Documentation of the linear programming code used in
“Firms as Clubs in Walrasian Markets with Private
Information”

Edward Simpson Prescott®
Federal Reserve Bank of Richmond

Robert M. Townsend*

University of Chicago
Federal Reserve Bank of Chicago

July 11, 2007

Abstract

This note documents the linear programming code used in ”Firms as Clubs in
Walrasian Markets with Private Information.” It spells out the linear program and
then describes the structure of the code.

1 Introduction

This note describes the algorithm and the computer code used to solve the examples in
Prescott and Townsend (2006). The examples report Pareto optimal allocation and prices
and incomes that support them as competitive equilibria. The Pareto optimum are found
by solving a Pareto program, which is a linear program. Prices and incomes were then
determined from the allocation and the Lagrangian multipliers.

In principle, this is a straightforward exercise. In our club economies with private in-

formation, however, the first step — solving the Pareto program — is difficult. For any

*The views expressed in this paper are solely those of the authors and do not necessarily reflect the
views of the Federal Reserve Banks of Chicago and Richmond or the Federal Reserve System. Con-
tact information: Prescott, Federal Reserve Bank of Richmond, P.O. Box 27622, Richmond, VA 23261,
Edward.Prescott@rich.frb.org; Townsend, Dept. of Economics, University of Chicago, 1126 E. 59th St.,
Chicago, IL 60637, rtownsen@midway.uchicago.edu.

reasonable application, a large number of possible contracts is needed. In our economy,
each possible contract is a different commodity, so there are a huge number of variables and
constraints in the linear program. The appendix to Prescott and Townsend (2006) reformu-
lates the Pareto program into an alternative formulation, which removes the large number
of club constraints. However, this program still has an enormous number of variables, too
large to directly enter into computer memory.

Instead, the program is solved by using the Dantzig-Wolfe decomposition algorithm.
This algorithm is a simplex-based algorithm that can be used to solve linear programs with
a block angular constraint matrix, that is, a constraint matrix with blocks of variables and
constraints with non-zero coefficients that are only connected by a few constraints. The
algorithm was first developed by Dantzig and Wolfe (1960). Descriptions of it can be found
by in many advanced linear programming textbooks like Bertsimas and Tsitsiklis (1997).
Prescott (2004) uses this algorithm to solve moral-hazard programs.

This document gives a short summary of the code. For a description of the algorithm,

as it is applied to club economies, see the appendix in Prescott and Townsend (2006).

2 The Code

The code is written in a programming language called GAMS. Programming languages
like GAMS are well suited to solving linear programs. The programmer only needs to
program the parameters. The programming language handles the interface with the linear
programming subroutine.solver.!

solver that comes with GAMS.

In this problem, we used the BDMLP linear program

The code is divided into five parts.

1. Define the parameters.

2. Define the subprograms.

!The code was originally programmed in Matlab for a different example than the one reported in the
final version of the paper. This code is available on request. It is longer and not so well documented.
Furthermore, it called a linear programming routine that we no longer use. A user of this code would have
to get hold of a linear programming routine callable from Matlab and then modify the code to enter the
coefficients in the form needed by the routine.

3. Define the master program.
4. Run the algorithm.

5. Calculate prices and incomes and write results to a text file.

The first step in the algorithm is to find a feasible starting point. Simplex based
algorithms find a feasible starting point by solving a particular auxiliary linear program.
This step is commonly called Phase one of the algorithm. Given all the data, most linear
programming routines automatically find a starting point, but because we cannot specify
the whole problem — remember, we only generate columns of the master program with each
iteration — we have to use the Dantzig-Wolfe algorithm to solve Phase one. See Bertsimas
and Tsitsiklis (1999) for more details on this step.

Once a feasible solution is found, the algorithm searches for an optimum. This is
commonly called Phase two of the simplex algorithm. We also solve this step with the
Dantzig-Wolfe algorithm. Given a feasible solution to the master program, the dual vari-
ables are calculated, then these variables are used to solve the subprograms. The solutions
to the subprograms are then used to check the optimality conditions and entered into the
master program if needed. See the appendix of Prescott and Townsend (2006) for more
details.

Once a solution to the master program is found, the code solves the appropriate sub-
programs to calculate the solution. It then calculates prices and incomes, and writes all
the results to a text file.

Finally, when we define the subprograms and the master program, we define two versions
of each program. One version is used when solving Phase one and the other version is used
when solving Phase two of the algorithm. Part 4 consists of one single loop. The same
loop is used for both phases of the algorithm. If-then statements are used to keep track of
whether the Phase one or Phase two version of a program needs to be called. More details

are contained in the code.

3 References
References

[1] Bertsimas, Dimitris and John N. Tsitsiklis. Introduction to Linear Optimization. Bel-

mont, Massachusetts: Athena Scientific, 1997.

[2] Dantzig, George B. and Philip Wolfe. “The Decomposition Principle for Linear Pro-
grams.” FEconometrica 29 (October 1961): 767-78.

[3] Prescott, Edward Simpson “Computing Solutions to Moral-Hazard Programs Using the
Dantzig-Wolfe Decomposition Algorithm.” Journal of Economic Dynamics and Control

28 (January 2004): 777-800

[4] Prescott, Edward Simpson and Robert M. Townsend. “Firms as Clubs in Walrasian
Markets with Private Information.” Journal of Political Economy 114 (August 2006):
644-71.

