Forward-looking and Incentive-compatible Operational Risk Capital Framework

> Marco Migueis Federal Reserve Board

FRB of Richmond Operational Risk Research Conference

July 2018

Disclaimer

The views expressed in this presentation are mine and are not official views of the Federal Reserve Board or the Federal Reserve System.

Operational Risk Capital Framework

- Advanced Measurement Approach (AMA) still in effect for large, internationally active US banks
- In December 2017, the BCBS revised the operational risk capital framework introducing a new standardized approach (NSA)

NSA Capital = f(IncomeStatement, AveragePastLosses)

 H.R. 4296 would require the operational risk capital framework to be based on "current" risks, be forward-looking, and allow for operational risk mitigants

Criticisms of AMA and NSA

AMA

- Gameable
- 99.9th percentile estimates have large uncertainty
- Unclear whether risk sensitive
- Lacks comparability across banks and jurisdictions
- Burdensome for banks and regulators
- Limited usefulness for risk management
- **NSA**
 - Lacks risk sensitivity
 - No forward-looking view
 - Not useful for risk management

Improving the Framework - Incentive Compatibility

- Incentive compatibility in this context means banks having the incentive to reveal their best estimates of future losses
- The AMA is not incentive compatible
 - To maximize ROE, banks have incentives to underestimate exposure (and thus capital)
 - AMA does not include mechanisms to automatically penalize underestimation
- Market risk capital framework penalizes underestimation of exposure through back-testing requirements

Incentive Compatibility (1/3)

• Gneiting and Raftery (2007) showed that the function S can be used to provide incentive for estimation of any quantile α (under risk neutrality) $S(r; x) = \alpha \cdot s(r) + [s(x) - s(r)] \cdot 1\{x \le r\} + h(x)$

where x is an observation of the variable of interest, r is the quantile estimate, s is a non-decreasing function, and h is an arbitrary function.

 S can be multiplied by -1 to turn it into a minimization problem (in this case, it will be a capital minimization problem)

 $S'(r;x) = -\alpha s(r) + [s(r) - s(x)] \cdot 1\{x \le r\} - h(x)$

Incentive Compatibility (2/3)

- If s is assumed to be the identity function, S' can be re-written as follows $S'(r; x) = (1 - \alpha)r + Max\{-x, -r\} - h(x)$
- If we want to break the capital requirement (S') into a requirement at time t (corresponding to the quantile estimate) and a requirement in future periods, this can be accomplished by multiplying the expression by 1/(1- α) (assuming no time discounting)

$$S''(r;x) = r + \frac{Max\{-x, -r\} - h(x)}{(1 - \alpha)}$$

Incentive Compatibility (3/3)

 If h was set to zero, the formula providing incentive compatibility would lead to capital decreases in future years. But if h is set to –x, S" becomes

$$S''^{(r;x)} = r + \frac{Max\{x - r, 0\}}{(1 - \alpha)}$$

 Regulators may wish to increase conservatism by scaling requirements instead of increasing the estimation quantile (as is done in market risk). This can be done by scaling the whole expression

$$S'''(r;x) = \beta r + \beta \frac{Max\{x-r,0\}}{(1-\alpha)}$$

Example Framework (1/4)

- Assume $\alpha = 95\%$ and $\beta = 2$. Capital requirements could be given by: $OpRiskCapital_Option1_t = 2Q^{95}(t|t-1) + 40Max\{Loss_{t-1} - Q^{95}(t-1|t-2), 0\}$
- Assume that the annual operational losses of a bank are distributed according to a lognormal(20,1).

Statistics of Total Annual Loss Distribution given by Lognormal(20,1)					
Average	Median	95 th Percentile	99.9 th Percentile		
\$8ooMIn	\$485Mln	\$2,513Mln	\$10,665Mln		

Example Framework (2/4)

Assuming the bank estimates the quantile accurately, the distribution of capital requirements under Option 1 has the following statistics

Statistics of Capital Requirements (Option 1)					
Median & 95 th	Average	Standard	99 th		
Percentile		Deviation	Percentile		
\$5,027Mln	\$8,315Mln	\$24 , 672Mln	\$103 , 480Mln		

Capital would suffer from meaningful volatility in the 5% of years where losses are above the 95th quantile

Example Framework (3/4)

Incentive-compatibility can be achieved while spreading out the penalization over more years and limiting its size.

 $OpRiskCapital_Option2_t = 2Q^{95}(t|t-1) + Penalty_{t-1}$

Where: $Penalty_t = min\{ExceedenceStock_t, 2AvgLoss_t + Penalty_{t-1}, 12AvgLoss_t\}$ ExceedenceStock_t

 $= ExceedenceStock_{t-1} - Penalty_{t-1} + 40Max\{Loss_t - Q^{95}(t|t-1), 0\}$ $AvgLoss_t = \frac{\sum_{i=0}^{9}Loss_{t-i}}{10}$

Example Framework (4/4)

 Under Option 2, the distribution of capital requirements would have the following statistics (and be much less volatile)

Statistics of Capital Requirements (Option 2)					
Median	Average	Standard	99 th		
		Deviation	Percentile		
\$5,027Mln	\$8,315Mln	\$5 , 477MIn	\$26 , 231Mln		

Additional considerations

- Banks could reduce potential capital volatility further by overestimating the regulatory quantile
- Losses used on date of accounting to allow apples to apples comparisons with quantile estimates
- Predictable large losses (e.g., certain legal losses) should not lead to exceedances of the 95th percentile estimate because they should be included in estimate
- To comply with Basel III, capital would need to floored by the NSA, but the version of the NSA with no losses could be used

Advantages of this approach

- Forward-looking
- Modeling flexibility
- Risk sensitive
- Not gameable
- Should be useful for risk management

Conclusion

- AMA is gameable, complex, and not forward-looking enough
- NSA is not forward-looking, nor useful to risk management
- The US op risk capital framework should be risk sensitive/forward-looking, while limiting gaming opportunities
- The key is to adopt a framework that allows forward-looking inputs while maintaining incentive-compatibility