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A
fter a long period of quiescence, growth economics has in the last
decade (1986–1995) become an extremely active area of research—
both theoretical and empirical.1 To appreciate recent developments and

understand associated controversies, it is necessary to place them in context, i.e.,
in relation to the corpus of growth theory that existed prior to this current burst
of activity. This article’s exposition will begin, then, by reviewing in Sections
1–4 the neoclassical growth model that prevailed as of 1985. Once that has been
accomplished, in Section 5 we shall compare some crucial implications of the
neoclassical model with empirical evidence. After tentatively concluding that
the neoclassical setup is unsatisfactory in several important respects, we shall
then briefly describe a family of “endogenous growth” models and consider
controversies regarding these two classes of theories. Much of this exposition,
which is presented in Sections 6–8, will be conducted in the context of a
special-case example that permits an exact analytical solution so that explicit
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comparisons can be made. Finally, some overall conclusions are tentatively put
forth in Section 9. These conclusions, it can be said in advance, are broadly
supportive of the endogenous growth approach. Although the article contends
that this approach does not strictly justify the conversion of “level effects”
into “rate of growth effects,” which some writers take to be the hallmark of
endogenous growth theory, it finds that the quantitative predictions of such a
conversion may provide good approximations to those strictly implied.

1. BASIC NEOCLASSICAL SETUP

Consider an economy populated by a large (but constant) number of separate
households, each of which seeks at an arbitrary time denoted t = 1 to maximize

u(c1) + βu(c2) + β2u(c3) + . . . , (1)

where ct is the per capita consumption of a typical household member during
period t and where β = 1/(1 + ρ) with ρ > 0 the rate of time preference. The
instantaneous utility function u is assumed to be well behaved, i.e., to have the
properties u′ > 0, u′′ < 0, u′(0) = ∞, u′(∞) = 0. The analysis would not be
appreciably altered if leisure time were included as a second argument, but to
keep matters simple, leisure will not be recognized in what follows. Instead, it
will be presumed that each household member inelastically supplies one unit
of labor each period.

It is assumed that the number of individuals in each household grows at the
rate ν; thus each period the number of members is 1+ν times the number of the
previous period. In light of this population growth, some analysts postulate a
household utility function that weights each period’s u(ct) value by the number
of household members, a specification that is effected by setting ψ = 1 in the
following more general expression:

u(c1) + (1 + ν) ψ βu(c2) + (1 + ν)2ψ β2u(c3) + . . . . (1′)

With ψ = 0, expression (1′) reduces to (1) whereas ψ values between 0 and 1
provide intermediate assumptions about this aspect of the setup. Most of what
follows will presume ψ = 0, but the more general formulation (1′) will be
referred to occasionally.

Each household operates a production facility with input-output possibil-
ities described by a production function Yt = F(Kt, Nt), where Nt and Kt are
the household’s quantities of labor and capital inputs with Yt denoting output
during t. The function F is presumed to be homogeneous of degree one so, by
letting yt and kt denote per capita values of Yt and Kt, we can write

yt = f (kt), (2)

where f (kt) ≡ F(kt, 1). It is assumed that f is well behaved (as defined above).
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Letting vt denote the per capita value of (lump-sum) government transfers
(so −vt = net taxes), the household’s budget constraint for period t can be
written in per capita terms as

f (kt) + vt = ct + (1 + ν)kt+1 − (1− δ)kt. (3)

Here δ is the rate of depreciation of capital. As of time 1, then, the household
chooses values of c1, c2, . . . and k2, k3, . . . to maximize (1) subject to (3)
and the given value of k1. The first-order condition necessary for optimality
can easily be shown to be

(1 + ν)u′(ct) = βu′(ct+1)[ f ′(kt+1) + 1 − δ], (4)

and the relevant transversality condition is2

lim
t→∞

kt+1β
t−1u′(ct) = 0. (5)

The latter provides the additional side condition needed, since only one initial
condition is present, for (3) and (4) to determine a unique time path for ct and
kt+1. Satisfaction of conditions (3), (4), and (5) is necessary and sufficient for
household optimality.3

To describe this economy’s competitive equilibrium, we assume that all
households are alike so that the behavior of each is given by (3), (4), and
(5).4 The government consumes output during t in the amount gt (per person),
the value of which is determined exogenously. For some purposes one might
want to permit government borrowing, but here we assume a balanced budget.
Expressing that condition in per capita terms, we have

gt + vt = 0. (6)

For general competitive equilibrium (CE), then, the time paths of ct, kt, and vt

are given by (3), (4), and (6), plus the transversality condition (5). In most of
what follows, it will be assumed that gt = vt = 0, in which case the CE values

2 The role of this condition is outlined in Appendix A.
3 Some references to proofs, in the context of a version that includes stochastic technology

shocks, are given in McCallum (1989).
4 Actually, the general equilibrium character of the analysis would be more apparent if we

were to distinguish between quantities of capital supplied and demanded (per capita) by household
h, writing them as kt(h) and kd

t (h). Then market clearing for period t would be represented by the
condition Σkt(h) = Σkd

t (h), where the summation is over all households. But with all households
being treated as alike, which we do for simplicity, that condition reduces to kt(h) = kd

t (h), so
nothing is lost by failing to make the distinction. A similar conclusion is applicable to labor
demand and supply, so the economy under discussion should be thought of as one with markets
for capital and labor, even though these do not appear explicitly in the discussion. Also, the
presence of a loan market is implicitly assumed, with one-period loans and capital serving a
household equally well as stores of value.



44 Federal Reserve Bank of Richmond Economic Quarterly

of ct and kt are given by (4) and

f (kt) = ct + (1 + ν)kt+1 − (1− δ)kt, (7)

provided that they satisfy (5).
Much interest centers on CE paths that are steady states, i.e., paths along

which every variable grows at some constant rate.5 It can be shown that in
the present setup, with no technical progress, any steady state is characterized
by stationary (i.e., constant) values of ct and kt.6 (These constant values imply
growth of economy-wide aggregates at the rate ν, of course.) Thus from (4) we
see that the CE steady state is characterized by f ′(k) + 1− δ = (1 + ν)(1 + ρ)
or

f ′(k) − δ = ν + ρ+ νρ. (8)

This says that the net marginal product of capital is approximately (i.e., ne-
glecting the interaction term νρ) equal to ν+ρ, a condition that should be kept
in mind. If the more general utility function (1′) is adopted, the corresponding
result is f ′(k) + 1 − δ = (1 + ρ)(1 + ν)1−ψ . Thus with ψ = 1, i.e., when
household utility is u(c) times household size, we have f ′(k)− δ = ρ.