$title Example in paper: Solved with D-W

* This program solves for a Pareto optimum and then finds prices and
incomes that support it as a competitive equilibrium. The example
solved is the one used in the paper, "Firms as Clubs in Walrasian
Markets with Private Information." The program uses the Dantzig-Wolfe
algorithm to solve the Alternative Pareto Program in the Appendix. A
supporting competitive equilibrium is then calculated.

Note 1: The program is setup to loop over a range of Pareto weights and
capital levels. What is shown below is the single run for the

pareto weight and capital level combination used in the example
reported in the paper. The bigger loops are commented out. If these

are to be implemented changes need to be made to numbers of values

in the sets ik and ipw. (The indices for capital levels and Pareto
weights.)

Note 2: the code is written to only handle case where agents are not
intrinsically different. They can differ in their Pareto weights. Also,
it is written for only two types. Would require some modification

for more than two types.

Note 3: Idle firms are lumped together with self-employment firms

by solving one subprogram. They are differentiated by using
constraints. For example, the idle firms are handled by requiring
that if k=0 then a=0 (and vice versa) and dropping the incentive
constraints in this case. Similarly, self-employment firms are handled
by requiring that if k>0 then a>0, and imposing the incentive
constraints.

10/13/05
Edward S. Prescott

LN T S TN R TN N BN N RN N I N 2 I NN RS BN T NN N RN S N R BN N BN N R

Note 4: This code could be substantially improved by keeping track
of subprogram results and then using these results in other loops.
* PART 1 - DEFINE THE PARAMETERS
* NOTE: thi has to be defined first because it starts with 0, we have
* lots of other ordered sets that start with 1, and we want thi to be
* an ordered set.
set thi position for the supervisor /0*2/;
set c consumption /1*61/
q output /1*%2/
a actions /1*3/
k capital input /1*3/
job job /1*2/
th agent types /1%2/
ik index capital endowment levels /1/
ipw index Pareto weights /1/ ;
* ik index capital endowment levels /1*21/
* ipw index Pareto weights /1*17/ ;
* Define an index of the different firm-agent combinations
* Use (th,thi) combinations to index firms.
* The SE firms are (1,0) and (2,0).
* The SW firms are (1,1), (1,2), (2,1), and (2,2).
set se(th,thi) set of SE firms /(1*2).0/
sw(th,thi) set of SW firms /(1*2) .(1*2)/
ds1(th,thi) firms with type-1 as sup /(1*2).1/
ds2(th,thi) firms with type-2 as sup /(1*2).2/;
alias (c,cw,cs), (q,gbar), (a,abar,ahat), (k,kbar), (th,thp,thr);

parameter c0o(c) Consumption
qo(q) Output
ao(a) Action
ko(k) Capital input

u(c,a,job,k) Utility function

dis(job) Disutility parameter on job
p(g,a,k) Technology
rcl(c,q) resource usage by self-employment firm

rc2(cw,cs,q) resource usage by supervisor-worker firm

kappa capital endowment for given loop
kap(ik) Capital endowment levels

ParW(ipw) Type-1 Pareto weight

lam(th) Pareto weights for a given loop
alp(th) Each type"s fraction of the population;

* Set the grids, technology, and resource level.
c0(c) = (1.2/(card(c)-1))*(ord(c)-1);
q0("1") = 07 qO("2")
a0(*"'1") = 0; ao('2"™)
kO(k) = ord(k)-1;

* Set probabilities for the zero capital and zero effort cases

1; ao("3") = 2;

p('1l,a,"1™) = 1; p(C'2",a,"1") = 0;
pCr1r,r1r,k) = 15 pCr2","1",k) = 03

* Set probabilities for the other cases
p(C'1t,mr2n,"2") = 0.80; p(r2","2","2") = 0.20;
p(C'1t,m3","2") = 0.50; p(r2","3","2") = 0.50;
pC'1v,"2","3") = 0.607 p("2","2","3") = 0.40;
p('1,"3","3") = 0.20; p(“2","3","3") = 0.80;

* Set fractions of population
alp('1™) = 0.5; alp('2™) = 0.5;
* Set capital levels for loop
* Creates an equally spaced grid over the range [0.2,1.2]
* kap(ik) = (1/(card(ik)-1))*(ord(ik)-1)+ 0.2;
kap(''1"™) = 0.6;

* Set Pareto weights for loop

* Creates and equally spaced grid over the range [0.01,0.49]
* ParW(ipw) = (.48/(card(ipw)-1))*(ord(ipw)-1)+ 0.01;
ParW(**1) = 0.16;

* Define utility and resource usage in terms of the grids.
* job = 1 corresponds to worker, job = 2 corresponds to supervisor
dis('1l™) = 1; dis('2"™) = 0.1;
u(c,a,job,k) = 2*c0(c)**0.5 - dis(Job)*((a0(a)/4));
rcl(c,q) = co(c) - qo(a);
rc2(cw,cs,q) = c0(cw) + c0(cs) - qo0(q);

