
        

Errors in Variables and
Lending Discrimination

Jed L. DeVaro and Jeffrey M. Lacker

D o banks discriminate against minority loan applicants? One approach
to answering this question is to estimate a model of bank lending
decisions in which the probability of being denied a loan is a function

of a set of creditworthiness variables and a dummy variable for the applicant’s
race (z = 1 for minorities, z = 0 for whites). A positive coefficient on the
race dummy is taken as evidence that minority applicants are less likely to be
granted loans than white applicants with similar qualifications. This approach
is employed in many empirical studies of lending discrimination (Schill and
Wachter 1994; Munnell et al. 1992), in U.S. Department of Justice lending
discrimination suits (Seiberg 1994), and in regulatory examination procedures
(Bauer and Cromwell 1994; Cummins 1994).

One weakness of this approach is that an estimate of the discrimination
coefficient may be biased when measures of creditworthiness are fallible. In
such situations, distinguishing racial discrimination from unmeasured racial
disparities in creditworthiness can be difficult. If true creditworthiness is lower
on average for minority applicants, the model may indicate that race adversely
affects the probability of denial, even if race plays no direct causal role.

There are good reasons to believe that measures of creditworthiness are
fallible. First, regulatory field examiners report difficulty finding matched pairs
of loan files to corroborate discrimination identified by regression models. An
applicant’s file often yields a picture of creditworthiness different from the one
given by model variables. Second, including more borrower financial character-
istics generally reduces discrimination estimates, sometimes to zero (Schill and
Wachter 1994). Third, studies of default data find that minority borrowers are
more likely than white borrowers to default, even after controlling for income,
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wealth, and other borrower characteristics related to creditworthiness (Berkovec
et al. 1994). This finding suggests that there are race-related discrepancies be-
tween the true determinants of creditworthiness and the measures available to
econometricians.

Our objective is to develop a method for assessing the sensitivity of lending
discrimination estimates to measurement error. In particular, we study the classi-
cal errors-in-variables model, in which the components of a vectorx of observed
measures of creditworthiness are, one for one, fallible measures of those in a
vector of true qualificationsx∗.1 The implications of errors in variables in the
standard linear regression model are well known (Klepper and Leamer 1984;
Goldberger 1984).2 We briefly review these implications in Section 1. Models
of lending discrimination generally specify a nonlinear regression model, such
as the logit model, because the dependent variable is dichotomous (y = 1 if the
loan application is denied;y = 0 if it is accepted). In this article we extend the
results for the linear case to cover the nonlinear logit regression model widely
used in lending discrimination studies.

Linear errors-in-variables models are underidentified because variation in
true qualifications cannot be distinguished from error variance. Assuming that
the errors are normally distributed with known parameters, however, the linear
model is just-identified, allowing estimation of model parameters depending
on the assumed error-variance parameters. Assuming zero error variance yields
the standard linear regression model as a special case. By estimating under a
range of error-variance assumptions, one can trace out the potential effect of
measurement error on model parameter estimates. Note that since the error-
variance assumptions make the model just-identified, no one assumption about
the error-variance parameters is more likely than any other; that is, estimates of
model parameters under alternative error-variance assumptions are all equally
consistent with the data. Also note that in the case of normally distributed re-
gressors in the linear model, parameter estimates for alternative error-variance

1 The classical errors-in-variables model is not the only one in which observed variables,
taken together, are fallible measures of true creditworthiness. Alternatives include “multiple-
indicator” models in which observed variables are fallible measures of a single index of credit-
worthiness, and “omitted-variable” models in which some determinants of creditworthiness are
unobservable. All are alike in that a component of the true model is unobserved by the econo-
metrician; thus, all are latent-variable models. Because errors in variables is one of the simplest
and most widely studied models of fallible regressors, it is a useful starting point in examining
fallibility in empirical models of lending discrimination.

