frequency and reasons for delays in performing

operations and applying crop inputs. While there are only eight different tenant-landowner

relationships in the data set, each group performed numerous operations on their plots. The

surveys intensively monitored only a subset of each group�s plots but for these monitored

plots the eight groups performed 127 operations and applied 36 inputs, numbers which are

large enough to provide an idea about the frequency of shocks.

Tenants responses to the operation questionnaires indicate that 28 of the 127 operations

performed on the surveyed plots were delayed. Not surprisingly, weather shocks were

important. For example, shocks attributable to nature, such as the unavailability of well

water, contributed to 19 of the 28 delays. Another important source of shocks, was the

amount of time available for group work. For example, the unavailability of bullocks (needed

for draft power) contributed to eight of the operation delays. Bullocks could be unavailable
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because they were sick or occupied with tenant�s own crop work. Also, work on other crops

was cited as a reason for six of the delays, though it is not known whether this delay was

due to time spent working on other group plots or on own plots.

Application of crop inputs such as seed or fertilizer were also delayed 10 out of 36

times according to tenants. The reasons for these delays are similar to those that caused

delays in operations. Shocks that can be attributed to nature, such as rain or soil moisture,

contributed to delays in 6 of the 10 inputs. Shocks to tenants, such as bullock unavailability,

other crop work, and time constraints, contributed to delays on 4 of the 10 delayed input

applications.

Shocks may not only affect the timing of operations and labor but they also may affect

the quantity of labor supplied. Some indirect evidence is provided by the surveys. Questions

were asked, conditional on the group working, whether any members missed work.3 With

respect to groups this lowers the amount of labor available on a particular day. In this

paper, where there is a single agent, this data should be considered as indicative of some of

the shocks which may affect individual�s decision to work on the landowner�s plot of land.

The data in the Þrst row of Table 1 reports for each group the number of days per

group member absent from group operations. Excluded are days missed from irrigation

operations.4 There is variation across groups. The number of days per group member

missed by a group varied from three to sixteen, and the average number of days missed per

person among all groups is six. One indication of whether the reported number of absences

affects output is to compare absences with respondent�s answers at the beginning of the

season about the acceptable number of absences. These responses varied from one to seven

days. Groups 2, 10, and 13 seem to have a large number of absences.5

3Unfortunately, the surveys do not provide evidence on whether shocks inßuenced the decision of a
group to work the group plot or not.

4Irrigation absences are left out because this operation is frequently done by a single individual rather
than the group.

5It should be noted that group 2, which has the second-largest number of absences, expelled a group
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Group No. 2 6 7 8 9 10 12 13
Days 13.5 3 3 3.2 5 16.5 4.5 7
Bullock Days 7 2 1.33 1.8 2.66 8 2.5 8

Table 1: Average Number of Days Tenants Are Absent from Group Operations.

Several reasons were cited for the absences. Sickness accounted for one-third, crop work

was cited for one-Þfth, and non-crop work was cited for approximately one-fourth of the

absences. One-Þfth of the absences did not Þt into any of the listed categories, and hence

little is know of their cause.

A further source of information, and a partial check on the absence data, is the average

number of days missed from bullock operations by each group. These data are listed in

the second row of Table 1 and show that from one to eight days per group member were

missed by groups. The average number of days missed among all individuals in the sample

is 3.5. The most common reason, cited about one-half of the time, was that the bullock

driver was not available. One-Þfth of the time, the bullocks were being used for own crop

work. Most other responses indicated that bullocks were sick, too weak or that the driver

was sick.6

The previously described shocks can be classiÞed into two categories. The Þrst are

production shocks such as low well water levels or not enough rain. The other class of

shocks, and the one which will be studied, are those which affect the value of a farmer�s

time. First, farmers and their bullocks can get sick and this affects their time endowment

or at least their desire to work. Second, if outside opportunities are valuable, such as when

work needs to be done on a farmer�s own plot, then that farmer has an incentive to work

on his own plot rather than the group�s plot.

member towards the end of season for missing too much work.
6Group 13 indicates more absences from bullock operations than all operations. This could be due to

imperfect recall by the respondents.
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The surveys also collected some information on communication between tenants and

their landowners (as well as their Þnanciers). This information is described and discussed

at the end of the paper.

3 Models

The key features of the environment are the multiple stages required for production and

the variety of shocks. Because modeling all the stages is not practical, a class of models

with two stages is developed. In the Þrst stage there is a shock which affects the agents

time endowment or equivalently their marginal disutility of effort. Shocks described earlier

such as the health of farmer or his bullocks clearly have this effect. Other shocks, such as

those which make working off of the landowner�s plot desirable, can also be modeled using

these preferences if effort is considered to be only that which is worked on the landowner�s

plot. The idea is that valuable outside opportunities make it less desirable to work on

the landowner�s plot. The rest of the shocks described by the data, namely the nature

shocks such as rainfall, are best modeled as affecting the production technology rather

than preferences. This is an interesting and closely related problem but it is not the focus

of the paper.

Three models in this two-stage class are developed. For all three models preferences,

technologies, and timing structures are identical. However, assumptions about information

and communication differ in ways that will be described shortly. At time t = 0 the principal

and the agent agree to a contract. After agreement, there is a shock θ ∈ Θ to the agent�s
preferences. Upon observing the shock θ the agent sends report r ∈ R to the principal.

The principal replies to the report with message m ∈ M . Next, the agent takes action
a ∈ A. Finally, output q ∈ Q is observed, and the principal gives to the agent consumption
c ∈ C, as speciÞed in the contract. SpeciÞed in the contract are two rules: a randomizer
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which sends messages (possibly randomly) as a function of the report (or shock in the case

of the public-shock model), and a compensation schedule which may depend on outputs,

reports (or shock in the case of the public-shock model), and messages.

Sets C,Q,A, and Θ contain Þnite numbers of elements. The size of sets R and M are

not Þxed but depend on the model. Preferences for the agent are deÞned over the space of

lotteries over C×A×Θ, and preferences for the principal are deÞned over the space of lotter-
ies over C×Q. The agent�s and principal�s ex ante utilities are P

c,a,θ prob(c, a, θ)U(c, θ, a),

and
P
c,q prob(c, q)(q − c), respectively. The production function, denoted p(q|a), describes

the probability of output q given action a is taken. Assume that p(q|a) > 0, ∀a ∈ A, q ∈ Q.
The shock θ is random and drawn from the probability distribution pr(θ). Reports r and

messages m have no direct effect on preferences or technology.

In all three models the action is hidden, known only by the agent. Model P1, the

public-shock model, assumes that the shock θ is public so reports are irrelevant for this

model. The other two models assume that the shock is observed only by the agent but they

differ in the agent�s reporting possibilities. Model P2, the communication model, puts no

restrictions on the size of R, though by the revelation principle we will be able to restrict

ourselves to a reporting set equal to the set of shocks Θ. Model P3, the no-communication

model, forbids communication. Communication is forbidden by restricting the size of R to

one element � the act of physically not sending a report. Finally, there is no restriction on

the size of the set of messages which the principal may send. Figure 1 summarizes the three

models. These assumptions mean that consumption schedules in Models P1 and Model P2

may depend on the shock θ but the consumption schedule in Model P3 may not.

Working in the space of lotteries over a Þnite grid of variables is not the standard method

of analyzing principal-agent models. There are two reasons for using this space. First,

randomization can be valuable in mechanism design problems. As will be demonstrated

later, randomization may relax incentive constraints as well as convexify constraint sets.
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Contract Shock Agent Principal Agent Output Agent
reached θ ∈ Θ sends replies takes q ∈ Q receives

report with action observed c ∈ C
r ∈ R m ∈M a ∈ A

P1: Public-θ Public Size of M is as Private Public
model R is big as to

irrelevant necessary agent

P2: Commun- Private R is as � � �
ication model to big as

agent necessary

P3: No Com- Private R has � � �
munication to only one
model agent element

Figure 1: Timeline and assumptions on the three models

Second, randomization combined with the Þnite grids means the problem becomes a linear

program, which can be used to compute solutions for arbitrary preferences and technologies.

See Myerson (1982), or E.C. Prescott and Townsend (1984).

The next sections develop each model into a linear program. In the interests of brevity

and clarity, the revelation principle is invoked and in the main body of the text only the

truth-telling and obedience games and their representation as linear programs are discussed.

