Richmond Fed Conference on Climate Change Economics

The Macroeconomic Impact of Europe's Carbon Taxes

NBER WP 27488, July 2020

Gilbert E. Metcalf, Tufts University

James H. Stock, Harvard University

US CO2 emissions: US Energy Information Administration projections (pre-COVID-19)

The switch from coal to natural gas and, now, renewables for electricity production has driven emissions reductions...

Source: Energy Information Administration, *Monthly Energy Review* (June 2020) and 2020 *Annual Energy Outlook*, reference case.

US CO2 emissions: US Energy Information Administration projections (pre-COVID-19)

The switch from coal to natural gas and, now, renewables for electricity production has driven emissions reductions...

But we have a long ways to go.

Lots of policy proposals!
.. but the economists love a carbon tax.

Source: Energy Information Administration, *Monthly Energy Review* (June 2020) and 2020 *Annual Energy Outlook*, reference case.

Impacts of a carbon tax: theory

- Computable general equilibrium models
 - GDP effect (e.g. Goulder and Hafstead, Confronting the Climate Challenge (2018); Jorgenson (2013), etc.; RFF Carbon Pricing **Calculator**
- Parallel shift down
- Importance of revenue recycling method
- Example: Tax of \$40/ton @5%/year GDP loss in 2035 =
 - -1.5% (tax & dividend)
 - -1.2% (payroll tax cut)

Source: RFF Carbon Pricing Calculator at https://www.rff.org/cpc/

Impacts of a carbon tax: theory

- Computable general equilibrium models
 - a) GDP effect (e.g. Goulder and Hafstead, *Confronting the Climate Challenge* (2018); Jorgenson (2013), etc.
 - b) Employment effect:
 Hafstead and Williams,
 NBER EEPE, (2019)

Source: Hafstead and Williams (2019, Fig. 1)

Impacts of a carbon tax

- Computable general equilibrium models
 - a) GDP effect (e.g. Goulder and Hafstead, *Confronting the Climate Challenge* (2018); Jorgenson (2013), etc.
 - b) Employment effect: Hafstead and Williams, NBER EEPE, (2019)

2. NEMS and IAMS

 Weak or nonexistent macro modules

Survey: Metcalf (BPEA, 2019)

Source: Hafstead and Williams (2019, Fig. 1)

Impacts of a carbon tax: Empirical evidence

A fair number of studies examine carbon tax effect on emissions: partial list

Lin and Li (2011) – Scandinavia + Netherlands

Rivers and Schaufele (2012) – BC transportation emissions

Murray and Rivers (2015) – review of older literature on BC carbon tax

Haites et. al. (2018) – carbon pricing generally, effectiveness and political economy

Dolphin, Pollitt, and Newberry (2019) – political economy of carbon tax rates (not effectiveness)

Pretis (2019) – BC

Andersson (2019) – Sweden (carbon tax + VAT on fuel)

Runst and Thonipara (2019) – Swedish residential sector

Hajek et al (2019), energy sector emissions (SWE, FIN, DNK, IRE, SLO)

He at al (2019) OECD environmental taxes

Fauceglia et al. (2019) – Swiss industry

Abrell et al. (2019) – UK Carbon Price Support on top of EU-ETS, plant-level

Rafaty, Dolphin, Pretis (2020) - OECD

Fewer study the effect on GDP and employment

Elgie and McClay (2013) – BC income

Yamazaki (2017), Yip (2018) – BC employment

Metcalf (2015, 2019) – BC (2015) and EU (2019)

Bernard et. al. (2018) – BC carbon tax and provincial income (VAR on with-tax fuel price)

Olale et. al. (2019) – BC carbon tax and net farm income

Mundaca (2017) – eliminating fuel tax subsidies in Middle East/North Africa

This paper: Evidence from Europe

Data set:

- EU + Iceland + Norway + Switzerland (n = 31) all countries in the European emissions trading system
 - Of which, 15 also have a carbon tax, almost entirely on emissions not covered by the ETS
- Annual, 1985 2018
 - EU ETS started in 2005 (power sector and certain energy-intensive industries) (subsequently expanded to aviation)

Sources:

- Carbon prices: World Bank (new carbon price data)
 - Carbon tax rates are real local currency, scaled to 2018 USD using 2018 PPP
 - Some countries have multiple tax rates, WB data set has highest and lowest rate and fuels to which it applies; we used the highest rate (typically this is the rate on gasoline & diesel)
 - Weighted for coverage of tax
 - Sensitivity check with new data from Dolphin et al (2020)
- GDP, population: World Bank except
 - Norway we use mainland GDP
 - Ireland we use Ireland official statistics
- Employment: Eurostat
- Fuel prices and fuel taxes: IEA
- Emissions: Eurostat; Dolphin et al (2019)
 - emissions in road transport, commercial & institutional, and household sectors
 - Alternatively, emissions from fuel consumption