2 Interest in the errors-in-variables problem has surged since 1970. As Hausman and col-
leagues (1995) stated, “During the formative period of econometrics in the 1930’s, considerable
attention was given to the errors-in-variable[s] problem. However, with the subsequent emphasis
on aggregate time series research, the errors-in-variables problem decreased in importance in most
econometric research. In the past decade as econometric research on micro data has increased
dramatically, the errors-in-variables problem has once again moved to the forefront of econometric
research” (p. 206).
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assumptions can be obtained through an algebraic correction to the ordinary
least squares estimates.

In Section 2 we examine the logit model under errors in variables and
show how estimators depend on assumptions about error variance. Adjusting
estimators for error variance is no longer an algebraic correction as it is in the
linear setup; the model must be reestimated for each error-variance assumption.
For the case in which the independent variables are continuous-valued, we show
how to estimate the logit model under various assumptions about error variance.
Because of the nonlinearity, the logit model is in some cases identified without
error-variance assumptions. In practice, however, the logit model is quite close
to underidentified, and little information can be obtained from the data about
error-variance parameters. Therefore, we advocate estimating models under a
range of error-variance assumptions to check the sensitivity of estimates to
measurement error.

In Section 3 we demonstrate our method using artificial data. We show how
estimates of a discrimination parameter can be biased when a relatively modest
amount of measurement error is present. The magnitude of the bias depends on
the model’s fundamental parameters. By estimating the model under different
assumptions about measurement error variance, we can gauge the sensitivity of
the estimators to errors in variables. Section 4 concludes and offers directions
for further research.

Bauer and Cromwell (1994) have also studied the properties of logit regres-
sion models of lending discrimination, focusing on the small-sample properties
of a misspecified model using simulated data. They found that tests for lending
discrimination were sensitive to sample size. Our work focuses on the effect
of errors in variables on the large-sample properties of otherwise correctly
specified logit models of lending discrimination.

1. ERRORS IN VARIABLES

The implications of errors in variables are easiest to see in a linear setup such as
the following simple model of salary discrimination.3 Suppose that an earnings
variable (y) is determined according to the following equations:

y = βx∗ + αz + v, (1a)

x∗ = x0 + µz + u, (1b)

3 The exposition in this section is based on Goldberger (1984). This model of salary
discrimination has a close parallel in the permanent income theory. Friedman (1957) discusses
how racial differences in unobserved permanent income (the counterpart of qualifications in the
salary model and creditworthiness in the lending model) bias estimates of racial differences in
the consumption function intercept.
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x = x∗ + e, (1c)

where the scalarx∗ = true qualification,x = measured qualification, andz is
a race dummy (z = 1 for minorities,z = 0 for whites). We takev, u, ande to
be mutually independent random variables with zero means and variancesσ2

v ,
σ2

u , andσ2
e , all independent ofz. The earnings variable in (1a) is a stochastic

function of the true qualifications and race. The parameterα represents the in-
dependent effect of race on salary, andα < 0 represents discrimination against
minorities. If better-qualified applicants obtain higher salaries, thenβ > 0. In
(1b) qualification is allowed to be correlated with race; the expectation ofx∗

is x0 for whites andx0 + µ for minorities. The empirically relevant case has
µ < 0. Observed qualification in (1c) is contaminated by measurement errore.

Consider a regression ofy on the observed variablesx andz. This estimates

E[y | x, z] = bx + az.

Since the variances and covariances are the same for both white and minor-
ity applicants, we can use conditional covariances to calculate the regression
slopes. We focus on relationships in a population and thus ignore sampling
variability. The least squares estimators are

b = cov(x, y | z)/v(x | z) = cov(x∗, y | z)/v(x | z) = (1− δ)β

and

a = E[y | z = 1] − E[y | z = 0] − b{E[x | z = 1] − E[x | z = 0]}
= α + βµ− bµ

= α + δβµ,

where

δ ≡ σ2
e /(σ2

u + σ2
e ).