* Open the output file for the solutions set some parameters that
* control the display of output.
file mfile /FinallLoop.out/;
mfile.pc = 0O;
mfile.ps = 120;
* Open an output file for writing data about the type of
* supervisor-worker firms that are created.
file mfile2 /FinalLoop.m/;

* The following parameters are updated by the master program. Because
* they are used by all of the subprograms they are defined first.

scalar lamw worker®s Pareto weight
lams supervisor®s Pareto weight
muc multiplier on consumption resource constraint

muk multiplier on capital resource constraint

129 muw multiplier on worker®s (or SE) meas. constraint 193 obj2 Value of subproblem objective function;

130 mus multiplier on supervisor™s measure constraint; 194
131 parameter mum(th) multipliers on agent"s measure constraint; 195 equations sub2obj, sub2utilsw, sub2utilss, sub2resc, sub2resk,
132 196 sub2tech, sub2meas, sub2objphl, sub2kl, sub2al;
133 197
134 * PART 11 - DEFINE THE SUBPROBLEMS 198 sub2objphl. . obj2 =e= -muc*resc2-muk*resk2-muw-mus;
135 * Setup the self-employment subproblem. The scalar variables above are 199 sub2obj . . obj2 =e= lamw*utilsw2+lams*utilss2
136 * updated by the algorithm. 200 - muc*resc2-muk*resk2-muw-mus;
137 positive variables pil(c,q,a,k) Probability; 201 sub2utilsw. . utilsw2 =e= sum((cw,cs,q,a,k),
138 202 pi2(cw,cs,q,a,k) * u(cw,a,"1",k));
139 * These variables are useful because they are generate numbers needed 203 sub2utilss.. utilss2 =e= sum((cw,cs,q,a,k),
140 * by the master program. The 1 at the end means that this problem refers 204 pi2(cw,cs,q,a,k) * u(cs,a,"2",k));
141 * to the single agent subproblem. 205 sub2resc. . resc2 =e= sum((cw,cs,q,a,k),
142 variables utilsl Agents utility 206 pi2(cw,cs,q,a,k) * rc2(cw,cs,q));
143 rescl Consumption resource usage 207 sub2resk. . resk2 =e= sum((cw,cs,q,a,k),
144 reskl Capital resource usage 208 pi2(cw,cs,q,a,k)* ko(k));
145 obj1l Value of subproblem objective function; 209 sub2tech(gbar,abar,kbar) ..
146 210 sum((cw,cs), pi2(cw,cs,qgbar,abar,kbar))
147 equations sublobj, sublutils, sublresc, sublresk, subltech, 211 =e= p(gbar,abar,kbar)*sum((cw,cs,q), pi2(cw,cs,q,abar, kbar));
148 sublic, sublmeas, sublobjphl, sublkl, sublal; 212 sub2meas. . sum((cw,cs,q,a,k), pi2(cw,cs,q,a,k)) =e= 1;
149 213 * A simple way to guarantee that supervisor-worker firms can"t choose
150 sublobjphl.. objl =e= -muc*rescl-muk*reskl-muw; 214 * zero capital or zero effort.
151 sublobj. . objl =e= lamw*utilsl - muc*rescl-muk*reskl-muw; 215 sub2kl. . sum((cw,cs,q,a), pi2(cw,cs,q,a,"1")) =e= 0;
152 sublutils.. utilsl =e= sum((c,q,a,k), pil(c,q,a,k) * u(c,a,"1",k)); 216 sub2al.. sum((cw,cs,q,k), pi2(cw,cs,q,"1",k)) =e= 0;
153 sublresc.. rescl =e= sum((c,q,a,k), pil(c,q,a,k) * rcl(c,q)); 217
154 sublresk. . reskl =e= sum((c,q,a,k), pil(c,q,a,k) * k0(k)); 218 model sub2phl /sub2objphl, sub2utilsw, sub2utilss, sub2resc, sub2resk,
155 subltech(gbar,abar,kbar).. 219 sub2tech, sub2meas, sub2kl, sub2al/;
156 sum(c, pil(c,qgbar,abar,kbar)) 220 model sub2 /sub2obj, sub2utilsw, sub2utilss, sub2resc, sub2resk,
157 =e= p(qbar,abar,kbar) * sum((c,q), pil(c,q,abar,kbar)); 221 sub2tech, sub2meas, sub2kl, sub2al/;
158 * No IC for k=0 and a=0. (ldle "firms"™). For SE firms, IC only 222
159 * allow deviations to non-zero a. 223 * PART 111 - DEFINE THE MASTER PROGRAM
160 sublic(a,ahat,k)$(not sameas(a,ahat) and kO(k) ne 0 and a0(a) ne O 224 FFFFFFIRIRIRIR\|aster program
161 and aO(ahat) ne 0).. 225 * slab labels the iterations for the master program. The columns are
162 sum((c,q), pil(c,q,a,k) * u(c,a,"1",k)) =g= 226 * indexed by the cross-product of the subproblem, (th,thi), with slab.
163 sum((c,q), pil(c,q,a,k) * p(q,ahat,k)/p(q,a,k) * u(c,ahat,”1",k)); 227
164 sublmeas. . sum((c,q,a,k), pil(c,q,a,k)) =e= 1; 228 sets slab master program iterations /1*1000/
165 * Constraints that guarantee that a=0 if k=0 and vice versa 229 s(th,thi,slab) generated columns from subproblems;
166 sublkl.. sum((c,q,k)$(k0(k) ne 0), pil(c,q,"1",k)) =e= 0; 230
167 sublal.. sum((c,q,a)$(a0(a) ne 0), pil(c,q,a,” 1)) =e= 0; 231 * s(th,thi,slab) is a dynamic set. As master program iterations are run,
168 232 * we will make new elements of it active. The (th,thi) pairs cover the
169 model sublphl /sublobjphl, sublutils, sublresc, sublresk, subltech, 233 * combinations (1,0),(2,0),(1,1),(1,2),(2,1),(2,2). Each corresponds to
170 sublic, sublmeas, sublkl, sublal/; 234 * a subproblem: (1,0) refers to an agent 1 self-employment firm,
171 model subl /sublobj, sublutils, sublresc, sublresk, subltech, 235 * while (1,2) refers to a sup-worker firm with agent 1 as the worker and
172 sublic, sublmeas, sublkl, sublal/; 236 * agent 2 as the supervisor.
173 237
174 238 * To start the algorithm, make all the columns inactive.
175 * Setup the supervisor-worker subproblem. The scalar variables are 239 s(th,thi,slab) = no;
176 * updated by the algorithm. 240
177 * NOTE: pi2 is only indexed by one effort level. In the paper, we 241 * mutils will equal lam(th)u(bl,w) for a SE firm and it will
P y y pap q