It can be shown that, in the model at hand, the CE path approaches the CE
steady state as time passes. Given an arbitrary k1, in other words, kt approaches
the value k∗ that satisfies (8) as t→∞. This result can be clearly and easily
illustrated in the special case in which u(ct) = log ct, f (kt) = Akαt , and δ = 1.7

(Below we shall refer to these as the “LCD assumptions,” L standing for log
and CD standing for both Cobb-Douglas and complete depreciation.) In this
case, equations (4) and (7) become

(1 + ν)
ct

=
βαAkα−1

t+1

ct+1
(9)

and

Akαt = ct + (1 + ν)kt+1. (10)

5 Some authors use the term “balanced growth” for such paths. To me it seems preferable to
use “steady state” so as to suggest a generalization of the concept of a stationary state, in which
case every variable must grow at the constant rate of zero.

6 That conclusion can be justified as follows. In (4), u′(ct) ≡ λt is an important variable.
For it to grow at a constant rate, λt+1/λt must be constant through time. But by (4) that implies
that f ′(kt+1) must be constant and so the properties of f imply that k is constant. Then we draw
upon the algebraic requirement that for any three variables related as yt = xt + zt , all three can
grow at constant rates only if the rates are equal. (This can be seen by writing yt − yt−1 =
xt − xt−1 + zt − zt−1 and then dividing by yt−1 : (yt − yt−1)/yt−1 = (xt − xt−1)/yt−1 + (zt −
zt−1)/yt−1 = (xt−1/yt−1)(xt − xt−1)/xt−1 + (zt−1/yt−1)(zt − zt−1)/zt−1. Then if the growth rate
of x, (xt − xt−1)/xt−1, exceeds that of z, the growth rate of y will increase as time passes—so the
rates must be the same for x and z, and thus for y.) But then the budget constraint (3) implies,
by repeated application of the foregoing requirement, that ct, yt, and vt must all grow at the same
rate as kt , i.e., zero.

7 Throughout, log x denotes the natural logarithm of x.
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Since the value of kαt summarizes the state of the economy at time t, it is a
reasonable conjecture that kt+1 and ct will each be proportional to kαt . Substi-
tution into (9) and (10) shows that this guess is correct and that the constants
of proportionality are such that kt+1 = αβ(1+ν)−1Akαt and ct = (1−αβ)Akαt .
These solutions in fact satisfy the transversality condition (TC) given by (5),
so they define the CE path. The kt solution can then be expressed in terms of
the first-order linear difference equation

log kt+1 = log[αβA/(1 + ν)] + α log kt, (11)

which can be seen to be dynamically stable since |α |< 1. Thus log kt con-
verges to (1 − α)−1 log[αβA/(1 + ν)]. For reference below, we note that sub-
traction of log kt from each side of (11) yields

log kt+1 − log kt = (1− α)[log k∗ − log kt], (12)

where k∗ = [αβA/(1 + ν)]1/(1−α), so 1−α is in this special case a measure of
the speed of convergence of kt to k∗.

It might be thought that the complete-depreciation assumption δ = 1 ren-
ders this special case unusable for practical or empirical analysis. But such a
conclusion is not inevitable. What is needed for useful application, evidently,
is to interpret the model’s time periods as pertaining to a span of calendar
time long enough to make δ = 1 a plausible specification—say, 25 or 30 years.
Then the parameters A, β, and ν must be interpreted in a corresponding manner.
Suppose, for example, that the model’s time period is 30 years in length. Thus
if a value of 0.98 was believed to be appropriate for the discount factor with
a period length of one year, the appropriate value for β with 30-year periods
would be β = (0.98)30 = 0.545. Similarly, if the population growth parameter
is believed to be about one percent on an annual basis, then we would have
1+ν = (1.01)30 = 1.348. Also, a realistic value for A would be about 10k(1−α),
since it makes k/y = 3/30 = 0.1. So the LCD assumptions could apparently
be considered for realistic analysis, provided that one’s interest is in long-term
rather than cyclical issues.8

2. TECHNICAL PROGRESS

Since the foregoing model approaches a steady state in which per capita
values are constant over time, it may seem to be a strange framework for
the purpose of growth analysis. But in the neoclassical tradition, growth in
per capita values is provided by assuming that steady technical progress oc-
curs, continually shifting the production frontier as time passes. With technical

8 It is true, of course, that δ = 1 implies a qualitatively different time profile for the
depreciation of capital than when δ < 1, since in the latter case a given stock of capital will
never disappear entirely in finite time. But the usual assumption is made more for tractability
than because of any evidence that it is truly representative of actual physical decay processes.
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progress proceeding at the rate γ, the production function would in general
be written as Yt = F(Kt, Nt, (1 + γ)t).9 It transpires, however, that steady-state
growth is only possible when technical progress occurs in a “labor-augmenting”
fashion, i.e., when

Yt = F(Kt, (1 + γ)tNt).10 (13)

But then with F homogeneous of degree one, we have

ŷt = f (k̂t), (14)

where yt ≡ Yt/(1+γ)tNt and k̂t ≡ Kt/(1+γ)tNt are values of output and capital
per “efficiency unit” of labor. Alternatively, yt = y1(1 + γ)tf (kt/k1(1 + γ)t). The
household’s budget constraint, when expressed in terms of these variables (and
with vt ≡ 0), becomes

f (k̂t) = ct/(1 + γ)t + (1 + ν)(1 + γ)k̂t+1 − (1− δ)k̂t. (15)

Maximizing (1) subject to (15) gives rise to the following first-order condition,
analogous to (4):

(1 + ν)(1 + γ)u′(ct)(1 + γ)t = βu′(ct+1)(1 + γ)t+1[ f ′(k̂t+1) + 1− δ]. (16)

In addition, we have the transversality condition

lim
t→∞

k̂t+1β
t−1u′(ct)(1 + γ)t = 0. (17)

Since there are no additional equilibrium conditions, presuming that gt = vt =
0, competitive equilibrium time paths of ct and kt are determined by (15) and
(16), given the initial value of k, and the limiting condition (17).

Now, in order for steady growth of both ct and u′(ct) to be possible, it
will be assumed that agents’ preferences are such that the function u′(ct) has a
constant elasticity.11 For reasons of symmetry, the function is usually written as

u(ct) =
c1−θ

t − 1
1− θ

θ > 0, (18)

9 We assume that this rate γ satisfies γ < ρ. If instead we had γ ≥ ρ, then the value of ct

would grow rapidly enough that in a steady state the infinite series (1) would not be convergent.
Such a situation gives rise to mathematical complexities that are beyond the scope of the present
exposition.