When there is measurement error (σ2
e > 0), the regression estimator ofβ is

biased toward zero. To see why, substitute forx∗ in (1a) using (1c) to obtain
y = βx + αz + (v − βe). The “error” v − βe in the regression ofy on x and
z is correlated withx via (1c). Thus a key assumption of the classical linear
regression model is violated, and the coefficients are no longer unbiased.

In our case (β > 0, µ < 0), the estimator ofα is biased downward as well.
Bias creeps in becausez is informative aboutx∗, given x;

E[x∗ | x, z] = (1− δ)x + δ(x0 + µz).

Given observed qualificationx, race can help “predict” true qualificationx∗.
Race can then help “explain” earnings, even in the absence of discrimination
(α = 0), because race is correlated with true qualifications.

The model (1) is underidentified (Kapteyn and Wansbeek 1983). A re-
gression ofx on z recovers the nuisance parametersx0 and µ, along with
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v(x | z) = σ2
u + σ2

e . Other population moments provide us witha and b, but
these are not sufficient to identifyα, β, andδ. No sample can provide us with
enough information to dividev(x | z) between the variance in true qualifications
σ2

u and the variance in measurement errorσ2
e . Under the assumptionsβ > 0

andµ < 0, any value ofα > a, including the no-discrimination caseα = 0, is
consistent with the data for someβ andσ2

e .
If σ2

e were known independently, then we would knowδ = σ2
e /(σ2

u + σ2
e )

and could calculate the unbiased estimators ˆα andβ̂ by correcting the ordinary
least squares estimators as follows:

β̂ = b/(1− δ) (2a)

α̂ = a − δbµ/(1− δ). (2b)

One could use (2) to study the implications of alternative assumptions about the
variance of measurement error; different values ofσ2

e would trace out different
estimates ofα.

In (1) the direction of bias ina is known when the sign ofβµ is known.
Matters are different whenx is a vector of characteristics affecting qualifica-
tions. Consider a multivariate model:

y = β′x∗ + αz + v, (3a)

x∗ = x0 + µz + u, (3b)

x = x∗ + e, (3c)

where x∗ and x are nowk × 1 random vectors andβ, µ, and x0 are k × 1
parameter vectors. We takeu ande to be normally distributed random vectors,
independent ofv, z, and each other, with zero means and covariance matrices
Σ∗ and D. The classical assumption is that measurement errors are mutually
independent, soD is diagonal.

The least squares estimators are now

b = (Σ∗ + D)−1Σ∗β (4a)

and

a = α + (β − b)′µ. (4b)

The direction of bias is now uncertain, even under the usual assumption that
measurement errors are independent (D is diagonal). To see why, suppose that
k = 2, Σ∗ hasρ as the off-diagonal element, andΣ∗ + D has ones on the
diagonal (a normalization of units). Then (4b) becomes

a = α + [(D11β1 − ρD22β2)µ1 + (D22β2 − ρD11β1)µ2]/(1 − ρ2).

The bias ina could be positive or negative, depending on parameter values.
For example, suppose only one component ofx is subject to measurement
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error, say,x1 (D11 > 0 andD22 = 0). By itself this would biasb1 downward,
resulting in an upward bias ina. But b2 = ρβ1D11/(1− ρ2) + β2 is now biased
as well, and this would induce downward bias ina if ρβµ > 0. The overall
direction of bias is indeterminate (Rao 1973; Hashimoto and Kochin 1980).
But again, if the measurement error parametersD were known, then the least
squares estimatorsa and b could be corrected by a simple transformation of
(4) (usingΣ∗ = Σ − D, whereΣ = v(x | z)). Each alternative measurement
error assumption would imply a different estimator.4

2. ERRORS IN VARIABLES IN A
LOGIT MODEL OF DISCRIMINATION

In model (3) the dependent variable is a linear function of the explanatory vari-
ables. In models of lending decisions the dependent variable is dichotomous:
y = 1 if the applicant is denied a loan, andy = 0 if the applicant is accepted.
In this case the linear formulation in (3) is unattractive (Maddala 1983). A
common alternative is the logit model, shown here without errors in variables:

Pr[y = 1 | x, z] = G(β′x + αz), (5a)