Data description

Carbon taxes in 2018

Source: World Bank

https://carbonpricingdashboard.worldbank.org/

Country	Year of Adoption	Rate in 2018 (USD)	Coverage (2019)
Finland	1990	\$70.65	0.36
Poland	1990	0.16	0.04
Norway	1991	49.30	0.62
Sweden	1991	128.91	0.40
Denmark	1992	24.92	0.40
Slovenia	1996	29.74	0.24
Estonia	2000	3.65	0.03
Latvia	2004	9.01	0.15
Switzerland	2008	80.70	0.33
Ireland	2010	24.92	0.49
Iceland	2010	25.88	0.29
UK	2013	25.71	0.23
Spain	2014	30.87	0.03
France	2014	57.57	0.35
Portugal	2015	11.54	0.29

Data description

Carbon tax history for the 15 countries with carbon taxes

Data source: World Bank (carbon price data in press)

Carbon tax rates are real local currency, scaled to 2018 USD using 2018 PPP

GDP growth: World Bank (except as noted below)

Real rate in local currency, normalized to 2018 USD

Real GDP per capita, growth (annual %)

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

Total employment, growth (annual %)

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

CO2 emissions from fuel combustion per capita (log)

Deviated from country's pre-tax mean. Horizontal lines are pre/post means. Dots and bars denote mean and 90% confidence interval by year.

Methods: Regressions and identifying assumptions

- Estimand: cumulative dynamic causal effect of change in tax rate on real variables
- Two methods, one exogeneity condition (identifying assumptions)

Local projections (panel) $\ln(GDP_{t+h} / GDP_{t-1}) = \Theta_{yx,h}\tau_t + \beta(L)\tau_{t-1} + \delta(L)\Delta\ln(GDP_{t-1}) + \gamma(L)W_t + u_t$ $E(u_t \mid \tau_t, \tau_{t-1}, ..., \Delta\ln(GDP_{t-1}), W_t, W_{t-1}, ...)$ $= E(u_t \mid \tau_{t-1}, \tau_{t-2}, ..., \Delta\ln(GDP_{t-1}), W_t, W_{t-1}, ...)$

Note: $\Theta_{vx,h}$ is h-period ahead cumulative impulse response function in VAR jargon

Panel VAR: Same identifying assumption as LP

Restricted or unrestricted: Impose zero long-run effect on growth (restricted), or not (unrestricted)

Identification is coming from the time series variation: think "SVAR", not "event study"

Methods: Odds and end

Odds and ends

- All regressions include country & year fixed effects
- Carbon tax enters weighted by coverage share
- Standard errors: heteroskedasticity-robust for SVAR and LP (Plagborg-Møller and Wolf (2019))
- Effects calibrated to \$40 carbon tax at 0% real increase
 - Tax innovations in are solved from IRF of tax shock to tax rate IRF (Sims (1986) method)
- 4 lags of control variables used (base case) (BIC selects 2, AIC selects 4 in VAR)

Results: Tests of parallel paths restriction

t-statistics testing long-run effect of change carbon tax *level* on the *growth rate* of y = 0 (p-values in second line)

- For SVAR, this is implied longrun IRF
- For LP, this is 8-year effect
- ➤ Fail to reject "parallel paths" restriction
- Results shown today impose the "parallel paths" restriction

	GDP	Employment	Emissions	
LP	0.33	-0.63	-2.09	
	0.75	0.53	0.04	
SVAR	1.34	0.62	-1.26	
	0.18	0.53	0.21	
Revenue Recycling Countries				
LP	0.05	-0.72	-0.95	
	0.96	0.47	0.34	
SVAR	1.39	0.17	-0.40	
	0.16	0.87	0.69	
Large Carbon Tax Countries				
LP	-0.41	0.14	-0.53	
	0.69	0.89	0.60	
SVAR	1.00	1.23	-0.34	
	0.32	0.22	0.73	
Scandinavian Countries				
LP	-0.44	0.80	0.19	
	0.66	0.42	0.85	
SVAR	0.95	1.04	0.16	
	0.34	0.30	0.87	

Results: GDP growth

Sample: **EU+**

Method: Linear Projection

Restricted

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: GDP growth

Sample: **EU+**

Method: **SVAR**

Restricted

IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: GDP log level

Sample: **EU+**

Method: LP

Restricted

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(GDP), imposing the "parallel path" assumption

 This is the empirical counterpart to the CGE counterfactual

Cumulative IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: GDP log level

Sample: **EU+**

Method: **SVAR**

Restricted

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(GDP), imposing the "parallel path" assumption

 This is the empirical counterpart to the CGE counterfactual

Cumulative IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: Employment growth