For Model P2, the communication model, an alternative formulation with interim utilities

is also provided. A revelation principle proof of Model P3, which is not a standard model,

is contained in the Appendix. The other two models are special cases of Myerson (1982) so

the revelation principle proof contained there applies. Discussion of the properties of the

models is deferred until the section on results.
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3.1 Model P1

This model assumes that shock θ is public information. Some preference shocks, such

as severe illness or injury, are publicly observable to other residents in the village. The

problem for the principal is to design state-contingent allocations which satisfy the moral

hazard problem in that state and yet still insure the agent over the states.

Reports are irrelevant in this model because θ is public; thus, all reference to set R

is dropped. By the revelation principle the message space can be restricted to the set A.

The principal chooses two rules in the contract: a randomizer which, given θ, recommends

an action a ∈ A with probability π(a|θ), and a consumption schedule which speciÞes the
probability of consumption c, given output q, message a, and shock θ. Denote this rule

π(c|q, a, θ) and note that degenerate rules are feasible with this notation.
One type of constraint which must be satisÞed by a contract for it to be feasible are

the incentive constraints.

Definition 1 An incentive-compatible allocation for Model P1 is a randomizer π(a|θ), a
consumption schedule π(c|q, a, θ), and a strategy a∗(a), such that, given the randomizer,
and the consumption schedule, a = a∗(a) satisÞes

∀θ, X
c,q

π(c|q, a, θ)p(q|a)U(c, θ, a) ≥ X
c,q

π(c|q, a, θ)p(q|�a)U(c, θ, �a) ∀a, �a ∈ A. (1)

In the principal-agent framework, the principal chooses a feasible allocation which max-

imizes his objective function and satisÞes the agent�s participation constraint. The Pareto

frontier is obtained by solving the following program for each feasible value of the agent�s

reservation utility level Ū .

max
π(c|q,a,θ)≥0,π(a|θ)≥0

X
c,q,a,θ

π(c|q, a, θ)p(q|a)π(a|θ)pr(θ)(q − c)

s.t.
P
c,q,a,θ π(c|q, a, θ)p(q|a)π(a|θ)pr(θ)U(c, θ, a) ≥ U, (2)

(1),
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∀θ, P
a π(a|θ) = 1, ∀q, a, θ,

P
c π(c|q, a, θ) = 1, (3)

where equation (2) is the agent�s participation constraint, and equations (3) ensure that

the choice variables are probability measures.

Transformation of the above program into a linear program requires several steps. First,

substitute π(c, q, a|θ) = π(c|q, a, θ)p(q|a)π(a|θ) into the objective function and the partici-
pation constraint. Next, make the incentive constraints, equation (1), linear by using the

transformation,

π(c|q, a, θ)p(q|�a) = π(c, q|a, θ)p(q|�a)
p(q|a) ,

and then multiplying both sides of the incentive constraints by the conditional probability

π(a|θ). Thus, the linearized incentive constraints are
X
c,q

π(c, q, a|θ)U(c, θ, a) ≥ X
c,q

π(c, q, a|θ)p(q|�a)
p(q|a)U(c, θ, �a), ∀θ, ∀a, �a ∈ A. (4)

Since the choice variables are now probability distributions over C×Q×A, for each θ ∈ Θ,
the probabilities must be restricted so that the technology function p(q|a) is not violated.
The constraints

∀q̄, ā, θ̄, X
c

π(c, q̄, ā|θ̄) = p(q̄|ā)X
c,q

π(c, q, ā|θ̄). (5)

ensure that the exogenous production function, p(q|a), is not violated. Pareto frontiers
are obtained by solving the following linear program for each feasible level of participation

utility, Ū .

Program P1: Public-Shock Model

max
π(c,q,a|θ)≥0

X
c,q,a,θ

π(c, q, a|θ)pr(θ)(q − c)

s.t.
P
c,q,a,θ π(c, q, a|θ)pr(θ)U(c, θ, a) ≥ Ū ,

(4), (5),

∀θ, P
c,q,a π(c, q, a|θ) = 1.
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The last constraint guarantees that the choice variable is a probability measure.

3.2 Model P2: Communication

In this model, shock θ is observed only by the agent. This change provides a role for

communication to be valuable. After receiving the shock, the agent communicates with

the principal by sending a report.7 The report allows the principal to tailor the contract

to the shock the agent receives. However, alterations of the contract are limited because

the agent�s report on the shock is not veriÞable.

By the revelation principle the reporting space R may be replaced by Θ and the mes-

sage space M may be replaced with A. The agent reports his shock and the principal

recommends an action. The principal chooses two parts of the contract: a randomizer that

recommends action a ∈ A as a function of received report θ0 ∈ Θ with probability π(a|θ0),
and a consumption schedule π(c|q, a, θ0). Upon receiving shock θ, the agent sends report
θ0 ∈ Θ and after receiving the recommended action he takes an action a ∈ A. The report
is a function of the shock and the action is a function of the shock, the report sent, and

the recommended action.

Definition 2 An incentive-compatible allocation for Model P2 is a randomizer π(a|θ), a
consumption schedule π(c|q, a, θ), and deterministic strategies ρ∗(θ) and δ∗(a, ρ∗(θ), θ), such
that, given the randomizer and the consumption schedule, strategy θ = ρ∗(θ) and a =

δ∗(a, ρ∗(θ), θ) satisfy

X
c,q,a

π(c|q, a, θ)p(q|a)π(a|θ)U(c, θ, a) ≥ X
c,q,a

π(c|q, a, θ0)p(q|δ(a))π(a|θ0)U(c, θ, δ(a)),

∀θ, θ0 ∈ Θ, ∀δ : A→ A. (6)

In equilibrium, the agent truthfully reports his shock and then takes the recommended

action.
7This model is a special case of Myerson (1982). A version with production shocks but without full

randomization is discussed in Townsend (1993).
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Incentive constraints prevent two kinds of deviations by the agent. If he reports truth-

fully, that is, θ0 = θ, he still must be induced to take the recommended action, just as

in Model P1. Checking incentive constraints for all functions δ(a), as in equation (6), is

sufficient for this purpose. Many of these incentive constraints are redundant, however, be-

cause the truth-telling and obedience contract induces the agent to take the recommended

action if he reports truthfully. In this case, for each recommended action it is only neces-

sary to consider deviations from that recommended action. These incentive constraints are

identical to the incentive constraints, (4), in Model P1.

The second type of deviation prevented by the incentive constraints is the agent lying

about the true value of the shock θ. If the agent were to report θ0 6= θ, he must have a

strategy, δ(a), of actions to take as a function of the recommended action. Thus, if he lies

his utility is the sum over recommended actions of utilities obtained by taking strategy

δ(a). Truth-telling is induced by calculating the set of feasible utility levels for an agent

who lies and takes any strategy δ(a), and then ensuring that the value of each element in

this set is less than the utility obtained from telling the truth and taking the recommended

action.

The objective function and the participation constraint are linearized exactly as in

Model P1. To facilitate comparison with Program P1, we break the incentive constraints

into the truth-telling constraints and the moral hazard constraints along the truth-telling

path. The latter constraints are identical to (4) in Program P1. The truth-telling con-

straints are

X
c,q,a

π(c, q, a|θ)U(c, θ, a) ≥ X
c,q,a

π(c, q, a|θ0)p(q|δ(a))
p(q|a) U(c, θ, δ(a)),

∀θ, θ0 6= θ ∈ Θ, ∀δ : A→ A. (7)

Constraints which ensure that the production function are not violated and that the choice

variable is a probability measure are the same as in the public-shock model.
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The Pareto frontier for the communication model is calculated by solving the following

linear program for all feasible values of reservation utility level, Ū .

Program P2: Communication Model

max
π(c,q,a|θ)≥0

X
c,q,a,θ

π(c, q, a|θ)pr(θ)(q − c)

s.t.
P
c,q,a,θ π(c, q, a|θ)pr(θ)U(c, θ, a) ≥ U,

(4), (7),

∀q̄, ā, θ̄, P
c π(c, q̄, ā|θ̄) = p(q̄|ā)

P
c,q π(c, q, ā|θ̄),

∀θ, P
c,q,a π(c, q, a|θ) = 1.

This program is identical to Program P1, except for the addition of the truth-telling con-

straints (7).