G(t) =
1

1 + e−t
, (5b)

wherex is a vector of characteristics influencing creditworthiness. The empir-
ically relevant case hasβ < 0, so applicants who are more creditworthy are
less likely to be denied loans. A value ofα > 0 would indicate discrimination
against minorities: a minority applicant is approximatelyα(1− G) times more
likely than an identical white applicant to be denied a loan.5

The parametersα and β can be estimated by the method of maximum
likelihood. The log likelihood function for a sample ofn observations
{yi, xi, zi, i = 1, . . . ,n} is

logL =
n∑

i=1

log Pr(yi, xi, zi) =
n∑

i=1

log Pr(yi | xi, zi) +
n∑

i=1

log Pr(xi, zi), (6)

where

Pr(yi | xi, zi) = G(β′xi + αzi)yi [1 − G(β′xi + αzi)](1−yi).

Estimators are found by choosing parameter values that maximize logL. The
likelihood depends on the parameters of the conditional distribution in (5) as

4 Klepper and Leamer (1984) and Klepper (1988b) show how to find bounds and other
diagnostics for the linear errors-in-variables model.

5 The elasticity ofG with respect toz is αG′/G = α(1 + e−t)e−t/(1 + e−t)2 = αe−t/(1 +
e−t) = α(1− G), whereG is evaluated atβ′x + αz.
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well as on the “nuisance parameters” governing the unconditional distribution
of (x, z). Since the nuisance parameters appear only in the second sum in (6),
while α andβ appear only in the first sum,α andβ can be estimated in this
case without estimating the nuisance parameters.

Under errors in variables, (5a) is replaced with

Pr[y = 1 | x∗, z] = G(β′x∗ + αz), (7)

wherex∗ is the vector of true characteristics. The resulting log likelihood func-
tion is

logL =
n∑

i=1

log Pr(yi, xi, zi)

=
n∑

i=1

log
∫

Pr(yi | x∗i , zi)Pr(xi | x∗i )Pr(x∗i , zi)dx∗i .

(8)

The likelihood function now depends on Pr(x | x∗), the probability thatx is
observed if the vector of true characteristics isx∗. Sincex − x∗ is the vector
of measurement errors, Pr(x | x∗) is the probability distribution governing the
measurement error. In the linear model (3) the least squares estimators could be
corrected algebraically for measurement error of known variance. In the logit
model, however, there is no simple way to adjust maximum likelihood estima-
tors for errors in variables, since the regression function is nonlinear. Instead,
we must estimateα andβ for each distinct assumption about Pr(x | x∗).

Unlike the one in (6), the log likelihood function in (8) is not separable
in the nuisance parameters of the distribution Pr(x∗, z). Even if we posit an
error distribution Pr(x | x∗), estimatingα andβ requires estimating the param-
eters of Pr(x∗, z) as well. The estimation of these nuisance parameters will be
sidestepped here by maximizing the conditional likelihood function

log L̃ =
n∑

i=1

log Pr(yi | xi, zi)

=
n∑

i=1

log
∫

Pr(yi | x∗i , zi)Pr(x∗i | xi, zi)dx∗i .

(9)

We will assume that Pr(x∗ | x, z), the distribution of true characteristics condi-
tional on observed characteristics and race, is known.

Our model is completed by adding specific assumptions about the distri-
butions Pr(x | x∗) and Pr(x∗ | z), which will allow us to derive Pr(x∗ | x, z). We
will maintain the assumptions embodied in (3b) and (3c):

x∗ = x0 + µz + u, (10a)

x = x∗ + e, (10b)
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whereβ, µ, andx0 arek×1 parameter vectors and whereu ande are normally
distributed random vectors, independent ofv, z, and each other, with zero
means and covariance matricesΣ∗ andD. Given x and z, x∗ is then normally
distributed with mean vectorm∗ and covariance matrixS∗, where

m∗ = DΣ−1µz + (I − DΣ−1)x, (11a)

S∗ = (I − DΣ−1)D. (11b)

With this result in hand, we find that, conditional onx andz, the argument of
G is normally distributed with meanβ′m∗ +αz and varianceβ′S∗β. Therefore,
the likelihood in (9) can be written as

Pr(y | x, z) =

∫
G(m + σs)(2π)−1/2 exp(−s2/2)ds, (12)

where

m = β′(I − DΣ−1)x + (α + β′DΣ−1µ)z,

σ = [β′(I − DΣ−1)Dβ]1/2.

