Operational Risk Management: Preventive vs. Corrective Control

Yuqian Xu (UIUC)

July 2018

Joint Work with Lingjiong Zhu and Michael Pinedo

- How to manage operational risk?
- How does the management strategy depend on market or firm environment?
- How much performance improvement can we achieve?

Firm value process V_t satisfies the stochastic differential equation (SDE):

$$dV_t = r(t)V_t dt + \sigma(t)V_t dB_t, \qquad V_0 = v > 0$$

Or equivalently,

$$V_t = v \ exp\left\{\int_0^t \left(r(s) - \frac{1}{2}\sigma^2(s)\right) ds + \int_0^t \sigma(s) dB_s\right\},$$

- $r(t): \mathbb{R}^+ \to \mathbb{R}$ the natural logarithmic growth rate of the firm value at time t
- $\sigma(t) : \mathbb{R}^+ \to \mathbb{R}^+$ the value volatility caused by market uncertainty at time *t*
- B_t : the standard Brownian motion process that starts at zero at time zero

Following Jarrow (2008), we consider operational risk process follows a jump process, and thus

$$V_t = v \, exp\left\{\int_0^t \left(r(s) - \frac{1}{2}\sigma^2(s)\right)ds + \int_0^t \sigma(s)dB_s - J_t\right\},\,$$

where

$$J_t = \sum_{i=1}^{N_t} Y_i$$

- Y_i (Severity Distribution): i.i.d \mathbb{R}^+ valued random variables with PDF f(y), y > 0
- N_t (Frequency Distribution): a standard Poisson process with intensity rate $\lambda(t) > 0$

Preventive Control

Corrective Control

Controls

Preventive Control: a mechanism to keep errors or irregularities from occurring in the first place.

- Prevents events from happening
- Affects risk *frequency*

Corrective Control: a mechanism to mitigate damage once an operational risk event has occurred.

- Reduces losses after an event has happened
- Affects risk *severity*

Preventive Control

Preventive Control

Preventive control u(t) on the frequency function:

$$\tilde{\lambda}(t) = G(t, u(t), \lambda(t)),$$

where $G(t, u(t), \lambda(t))$ is

- Positive, continuously differentiable, and decreasing convexly in u(t)
- $G(t, u(t), \lambda(t)) \rightarrow 0$ as $u(t) \rightarrow +\infty$
- $G(t, u(t), \lambda(t)) \leq \lambda(t), G(t, 0, \lambda(t)) = \lambda(t)$, and $G(t, u(t), \lambda(t))$ increases in $\lambda(t)$

 $X_t = logV_t$ satisfies:

$$dX_t = \left(r(t) - \frac{1}{2}\sigma^2(t) - u(t)\right)dt + \sigma(t)dB_t - dJ_t^G,$$

where $X_0 = x = \log v$, $J_t^G = \sum_{i=1}^{N_t^G} Y_i$, and N_t^G is a simple point process with $\tilde{\lambda}(t) = G(t, u(t), \lambda(t)) > 0.$

Corrective Control

Corrective Control

Corrective control v(t) on the severity function:

 $\widetilde{Y}_i = K(\tau_i, \boldsymbol{\nu(\tau_i)}, Y_i),$

where $K(\tau_i, \nu(\tau_i), Y_i)$ is

- Positive, continuously differentiable, and decreasing convexly in $v(\tau_i)$
- $K(\tau_i, v(\tau_i), Y_i)$ could go to 0 with proper $v(\tau_i)$
- $K(\tau_i, \nu(\tau_i), Y_i) \le Y_i, K(\tau_i, 0, Y_i) = Y_i$, and $K(\tau_i, \nu(\tau_i), Y_i)$ increases in Y_i

 $X_t = logV_t$ satisfies:

$$dX_t = \left(r(t) - \frac{1}{2}\sigma^2(t) - \nu(t)\right)dt + \sigma(t)dB_t - dJ_t^K,$$

where
$$X_0 = x = log v$$
, $J_t^K = \sum_{i:\tau_i \le t}^{N_t} K(\tau_i, v(\tau_i), Y_i)$.

Preventive Control

Corrective Control

Joint Controls

The process $X_t = logV_t$ now satisfies the dynamics:

$$dX_t = \left(r(t) - \frac{1}{2}\sigma^2(t) - u(t) - v(t)\right)dt + \sigma(t)dB_t - dJ_t^{G,K},$$

with $X_0 = x = logv$, and $J_t^{G,K} = \sum_{i:\tau_i \le t}^{N_t^G} K(\tau_i, v(\tau_i), Y_i),$

where N_t^G is a simple point process with intensity $G(t, u(t), \lambda(t))$

at any given time t.

Objective?

Risk-averse Utility Maximization

The utility function $U(V_t)$ of a risk-averse investor is given by

$$U(V_t) = V_t^{\beta}$$
,

where $\beta \in (0,1)$ is the *risk tolerance level*. The finite period *T* utility maximization problem is then given by

$$\sup_{u(\cdot)\in\mathcal{U},\,v(\cdot)\in\mathcal{V}}\mathbb{E}[U(V_T)] = \sup_{u(\cdot)\in\mathcal{U},\,v(\cdot)\in\mathcal{V}}\mathbb{E}[e^{\beta X_T}]$$

where \mathcal{U} and \mathcal{V} are the sets of admissible strategies.