178 * constrain worker®"s and supervisor®s effort to be equal. Rather than 242 * equal lam(th)u(b2,w)+lam(thi)u(b2,s) for a SW Firm.
179 * distinguishing between their efforts and putting a constraint that 243 parameter mutils(th,thi,slab) contrib to obj from subprob
180 * requires them to be equal, only one effort level is written and it is 244 mresc(th,thi,slab) net cons. usage by subprob
181 * applied to both agents. The generalization is easy to do though it 245 mresk(th,thi,slab) capital usage by subprob
182 * makes the equations longer. 246 meas(thp,th,thi,slab) contrib. to measure constr.;
183 247 * The probability measure coefficients are defined here
184 positive variables pi2(cw,cs,q,a,k) Probability; 248 * This is inelegant. Should be a better way to do this.
185 249 parameter thO(th)
186 * These variables are useful because they generate numbers needed 250 thi(thi);
187 * by the master program. The 2 at the end means that this problem refers 251 tho(th) = ord(th); thi(*'0"") = 0; thi("1"™) = 1; thi1("2"™) = 2;

y prog p
188 * to the supervisor-worker subproblem. 252 meas(thp,th,thi,slab) = 0;
189 variables utilsw2 Worker*®s utility 253 * Pick up SE firms and SW firms with different types
190 utilss2 Supervisor®s utility 254 * where thp is the worker
191 resc2 Consumption resource usage 255 meas(thp, th,thi,slab)$(thO(thp)=th0(th) and thO(thp) ne thi(thi)) = 1;

192 resk2 Capital resource usage 256 * Pick up SW firms with different types where thp is the supervisor

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

*

*

Ok % ok X ok X F X %

meas(thp, th,thi,slab)$(thOo(thp) ne tho(th) and thO(thp)=thl(thi)) = 1;
Pick up SW firms where thp is both the worker and supervisor.

Counted twice.

meas(thp,th,thi,slab)$(thO(thp) = thOo(th) and thO(thp)=thl(thi)) = 2;

Create a parameter that keeps track of the simplex multipliers used
to solve the subprograms.
parameter mmc(slab)
mmk(slab)
mml(slab)
mm2(slab)
aux(slab)

Consumption multiplier

Capital mulitplier

Agent 1"s prob measure constraint
Agent 2"s prob measure constraint

1 means aux Ip while 2 means reg Ip;

positive variables mprob(th,thi,slab)
excess(thp) used for phase 1
slcl slack var on cons. res.
skl slack var on cap. res.
mobj ;

constraint
constraint;
variables

Variables that end with phl are only used when solving Phase I of
the algorithm.
equations masobj
masresc
masresk

objective function

net consumption resource constraint
capital resource constraint

masmeas (thp) probability measure constraints
masobjphl Phase 1 objective function
masmeasphl(thp) Phase 1 probability measure constraints»

masobj . .
masobjphl..

mobj =e= sum(s,mprob(s)*mutils(s));

mobj =e= sum(thp,-excess(thp));

masresc. . sum(s, mprob(s)*mresc(s)) + slcl =e= 0;

masresk. . sum(s, mprob(s)*mresk(s)) + slkl =e= kappa;
masmeas(thp).. sum(s, mprob(s)*meas(thp,s)) =e= alp(thp);
masmeasphl(thp).. sum(s,mprob(s)*meas(thp,s))+excess(thp) =e= alp(thp)»

Auxiliary master Ip used in Phase 1 to find a feasible starting point.
model masterphl /masobjphl, masresc, masresk, masmeasphl/;

Master Ip used in Phase Il to find a solution.

model master /masobj, masresc, masresk, masmeas/;

Set print and workspace options on the all the Ip°s

Used the bdmlp solver

option Ip = bdmlp;

option limcol=0, limrow=0, solprint= off, sysout=off;

The bratio option makes sure that GAMS doesn"t use information

from previous solves in generating a basis. This is important

because subprograms that are part of the solution to the master

program are resolved to generate the optimal contracts. By not

using information from previous solves, each Ip will reach the

same solution if resolved. This prevents the possibility of a

subprogram having multiple solutions and the code generating

a master program column with one solution and then calculating

prices, incomes, and optimal contracts from a different solution.