When D = 0, m collapses toβ′x + αz and σ = 0, which is the error-free
model.6

Because of the nonlinearity ofG, the logit model can potentially be iden-
tified without error-variance assumptions, unlike the linear model in Section
1. Thus, in principle, the error-variance parameters could be estimated rather
than imposed. In practice, however, the model is so close to linear that the
error-variance parameters cannot be estimated; even large samples are uninfor-
mative aboutD. We therefore recommend estimating the model under a range
of alternative error-variance assumptions.

To summarize the procedure, first calculate least squares estimators for the
parametersx0, µ, andΣ. These parameters are treated as fixed and combined
with an assumedD to obtain the distribution Pr(x∗ | x, z), which is used in (12)
and (9) to obtain maximum likelihood estimates ofα andβ. This procedure
treats the error varianceD as known, just as the error-free model treatsD

6 The joint normality ofx and x∗ given z implies that givenx and z, x∗ is normal with
parameters that can be derived algebraically from the parameters of Pr(x | x∗) and Pr(x∗ | z).
Other distributional assumptions onx andx∗ are far less convenient. For example, whenx∗ takes
on discrete values, a more general approach is required to derive Pr(x∗ | x, z). Given a distribution
of the observables Pr(x, z), recover Pr(x∗ | z) using Pr(x | z) =

∫
Pr(x | x∗)Pr(x∗ | z)dx∗, and

then use Bayes’s rule to obtain Pr(x∗ | x, z) = Pr(x | x∗)Pr(x∗ | z)/Pr(x | z). The first of these
steps involves inverting a very large matrix.
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as identically zero. Estimates ofα can then be traced out under alternative
assumptions onD.7

Our procedure will misstate the uncertainty about parameter estimates,
even conditioning onD. By implicitly assuming that the estimated parameters
x0, µ, and Σ are known, we are neglecting their sampling variability. These
parameters appear in (12) and thus influence estimates ofα andβ. Our pro-
cedure therefore misstates their sampling variability as well. WhenD = 0, the
nuisance parameters disappear from (12), and this problem does not arise.8

3. EXAMPLES

In the examples in this section, we apply our procedure in a logit model of
discrimination to show how the technique is capable of detecting the sensitivity
of parameter estimates to errors in variables. We find it convenient to use ar-
tificially generated data sets to illustrate our results. Artificial data allow us to
isolate important features of the errors-in-variables model for a wide array of
cases. Observations are randomly generated under a given, true error variance,
and the model is then estimated under various hypothesized error variances.

In the simplest case there is only one explanatory variable besides race
(k = 1). We assumeα = 0, β = −1, µ = −2, andΣ = 1. (We focus on
the no-discrimination case,α = 0, solely for convenience.) In this case, ifa
is significantly different from zero, then it is also significantly greater thanα,
and the usual t-statistic ona will also show whethera is significantly biased.
The sample was assumed to be half white (z = 0) and half minority (z = 1).
Using these values and an assumed true error varianceD, we generated 10,000
random observations onx∗, x, and y using equations (7) and (10). We then
estimated the model using maximum likelihood, assuming that the true values
of µ andΣ were known and making an assumption aboutD̃ (not necessarily
the same asD). The results are displayed in Table 1. The sample size of 10,000
was chosen to reduce sampling variance.

For the estimates shown in Panel A of Table 1, the true variance of the
measurement error isD = 0.1. This represents one-tenth of the total variance
in observedx, a relatively modest amount. The first line reports estimation
under the (incorrect) assumption that the error variance is zero. As expected,
the estimateb is biased toward zero. Consequently,a is biased upward, toward
showing discrimination, and is significant.