3.2.1 An alternative formulation

If there are more than a few points in the action grid, Program P2 is an extremely large

linear program. The problem comes from the need to check all of the off-equilibrium path

strategies for the truth-telling constraints. In particular, for each (θ, θ0) pair the number of

functions δ : A→ A is (nA)
(nA), where nA is the number of grid points in A. Essentially, the

size of Program P2 grows exponentially with the number of action grid points. This severely

limits the size of examples that can be solved on a computer. Fortunately, Program P2

can be reformulated into a linear program with many fewer constraints. The idea is to use

interim utility to efficiently account for the off-equilibrium path strategies.

Let δ∗(a, θ0, θ) be the optimal strategy for an agent who receives shock θ, reports θ0 6= θ,
and is recommended action a. DeÞne w(a, θ0, θ) as the utility the agent receives along this

off-equilibrium path weighted by the probability of a being recommended given that θ0 was
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reported, that is, weighted by π(a|θ0). Formally, ∀a, ∀θ, θ0 6= θ,

w(a, θ0, θ) =
X
c,q

π(c, q, a|θ0)p(q|δ
∗(a, θ0, θ))
p(q|a) U(c, θ, δ∗(a, θ0, θ)).

Since δ∗(a, θ0, θ) is optimal along the (a, θ0, θ) path, it dominates all other possible actions.

Therefore,

X
c,q

π(c, q, a|θ0)p(q|�a)
p(q|a)U(c, θ, �a) ≤ w(a, θ

0, θ), ∀θ, θ0 6= θ, ∀a, �a. (8)

The function w(a, θ0, θ) is an upper bound on the weighted utility a lying agent can receive

along the (a, θ0, θ) off-equilibrium path. Summing over these paths then gives the most

utility an agent can receive from lying and choosing any strategy δ(a), as in (7). Therefore,

the truth-telling constraint can be written

X
c,q,a

π(c, q, a|θ)U(c, θ, a) ≥ X
a

w(a, θ0, θ), ∀θ, θ0 6= θ. (9)

The only remaining modiÞcation to Program P2 that is needed is to make w(a, θ0, θ) a

choice variable.

Program P2a: Communication Model

max
π(c,q,a|θ)≥0,w(a,θ0,θ)

X
c,q,a,θ

π(c, q, a|θ)pr(θ)(q − c)

s.t.
P
c,q,a,θ π(c, q, a|θ)pr(θ)U(c, θ, a) ≥ U,

(4), (8), (9),

∀q̄, ā, θ̄, P
c π(c, q̄, ā|θ̄) = p(q̄|ā)

P
c,q π(c, q, ā|θ̄),

∀θ, P
c,q,a π(c, q, a|θ) = 1.

Program P2a differs from Program P2 in that (7) has been replaced by (8) and (9), and

the weighted off-equilibrium utilities have been added as a choice variable. Program P2a

is also a linear program but with much fewer constraints than Program P2. The number
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of truth-telling constraints in Program P2 is nΘ(nΘ − 1)(nA)(nA), where nΘ is the number
of elements in Θ. By contrast, the number of off-equilibrium constraints and truth-telling

constraints in Program P2a is nΘ(nΘ−1)(n2A+1). There are more variables in Program P2a
than in Program P2 but this cost is dwarfed by the reduction in the number of constraints,

particularly for large action grids.

3.3 Model P3: No Communication

In this model, the shock and action are private information just like in Model P2. Now,

however, the agent is not allowed to send a report on his shock to the principal, though

the principal may still send messages to the agent. This means that all types must face

the same compensation schedule since there is no way to differentiate themselves. In a

deterministic version of the model, this assumption would mean that the compensation

schedules are restricted to the form c(q) rather than the more general form of c(q, θ) like in

Models P1 and P2. A deterministic version of this model is analyzed in Holmström (1979).

For the previous two models the revelation principle justiÞed the use of the message

space A. Letting A = M is no longer desirable. Instead, it is desirable to use a message

space which recommends an action to the agent as a function of his shock θ. Consequently,

the message space is the cross-product of state-dependent actions,
Q
θ∈ΘA. The Appendix

contains a proof that this message space is sufficient. (Also, see Forges (1986).) An element

of the new message space is a vector of state-dependent actions, aΘ. Call any such vector a

strategy for the agent. Let aθ denote the action taken if aΘ is the strategy and θ is realized.

Definition 3 An incentive-compatible allocation for Model P3 is a randomizer π(aΘ), a

consumption schedule π(c|q, aΘ), and a deterministic strategy aθ = a∗(aΘ, θ) such that given
the randomizer, the consumption schedule, and the recommended strategy aΘ, the strategy
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aθ = a
∗(aΘ, θ) satisÞes

X
c,q

π(c|q, aΘ)p(q|aθ)U(c, θ, aθ) ≥
X
c,q

π(c|q, aΘ)p(q|�a)U(c, θ, �a), ∀�a ∈ A, (10)

for each realization of θ.

Writing the principal-agent problem as a linear program is difficult because of the

cumbersome message space. Frequent use is made of the identity

π(c, q|aΘ) = π(c|q, aΘ)
ÃX

θ

pr(θ)p(q|aθ)
!
. (11)

The term
P
θ pr(θ)p(q|aθ) is the probability of output q, before θ is realized, given strategy

aΘ, that is, prob(q|aΘ). The unconditional probability of consumption c, output q, and
strategy aΘ, is π(c, q, aΘ) = π(c, q|aΘ)π(aΘ).
The principal�s utility is

X
aΘ

X
c,q

π(c|q, aΘ)
ÃX

θ

pr(θ)p(q|aθ)(q − c)
!
π(aΘ),

while the agent�s utility is

X
aΘ

X
c,q

π(c|q, aΘ)
ÃX

θ

pr(θ)p(q|aθ)U(c, θ, aθ)
!
π(aΘ).

Using equation (11), the principal�s utility function simpliÞes to

X
c,q,aΘ

π(c, q,aΘ)(q − c),

and the agent�s utility function simpliÞes to

X
c,q,aΘ

π(c, q, aΘ)
X
θ

pr(θ)p(q|aθ)
[
P
θ pr(θ)p(q|aθ)]

U(c, θ, aθ).

Both equations are linear in π(c, q, aΘ). The ratio pr(θ)p(q|aθ)
[
P

θ
pr(θ)p(q|aθ)] in the agent�s utility

function is the likelihood that given recommended strategy aΘ and output q, the agent
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took action aθ.
8

Incentive constraints are similarly linearized. Using p(q|aΘ) = P
θ pr(θ)p(q|aΘ), Þrst

substitute

π(c|q, aΘ)p(q|aθ) = π(c, q|aΘ) p(q|aθ)P
θ pr(θ)p(q|aθ)

into equation (10). Multiply both sides of each incentive constraint by π(aΘ), the proba-

bility of the principal recommending strategy aΘ, to obtain

∀aΘ, ∀θ,
X
c,q

π(c, q, aΘ)

Ã
p(q|aθ)

[
P
θ pr(θ)p(q|aθ)]

U(c, θ, aθ)

!

≥ X
c,q

π(c, q, aΘ)

Ã
p(q|�a)

[
P
θ pr(θ)p(q|aθ)]

U(c, θ, �a)

!
, ∀�a ∈ A. (12)

The ratios p(q|aθ)
[
P

θ
pr(θ)p(q|aθ)] and

p(q|�a)
[
P

θ
pr(θ)p(q|aθ)] are similar to the likelihood ratio

p(q|�a)
p(q|a) in Mod-

els P1 and P2, except now when the principal observes output q he makes inferences without

knowing the realization of θ.

Next, the technology constraints are incorporated. Consistency of allocations with the

exogenous technology p(q|a) is accomplished by

∀q̄, āΘ,
X
c

π(c, q̄, āΘ) = [
X
θ

pr(θ)p(q̄|āΘ)]
X
c,q

π(c, q, āΘ). (13)

The objective function and each set of constraints are now linear. The Pareto frontier

for the no-communication model is calculated by solving the following linear program for

all feasible values of reservation utility, Ū .

8If preferences are of the form U(c) + V (θ, a), as they will be in later numerical examples, the agent�s
utility function simpliÞes to X

c,q,aΘ

π(c, q,aΘ)[U(c) +
X
θ

pr(θ)V (θ, aθ)].
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Program P3: No-Communication Model

max
π(c,q,aΘ)≥0

X
c,q,aΘ

π(c, q, aΘ)(q − c)

s.t.
P
c,q,aΘ π(c, q, aΘ)

P
θ

µ
pr(θ)p(q|aθ)

[
P

θ
pr(θ)p(q|aθ)]U(c, θ, aθ)

¶
≥ Ū ,

(12), (13),

P
c,q,aΘ π(c, q, aΘ) = 1.