10 For a proof that this form of technical progress is necessary for steady-state growth, see
Appendix B. Of course, it is true that if the production function is Cobb-Douglas, then both
Hicks-neutral and capital-augmenting technical progress are equivalent to the labor-augmenting
type.

11 Equation (16) implies that, if k̂t is to be constant as it must be in a steady state, we must
have u′(ct+1) = ψ u′(ct) where ψ is a constant. Let ct+1 = (1+γ)ct and differentiate the previous
expression with respect to ct, obtaining u′′(ct+1)ct+1/u′(ct+1) = u′′(ct)ct/u′(ct), which implies
that u′(c) has the same elasticity for all values of c.
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which has an elasticity of marginal utility of −θ and reduces to u(ct) = log ct

in the special limiting case in which θ→ 1.12 Using (18), then, we rewrite
(16) as

(1 + ρ)(1 + ν)(ct/ct+1)−θ = f ′(k̂t+1) + 1− δ. (19)

Finally, we define ĉt = ct/(1 + γ)t, which implies that ct/ct+1 = ĉt/ĉt+1(1 + γ),
so we can rewrite (19) once more as

(1 + ρ)(1 + ν)(ĉt+1/ĉt)θ(1 + γ)θ = f ′(k̂t+1) + 1− δ. (20)

The latter shows that kt will be constant in the CE steady state, and (15) then
implies that the same will be true for ĉt. Thus we see that the per capita
variables kt, ct, and yt will all grow at the rate γ. Thus equation (20) shows
that the (constant) value of f ′(k̂), which equals the marginal product of capital
in unadjusted units, will satisfy

f ′(k̂)− δ = (1 + ρ)(1 + ν)(1 + γ)θ − 1. (21)

We can approximate (1 + γ)θ with 1 + γθ, assuming γ is small in relation to
1.0, so dropping cross-product terms we have the approximation

f ′(k̂)− δ = ρ+ ν + γθ. (22)

In the special case with u(ct) = log ct, i.e., with θ = 1, the right-hand side
of (22) becomes ρ + ν + γ. Furthermore, with the other LCD assumptions it
can easily be verified that k̂t behaves as kt does in Section 2. In particular, with
ŷt = Ak̂αt we have

log k̂t+1 − log k̂t = (1− α)[log k̂∗ − log k̂t], (23)

where log k̂∗ = (1−α)−1 log[αβA/(1 + ν)(1 + γ)], implying that k̂t approaches
k̂∗ as time passes with 1− α being the rate of convergence.

3. OPTIMALITY

For social optimality, one would want to maximize the typical household’s
utility subject to the economy’s overall resource constraint. But in the case in
which gt = vt = 0, this constraint is exactly the same as the household’s budget
constraint, if each is expressed in per capita terms. So the social optimization
problem becomes formally indistinguishable from the one solved by a typical
household. Accordingly, the CE path will satisfy all the conditions for social
optimality. This result would not hold, however, if gt > 0 were financed by

12 To find the limit as θ→ 1 of (c1−θ − 1)/(1 − θ), we use l’Hopital’s rule to express it
as the ratio of the limits of d(c1−θ − 1)/dθ = −c(1−θ) log c and d(1 − θ)/dθ = −1. Thus for
θ→1, we have −c0 log c/(−1) = log c.
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taxes that are distorting or if the model were modified so as to reflect some
sort of externality.13

Now suppose that we ask the following question: In the model with tech-
nical progress, what k̂ will yield the highest value of ĉ that can be permanently
sustained? In other words, among steady states that are not necessarily CE
paths, which one yields the highest value of ĉ? Clearly, the budget constraint
(15) implies

ĉ = f (k̂)− (1 + ν)(1 + γ)k̂ + (1− δ)k̂ (24)

for any steady state, so one can maximize ĉ by differentiating the right-hand
side with respect to k̂ and setting the result equal to zero. We find that

0 = f ′(k̂)− (1 + ν)(1 + γ) + (1 − δ) (25)

is the implied condition on k̂. Approximately, then,

f ′(k̂) − δ = ν + γ, (26)

where the cross-product term νγ has been dropped.
It will be noticed immediately that this implied “golden rule” value of k̂,

which we call k̂+, does not agree with the one given by (22) as the steady-state
value k̂∗ that is approached by the CE path.14 Also, we see that, with f ′ < 0, k̂+

will normally exceed k̂∗ since ν + γ will normally be smaller than ν + ρ+ θγ.
(The latter will clearly be true under our assumption of γ < ρ that guarantees
convergence of [1].) Here the main point is that k̂∗ has been found to be socially
optimal, since it is the value approached by the CE under conditions that make
CE paths satisfy all the requirements for social optimality. This fact sometimes
generates confusion, since the steps leading to (26) seem to make k̂+ optimal
from a steady-state perspective, as it gives a value of ĉ larger than with k̂∗. But
because of time preference—i.e., ρ > 0 or β < 1—an economy in a steady
state with k̂t = k̂+ could increase the value of (1) by immediately consuming
slightly more than the golden rule amount, given by (24) with k̂+, and moving
to a steady state with k̂ somewhat smaller than k̂+. And so long as k̂ > k̂∗,
this same possibility remains open. Thus we conclude again that the optimal
path beginning at any time would be given by (23), which implies that kt will
approach k̂∗ as time passes.

13 Suppose, for example, that gt > 0 and is financed by a tax on production at the rate τ
so that the (per capita) government budget constraint is gt = τ f (kt). Then a typical household’s
condition analogous to (4) becomes (1 + υ)u′(ct) = βu′(ct+1)[(1− τ )f ′(kt+1) + 1− δ], but the
counterpart for social optimality does not include the (1 − τ ) term. For a steady state with no
technical progress, then, we would have (1 − τ )f ′(k) − δ = (1 + υ)(1 + ρ) − 1 in CE which
makes f ′(k) larger than optimal—that is, too little capital is accumulated (even conditional on gt).
An externality example will be considered below, in Section 6.

14 The value k̂∗ is frequently referred to as the “modified golden rule” value.
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One way to understand the foregoing is to note that the golden rule path
yields “steady-state optimality” only for the highly artificial problem of first
imposing a steady-state restriction and then optimizing, instead of optimizing
and then finding what conditions would be implied by an equilibrium that hap-
pens to be a steady state. The latter comes much closer to answering a relevant
operational question. Or, to put the contrast in other words, k+ is the answer to
the question “what capital stock would your economy like to be miraculously
given under the condition that it be required to maintain that value forever?”15

By contrast, k̂∗ is the answer to the question, “Among capital stocks that your
economy would willingly maintain forever, which one is most desirable?”