7 In related work, Klepper (1988a) extended the diagnostic results of Klepper and Leamer
(1984) and Klepper (1988b) to a linear regression model with dichotomous independent variables.
These earlier approaches attempted to characterize the set of parameters that maximize the like-
lihood function. Levine (1986) extended the results of Klepper and Leamer (1984) to the probit
model.

8 Specifically, the hessian of the log likelihood function is then block diagonal across (α,β)
and (x0,µ,Σ).
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Table 1 Coefficient Estimates for
Alternative Error-Variance Assumptions, k = 1
µ = −2, Σ = 1, n = 10, 000.

a b

A. True parametersα = 0, β = −1, andD = 0.1:

AssumedD̃
0.0 0.1446 −0.9208

(2.4380) (−32.3477)
0.05 0.0482 −0.9775

(0.7780) (−31.8322)
0.1 −0.0607 −1.0418

(−0.9308) (−31.2626)

B. True parametersα = 0.1,β = −0.9, andD = 0.0:

AssumedD̃
0.0 0.1609 −0.9260

(2.7101) (−32.4378)
0.05 0.0640 −0.9832

(1.0315) (−31.9159)
0.1 −0.0456 −1.0480

(−0.6986) (−31.3393)

Notes: t-statistics are shown in parentheses beneath the coefficient estimates. For each panel, we
drew a set of 10,000 random realizations for (y, x): 5,000 with z = 0 and 5,000 withz = 1.
Within each panel, estimation was performed on the same data set with different assumptions
about the error variancẽD.

The last two lines in Panel A show estimates assuming positive error vari-
ance. For larger values of̃D, b is closer to one anda is closer to zero, the true
value. The discrimination parameter is not significantly different from zero
when estimated assumingD is 0.05 or 0.1. In this case, then, our procedure
successfully detects the sensitivity of parameter estimates to errors in variables.

In Panel B we examine the case in which no measurement error is present
and the true discrimination parameter is positive. The (correct) assumption of
no measurement error now yields estimates that are unbiased; they differ from
the true parameters only because of sampling error. Imposing the (incorrect)
assumption of positive measurement error variance “undoes” a nonexistant bias,
resulting ina near zero and a larger negativeb.

Table 2 shows how the magnitude of the bias varies with the correlation
between components ofx when k = 2. Σ has diagonal elements equal to
one and off-diagonal elements equal to a scalarρ, where−1 < ρ < 1. D
has diagonal elements all equal to 0.1; the independent variables other than
race suffer from measurement error of the same variance. We maintainα = 0,
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Table 2 Coefficient Estimates for Alternative Correlation and
Error-Variance Assumptions, k = 2

α = 0, β =
[
−1
−1

]
, µ =

[
−2
−2

]
, Σ =

[
1
ρ

ρ

1

]
andD =

[
0.1
0

0
0.1

]
, D̃ =

[
d̃
0

0
d̃

]
, n = 10, 000.

a b1 b2

A. ρ = 0:
Assumedd̃

0.0 0.4299 −0.8340 −0.8663
(4.2028) (−25.2057) (−25.7966)

0.1 0.0394 −0.9557 −0.9924
(0.3483) (−24.3926) (−24.9389)

B. ρ = 0.5:
Assumedd̃

0.0 0.2975 −0.8797 −0.8705
(3.4439) (−22.8422) (−22.5769)

0.1 0.0419 −0.9726 −0.9597
(0.4506) (−20.2974) (−20.0418)

C. ρ = −0.5:
Assumedd̃

0.0 0.7672 −0.7816 −0.7714
(5.5997) (−21.8801) (−21.5103)

0.1 −0.0457 −1.0084 −0.9969
(−0.2720) (−21.4374) (−21.1531)

Notes: t-statistics are shown in parentheses beneath the coefficient estimates. For each panel, we drew a
set of 10,000 random realizations for (y, x): 5,000 withz = 0 and 5,000 withz = 1. Within each panel,
estimation was performed on the same data set.