The last constraint in the program ensure that the choice variable is a probability measure.

4 Results

Optimal contracts are calculated by solving Programs P1, P2a, and P3. Given a feasible

level of the agent�s utility, Ū , communication�s value is the difference between the values

of the objective functions for the communication and no-communication models. A solu-

tion to the communication model weakly dominates a solution to the no-communication

model because no-communication contracts can always be replicated with a communica-

tion contract. Similarly, a solution to the public-shock model weakly dominates that of the

communication model because Program P2 only differs from Program P1 in the addition

of the truth-telling constraints. Of more interest are communication�s effects on the opti-

mal contract and conditions which make communication strictly valuable. Examples are

provided which demonstrate how consumption risk sharing and labor supply are affected

by communication. For the Þnite-action case, a sufficient condition for communication to

be valuable is provided.

Computer memory limits the size of linear programs that can be solved. It was for

this reason Program 2a was developed. Nevertheless, reasonably large programs are com-

putable. To keep the linear programs to a manageable size the set of types, Θ, was limited

to two elements. Other sets were not so limited. Consumption grids were set to have at least
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100 elements in order to generate a reasonable amount of curvature. Action and output

grids were set up to ten grid points in some examples.9 The programs were programmed

into GAMS, a modeling language, which called Minos, a non-linear program solver which

also solves linear programs. The programs were solved on an IBM Risc6000 workstation

with 256 MB of RAM.

Most of the analysis assumes that the principal is risk neutral and that the agent is

risk averse with a utility function separable in consumption and effort, and in which the

marginal disutility of effort is increasing with θ. Proposition 3, contained in the Appendix,

proves that with these preferences a large number of strategies are not incentive compatible

in the no-communication model, greatly reducing the grid size that needs to be considered

when solving Program P3.

In order to develop intuition, a simple two action case is studied Þrst. In this case,

the bindingness of incentive constraints in the no-communication model are important

in determining whether communication is valuable. If communication is valuable, it is

valuable because it improves consumption risk sharing. This result is generalized to the

case of any Þnite number of actions. Next, an example with many more actions and

outputs is studied. Communication is valuable for similar reasons, even in cases when

the no-communication bindingness condition on incentive constraints does not hold. This

example also demonstrates how communication can alter labor supply, lowering it relative to

the no-communication example. Finally, two additional examples are studied that illustrate

how lotteries may help to separate agent types. The latter of these two examples uses non-

standard preferences, thus illustrating that the computational methods are applicable to

arbitrary speciÞcations of preferences and technology.

9Computer hardware memory limits were not reached in computing these examples. If these memory
limits are reached decomposition methods can be used at some cost in speed. See Prescott (2000) for an
application of these methods to solving moral-hazard linear programs.
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4.1 Two-Action Case

For the two-action case there are essentially two types of equilibria, which are differentiated

by the actions chosen by the agents.

Definition 4 A pooling equilibrium is when both types of agents take the same action. A

separating equilibrium is when the two types of agents take different actions.

This deÞnition excludes lotteries over assigned actions. The lottery case is considered a

linear combination of the deÞned kinds of equilibria.

All three models were solved numerically for the following choice of parameters: A =

[0, 5], Θ = [5, 10], Q = [2, 20], and C gridded at intervals of 0.1 over the range [0,20]. Let

the subscript i = l, h index low and high actions, outputs, and shocks. The utility function

is U(c, θ, a) = c0.5 + (θ − a)0.5. The probability distribution of output given the action is
ql qh

al 0.8 0.2
ah 0.2 0.8

The probabilities of the shocks are pr(θl) = .25, pr(θh) = .75.

Figures 2 and 3 describe optimal consumption schedules for Models P1 and P2 as a

function of the output, the shock, and the reservation utility level Ū . The vertical axis

is expected consumption. Expected consumption is reported because with Þnite numbers

of consumption grid points, solutions are often lotteries over adjacent grid points. The

range of ex-ante utilities shown are those which cause a separating equilibrium in which

the low-θ agent works al and the high-θ agent work ah for both models. Figure 2 describes

consumption as a function of output for the low-θ (high marginal disutility of effort) agent.

The two top lines, labeled Model P1, describe consumption in the public-shock model

as a function of output and Ū . These two lines are identical so for each Ū the agent�s

consumption is fully insured over the output. The bottom two lines, labeled Model P2,

describe consumption in the communication model as a function of output and Ū . Again,
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Figure 2: Two Action Case � Contracts for low-θ agents in Models P1 and P2 as a function
of reservation utility level Ū .

the two lines are identical and agents are fully insured over output. In both models, agents

are fully insured over output because they are taking the low action and there are no

binding incentive constraints at this action level. The only difference between the models

is the level of consumption.

Figure 3 describes consumption schedules for Models P1 and P2 when the agent re-

ceive the high shock and is recommended the high action.10 When the high-θ agent is

recommended the high action he must be induced to work hard. Consequently, if the

agent produces the high output he is rewarded high consumption. Dashed lines describe

the communication contracts and dotted lines describes the public-shock contracts as they

vary with reservation utility level Ū . The two top lines are compensation if the high output

occurs and the two bottom lines are compensation if the low output occurs. Again, the

only difference between the two models is the level of consumption.

10For portions of the reported range of Ū , the high shock agent was recommended a lottery over the
high and low efforts. What is shown in the Þgure is the contract if the high-shock agent is recommended
the high effort.
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Figure 3: Two Action Case � Contracts for high-θ agents in Models P1 and P2 as a function
of reservation utility level Ū .

Compared with Model P1, Model P2 lowers consumption in the bad state while it

raises it in the good state. The greater spread over the states is a direct effect of the

hidden information. The principal prefers the Model P1 contract, but if he offers it the

high-θ agent would lie and take the low action. To induce truth-telling, consumption is

lowered in the bad state and raised in the good state. Consequently, the solution to the

communication model does not insure the agent over the states as well as the solution to

the public-shock model.

The no-communication contract is not explicitly shown. However, it is identical to

the contract the high-θ agent faces in the communication model. Agents of both types

face the same contract because, unlike with communication, the principal cannot tailor

the compensation schedule to the agent�s type. The gain from communication in this

example is the value to the principal of providing the same expected utility to the low-θ

agent with constant consumption rather than with the more variable consumption in the
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no-communication contract.

This logic is not just speciÞc to this example.

Proposition 1 With two actions, if there is a separating equilibrium for the no-communication

model then communication is valuable.

Proof: For clarity assume that the consumption set is a continuum. Since preferences are

separable, utility is concave in consumption, and the shock θ does not affect utility from

consumption, there will not be a consumption lottery, and compensation can be written

c(q). In a separating equilibrium for the no-communication model, P3, the two incentive

constraints take the following form,

X
q

p(q|ah)U(c(q)) + V (θh, ah) =
X
q

p(q|al)U(c(q)) + V (θh, al), (14)X
q

p(q|al)U(c(q)) + V (θl, al) >
X
q

p(q|ah)U(c(q)) + V (θl, ah). (15)

Only the incentive constraint for the high-θ agent binds, the other constraint does not hold

at equality because the low-θ agent has a higher marginal disutility of labor.

Construction of a Pareto-superior communication contract proceeds by showing that

there exists a communication contract which leaves agent�s interim utilities unchanged

(and consequently, leaves ex-ante utility Ū unchanged) but which improves the principal�s

utility. Index the contract by the state. Write it as c(q, θ). Let c(q, θh) = c(q), and let

c(q, θl) = �c such that

U(�c) =
X
q

p(q|al)U(c(q)). (16)

This contract gives the low-θ agent a constant transfer and does not change the utility

either type of agent receives. This contract is also incentive compatible. If the high-θ agent

tells the truth he will not take the low action because his incentives are unchanged from the

Model P3 contract. Substituting equation (16) into equation (14) shows that this agent
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will not lie and then take the low action. He will also not lie and take the high action

because this is even worse than lying and taking the low action. Reporting the truth and

then taking the high action is not beneÞcial for the low-θ agent because with a constant

transfer there is no gain to working hard. He will also not lie because equations (15) and

(16) imply,

X
q

p(q|al)U(�c) + V (θl, al) =
X
q

p(q|al)U(c(q)) + V (θl, al)

=
X
q

p(q|al)U(c(q, θh)) + V (θl, al)

>
X
q

p(q|ah)U(c(q, θh)) + V (θl, ah), (17)

which means that both of his off-equilibrium path incentive constraints are satisÞed. This

feasible contract is better for the principal because concavity of the utility function and

equation (16) imply that �c <
P
q p(q|al)c(q). Q.E.D.