The gap variable is a partial check for this.

option bratio = 1;

master.bratio = 1;

subl.bratio = 1; sublphl.bratio
1;

=]_;
sub2.bratio = sub2phl.bratio

1;

*

PART IV - RUN THE DANTZIG-WOLFE ALGORITHM

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

Ok % b X ok X %

ok % b X b X b X %

The simplex algorithm needs a feasible solution to start, so the first
thing to do is solve Phase one of the simplex algorithm. This is done
by using the Dantzig-Wolfe algorithm to solve the auxiliary linear
program. However, the auxiliary linear program also needs a feasible
solution to start. Given the way we set the Phase 1 problem up, this is
easy. The auxiliary master program will just choose non-zero values of
the slack variables.

As long as the master program has a feasible solution, the solution to
the auxiliary Ip will satisfy excess(thp)=0 and it will be a feasible
solution to the master Ip. We can then initiate D-W with that feasible
solution.

Both phase one and phase two are solved using the same while loop. When
different operations are used by the two phases, if-then statements are
used to perform the right operation. The parameter phase = 1 means
phase one is being run, while phase = 2 means phase two is being run.

Do some necessary declarations
submax is the the maximum number of loops allowed
(needed in case of cycling or really slow convergence)
done=0 means the while loop is not done, =1 means done
phase indicates which phase the algorithm is in
scalar submax 71000/

done 70/
phase /1/;
parameter presc multiplier on net consumption
presk multiplier on capital
pmc(th) multipliers on prob. measure constraints;

Set some values that will be used for calculating things used in
creating the output
set j /1*4/;
parameter prices(thr,thi,slab,job) keep track of prices
voffirm(thr,thi,slab) value of a firm
sumsw(ipw, ik, j) keeps track of sw firms for each run»

sumsw(ipw, ik, j)=0;
scalar zs
pk;
parameter expenditures(th) total expenditures by an agent type
expper (th) per capital expenditures;
parameter autill type-1 agents® utility

autil2 type-2 agents® utility
countl useful counter

count2 another useful counter
gap;

loop(ipw,

*

lam('1™) = ParW(ipw); lam("2") = 1-lam("'1");
loop(ik,

kappa = kap(ik);
reset the dynamic sets to restart the algorithm

s(th,thi,slab) = no;
Need to reset probabilities to zero for each run, because GAMS
does not reset values of this variable.

mprob. 1(th,thi,slab) = 0;
This first loop finds a starting point for the auxiliary Ip. It
generates an arbitrary column for the master program from the
subprograms. By putting a column in the master constraint matrix
the auxiliary Ip has some data from which it can always get an
initial feasible solution. With an arbitrary column, there will

382
383
384
385
386
387
388
389
390
391
392
393
394
395

396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

436
437
438
439
440
441

*

always be a solution that puts zero weight on the column and sets
the slack variables equal to the values of the constraints. This
suggests we could skip the column but GAMS did not like having no
values in some of the master auxiliary Ip (e.g. mresc or mresk).

Pick some arbitrary simplex multiplier values.
muw = 1; mus = 1; muc = 1; muk = 1;
loop((thi,thr),
Check to see if it is a single-agent subproblem
if (se(thr,thi),
lamw = lam(thr);
solve sublphl using Ip maximizing obj1;
abort$(sublphl.modelstat=4) "SE subproblem infeasible";
abort$(sublphl.modelstat<>1) "SE subproblem not solved to opti»

mum®*;

*

-

Add the solution to the master program
mutils(thr,thi,”1") = lamw*utilsl.l;
mresc(thr,thi,"1") = rescl.l; mresk(thr,thi,"1") =
IT it is a supervisor-worker subproblem
else
Set parameters for worker position
lamw = lam(thr);
Set parameters for supervisor position (there should be a bette»

reski.l;

way to do this). First, check to see if type-1 is the sup.
if (dsi(thr,thi),
lams = lam(*"'1");
else
lams = lam(*'2");
):
solve sub2phl using Ip maximizing obj2;
abort$(sub2phl.modelstat=4) "SW subproblem infeasible™;
abort$(sub2phl.modelstat<>1) "SW subproblem not solved to optim»

um';

*

Add the solution to the master program
mutils(thr,thi,”1") = lamw*utilsw2._l+lams*utilss2.1;
mresc(thr,thi,”1"™) = resc2.1; mresk(thr,thi,”1"™) = resk2.1;
)
Make the column of the master program active
s(thr,thi,”1"™) = yes;

H
mme('1™)
mm1('1™)
aux('1™)

muc; mmk('1'™)
muw; mm2("'1™)
1;

muk;
mus;