It might be noted, incidentally, that the importance of this point regarding
steady-state optimality would not be diminished by the presence of money—i.e.,
a transaction-facilitating medium of exchange—in the economy under consid-
eration. Thus it remains true in monetary models that optimal steady-state paths
are those found by conducting optimality analysis prior to the imposition of
steady-state conditions. Failure to proceed in this manner has led to misleading
conclusions or suggestions by several analysts and even mars the widely used
graduate textbook of Blanchard and Fischer (1989, Chapter 4).16

4. HISTORY OF THOUGHT

Before continuing, let us pause to note that development of the neoclassical
growth model is frequently attributed to Ramsey (1928), Cass (1965), and
Koopmans (1965), with an extension to a stochastic environment provided by
Brock and Mirman (1972). These papers were all concerned, however, only
with the social planning problem, not with market outcomes. Recognition that
the mathematical expressions could be reinterpreted so as to provide a positive
theory of the behavior of a competitive market economy was first made in
print—as far as I have been able to determine—by Brock (1974a). Extension
to a monetary economy was accomplished by Brock (1974b).

A justly famous paper by Solow (1956) developed an analysis of growth
that is in several ways closely related to the one provided by the neoclassical
model. Solow’s paper did not include dynamic optimizing analysis of house-
holds’ saving behavior, however, but simply took the fraction of income saved
to be a given constant. A contemporaneous paper by Swan (1956) developed

15 In efficiency-adjusted per capita units, that is.
16 Specifically, Blanchard and Fischer suggest on page 191 that the Chicago Rule optimal

inflation result—i.e., that the optimal steady inflation rate equals the negative of the real rate of
return on capital—depends upon the property of monetary superneutrality, and on page 181 they
state that the Chicago Rule is not optimal in a monetary overlapping generations model. Both
of these claims are overturned, however, by analysis that imposes steady-state restrictions after
conducting a more general optimality analysis (see McCallum [1990], pp. 976–78, and 983).
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a rather similar analysis in a fashion that was less mathematically explicit.
Discussion of the “golden rule” condition can be found in papers by Phelps
(1961) and Solow (1962).

Prior to publication of the Solow and Swan papers, considerable attention
had been given to a result of Harrod (1939) and Domar (1947) to the effect that
in a steady state the product of the saving/output ratio and the output/capital
ratio must equal the rate of growth of capacity output. In other words, kt and
the capacity level of output ȳt must grow at the same rate if yt/ȳt is to remain
constant (as was taken to be necessary). Much was made of the idea that these
three numbers might be determined by different aspects of economic behavior,
and it was suggested that satisfaction of the condition might be unlikely to
result in market economies without activist government policy. Solow (1956)
cogently observed that the output/capital ratio could adjust endogenously, but—
as Hahn (1987) has noted—this observation does not actually speak to the
Harrod-Domar “problem.” That is because Solow showed that kt and yt could
grow at equal rates, but in doing so, he assumed that yt/ȳt was constant, which
was actually the matter of concern to Harrod and Domar. Solow’s contribution
was great, nevertheless, because he (and Swan) developed something that might
reasonably be called a model, whereas Harrod and Domar had only derived (via
elementary algebra) a condition that needed to be satisfied for steady growth.17

The resurgence of growth theory that took place in the 1980s, and in-
volved the development of endogenous growth models, arose in response to
a perception that the neoclassical framework was severely inadequate for the
analysis of actual growth experiences. To detail the perceived inadequacies and
the subsequent response is the purpose of the next two sections.

5. WEAKNESSES OF THE NEOCLASSICAL MODEL

The evident trouble with the neoclassical growth model outlined above is that
it fails to explain even the most basic facts of actual growth behavior. To a
large extent, this failure stems directly from the model’s prediction that output
per person approaches a steady-state path along which it grows at a rate γ
that is given exogenously. For this means that the rate of growth is deter-
mined outside the model and is independent of preferences, most aspects of
the production function, and policy behavior. As a consequence, the model
itself suggests either the same growth rate for all economies or, depending on
one’s interpretation, different values about which it has nothing to say. But
in reality different nations have maintained different per capita growth rates
over long periods of time—and these rates seem to be systematically related

17 The Solow contribution is not a complete optimizing model, as has been mentioned, but
is a model nevertheless, in the sense of a falsifiable depiction of some economic phenomena.
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to various national features, e.g., to be higher in economies that devote large
shares of their output to investment. These and other failings were stressed by
Romer (1986, 1987, 1989) and Lucas (1988).

Of course, the neoclassical model does imply that transitional growth rates
will differ across economies, being faster in those that have existing capital-
to-effective-labor ratios relatively far below their CE steady-state values. This
observation is what prevented fundamental dissatisfaction from being openly
expressed before the appearance of the Romer and Lucas papers and is one of
the two lines of defense recently mentioned in a lively discussion by Mankiw
(1995, p. 281).18 But transitional phenomena cannot provide a quantitative
explanation of the magnitude of long-lasting growth rate differences under the
standard neoclassical presumption that the production function is reasonably
close to the Cobb-Douglas form with a capital elasticity of approximately one-
third (roughly capital’s share of national income).19 One way to describe the
problem is to consider a comparison in which one economy’s per capita output
increases by a factor of 2.9 relative to another’s over a period of 30 years, which
is the factor that would be relevant if the first economy’s average growth rate
exceeded the second’s by about 3.6 percent per year. (This last figure is twice the
standard deviation of per capita growth rates among 114 nations over the years
1960 to 1990, as reported by Barro and Sala-i-Martin [1995], p. 3, so a sizable
fraction of all nation pairs have had differences exceeding that value.) Then,
with a capital elasticity of one-third, the capital stock per capita would have
to increase by a factor of 2.93 = 24.4 relative to the second economy, if their
rates of technical progress were the same. Thus the real rate of interest—i.e.,
the marginal product of capital—in the first economy would fall by a relative
factor of 24.42/3 = 8.4. So if the two economies had similar real interest rates
at the end of the 30-year period, the first economy’s rate would have been 8.4
times as high as the second’s at the start of the period! But of course we do
not observe in actual data changes in capital/labor ratios or real interest rates
that are anywhere near as large as those magnitudes, even though we observe
many output growth differentials of 3.6 percent and more.20 Some evidence
that this argument is robust to production function assumptions, and a dramatic
comparison involving Japan and the United States, is provided by King and
Rebelo (1993).

18 The second line of defense, that the neoclassical model may do a reasonable job of
explaining cross-country differences in the level of income, will be discussed below.