No general statement can be made on the value of communication when the solution to

the no-communication game is a pooling equilibrium. Whether the value of communication

is greater than zero for pooling equilibrium depends on the parameters. The author has gen-

erated examples, where for a portion of the range of Ū that produce a high-action pooling

solution to the no-communication model, communication is valuable. The optimal contract

with communication recommends low effort to the low-θ agent with positive probability.

Along the rest of the range, communication is not valuable. Similar counter-examples have

been found for low-action pooling equilibrium.

Communication in the example did not change expected output nor did it change the

actions taken; it only allocated consumption more efficiently over states. In the example

shown the gain from communication as a percentage of expected output is not very much,

about 0.5 percent. However, by raising the probability of the lower state the gain to

communication can be raised to at least 5 percent of expected output.
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4.2 A generalization

There is a gain to communication in the two-action example because communication allows

the principal to take advantage of the lack of an incentive constraint on the low agent. This

result can be extended to cases where the low-θ agent is not taking the lowest action.

The next proposition is proven for preferences of the form U(c, θ, a) = U(c) + V (θ, a),

with U strictly concave, Va < 0, Vaa < 0, and Vθa > 0.

Proposition 2 Assume that the preferences above hold, that there are two outputs with

the probability of the high output increasing with the action, and that in the solution to the

no-communication model the incentive constraint does not bind on the low-θ agent. Then,

communication is valuable.

Proof: See the Appendix.

The proof is very similar to that of the two-action case. A Pareto-superior communi-

cation contract is constructed by altering the compensation of the low-θ agent to improve

insurance without affecting incentives. The difference is that the low-θ agent is only insured

to the extent allowed by his incentive constraints.

4.3 Many-Action Case

In the previous examples communication is valuable because it allows the principal to

alter the contract along the θl path without affecting the incentive constraints. The proofs

relied on the recommended actions not changing when communication was added. With a

continuum, or even a large, Þnite, number of actions, communication should also change

labor allocations.

For cases with indivisibilities, or possibly severe non-convexities in production, the two-

action case may be a reasonable abstraction and the results will be applicable. However, if

the desired application demands more actions then not only will labor supply change but the
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previous constructions of Pareto-superior communication contracts no longer can be used.

For example, in the no-communication model with a continuum of actions, continuum

of consumption points, and technology p(qh|a) concave in a, then the action incentive
constraints can be replaced by the Þrst-order condition

X
q

δ(p(q|aθ))
δa

U(c(q)) = V 0(θ − aθ), if aθ ∈ (0, Ā), ∀θ, (18)

where (0, Ā) is the interior of set A.11

The next example demonstrates the effects of adding communication to labor sup-

ply. Both consumption schedules and labor allocations change. This example uses the

following parameter values: C = [0.00, 0.02, 0.04, ..., 2.00], A = [0.0, 0.08, 0.16, ..., 0.80],

Q = [−2.0,−1.6,−1.2, ..., 2.0], and Θ = [2.0, 0.5]. The probability of the shocks are pr(θ =
2.0) = .25, and pr(θ = 0.5) = .75. The technology is roughly a normal distribution where

effort controls the mean. In particular, p(q|a) = (1/√2 ∗ 3.1416)e−0.5∗(q−1.75∗a)2/(Pq p(q|a)).
The denominator normalizes the probabilities to sum to one. Utility is U(c, a, θ) = c0.5−θa2.
Unlike in the previous example, a low-θ value corresponds to a low marginal disutility of

effort.

Programs P1, P2a, and P3 were solves for Ū = 0.3578. In all three models, optimal

action choices were degenerate for both types of agents. In Models P1 and P2, a(θ = 2.0) =

11The Þrst-order approach, that is representing the incentive constraints with a Þrst-order condition, is
valid if there are only two outputs. If there are more than two outputs this need not be true, even with
the standard assumptions made on the technology. Proofs of the validity of this substitution in the moral-
hazard problem usually rely on showing that consumption schedules are increasing in output, which can be
guaranteed by assuming that the technology satisÞes a monotone likelihood ratio property. Monotonicity,
combined with a convexity condition on the distribution function, ensures that the agent�s local optimum
is also the global optimum. See, for example, Hart and Holmström (1987). In this model if there are more
than two outputs, the assumptions on technology are not sufficient. The Þrst-order necessary condition on
consumption is

1

U 0(c(qj))
= λ+

P
θ µθp

0(qj |aθ)P
θ pr(θ)p(qj |aθ)

,

where λ is the multiplier on the participation constraint, µθ are the multipliers on agent-θ�s incentive
constraint, and aθ is agent-θ�s action. The monotone likelihood ratio property does not guarantee a
monotonic consumption sharing rule (This is also true for the communication model, P2.)
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Figure 4: Many-Action Case � Expected consumption as a function of the state and the
output for Ū = 0.3578.

0.08 and a(θ = 0.5) = 0.56. For Model P3, the high marginal disutility of effort agent,

θ = 2.0, works more than in the other models. His effort is a(θ = 2.0) = 0.16. For the

other shock, the solution is a(θ = 0.5) = 0.56.

Optimal consumption schedules for all three models are reported in Figure 4. The

solid line is the consumption schedule for the no-communication model. Of course, both

types of agents face this schedule. The dashed lines are the consumption schedules for

the communication model. The curved line that closely follows the no-communication

schedule is the schedule for the low marginal disutility of effort agent, that is, θ = 0.5. It

provides less consumption than the no-communication schedule. The nearly linear dashed

line is the consumption schedule for high marginal disutility of effort agent, that is, θ =

2.0. Comparing the no-communication and communication models, the no-communication

model does not provide as much consumption insurance to the agent. It also requires the

θ = 2.0 agent to work harder. For these reasons, it provides a higher level of consumption.
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The effect of the truth-telling constraints can be seen by comparison of the communi-

cation contracts with the public-shock contracts. Actions are the same for the two models

so a comparison can focus solely on the consumption schedules. The dotted line describes

the optimal public shock consumption schedules. Qualitatively, it is similar to those of

the communication model. However, the quantitative differences illustrate the effect of the

truth-telling constraints in Model P2. The public-shock model solution strictly dominates

in welfare terms the communication model in this example so Program 2a would like to

implement that allocation. It is not, however, incentive compatible. Like in the two-action

example, the consumption level provided is high enough that the θ = 0.5 agent would like

to report that he experienced the bad shock and then work some low amount. To prevent

this, Program 2a lowers the level of compensation paid to an agent who receives the bad

shock and it raises the level of compensation paid to the agent who receives the good shock.

The truth-telling constraints limit insurance across the shocks.

Despite the program�s ability to insure the agent across the shocks, communication

still allows some insurance, at least, relative to the no-communication model. Figure 5

reports the agent�s utility conditional on the shock he receives for the full range of feasible

Ū levels, that is, for the entire Pareto frontier. The solid lines report the conditional utility

for the no-communication model while the dashed lines report the conditional utility for

the communication model. For both models, the lower line corresponds to θ = 2.0 and the

higher line corresponds to θ = 0.5. There is a bigger spread between the utilities for the

no-communication model than for communication model.12

Communication also effects labor supply for much of the range of reservation utilities

Ū , not just for the speciÞc Ū solution reported above. Figure 6 reports expected action

conditional on the shock over the Pareto frontier. Again, solid lines correspond to the

12At the highest level of Ū , there is no spread in either model because all types are assigned an action
level of a = 0.0 and since effort level is multiplicative with the shock θ, both types receive the same utility.
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no-communication model, and dashed lines correspond to the communication model. The

public-shock model is illustrated with stars connected by a dotted line. The lower set of

lines are optimal expected actions conditional on receiving the bad shock and the higher

set of lines correspond to the good shock. Comparing the public-shock model with the

communication model, it is apparent that there is decline in effort levels. Because the

communication model cannot provide as much insurance as the public shock model, con-

sumption schedules are altered and the θ = 0.5 agent generally works a little less than

in the public shock model. There are also labor supply effects for the no-communication

model. In this example, effort in the no-communication model is always weakly less than

in the communication model for θ = 0.5 agents and it is weakly more for θ = 2.0 agents.