Start the D-W loop
First, set some parameter values that control the loop.
done = 0; phase = 1;

loop(slab$(ord(slab) ne 1 and not done),

iT (phase=1,
solve masterphl using Ip maximizing mobj;
abort$(masterphl.modelstat=4) "Auxiliary Ip infeasible";
abort$(masterphl.modelstat<>1) "Auxiliary Ip not solved to optimu»

mum(th) = masmeasphl.m(th);
aux(slab) = 1;

else
solve master using Ip maximizing mobj;
abort$(master.modelstat=4) "Master Ip infeasible";
abort$(master.modelstat<>1) "Master Ip not solved to optimum";

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

461
462
463
464

465
466
467
468
469
470
471
472
473
474

475
476
477
478
479
480
481
482
483
484

485
486
487
488

489
490
491
492
493
494
495
496
497
498
499
500

*

timum™

*

imum™;

mum(th) = masmeas.m(th);
aux(slab) = 2;

);
muc = masresc.m; muk = masresk.m;

Store the simplex multipliers so they can be recovered later
mmc(slab) = muc; mmk(slab) = muk;

mml(slab) = mum('1™); mm2(slab) = mum('2");

submax = 0;

Now solve the subproblems. Loop over all the different types of
firms, i.e., (1,0), (2,0), (1,1), (1,2), (2,1), and (2,2).
loop((thi,thr),
If it is a self-employment subproblem
it (se(thr,thi),
lamw = lam(thr); muw = mum(thr);
iT (phase=1,
solve sublphl using Ip maximizing objl;
abort$(sublphl.modelstat=4) "SE subproblem infeasible™;
abort$(sublphl.modelstat<>1) "SE subproblem not solved to op»
else
solve subl using Ip maximizing obj1l;
abort$(subl.modelstat=4) "SE subproblem infeasible;
abort$(subl.modelstat<>1) "SE subproblem not solved to optim»

s
Add the solution to the master program
mutils(thr,thi,slab) = lamw*utilsl.l;
mresc(thr,thi,slab) = rescl.l; mresk(thr,thi,slab) = reskl.l;
submax = max(submax,objl1.1);
IT it is a supervisor-worker subproblem
else
Set parameters for worker position
lamw = lam(thr); muw = mum(thr);
Set parameters for supervisor position (there should be a bette»

way to do this). First, check to see if type-1 is the sup.
it (dsi(thr,thi),
lams = lam('1™); mus = mum('1™);
else
lams =
);
if (phase=1,
solve sub2phl using Ip maximizing obj2;
abort$(sub2phl.modelstat=4) "SW subproblem infeasible";
abort$(sub2phl.modelstat<>1) "SW subproblem not solved to opt»

lam('2"); mus = mum('2™);

else
solve sub2 using Ip maximizing obj2;
abort$(sub2.modelstat=4) "SW subproblem infeasible";
abort$(sub2.modelstat<>1) "SW subproblem not solved to optimu»

);

Add the solution to the master program

mutils(thr,thi,slab) = lamw*utilsw2.l+lams*utilss2.1;
mresc(thr,thi,slab) = resc2.l; mresk(thr,thi,slab) = resk2.1;
submax = max(submax,obj2.1);

s&thr,thi,slab) = yes;
);

submax is the highest value of the optimality conditions
if ((phase = 1 and submax < 0.00001),
phase = 2; submax = 10000;

501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

abort$(mobj - 1>.00001) "Value of auxiliary LP positive, so LP infeas»
ible";
display "Auxiliary LP solved";
display mobj.1I;
display slcl.1;
display slkl.1;
elseif (phase = 2 and submax < 0.00001),
display "Master LP solved";
done = 1;
'
display submax;
abort$(ord(slab)=card(slab)) "D-W algorithm did not converge"
)
* Store the values of the multipliers to the master problem, so they can
* be used to calculate prices. Do not index by
* slab because we are only interested in these variables at the optimum.
presk = masresk.m; presc = masresc.m;
pmc(th) = masmeas.m(th);
* PART V- WRITE SOLUTION TO TEXT FILE
*
* Generate solution by solving appropriate subprograms
* and write solution to a text file.
put mfile;
put ""PARETO OPTIMUM AND SUPPORTING PRICES AND INCOMES':<>80 //;
put "Values of parameters" /;
put M- "/
put "Aggregate capital endowment: ", kappa:<4:2 /;
put "Fraction of agents that are type-1: ™, alp(1'):<4:2 /;
put "Fraction of agents that are type-2: ", alp('2'):<4:2 /;
put "Pareto weight on type-1 agents: ", lam('1'"):<4:2 /;
put "Pareto weight on type-2 agents: ", lam('2'):<4:2 /;
put ///;
put ""SOLUTION TO PARETO PROGRAM":<>54 /
"Reported as different basic feasible solutions':<>54 /
e ———————— ":<>b54 /;
put /;
countl = 1; count2 = 1;
* Total utility of each agent is calculated by determining the
* contribution to an agent®s total utility from each subproblem solution
* that is part of the master program solution. Consequently, we start the
* utilities at a value of zero and then sequentially add each
* contribution.
autill = 0; autil2 = 0;
* Now resolve appropriate subproblems to generate the solution and the
* write the solution to the output file.
autill = mm1("2"™); display autill; autil2 = mm2("2"); display autil2;
autill = 0; autil2 = O;
loop((thi,thr),
loop(slab$(mprob. 1 (thr,thi,slab)>0),
display$(aux(slab) = 1) "Solution includes point from aux Ip";
* Recover the values of the dual variables and Pareto weights
* corresponding to slab.
lamw = lam(thr); muc = mmc(slab); muk = mmk(slab);
if ((ord(thr)=1), muw = mml(slab);
else muw = mm2(slab););
if ((thl(thi)=1), mus = mml(slab); lams = lam("'1™);
elseif (thl(thi)=2), mus = mm2(slab); lams = lam("2"););