19 The following discussion is adapted from McCallum (1994).
20 The interest rate portion of the foregoing argument counterfactually presumes two closed

economies but so does the usual neoclassical growth analysis.
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The same general type of calculation is also relevant for cross-country
comparisons. The level of per capita incomes in the industrial nations of the
world are easily 10 times as high as in many developing nations. With a pro-
duction function of the type under discussion, this differential implies a capital
per capita ratio of 103 = 1000, and therefore a ratio of marginal products of
capital of 1000−2/3 = 1/100 = 0.01. In other words, the real rate of return to
capital is predicted to be about 100 times as high in the developing nations
as in those that are industrialized. But surely a differential of this magnitude
would induce enormous capital flows from rich to poor countries, flows entirely
unlike anything that is observed in actuality.21

Another perspective on the neoclassical vs. endogenous growth issue in-
volves the question of “convergence,” which has been much discussed in the
literature. From equations (14) and (23) above we see that if all nations had the
same taste and technology parameters, and the same population growth rate,
then they should, according to the neoclassical model, have the same steady-
state level of per capita income. Thus as time passes, per capita income levels
in different countries should converge to a common value, with low income
countries growing more rapidly than those in which beginning per capita in-
come levels are high. Empirically, however, it is the case that growth rates over
periods such as 1960 to 1985 are virtually uncorrelated with initial-year income
levels. In fact, there is a small, positive coefficient in the Mankiw-Romer-Weil
(1992) sample of 98 “non-oil” countries; their cross-section regression is

log y1985 − log y1960 = −0.27 + 0.094 log y1960

(0.38) (0.050)

R 2 = 0.03 SE = 0.44. (27)

The neoclassical model does not actually require, however, that population
growth values are equal in various countries and does not imply that taste
and technology parameters must be the same. So convergence in the “uncondi-
tional” sense of the foregoing discussion is not, it can be argued, relevant to the
performance of the neoclassical model. What that model does imply, according
to authors including Barro and Sala-i-Martin (1992, 1995) and Mankiw, Romer,
and Weil (1992), is a concept that has been termed “conditional convergence.”
It will be discussed below, in Section 8.

It should be noted that the foregoing discussion does not imply that the
neoclassical analysis was unproductive. On the contrary, it played a major and
essential role in the development of dynamic general equilibrium analysis, the
basis for much of today’s economic theory. It is only as a theory of growth
that it is here being criticized.

21 For more comparisons of this type and some discussion, see Lucas (1990).
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6. ENDOGENOUS GROWTH MECHANISMS

In response to the various failures of the neoclassical model, Romer, Lucas,
King and Rebelo, and other scholars have developed models in which steady
growth can be generated endogenously—i.e., can occur without any exogenous
technical progress—at rates that may depend upon taste and technology pa-
rameters and also tax policy. There are numerous variants of such models, but
several important points can be developed by focusing on three basic mecha-
nisms. Two of these, one involving a capital accumulation externality and the
second relying upon the accumulation of human capital, will be discussed in
this section, with the third following in Section 7.

Let us consider first the externality model. For its presentation we will mod-
ify the setup of Section 1, in which there is no exogenous technical progress.
There is, however, an externality in production so that the typical household’s
per capita production function is

yt = f (kt, k̄t) f2 > 01, f22 < 0, (28)

where k̄t is the economy-wide average capital stock per person. Quoting Romer
(1989, p. 90), the “rationale for this formulation is based on the public good
character of knowledge. Suppose that new physical capital and new knowledge
or inventions are produced in fixed proportions so that [k̄t] is an index not only
of the aggregate stock of physical capital but also of the aggregate stock of
public knowledge that any firm can copy and take advantage of.” But each firm
or household is small, so it views k̄t as given when making its choice of kt+1

and other decision variables.
So as to highlight the effect of the resulting externality, suppose that the

production function is Cobb-Douglas,

yt = Akαt k̄ηt , (28′)

and that the other LCD assumptions hold as well (i.e., u(ct) = log ct and δ =
1). Also, let gt = vt = 0. Then the household’s budget constraint is

Akαt k̄ηt = ct + (1 + ν)kt+1 (29)

and its first-order optimality condition is

(1 + ν)
ct

=
βαAkα−1

t+1 k̄ηt+1

ct+1
. (30)

In addition, for general competitive equilibrium the following condition must
be satisfied, since households are alike:

kt = k̄t. (31)
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Given these relations,22 it is a reasonable conjecture that in a CE both kt+1

and ct will be proportional to kα+η
t . Substitution into (29) and (30), using (31),

shows this guess to be correct and that the resulting expression for kt+1 is

kt+1 = αβ(1 + ν)−1Akα+η
t . (32)

There are two interesting points relating to this solution. First, with η > 0
the CE path is not socially optimal. For social optimality, the problem is to
maximize (1) subject not to (29), but to (29) with (31) imposed. In that case,
the equation comparable to (32) that results is

kt+1 = (α+ η)β(1 + ν)−1 Akα+η
t . (32′)

Clearly, if α + η < 1, then (32) implies that kt approaches a constant value,
but it is one that is smaller than the steady-state value implied by (32′)—an
outcome that reflects the failure of individuals to take account of their own
actions’ effect on the economy-wide state of knowledge. Second, if by chance
it happened that α+η = 1, then kt would grow forever at a constant rate equal
to αβ(1+ν)−1A−1.23 Thus, it is possible, within this framework that excludes
exogenous technical progress, for steady-state growth to be generated, in which
case its rate will be dependent upon α,β, ν, and A. Admittedly, the case with
α + η = 1 exactly might be regarded as rather unlikely to prevail. That issue
will be taken up below.

Now let us consider the second of the two basic endogenous growth mech-
anisms, this one involving the accumulation of human capital—in the sense of
labor-force skills that can be enhanced by the application of valuable resources.
One simple way to represent this phenomenon is to specify that physical output
is accumulated according to

Akαt (htnt)1−α = ct + (1 + ν)kt+1, (33)

where nt is the fraction of the typical household’s work time that is allocated
to goods production and ht is a measure of human capital—i.e., workplace
skills—of a typical household member at time t.24 These skills are produced
by devoting the fraction 1−nt of working time to human capital accumulation.
In general, physical capital would also be an important input to this process,
but for simplicity let us initially assume that the accumulation of productive
skills obeys the law of motion

ht+1 − ht = B(1− nt)ht − δhht, (34)

22 And also a transversality condition.
23 In this case the transversality condition requires lim(1 + ν)kt+1β

t−1/ct = 0. With kt+1

given by (32) and ct = (1 − αβ)Akα+η
t , the relevant expression is βt−1αβ/(1 − αβ), which

does indeed approach zero as t→∞.
24 In (33), the ht human capital measure enters in the same way that the labor-augmenting

technical progress term does in the neoclassical setup. So it can be seen that constant growth will
occur if the overall model is such that ht grows (endogenously) at a constant rate.
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where the final term reflects depreciation of skills that occurs as time passes.
In this expression, and for the rest of this example, we let ν = 0.