As suggested by Figure 4, Program 3 is tailoring compensation schedules towards the low-

marginal disutility of effort agent. This raises effort of the other type for much of the

Pareto frontier. Similarly, to ensure that the agent receives Ū utils, the program is also

being more generous in consumption and allowing slightly less effort for the low-marginal

disutility of effort agent.13 Finally, for certain values of Ū the incentive constraint on the

low-marginal disutility of effort agent binds in the solution to the no-communication model,

yet communication is still valuable.

4.4 Lottery examples

The following two examples demonstrate how lotteries can mitigate truth-telling con-

straints. In the Þrst example a lottery over recommended actions is part of the optimal

communication contract and in the second example a consumption lottery is part of the

optimal communication contracts.

The action-lottery example uses the following parameter values: C = [0.0, 0.2, 0.4, ..., 20.0],

13This property is not a theorem. There are examples where effort of the bad shock agent is less in the
no-communication model than in the communication model.
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Figure 5: Many-Actions Case � Expected action as a function of the state and the reser-
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Figure 6: Many-Actions Case � Agent�s expected utility as a function of the state and the
reservation utility level Ū .
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A = [1.50, 1.85, 2.20, ..., 5.00], two output levels Q = [2.0, 20.0], and Θ = [5.0, 10.0]. The

probability of the shocks are pr(θ = 2.0) = .25, and pr(θ = 0.5) = .75. The probability

of the high output is p(q = 20.0|a) = (a/6)0.8, which means that the probability of a high
output is increasing and concave in the action. Utility is U(c, a, θ) = c0.5+ (θ− a)0.5, so as
in the two-action example a high θ means a low marginal disutility of effort.

Programs P1, P2a, and P3 were solved for Ū = 5.0. For the public-shock model,

the solution is reported in Table 2. As indicated by the fourth and Þfth columns, action

assignments are degenerate in agent types. The θ = 5.0 agent (high marginal disutility of

effort) is assigned a = 2.90 with probability one and the θ = 10.0 agent is assigned the

higher action a = 5.0 with probability one. Optimal contracts along the θ = 5.0 path

are characterized by small compensation for q = 2.0 (the low output) and much higher

compensation for the q = 20.0 output.14 The contract for the θ = 10.0 agent is similar

though his level of consumption is lower than that of the other agent type.

π(c, q, a|θ) c q a θ
0.1128 3.00 2.0 2.90 5.0
0.3283 3.20 2.0 2.90 5.0
0.5590 15.20 20.0 2.90 5.0
0.0349 2.40 2.0 5.00 10.0
0.1009 2.60 2.0 5.00 10.0
0.5291 10.00 20.0 5.00 10.0
0.3352 10.20 20.0 5.00 10.0

Table 2: Action-lottery case � Solution to Program P1, the public-shock model.

The solution to Program P1 is not incentive compatible in the communication model.

The θ = 10.0 type agent would report he was the other type and take the better compen-

sation schedule. The solution to Program 2a is reported in Table 3.

14There is a consumption lottery in the compensation schedule for this type of agent if he produces the
low output. This lottery, however, is only an artifact of the consumption grid. With a Þne enough grid it
would disappear. In the next example, there will be a substantive consumption lottery.
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π(c, q, a|θ) c q a θ
0.3889 5.80 2.0 1.50 5.0
0.1914 5.80 20.0 1.50 5.0
0.1468 1.40 2.0 2.90 5.0
0.0383 1.60 2.0 2.90 5.0
0.1729 11.00 20.0 2.90 5.0
0.0617 11.20 20.0 2.90 5.0
0.0694 2.80 2.0 5.00 10.0
0.0663 3.00 2.0 5.00 10.0
0.1705 10.60 20.0 5.00 10.0
0.6938 10.80 20.0 5.00 10.0

Table 3: Action-lottery case � Solution to Program P2a, the communication model.

To preserve incentive compatibility Program 2a does several things. First, it slightly

raises compensation to the θ = 10.0 type. This increase makes truthful reporting more

attractive. Second, it lowers compensation to the low type and it lowers his labor effort

by recommending the lowest action a positive fraction of the time. This is a non-trivial

action lottery. There are several actions between 1.50 and 2.90 that the program could have

chosen but did not. One reason for this lottery is a non-convexity created by the moral

hazard constraint. Actions near 1.50 are either too expensive to implement or infeasible so

the program switches to the 1.50 action. However, the 2.55 action is implementable and

the public shock model, which also has the moral hazard non-convexity implements this

action for a range of the Pareto frontier. Consequently, because the communication model

chooses an action lottery over implementing this action, the lottery appears to help with

the truth-telling constraints. The very low action is a way of transferring utility to the

low-θ agent in a way that is relatively less appealing to the high-θ agent.

The Þnal example demonstrates that consumption lotteries may also mitigate truth-

telling constraints. In this example, the preference shock is a shock to risk aversion. Con-

sumption lotteries will then be valuable to separate agents on this basis. The example is

similar to Cole (1989) but with the addition of a moral hazard problem.
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This example uses the following parameter values: C = [0.01, 0.02, 0.03, ..., 2.00], A =

[0.2, 0.4, 0.6, 0.8], Q = [0.0, 10.0], and Θ = [0.10, 0.99]. The probability of the shocks

are pr(θ = 2.0) = 0.5, and pr(θ = 0.5) = 0.5. The probability of the high output is

p(q = 2.0|a) = a0.8. Utility is U(c, a, θ) = (c + 0.4)θ/θ − 0.6a2. The high-θ agent is
virtually risk neutral in this example. Finally, Programs P1, P2a, and P3 were solved for

a reservation level of utility of Ū = 5.4.

π(c, q, a|θ) c q a θ
0.0719 0.00 0.0 0.80 0.10
0.0916 0.01 0.0 0.80 0.10
0.8365 0.72 10.0 0.80 0.10
0.0217 0.30 0.0 0.80 0.99
0.1417 0.40 0.0 0.80 0.99
0.2030 1.29 10.0 0.80 0.99
0.6335 1.39 10.0 0.80 0.99

Table 4: Consumption-lottery case � Solution to Program P1, the public-shock model.

The solution to Program P1, the public-shock model, is reported in Table 4. Both

types of agents are induced to work the highest effort. This is done by compensating them

well if they produce the high output. There are consumption lotteries for the nearly risk

neutral type (θ = 0.99) but these appear to be due to numerical approximation. The main

difference between the two types� contracts is that the nearly risk neutral type receives

a uniformly higher level of consumption. This difference is due to the effect of θ on the

marginal utility of consumption. Program P1 tailors compensation to the two types in the

most cost-effective way.

Because the θ = 0.99 type�s contract is strictly higher than that of the other type, the

other type would have an incentive to misreport in the communication model. To prevent

this misreporting, Program P2a resorts to a consumption lottery to separate the types.

The solution to Program P2a is reported in Table 5.

34



π(c, q, a|θ) c q a θ
0.0222 0.06 0.0 0.80 0.10
0.1413 0.07 0.0 0.80 0.10
0.3082 0.87 10.0 0.80 0.10
0.5283 0.88 10.0 0.80 0.10
0.1635 0.00 0.0 0.80 0.99
0.2988 0.00 10.0 0.80 0.99
0.5377 2.00 10.0 0.80 0.99

Table 5: Consumption-lottery case � Solution to Program P2a, the communication model.

As in the solution to Program P1, the highest action levels are implemented for both

types of agents. Now, however, the contract changes in three ways to satisfy truth-telling

constraints: First, the compensation level of the risk-averse type (θ = 0.10) is higher.

Second, the consumption level as measured by expected consumption of the θ = 0.99 agent

declines. And, third, the way in which this agent is paid changes. Now, if he produces the

high output q = 20.0 he receives a lottery over the highest and lowest possible levels of

consumption. This randomization barely affects his utility but has a strong impact on the

truth-telling constraints for on the other, more risk averse agent.