564
565
566
567
568
569
570
571
572

573
574
575
576

577
578
579
580

581
582

583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601

602
603
604
605
606
607

608
609
610
611

612
613
614
615
616
617

618

* Check to see if is a SE club. If so, resolve the subproblem,
* write the solution to the output file, update utilities, and
* calculate prices.

it (se(thr,thi),
ifT (aux(slab)=1,
solve sublphl using Ip maximizing objl;
abort$(sublphl.modelstat=4) "SE subproblem infeasible™;
abort$(sublphl.modelstat<>1) "SE subproblem not solved to op»

timum™;
else
solve subl using Ip maximizing obj1l;
abort$(subl.modelstat=4) "SE subproblem infeasible;
abort$(subl.modelstat<>1) "SE subproblem not solved to optim»
um';
s
* Update agent®s utility
if ((ord(thr)=1),
autill = autill + mprob.1(thr,thi,slab)*utilsl.1/alp(thr»
);
else
autil2 = autil2 + mprob.1(thr,thi,slab)*utilsl.1/7alp(thr»
)
s
prices(thr,thi,slab,”1") = (lam(thr)*utilsl.l-pmc(thr))/presk;
voffirm(thr,thi,slab) = (rescl.l*presc+reskl.l*presk)/presk;
* Theory says the following expression should equal zero.
* Abort if it doesn"t

gap = prices(thr,thi,slab,”1")-voffirm(thr,thi,slab);
abort$(gap>0.000001 or gap<-0.000001) "Problem with SE prices"
* Write the solution to the output file
put ""Self-employment club number *, countl:1:0 /
"Club type is (", thO(thr):1:0, ",0)" /
"The number of these clubs is ", mprob.l1(thr,thi,slab):<4:»

37/;
put "probability c q a k"™ /;
loop((c.q.a,k)$(pil.l(c.q,a,k)>0),
put pil.l(c,q,a,k):<>12:3, c0(c):8:2, q0(g):8:1,
a0(a):8:1, ko(k):8:1 /;
):
put /;
countl = countl + 1;
* For SW clubs, solve the subproblem, write the solution to the out»
put
* file, and calculate the prices.
else
if (aux(slab)=1,
solve sub2phl using Ip maximizing obj2;
abort$(sub2phl._modelstat=4) "SW subproblem infeasible™;
abort$(sub2phl._modelstat<>1) "SW subproblem not solved to opt»
imum®;
else
solve sub2 using Ip maximizing obj2;
abort$(sub2.modelstat=4) "SW subproblem infeasible";
abort$(sub2.modelstat<>1) "SW subproblem not solved to optimu»
m";
):
* Calculate prices and update agents® utilities
prices(thr,thi,slab,”1") =
(lamCthr)*utilsw2.1-pmc(thr))/presk;
if ((ord(thr)=1),
autill = autill + mprob.l(thr,thi,slab)*utilsw2._1/7alp(»
thr);

else

619 autil2 = autil2 + mprob.1(thr,thi,slab)*utilsw2._1/7alp(»
thr);

620)

621 if ((thl(thi)=1),

622 autill = autill + mprob.l(thr,thi,slab)*utilss2.17alp(1»
")

623 prices(thr,thi,slab,"2") =

624 (lam('1™)*utilss2._1-pmc('1"™))/presk;

625 elseif (thl(thi)=2),

626 autil2 = autil2 + mprob.lI(thr,thi,slab)*utilss2.1/7alp('2»
")

627 prices(thr,thi,slab,"2") =

628 (lam('2")*utilss2.1-pmc('2))/presk;

629);

630 voffirm(thr,thi,slab) = (resc2.l*presc+resk2.1*presk)/presk;

631 * Theory says the following expression should equal zero.

632 * Abort if it doesn"t

633 gap = prices(thr,thi,slab,"1")+prices(thr,thi,slab,"2"™)

634 -voffirm(thr,thi,slab);

635 abort$(gap>0.000001 or gap<-0.000001) "Problem with SW prices"

636 * Write the solution to the output file

637 put ""Supervisor-Worker club number *, count2:1:0 /

638 “Club type is (', thOo(thr):1:0, ",", thl(thi):1:0,")" /

639 “The number of these clubs is ", mprob.l(thr,thi,slab):<4:3»
/;

640 put “probability cw cs q a k™ /»

641 loop((cw,cs,q,a,k)$(pi2.1(cw,cs,q,a,k)>0),

642 put pi2.1Ccw,cs,q,a,k):<>12:3, cO(cw):<>8:2, cO0(cs):<>8:2,

643 q0(qg):<>8:1,a0(a):<>8:1, ko(k):<>8:1 /;

644);

645 put /;