β = (−1,−1), andµ = (−2,−2). Panel A shows that when the components of
x are uncorrelated, the bias is larger than in the comparablek = 1 model: 0.43
versus 0.14. When the components ofx are positively correlated (ρ = 0.5), the
bias is smaller by almost a third but is still significant. When the components of
x are negatively correlated (ρ = −0.5), the bias is substantially larger. Thus the
bias ina varies negatively withρ, just as the linear case suggested. A positive
value of ρ implies that measurement error inx1 biases the coefficient onx2

away from zero, counteracting the effect of measurement error inx2. Although
bi is biased toward zero by measurement error inxi, the bias is somewhat offset
by the effects of measurement error in other components ofx.

Whenk = 1, the direction of bias is determined entirely by the sign ofβµ.
Whenk > 1, the direction of bias depends onΣ andD, even whenβ′µ can be
signed. Table 3 illustrates this fact fork = 2, showing a set of parameters for
which a is biased against finding discrimination. Bothx1 and x2 are plagued
by measurement error, but with a strong positive correlation between the two,
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Table 3 Coefficient Estimates for
Alternative Error-Variance Assumptions, k = 2

α = 0, β =
[
−0.1
−1

]
, µ =

[
−2
−0.1

]
, Σ =

[
1

0.75
0.75

1

]
and

D =
[

0.1
0

0
0.1

]
, D̃ =

[
d̃
0

0
d̃

]
, n = 10, 000.

a b1 b2

Assumedd̃
0.0 −0.2445 −0.2352 −0.7703

(−3.4442) (−7.0602) (−21.9616)
0.1 0.0312 −0.0887 −0.9962

(0.2888) (−1.6430) (−17.3444)

Notes: t-statistics are shown in parentheses beneath the coefficient estimates. For each panel, we
drew a set of 10,000 random realizations for (y, x): 5,000 with z = 0 and 5,000 withz = 1.
Within each panel, estimation was performed on the same data set.

each has a dampening effect on the bias in the coefficient of the other variable.
The net bias inb2 is toward zero, butb1 is biased away from zero. Sincex1 is
more strongly correlated withz, the net effect is a negative bias ina. With the
correct error-variance assumption, the model detects the lack of discrimination.

In Table 4 we display results for a model withk = 10, a size that is more
like that of the data sets encountered in actual practice. Withρ = 0, we see in
Panel A that with more correlates plagued by measurement error, the bias in
a is larger. Withρ = 0.5, the various measurement errors partially offset each
other, buta remains significantly biased. Once again, our technique faithfully
compensates for known measurement error.

4. SUMMARY

We have described a method for estimating logit models of discrimination under
a range of assumptions about the magnitude of errors in variables. Using artifi-
cially generated data, we showed how the bias in the discrimination coefficient
varies with measurement error and other basic model parameters. Our method
successfully corrects for known measurement error, and can gauge the sensi-
tivity of parameter estimates to errors in variables. Our method can be applied
to the studies of lending discrimination cited in the introduction. It can also
be applied to the empirical models employed in lending discrimination suits
and regulatory examinations. Since the stakes are high in such applications, the
models ought to be routinely tested for sensitivity to errors in variables.

Further extensions of our method would be worthwhile. Although we allow
for errors only in continuous-valued independent variables, studies of lending
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Table 4 Race Coefficient Estimates for Alternative Correlation and
Error-Variance Assumptions, k = 10

α = 0, β is a k × 1 vector of−1s,µ is a k × 1 vector of 1s,Σ is a k × k matrix
with 1s on the diagonal and off-diagonal elements equal toρ, D is a k × k matrix with
0.1s on the diagonal and off-diagonal elements equal to 0,D̃ is a k × k matrix with
elementsd̃ on the diagonal and off-diagonal elements equal to0, andn = 10, 000.

a

A. True parameterρ = 0:
Assumedd̃

0.0 1.0033
(3.3154)