Finally, if communication is removed then the consumption lotteries disappear. The

solution to Program P3 is reported in Table 6. Again, both agent types work the highest

effort level. Now the compensation contract cannot be tailored to the agent type. Relative

to the Program P1 solution, consumption levels are higher for the θ = 0.10 type and lower

for the θ = 0.99 type.

π(c, q, aθ1 , aθ2) c q aθ1 aθ2

0.1601 0.11 0.0 0.80 0.80
0.0777 0.12 0.0 0.80 0.80
0.1392 1.07 10.0 0.80 0.80
0.6973 1.09 10.0 0.80 0.80

Table 6: Consumption-lottery case � Solution to Program P3, the no-communication model.
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5 Field Work

Four of the cropping group arrangements were Þxed rent while four were sharecropping

arrangements, with a Þfty percent share. As has long been noted in the literature, principal-

agent theory predicts more insurance than is found in an explicit Þxed rent contracts, and

only under the most restrictive conditions does it predict the linear consumption sharing

rules found in an explicit sharecropping arrangement.

One Þnding from the surveys and the follow-up Þeldwork is that the explicit terms of

these contracts missed important features. For example, respondents regularly reported

that Þxed rents would be reduced in the event of drought or crop failure. Even in the

absences of these extreme shocks there are implicit terms. Of the four groups with Þxed

rents, three had a dispute with their landowner over the Þnal amount of rent to pay. These

disputes were settled with the help of outsiders.15

Contingencies need not only be introduced through rental payments. In the sharecrop-

ping arrangements, two of the groups had disputes over the amount of work supplied by

a tenant. Plus, there were cases where input purchases were made in a different propor-

tion than in the original agreement. Finally, it should be noted that insurance need not

only come from the landowner. Several of the groups used outside Þnanciers and implicit

contingencies in these loans can be a source of insurance and incentives.

Implicit contractual terms also seem to matter for assessing communication. The sur-

veys indicated that, when possible, there was frequent communication from the tenants to

their landowners and to their Þnanciers. At each interview, groups were asked when they

had last met with their landowner or Þnancier to discuss crop progress. For four of the

groups this is irrelevant since their landowner also participated in the group so saw the

15There are actually two different types of Þxed rent contracts in Aurepalle, each with its own name. In
one, tenants pay the Þxed rent at the end of season. In the other, less common one, tenants pay the rent
in advance. The latter type of contract appears to provide less scope for implicit insurance. The Þxed rent
cropping groups paid their rents at the end of the season.
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group members regularly. Of the other four, three were absentee landowners who lived in

the city. All three arrangements with these landowners were Þxed rent contracts. Commu-

nication with these landowners is prohibitively costly because of the distances and a lack

of telephone connections to Aurepalle. Only once did any of these groups communicate

with their landowner.16 However, two of these groups Þnanced their production through a

Þnancier and both indicated they met with their Þnancier regularly. One group indicated

that their meetings had occurred between four and ten days before each interview. Another

group responded that their meetings had occurred six to ten days before all but one inter-

view. At this interview they responded that no meeting had occurred. The Þnal group, with

the resident non-participating landowner, met frequently with their landowner, usually two

or three days before each interview. This group did not have an outside Þnancier.

The precise role of communication in the contracts is harder to ascertain. Certainly

crop progress and sometimes choice of inputs were discussed but how they were used in

assessment is not clear. That some information was transmitted is apparent along other

dimensions. The surveys measure ex post information sets of landowners in order to com-

pare them with those of the tenants. Landowners generally knew most of the information.

Whether this is the result of communication as in Model P2, the information being public

as in Model P1, or monitoring and inspections as in costly state veriÞcation models is un-

known. Also, Þnanciers were not interviewed as part of the surveys, though they did not

inspect operations. Follow-up interviews indicate that they are in frequent contact with

their borrowers.

Still, while unusual, one contractual arrangement is strikingly like the theory. This

arrangement was identiÞed during the follow-up visit by the author. This visit identiÞed

16In the follow up interviews, a group not originally surveyed was identiÞed that had a bad year and
wanted to renegotiate the payment. They did not renegotiate because it would have been too expensive to
travel to the city of Hyderabad (where the landowner lived) and discuss the matter with him. Consequently,
they paid the full rent.
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a cropping group with an explicit contract that resembles the contracts in Models P1 and

P2. This group sharecropped land from a non-resident landowner. At harvest time this

landowner would come to the village to collect his share. At this point, the tenants could

ask him to plant a crop of paddy (rice) for the following dry season. The landowner would

evaluate the well level (rice needs irrigation) and ask other tenants about this group. Then,

if he agreed to the additional crop the sharecropping contract would be converted to a Þxed

rent. If he did not agree then the existing sharecropping arrangement would remain and

no paddy would be planted. While not exactly the same environment, this arrangement

resembles qualitative features of the contracts found in Models P1 and P2. In the good

state, the contract provides less insurance to the agents so they work hard and in the

other states it provides them with more insurance and does not make them work as hard.

Evaluating the well suggests that the state is public information while talking to other

tenants suggests that at least some information about the state is private.

The surveys indicate that communication is an important variable as theory predicts.

Given the measurement issues involving implicit contracts, it is difficult to ascertain com-

munication�s precise role. Interestingly, the contracts with the non-resident landowners

all were Þxed rent contracts. These contracts make risk sharing over interim shocks more

difficult, as suggested by the ex post disputes over rental payments. This also suggests that

communication after the output has been realized might be important. In particular, com-

munication between the landowner and other members of the village, including the group�s

Þnancier, might be an important source of information. At this point, there are not models

of this type of communication or of communication between agents and multiple principals,

as in the case of a group with a landowner and a Þnancier.
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6 Conclusion

This paper investigated the effects of communication on incentives in a multi-stage op-

timal contracting model. The revelation principle was proven for the no-communication

model. Linear programs for solving the models were derived and used to compute solutions.

An alternative formulation for the communication model was provided. An advantage of

the linear programming methods is that it can be used to study problems with arbitrary

speciÞcation of preferences and endowments.

In simple examples, conditions for communication to be valuable were shown to depend

on the type of equilibrium in the no-communication model. If this bindingness condition

on incentive constraints was satisÞed then Pareto-superior communication contracts which

improved consumption risk sharing could be constructed. For a more complicated example

communication not only changed consumption risk sharing but altered labor allocations.

Action and consumption lotteries were also found to be valuable.

Finally, data from Þeld work was reported. Interim shocks to production and labor

endowments were reported. The precise role of communication was difficult to ascertain

because of apparent implicit contingencies in the contracts. Nevertheless, communication

appears to be an important variable, as predicted by theory.
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A Proofs

The no-communication model forbids the agent from sending reports. The principal may

still send messages m ∈M , but these cannot be conditioned on anything. As in Model P2,
the shock θ is hidden information. For a general proof of the revelation principle for games

with no communication, see Forges (1986).

Definition 5 A Bayesian-Nash equilibrium for Model P3 is a randomizer ∆(m), a con-

sumption schedule ∆(c|q,m), and strategy µ∗(a|m, θ) such that given the randomizer, and
the consumption schedule, the strategy solves for each m, θ realization

max
µ(a|m,θ)

X
c,q,a

∆(c|q,m)p(q|a)µ(a|m, θ)U(c, θ, a) (19)

It is convenient to describe an object: the probability of consumption, output, and the

strategy taken. Let aΘ be the vector of state-dependent actions, which is referred to as a

strategy. The probability of any strategy aΘ being taken by an agent is then:

π(aΘ) =
X
m

(
Y
θ

µ∗(aθ|m, θ))∆(m), (20)

and the probability of consumption c, given output q, and strategy aΘ is

π(c|q, aΘ) =
X
m

∆(c|q,m)pr(m|aΘ)

=
X
m

∆(c|q,m)(
Q
θ µ

∗(aθ|m, θ))∆(m)
π(aΘ)

, (21)

with

π(c, q,aΘ) = π(c|q, aΘ)
ÃX

θ

pr(θ)p(q|aθ)
!
π(aΘ). (22)

This determines an equilibrium distribution of consumption, output, and state contingent

strategy. Before proving the revelation principle it is helpful to repeat the deÞnition of the

obedient game. Recall that the message space for this game is M =
Q
θ∈ΘA.