Maximization of (1) subject to constraints (33) and (34) gives rise to the
following first-order conditions:

c−1
t = βc−1

t+1αAkα−1
t+1 (ht+1nt+1)1−α (35a)

c−1
t Akαt h1−α

t (1 − α)n−αt = µtBht (35b)

µt = βµt+1[B(1− nt+1) + 1− δh] + βc−1
t+1Akαt+1n1−α

t+1 (1− α)h−αt+1. (35c)

Here µt is the shadow price of human capital, i.e., the Lagrange multiplier
attached to (34). With gt = vt = 0, the CE is given by the five equations
(33), (34), and (35a) – (35c),25 which determine time paths for ct, kt, ht, nt, and
µt. Since (33) and (34) are the same from the private and social perspectives,
there is no departure from social optimality implied by the CE.26

Now consider the possibility of steady-state growth in this system. Since
nt is limited to the interval [0,1], it must be constant in any steady state. If its
value is n, then (34) shows that ht will grow at the steady rate B(1 − n)− δh,
which we now denote as ξ. Then (35a) implies, since ct+1/ct must be constant,
that kt must also grow at the rate ξ—and by (33) the same must be true for
ct. Finally, (35b) shows that 1/µt must grow like ct—and these conclusions
are consistent with (35c) having each term grow at the same rate. To find out
what this growth rate will be, we can equate µt from (35b) and (35c), using
µt+1 = µt/(1 + ξ) in the latter, and after some tedious simplification find that

ρ(1 + ξ) = Bn. (36)

Since also ξ = B(1− n) − δh, we can solve for

n =
ρ(1 + B− δh)

(1 + ρ)B
(37)

in terms of basic parameters of the problem. Then ξ is found easily from
expression (36).

An important property of (37) to be noted is that the steady-state value of
n increases with ρ. Thus ξ, the growth rate, decreases with ρ, the rate of time
preference. In other words, the more impatience is exhibited by the economy’s
individuals, the lower will be the steady-state growth rate. This is precisely the
sort of result that some analysts have found highly plausible but is not generated
by the neoclassical model. If ν 6= 0 is assumed, moreover, the growth rate is
negatively related to ν .

25 Plus a pair of transversality conditions. The present model, it should be said, is the first
of two in Lucas (1988), but here it is given without an externality, and it is very similar to one
developed much earlier, by Uzawa (1965).

26 This last statement presumes the absence of government spending and distortionary taxes.
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An obvious objection to the model based on (33) and (34) is that produc-
tion of ht should be specified as dependent on the use of capital—i.e., physical
goods—in that process. That extension has been studied by Rebelo (1991), who
uses the following in place of (34):

ht+1 − ht = B(mtkt)a[ht(1− nt)]1−a − δhht. (38)

Here mt denotes the fraction of the capital stock that is devoted to production
of human capital, so (1−mt)kt replaces kt in (33) in this model.27 Rebelo finds
that the same conclusions involving steady growth and its dependence upon ρ
hold with this extension. Furthermore, if production of physical output is taxed,
say at the rate τ , then the steady-state growth rate will be negatively related to
τ .

Of the two mechanisms considered, knowledge externalities and human
capital, it is not obvious which is the more plausible as a source of major
quantitative departure from the neoclassical model. But there is no reason to
consider them on an either-or basis; both could be relevant simultaneously.
Indeed, the Lucas (1988) model, of which our (33) and (34) are a special
case, posits human capital accumulation as in (34) together with a production
function for physical output in which there is an externality involving average
economy-wide human—rather than physical—capital.

In what follows it will be useful to have at hand the full dynamic, period-
by-period solution for a representative endogenous growth model. It is possible
to derive such a solution for the Lucas model, even with the human capital
production externality included, provided that we use the LCD version, which
in this case requires that human capital fully depreciates in one period. Ac-
cordingly, let us now modify the model of equations (33), (34), and (35) by
using Akαt (htnt)1−αh̄ηt as the production function and setting δh = 1. Also, we
shall permit population growth again, which implies that ht+1 in (34) and µt

in (35c) are multiplied by (1 + ν). Then the household’s optimality conditions,
other than the transversality conditions, can be written as follows:

Akαt (htnt)1−αh̄ηt = ct + (1 + ν)kt+1 (39a)

(1 + ν)ht+1 = B(1− nt)ht (39b)

(1 + ν)ct+1 = ctβαAkα−1
t+1 (ht+1nt+1)1−αh̄ηt+1 (39c)

c−1
t Akαt h1−α

t (1− α)n−αt h̄ηt = µtBht (39d)

(1 + ν)µt = βµt+1[B− (1− nt)] + βc−1
t+1Akαt+1n1−α

t+1 (1− α)h−αt+1h̄ηt+1. (39e)

27 Rebelo also includes variable leisure in his setup.
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In competitive equilibrium we will also have ht = h̄t, so in what follows we
assume that condition to hold. To solve these equations for ct, kt+1, ht+1, nt, and
µt, we proceed by guessing—in analogy with the method of Section 2—that
those five variables are determined in response to the state variables kt and ht

by expressions of the form

ct = φ10kφ11
t hφ12

t (40a)

kt+1 = φ20kφ21
t hφ22

t (40b)

ht+1 = φ30kφ31
t hφ32

t (40c)

nt = φ40kφ41
t hφ42

t (40d)

µt = φ50kφ51
t hφ52

t . (40e)

If we can determine the implied values of the φ’s, we will have substantiated
this guess.