Optimal Strategy

Preventive Control

THEOREM 1: The optimal preventive control $u^*(t)$ for the optimization problem is, for all $t \leq T$, given by $u^*(t) = H(t, -\beta/(1 - \mathcal{L}(\beta)), \lambda(t)),$ If $H(t, -\beta/(1 - \mathcal{L}(\beta)), \lambda(t)) > 0$, otherwise, $u^*(t) = 0$.

$$H(\cdot) \text{ as the inverse function of } \partial G(t, u(t), \lambda(t)) / \partial u(t), \text{ i.e.,}$$
$$\frac{\partial G(t, H(t, u(t), \lambda(t)), \lambda(t))}{\partial u(t)} = u(t).$$

And

$$\mathcal{L}(\beta) = \int_0^\infty e^{-\beta y} f(y) dy$$

where $f(\cdot)$ is the probability density function of operational risk losses.

 \bigcirc

PROPOSITION 1. For any fixed time t, $t \leq T$, $u^*(t)$ decreases in β .

--- The higher risk tolerance level, the lower investment.

Denote the risk reduction efficiency of preventive control at given time t as

$$EF_t = \left| \frac{\partial G(t, u(t), \lambda(t))}{\partial u(t)} \right|$$

PROPOSITION 2. If at any given time t, EF_t decreases (increases) in $\lambda(t)$, then $u^*(t)$ decreases (increases) in $\lambda(t)$.

THEOREM 2. The optimal corrective control $v^*(t)$ for the utility maximization problem, for all $t \leq T$, is given by

$$v^*(t) = \arg \max_{v \ge 0} \left\{ -v\beta + \lambda(t) \int_0^\infty e^{-\beta K(t,v,y)} f(y) dy \right\}$$

PROPOSITION 4. For given time $t, t \leq T$, $v^*(t)$ decreases in β .

PROPOSITION 5. For given time $t, t \leq T, v^*(t)$ increases in $\lambda(t)$.

Joint Control

THEOREM 3. The optimal preventive control $(u^*(t), v^*(t))$ for the optimization problem (11) is, for all $t \leq T$, given by

$$(u^{*}(t), v^{*}(t)) = \arg \max_{u,v \ge 0} \left\{ -(u+v)\beta + G(t, u, \lambda(t)) \left(1 - \int_{0}^{\infty} e^{-\beta K(t, v, y)} f(y) dy \right) \right\}$$

Consider the special case

$$\tilde{\lambda}(t) = \lambda e^{-\delta_1 u(t)}, \qquad K(v, y) = y e^{-\delta_2 v(t)},$$

then

$$v^{**}(t) = \frac{1}{\delta_2 E[Y]} \log\left(\frac{\beta}{\delta_2/\delta_1 - 1}\right), \ u^{**}(t) = \frac{1}{\delta_1} \log\left(\frac{\lambda \delta_1}{\beta} \left(1 - \frac{\delta_1}{\delta_2}\right)\right)$$

if $\beta > \delta_2/\delta_1 - 1 > 0$ and $\lambda \delta_1(1 - \delta_1/\delta_2) \ge \beta$;

otherwise, either $v^*(t) \equiv 0$ or $u^*(t) \equiv 0$, or $v^*(t) = u^*(t) \equiv 0$.

• δ_1, δ_2 : risk reduction efficiency rates.

PROPOSITION 10. The substitution and complementarity effects in the Joint

Investment Region can be characterized by the following scenarios:

(i) If β increases, then u^* decreases and v^* increases.

(*ii*) If δ_2 increases, then u^* increases and v^* decreases.

(*iii*) If δ_1 increases, then v^* always increases and u^* increases (decreases) only if

$$\frac{1 - \frac{2\delta_1}{\delta_2}}{1 - \frac{\delta_1}{\delta_2}} > (<) \log\left(\frac{\lambda\delta_1}{\beta} \left(1 - \frac{\delta_1}{\delta_2}\right)\right).$$

Industry Example

- In total 1441 operational risk events from 08/22/2013 till 04/30/2015.
- Retail bank with 50 branches in China with around 675 employees in total.

Parameters	Definition	Value
λ	Average number of risk events per month per branch.	1.692
E[Y]	Average event severity level (in amount of 100,000 RMB)	3.565
r	Average profit of each branch (in amount of million RMB)	3.785
σ	Volatility of the profit (in amount of million RMB)	4.412
Т	investment horizon (in month)	12

Industry Example

 Within a certain range of the frequency reduction efficiency, we can achieve up to 2.5% improvement in the expected bank revenue

• Within a certain range of the risk severity reduction efficiency, we can achieve up to 1.5% improvement in the expected bank revenue

• When the risk severity level increases, the performance improvement becomes even more significant

Real Bank Scenario

Severe Risk Events Scenario --- 10*E[Y]

Conclusion

 Proposed a general stochastic control framework for operational risk management.

• Characterized two types of controls: preventive vs. corrective control.

Calculated performance improvement with real industry data.

The End

PROPOSITION 3. Assume that $Y_1 \ge_{cx} Y_2$, and given time t, then $u_1^*(t) \le u_2^*(t)$.

--- A risk-averse investor always prefers less stochastic variability.

Note: if $Y_1 \ge_{cx} Y_2$, then if $\mathbb{E}(Y_1) = \mathbb{E}(Y_2)$ we have $Var(Y_1) > Var(Y_2)$, see Ross (1983).