Sample: **EU+**

Method: LP

Restricted

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+

Results: Manufacturing employment growth

Sample: **EU+**

Method: LP

Restricted

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlempman; Controls = YE; Sample = EU+

Results: Emissions log level

Sample: **EU+**

Method: LP

Restricted
Cumulative IRF

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(emissions), imposing the "parallel path" assumption

Emissions series:

Emissions in sectors exposed to the carbon tax

Cumulative IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemission_ctsectors; Controls = YE; Sample = EU+

Results: Emissions log level

Sample: **EU+**

Method: LP

Cumulative IRF

Restricted

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(emissions), imposing the "parallel path" assumption

Emissions series:

Emissions from fuel consumption

Cumulative IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemission6; Controls = YE; Sample = EU+

24

Results: Additional questions + sensitivity analysis

- 1. Are the results driven by:
 - Scandinavia?
 - No: results for SCA-only, or EUxSCA, are similar to overall results, just noisier
 - Countries that have low taxes?
 - No: very similar results if you use only countries with tax of at least \$10/ton share-weighted (\$40/ton x 30% coverage = \$12/ton share-weighted)
 - Carbon tax data decisions?
 - No. Essentially no difference in results if we use the Dolphin et al.
 (2019) carbon tax rates, see the paper
- 2. Are the positive GDP and employment results a consequence of how the country uses the revenue?

Sample: **EU+**

Revenue recycling

Dep vble: GDP growth

Method: LP

Restricted

Revenue recycling countries
Denmark, Sweden, Norway,
Finland, Switzerland, Portugal

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+RR1

Sample: **EU+**

No revenue recycling

Dep vble: GDP growth

Method: LP

Restricted

Revenue recycling countries
Denmark, Sweden, Norway,
Finland, Switzerland, Portugal

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+RR0

IRF for \$40 carbon tax increase: LP

Sample: **EU+**

Revenue recycling

Dep vble: Empl. growth

Method: LP

Restricted

Revenue recycling countries

Denmark, Sweden, Norway, Finland Switzerland, Portugal

IRF for \$40 carbon tax increase: LP

Sample: **EU+**

No revenue recycling

Dep vble: Empl. growth

Method: LP

Restricted

Revenue recycling countries
Denmark, Sweden, Norway,
Finland, Switzerland, Portugal

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+RR0

Summary

GDP

No effect

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

67% and 95% confidence bands. Includes 4 lags of all regressors.

Employment

No effect

initial positive bump?

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+

67% and 95% confidence bands. Includes 4 lags of all regressors.

Emissions from covered sectors

4-6% reduction

Emissions from fuel consumption

Discussion

Comparisons, caveats, and comments:

- Our results are consistent with Rafaty, Dolphin, and Pretis (2020)
 - OECD, effect of carbon price on emissions, synthetic controls, passage effect
- What about spillover effects on comparison group (countries that don't increase CT)
 - Does the treatment affect the control group
- Endogeneity issues:
 - Changes in tax rate change once imposed?
 - Endogeneity of adoption of tax in the first place
- Interaction with EU ETS
- External validity
 - The taxes studied don't cover the power sector

Bigger picture:

- In the power sector, a carbon price is now transformative because wind & solar are becoming cheaper and cheaper.
- Outside of the power sector, a carbon tax has only a modest short-run effect on emissions
 - \$40/ton ≈ 40¢/gallon of gasoline
 - Effect over longer run would be more substantial (induced investment in greener technology)
- The energy transition must be affordable so consumers *choose* clean technologies
 - > Role for (smart) technology policy

Additional Slides

Results: GDP growth

Sample: **EU+**

Method: Linear Projection

Unrestricted

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: GDP growth

Sample: **EU+**

Method: **SVAR**

Unrestricted

IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlrgdp; Controls = YE; Sample = EU+

Results: Employment

Sample: **EU+**

Method: LP

Unrestricted

IRF for \$40 carbon tax increase: LP

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+

Results: Employment

Sample: **EU+**

Method: **SVAR**

Unrestricted

IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemptot; Controls = YE; Sample = EU+

Results: Emissions

Sample: **EU+**

Method: **SVAR**

Restricted

Cumulative IRF

This cumulative IRF is the estimated effect of the tax increase on the *level* of log(emissions), imposing the "parallel path" assumption

Emissions series:

Emissions in sectors exposed to the carbon tax

Cumulative IRF for \$40 carbon tax increase: SV4

Carbon tax rate (real, 2018 USD) wtd by coverage share Dep. vble: Δlemission_ctsectors; Controls = YE; Sample = EU+

More details on carbon pricing schemes internationally

- ETS implemented or scheduled for implementation
- ETS or carbon tax under consideration
- ETS implemented or scheduled, tax under consideration
- Carbon tax implemented or scheduled for implementati... ETS and carbon tax implemented or scheduled Carbon tax implemented or scheduled, ETS under consi...