0.1 −0.0339
(−0.1006)

B. True parameterρ = 0.5:
Assumedd̃

0.0 0.2266
(3.4658)

0.1 0.0645
(0.5988)

Notes: t-statistics are shown in parentheses beneath the coefficient estimate. For each panel, we
drew a set of 10,000 random realizations for (y, x): 5,000 withz = 0 and 5,000 withz = 1. Within
each panel, estimation was performed on the same data set.

discrimination often include discrete variables that are likely to be fallible as
well. It would be worthwhile to allow for errors in the discrete variables, as
Klepper (1988a) does for the linear regression model. In addition, it would be
useful to allow for uncertainty about the nuisance distributional parameters that
our method treats as known.

REFERENCES

Bauer, Paul W., and Brian A. Cromwell. “A Monte Carlo Examination of
Bias Tests in Mortgage Lending,” Federal Reserve Bank of Cleveland
Economic Review, vol. 30 (July/August/September 1994), pp. 27–44.

Berkovec, James, Glenn Canner, Stuart Gabriel, and Timothy Hannan. “Race,
Redlining, and Residential Mortgage Loan Performance,”Journal of Real
Estate Finance and Economics, vol. 9 (November 1994), pp. 263–94.



   

32 Federal Reserve Bank of Richmond Economic Quarterly

Cummins, Claudia. “Fed Using New Statistical Tool to Detect Bias,”American
Banker, June 8, 1994.

Friedman, Milton.A Theory of the Consumption Function. Princeton, N.J.:
Princeton University Press, 1957.

Goldberger, Arthur S. “Reverse Regression and Salary Discrimination,”
Journal of Human Resources, vol. 19 (Summer 1984), pp. 293–318.

Hashimoto, Masanori, and Levis Kochin. “A Bias in the Statistical Estimation
of the Effects of Discrimination,”Economic Inquiry, vol. 18 (July 1980),
pp. 478–86.

Hausman, J. A., W. K. Newey, and J. L. Powell. “Nonlinear Errors in
Variables: Estimation of Some Engel Curves,”Journal of Econometrics,
vol. 65 (January 1995), pp. 205–33.

Kapteyn, Arie, and Tom Wansbeek. “Identification in the Linear Errors in
Variables Model,”Econometrica, vol. 51 (November 1983), pp. 1847–49.

Klepper, Steven. “Bounding the Effects of Measurement Error in Regressions
Involving Dichotomous Variables,”Journal of Econometrics, vol. 37
(March 1988a), pp. 343–59.

. “Regressor Diagnostics for the Classical Errors-in-Variables
Model,” Journal of Econometrics, vol. 37 (February 1988b), pp. 225–50.

, and Edward E. Leamer. “Consistent Sets of Estimates for
Regressions with Errors in All Variables,”Econometrica, vol. 52 (January
1984), pp. 163–83.

Levine, David K. “Reverse Regressions for Latent-Variable Models,”Journal
of Econometrics, vol. 32 (July 1986), pp. 291–92.

Maddala, G. S.Limited-Dependent and Qualitative Variables in Econometrics.
Cambridge: Cambridge University Press, 1983.

Munnell, Alicia H., Lynn E. Browne, James McEneaney, and Geoffrey M.
B. Tootell. “Mortgage Lending in Boston: Interpreting the HMDA Data,”
Working Paper Series No. 92. Boston: Federal Reserve Bank of Boston,
1992.

Rao, Potluri. “Some Notes on the Errors-in-Variables Model,”American
Statistician, vol. 27 (December 1973), pp. 217–28.

Schill, Michael H., and Susan M. Wachter. “Borrower and Neighborhood
Racial and Income Characteristics and Financial Institution Mortgage
Application Screening,”Journal of Real Estate Finance and Economics,
vol. 9 (November 1994), pp. 223–39.

Seiberg, Jaret. “When Justice Department Fights Bias by the Numbers, They’re
His Numbers,”American Banker, September 14, 1994.