40



Definition 3 An incentive-compatible allocation for Model P3 is a randomizer π(aΘ), a

consumption schedule π(c|q, aΘ), and a deterministic strategy aθ = a∗(aΘ, θ) such that given
the randomizer, the consumption schedule, and the recommended strategy aΘ, the strategy

aθ = a
∗(aΘ, θ) satisÞesX
c,q

π(c|q, aΘ)p(q|aθ)U(c, θ, aθ) ≥
X
c,q

π(c|q, aΘ)p(q|�a)U(c, θ, �a), ∀�a ∈ A, (23)

for each realization of θ.

Now it will be shown that the two mechanisms deliver the same allocations.

Theorem 1 The original mechanism and the obedient game for Model P3 deliver the same

allocations.

Proof: Equivalence is shown by demonstrating that any allocation feasible under one kind is

feasible under the other. Take any equilibrium satisfying the original mechanism. Construct

the obedient game using equations (20) and (21). Assume that this equilibrium is not

incentive compatible in the truth-telling game for some strategy aΘ, and realization �θ.

Pick any better action and call it �a then:

X
c,q

π(c|q, aΘ)p(q|a�θ)U(c, �θ, a�θ) <
X
c,q

π(c|q, aΘ)p(q|�a)U(c, �θ, �a). (24)

Substitute in equation (21) to get

X
c,q

X
m

∆(c|q,m)(
Q
θ µ

∗(a�θ|m, θ)∆(m))
π(aΘ)

p(q|a�θ)U(c, �θ, a�θ) (25)

<
X
c,q

X
m

∆(c|q,m)(
Q
θ µ

∗(a�θ|m, θ)∆(m))
π(aΘ)

p(q|�a)U(c, �θ, �a). (26)

Now eliminate π(aΘ) from both sides. Next, observe since the above equation does not

hold for the sum of m ∈ M , it must not hold for at least one m. Taking one of these m
and calling it �m means

X
c,q

∆(c|q, �m)(Y
θ

µ∗(a| �m, θ)∆( �m))p(q|a�θ)U(c, �θ, a�θ)

<
X
c,q

∆(c|q, �m)(Y
θ

µ∗(a| �m, θ)∆( �m))p(q|�a)U(c, �θ, �a). (27)
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Next construct a new strategy �µ(�a| �m, �θ) = µ∗(�a| �m, �θ) + µ∗(�a| �m, �θ), �µ(�a| �m, �θ) = 0 and let
�µ(a|m, θ) = µ∗(a|m, θ) if any one of the following conditions hold: θ 6= �θ,m 6= �m, a 6= �a, �a.
Divide both sides of the previous equation by the common factor (

Q
θ 6=�θ µ

∗(a| �m, θ)∆( �m)),
and then sum over all a to get the equation

X
c,q,a

∆(c|q,m)µ∗(a| �m, θ)p(q|a�θ)U(c, �θ, a�θ) (28)

<
X
c,q,a

∆(c|q,m)�µ(a| �m, θ)p(q|a)U(c, �θ, a) (29)

This contradicts our assumption that µ∗(a|m, θ) was incentive compatible. So the obedient
game which leaves the allocations unchanged is feasible. Going in the other direction is

trivial, just set M =
Q
θA. Q.E.D.

The next proposition is proven for preferences of the form U(c, θ, a) = U(c) + V (θ, a),

with U strictly concave, Va < 0, Vaa < 0, and Vθa > 0. The proof is easily modiÞed for the

preferences used in the many-action example.

Proposition 2 Assume that the preferences above hold, that there are two outputs with

the probability of the high output increasing with the action, and that in the solution to the

no-communication model the incentive constraint does not bind on the low-θ agent. Then,

communication is valuable.

Proof: For simplicity, assume that consumption is a continuum. With concave utility and

separable preferences there will not be consumption lotteries in the solution. Let al and ah

be the actions taken by θl and θh type, respectively, in the solution to the no-communication

model solution. The optimal contract c(q) satisÞes

X
q

p(q|ah)U(c(q)) + V (θh, ah) ≥ X
q

p(q|al)U(c(q)) + V (θh, al), (30)

X
q

p(q|al)U(c(q)) + V (θl, al) >
X
q

p(q|�a)U(c(q)) + V (θl, �a), ∀�a. (31)
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Now add communication. Communication contracts are indexed by the state, that is,

c(q, θh) and c(q, θl). Let c(q, θh) = c(q) and choose c(q, θl) such that

X
q

p(q|al)U(c(q, θl)) =
X
q

p(q|al)U(c(q)), (32)

and

X
q

p(q|al)U(c(q, θl)) + V (θl, al) =
X
q

p(q|a)U(c(q, θl)) + V (θl, a), (33)

where a < al is the downward adjacent action to al. This contract is constructed by increas-

ing c(ql, θ) and lowering c(qh, θ) until (33) holds. This new contract is Pareto superior be-

cause it leaves the agent�s utility unchanged and because
P
q p(q|ah)c(q, θl) <

P
q p(q|ah)c(q)

is better for the principal. It still remains to show that the new contract preserves incentive

compatibility.

The θl agent has no incentive to report θh since c(q, θh) = c(q). By the way c(q, θl)

was constructed,
P
q p(q|�a)U(c(q, θl)) <

P
q p(q|�a)U(c(q)), so the θl agent will not choose

an action �a > al. This same agent will also not choose an action �a < al because of the way

the new contract was constructed.

For the θh agent, if he reports truthfully then ah is incentive compatible because his

contract has not changed from that of the no-communication model. It only remains to

show that he will tell the truth.

Note that because of (30) and (32),

X
q

p(q|ah)U(c(q, θh)) + V (θh, ah) ≥
X
q

p(q|al)U(c(q, θl)) + V (θh, al),

that is, the θh agent will not lie and choose action al. Now consider the strategy of lying

and choosing �a < al. Because the θl agent will not choose an action �a < al and since

Vθa > 0

X
q

p(q|al)U(c(q, θl)) + V (θh, al) ≥
X
q

p(q|�a)U(c(q, θl)) + V (θh, �a), ∀�a < al.
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But by (30) and (32), this means that

X
q

p(q|ah)U(c(q, θh)) + V (θh, ah) ≥
X
q

p(q|�a)U(c(q, θl)) + V (θh, �a), ∀�a < al.

Finally, consider the strategy of the θh type lying and taking �a > a. By equation (32),

the construction that c(ql, θh) < c(ql, θl) < c(qh, θl) < c(qh, θh), and the probability of the

high output increasing with the action implies that
P
q p(q|�a)(U(c(q, θh))−U(c(q, θl))) > 0.

Therefore,

X
q

p(q|�a)U(c(q, θl)) + V (θh, �a) <
X
q

p(q|�a)U(c(q, θh)) + V (θh, �a)

≤ X
q

p(q|ah)U(c(q, θh)) + V (θh, ah),

with the latter inequality by the assumed incentive compatibility of the no-communication

contract and the construction that c(q) = c(q, θh). Q.E.D.

Proposition 3 proves that if preferences are of the form U(c, θ, a) = U(c) + V (θ, a),

with U strictly concave, Va < 0, Vaa < 0, and Vθa > 0 then many of the strategies

in Model P3, the no-communication model, are not incentive compatible. When solving

examples, this allows a sizable reduction in the grid space for that model. The Proposition�s

conditions directly apply to the example with the V (θ, a) = V (θ−a) preferences. To apply
the Proposition to the V (θ, a) = −θa2 preferences, the condition needs to be changed to
Vθa < 0 because the low value of θ is now the low marginal disutility of effort agent.

Proposition 3 For the preferences described above, in Model P3 strategies where the low-θ

agent takes an action higher than the high-θ agent are not incentive compatible.

Proof: As before, for simplicity assume that C is a continuum so that attention can be

restricted to deterministic compensation schedules. Let (a(θl), a(θh)) be a pair of actions

to implement. The incentive constraints include

X
q

p(q|a(θl))U(c(q)) + V (θl, a(θl)) ≥
X
q

p(q|a(θh))U(c(q)) + V (θl, a(θh)),
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X
q

p(q|a(θh))U(c(q)) + V (θh, a(θh)) ≥
X
q

p(q|a(θl))U(c(q)) + V (θh, a(θl)).

Rearranging the two incentive constraints obtains

V (θl, a(θh))− V (θl, a(θl)) ≤ V (θh, a(θh))− V (θh, a(θl)). (34)

Now assume that a(θl) > a(θh). This assumption and inequality (34) contradict the as-

sumption that Vθa > 0. Q.E.D.
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