646 count2 = count2 + 1;

647 * sumsw indicates whether a particular type of s-w firm exists

648 * if a (1,1) firm exists then sumsw(ipw,ik,1) = 1 and O otherwise

649 * if a (1,2) firm exists then sumsw(ipw,ik,2) = 1

650 * if a (2,1) firm exists then sumsw(ipw,ik,3) = 1

651 * if a (2,2) firm exists then sumsw(ipw,ik,4) = 1

652 if ((thO(thr)=1 and thl(thi)=1),

653 sumsw(ipw, ik,"1"™) = 1;

654 elseif (thO(thr)=1 and thl(thi)=2),

655 sumsw(ipw, ik,"2"™) = 1;

656 elseif (thO(thr)=2 and thil(thi)=1),

657 sumsw(ipw, ik,"3"™) = 1;

658 elseif (thO(thr)=2 and thl(thl) 2),

659 sumsw(ipw, ik,"4"™) =

660);

661);

662);

663);

664 put "Summary of club distribution (order is same as above)" /;

665 put "Number of clubs Membership" /;

666 * Important: this loop must be the same as the one above so that the orde»
r

667 * is the same

668 loop((thi,thr),

669 loop(slab$(mprob. I (thr,thi,slab)>0),

670 zs = ord(thi)-1;

671 put mprob.I(thr,thi,slab):<>16:3, " (",ord(thr):1:0,","zs:1:0,"»
)/

672);

673);

674 put #69;

675

676
677
678
679
680
681
682
683
684
685
686
687
688

689
690
691
692
693
694
695
696
697
698

699
700
701
702
703
704

705
706
707
708
709
710
711
712
713
714
715
716
717

718
719

720
721
722
723
724
725
726
27
728

729

pk = presk/presk;
* Now write decentralization info to output file.

put ///7/;
put ”DECENTRALIZATION THAT SUPPORTS THE ABOVE PARETO OPTIMUM™:<>64 /
put “Prices:" /;
put * capital ", pk:<>4:3 /;
countl = 0; count2 = 0;
loop((thi,thr),
loop(slab$(mprob. I (thr,thi,slab)>0),
zs = ord(thi)-1;
if ((th1(thi)=0 and countl=0),
put " self-employment clubs number worker value of »
firm" /;
countl = countl+l;
)
if ((thl(thi)=0 and countl1>0),
put ,
countl:<>6:0, prices(thr,thi,slab,”1"):<>6:3,
voffirm(thr,thi,slab):>19:3 /;
countl = countl+l;
);
if ((th1(thi)>0 and count2=0),
put " supervisor-worker clubs number worker super. value of »
firm" /;
count2 = count2+1;
):
if ((thl(thi)>0 and count2>0),
put ", count2:<>6:0,
prices(thr,thi,slab,”1"):<>6:3, prices(thr,thi,slab,"2"):<>9:3,
voffirm(thr,thi,slab):<>16:3 /»
count2 = count2+1;
)
)
put /;
put “"Resource constraint multipliers are mu_(c-q) = *, presc:<5:3,
", mu_k = ",presk:<5:3 /;
put /;
expenditures(thr) = 0;
expenditures(thr) = sum((thi,slab),
mprob. 1 (thr,thi,slab)*prices(thr,thi,slab,”1"));
expenditures(*'1™) = expenditures('l'™)
+sum((thr,slab) ,mprob.1(thr,"1",slab)*prices(thr,"1",slab,»
"2"y);
expenditures(*'2") = expenditures('2')
+sum((thr,slab) ,mprob. 1 (thr,"2",slab)*prices(thr," 2" ,slab,»
"2");
expper (th) =expenditures(th)/alp(th);
put "Expenditures: TOTAL PER CAPITA"™ /;
put ** type-1 ", expenditures("'1'):<>12:3, expper('1):<>»
16:3 /;
put ** type-2 ", expenditures(*'2'):<>12:3, expper(*'2'):<>»
16:3 /;
put ** Entire Population ", (expenditures(*'1™)+expenditures(*'2")):<>»
12:3 /;
put /;
put "Endowments of Capital: TOTAL PER CAPITA"™ /;
put ** type-1 ", expenditures(*'1'):<>12:3, expper('1l):<>»
16:3 /;
put " type-2 ", expenditures(''2'):<>12:3, expper('2"):<>»

16:3 /;

730 put " Entire Population ", (expenditures('1™)+expenditures('2™)):<>»
12:3 /;

731 put /;

732 put "Utility of type-1

733 put "Utility of type-2

734

735 putpage mfile;

736

737 * Finish the Pareto weight and capital endowment loops.

738);

739);

740 * Write the types of supervisor worker firms as a function of the

741 * pareto weights and capital endowment to a file for graphing purposes;

742 put mfile2;

743 loop(ipw,

", autill:<6:4 /;
", autil2:<6:4 /;

744 put "pw(", ord(ipw), ") = ",ParW(ipw), ;" /;
745);

746 loop(ik,

747 put "kap(', ord(ik), ™) =", kap(ik), ";" /;

748);

749 loop((ipw,ik,j),

o put “sumsw(", ordCipw), ".", ord(ik), ., ord(i), ") = ",

752 sumsw(ipw, ik,j), ;" /;

752);