We begin by substituting (40c) and (40d) into (39b), obtaining

(1 + ν)φ30kφ31
t hφ32

t = Bht − Bφ40kφ41
t hφ42

t ht. (41)

But then for (40) to be valid for all values of kt and ht, it must be that φ31 =
φ41 = φ42 = 0 and φ32 = 1. Continuing in this manner of reasoning,28 we end
up with various sensible-looking results such as that ht grows steadily at the
rate [Bβ/(1+ν)]−1, the fraction of physical output saved is αβ, and especially
that kt evolves as

kt+1 =
αB(1− β)1−α

(1 + ν)
Akαt h1−α+η

t . (42)

We shall make use of this last solution expression in Section 8.
An interesting and influential variant results when we again suppress the

externality, by setting η = 0, but assume that human capital is produced by a
production function of type (38) but with a = α, i.e., with the same parameters
as pertain to production of consumption (and physical capital) output. With log
utility and Cobb-Douglas production functions, mt and nt will be constant over
time; and with the production functions the same as well, the relative price of
a unit of human capital in terms of output will be 1.0. Thus the sum of the
two outputs is of the form (const.) kαt h1−α

t = (const.) kt(ht/kt)1−α. But in this

28 Specifically, we find that nt = φ40 ≡ n and ht+1 = φ30ht, with φ30 = B(1 − n)/(1 + ν)
and n yet to be determined. Next, we substitute into (39a) and in the same way find that φ11 =

φ21 = α and φ12 = φ22 = 1 − α + η. Also, substitution of (40e) and ct = φ10kαt h1−α+η
t

into (39d) yields φ51 = 0 and φ52 = −1. Finding the φj0 values is a bit more difficult. But the
equations that result when the kt and ht terms are canceled out of (39) with (40) inserted imply
that n = φ40 = 1− β and that φ10 = A(1− αβ)(1 − β)1−α,φ20 = Aαβ(1 − β)1−α/(1 + ν),
φ30 = Bβ/(1 + ν), and φ50 = (1− α)/B(1 − αβ)(1− β).
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special case it is also true that kt/ht is constant, so the foregoing expression
reduces to a constant times kt, often written as yt = Akt. Hence, this is one
case of the so-called “AK ” model, which from a growth perspective is similar
to an extreme special case of the neoclassical model—one in which the capital
elasticity parameter α equals one. In this case, kt and therefore output per person
grows without limit at a constant rate, even with no technological progress, as
inspection of equation (11) shows clearly. Furthermore, even if a and α differ
so that kt/ht varies from period to period, the model works as indicated from a
steady-state growth perspective. Consequently, the AK model—which may also
be rationalized in other ways—has played a prominent role in the discussion
of endogenous growth possibilities. We shall refer to it again shortly.

7. ISSUES CONCERNING ENDOGENOUS
GROWTH ANALYSIS

Do models of the type outlined in Section 6 make more sense than the neoclas-
sical construct that they were designed to replace? Clearly they have the virtue
of at least attempting to explain growth endogenously, but are these attempts
logically satisfactory and empirically plausible? In this writer’s view, there are
some highly attractive features of the models discussed above, including the
possibility of knowledge externalities and the recognition that progress in terms
of workforce skills relies in large part upon the allocation of resources to the
production of such skills. But there are apparently two logical difficulties with
these models that need to be considered before conclusions can be drawn.

The first of these difficulties is that in the Lucas or Lucas-Rebelo model,
never-ending growth requires never-ending increases in human capital ht, our
measure of the productive skills of a typical worker. But for such a variable,
never-ending growth is implausible because the skills in question are ones
possessed by individual human beings and so are not automatically passed on
to workers in succeeding generations. The son of a skilled craftsman is not born
with dexterity and judgment but must start over again in developing them—
again expending resources to do so—and has only a finite lifetime in which to
do so. In this regard human capital is different from the stock of knowledge,
which is possessed by society in general and is passed on from generation to
generation, in the sense that it is available to those who wish to draw upon it.

Thus it is some form of knowledge, not human capital, that can plausibly
provide the basis for never-ending growth.29 But the development of knowledge
also requires the expenditure of resources, so the question that arises is why
rational private agents would devote resources to its development when the
product will be possessed by society in general, rather than by themselves. A

29 This point is stated clearly by Grossman and Helpman (1994, p. 35).
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response is suggested, however, by consideration of our existing patent system.
Formally, the answer in the literature is that the development of “designs” or
“blueprints” that are privately profitable can have the by-product of adding
to the stock of accessible productive knowledge. This type of process can
continue without limit, so it can serve as the basis for never-ending growth.
Several models expressing this notion have been developed;30 let us briefly
consider the most prominent of them, due to Romer (1990).

In Romer’s (1990) setup the production function for (consumable) output
can be written as

yt = n1−α
t Σ xαit , (43)

i=1

where nt is again the fraction of labor time devoted to the production of con-
sumables and where xit is the quantity of an intermediate good of type i used in
period t.31,32 The summation index i ranges from 1 to ∞ but in any period xit

will be zero for i > At, where At indicates the number of distinct intermediate
goods in use. The technology for producing each intermediate good requires
that ζ units of “capital” kt must be used in the production of a unit of xi, where
capital is simply consumable output that is not consumed. Thus, if because of
symmetry there is a common value x̄t of xit for those intermediate goods that
are produced in t, we have

kt = ζx̄tAt. (44)

But also Σxαit = Atx̄αt , so substitution into (43) yields

yt = n1−α
t At(kt/ζAt)α = (1/ζ)n1−α

t kαt A1−α
t . (45)

From the latter it is clear that steady growth of consumable output will be
possible if At grows exponentially without bound.

In addition to requiring ζ units of capital per unit produced, each interme-
diate good requires the use of one design. Designs, like output and intermediate
goods, require resources in their production. Let 1 − nt be the fraction of la-
bor time devoted to the production of designs, an activity that will be called
“research.” Romer (1990) assumes that the research process is such that the
creation of new designs by an individual is proportional to (1− nt)At, where At

is the total number of intermediate good designs, not the per-person value. Thus

30 Authors include Aghion and Howitt (1992), Grossman and Helpman (1991), King and
Levine (1993), and Goodfriend and McDermott (1995).

31 Romer’s (1990) presentation pretends that there is a single price-taking producer of final
output of consumables. Consequently, we shall not at this point distinguish between per-person
and aggregative magnitudes.

32 Actually, Romer (1990) has all labor allocated to the production of consumables and also
includes a human capital measure, with some human capital used in the production of designs.
Our specification is notationally simpler and basically equivalent.
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Romer assumes that designs are non-rival in the research process, the activities
of each researcher being enhanced by the entire stock of design knowledge
accumulated to date. The evolution over time of At will therefore conform to

At+1 − At = σN(1− nt)At, (46)

where σ is the constant of proportionality and N is the number of researchers
each devoting (1− nt) units of labor to research activity in t. Here the crucial
allocation problem is the determination of 1− nt, the fraction of time devoted
to research instead of consumable output. In Romer’s setup, this allocation
depends upon the derived demand for research, which itself stems from the
usefulness of intermediate goods in the production of output and the necessity
of designs for these goods. Thus the evolution of At is determined by the
optimizing choices of private individual agents (as well as technology). But
in a steady state, which is shown to exist by Romer’s careful analysis, nt will
be constant over time and At will grow at a constant rate, as indicated by
(46).33 Thus never-ending growth is generated in this model via endogenously
rationalized, never-ending accumulation of knowledge.34

The second logical difficulty of the endogenous growth approach is the
assumption of precisely constant returns to scale in the crucial production
process. In the Lucas-Rebelo model, for instance, the sum of the exponents
on physical and human capital in (33) and (38) must equal 1.00 exactly for
steady-state growth to be implied; if this sum equals 0.99 instead, then the
economy will approach a steady state in which there is no growth in the per
capita quantities. Similarly, in the externality model α + η must equal 1.00
exactly in (28′) for steady growth to occur—this can be seen clearly in (32).
And in the Romer (1990) model, the exponent on At on the right-hand side of
(46) must be exactly 1.00. Consequently, the dramatically different properties
of these models, as compared with the neoclassical construct, require very spe-
cial parameter values that obtain only on measure-zero subsets of the relevant
parameter spaces.35 That must be regarded as implying that the endogenous
growth approach does not actually generate steady, everlasting growth in the
absence of exogenous technical progress.36

33 Romer (1990) emphasizes the monopoly power possessed by each design creator, market
power that gives the individual an incentive to devote resources to the research activity (in our
exposition, by hiring labor). It should be noted that this is the rather benign type of monopoly
power that is granted by patent systems.

34 Rivera-Batiz and Romer (1991) argue that an important application of this analysis is in
the international context, where it implies that growth is fostered by economic integration and
trade liberalization (for both goods and ideas).

35 This conclusion does not seem to be inconsistent with the discussion of Romer (1994, pp.
17–18), despite the difference in tone.

36 Some analysts argue that all production functions must, as a matter of logic, have input
coefficients summing to precisely 1. But even if one ignores the presence of land, which is
probably of some importance, this argument misses the issue, which is whether the coefficients
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Nevertheless, the endogenous growth approach has been highly produc-
tive, because with returns to scale reasonably close to 1.00 in (33) and (34),
the model will have very slow transition dynamics. The speed of convergence
of kt to k∗t , given in (12) as 1 − α for the LCD neoclassical model, will be
more nearly equal to 1 − (α1 + α2), where α1 + α2 is the sum of capital and
human capital coefficients. Therefore, if the human capital coefficient arises as
in (33), via the effect of skill-adjusted labor, one would expect 1− (α1 + α2)
to be close to zero and convergence to be very slow. But with very slow tran-
sition dynamics, growth rate differences due to transitional movements toward
the CE steady state will be prolonged—so observed growth rate differences
might be sustained over very long time periods. So even if the approach of
the endogenous-growth proponents fails to explain never-ending steady-state
growth, it could plausibly explain many features of the empirical data and
potentially provide the basis for useful policy analysis.

In this regard, it is notable that equation (11) indicates that there is no dis-
continuity involving the distinction between neoclassical models with α close
to 1.0 and endogenous-growth AK models with α = 1.0 exactly. Specifically, if
at some point in time the efficiency parameter A were changed by the amount
∆ (say), then the effect on log kt after T periods will be T log ∆ according to
the AK model or log ∆(1−αT)/(1−α) according to the neoclassical model. For
α values close to 1.0, these magnitudes are similar (and are equal in the limit
as α→1.0). With α = 0.98 for example, we have (1− 0.985)/(1− 0.98) = 4.8
when T = 5 and (1− 0.9820)/(1− 0.98) = 16.6 when T = 20. So the response
of capital and output to changes in A—or another variable that affects the
steady-state value of kt—will be reasonably similar whether the counterpart of
α is 0.98 or 1.00. Since time periods in our formulation are about 25 to 30
years in duration, the similarity holds for substantial spans of time.

Of course, strictly speaking, this sort of weakened version of the approach
does not result in the conversion of “level effects” into “rate-of-growth effects”
that some writers take to be the hallmark of endogenous growth analysis. But
the difference is not too great, quantitatively. Furthermore, while that conclusion
implies a less dramatic difference between neoclassical and endogenous growth
models, it also rescues the latter from evidence suggesting apparent empirical
rejections. For example, Jones (1995) points out that the U.S. growth rate
has not risen over the last century despite increases in some variables (e.g.,
investment share, R&D share) that would bring about rate-of-growth effects
in the standard endogenous growth models with 1.00 values for the relevant
parameters.

on kt and ht in (33) sum to 1, not the coefficients on kt and nt . In other words, with ht generated
by (34) or (38), the issue is whether effective labor is htnt or nt multiplied by some nonlinear
function of ht .
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It has been argued by Mankiw, Romer, and Weil (1992) and Mankiw (1995)
that, although it has some weaknesses, the neoclassical model’s empirical per-
formance is much better than is suggested by the discussion of its endogenous
growth critics or that of Section 5 above.37 In particular, the neoclassical model
is fairly successful in explaining cross-country differences in income levels
and is even more successful when the role of human capital is taken into
account.38 To understand this point, let us return to the LCD version of the
neoclassical model with technical progress. From the definition of kt and the
relation k̂∗t = [αβA/(1 + ν)(1 + γ)]1/(1−α), we see that the steady-state value of
kt at time t will be

kt = k0(1 + γ)t[αβA/(1 + ν)(1 + γ)]1/(1−α). (47)

Thus for steady-state log yt we have, using log(1 + γ)
.
= γ,

log yt = const + γt + [α/(1− α)] log[αβA/(1 + ν)(1 + γ)]. (48)

For any given value of t, accordingly, log yt will be larger the larger is β and
the smaller are ν and γ. In the special model at hand, it happens that αβ equals
the fraction of income s that is saved each period. Thus it accords with the
Mankiw, Romer, Weil estimation of an equation analogous to (48) on various
cross-section samples of national economies with data averaged over the period
1960 to 1985.39 They assume the same γ for all nations and are therefore able
to incorporate γt into the constant term.40 They obtain estimates with log s and
log[(1 + ν)(1 + γ)] entered separately and test the hypothesis that the slope
coefficients are equal in magnitude and opposite in sign. The striking result
of this exercise is that for their sample of 98 non-oil nations, the variables
log s and log(1 + ν)(1 + γ) have a considerable amount of explanatory power
for log yt, the adjusted R2 value being 0.59. Furthermore, the slope coefficient
hypothesis mentioned above cannot be rejected at conventional significance
levels. The one serious flaw acknowledged by Mankiw, Romer, and Weil is
that the implied value of α is about 0.6, much larger than the one-third value
that is usually presumed (and that matches the capital share of income). But
this failure can be largely overcome, they demonstrate, by including additional
variables designed to proxy for the level of human capital or labor-force skill in

37 Actually, these authors are concerned with the Solow model, i.e., the special case of
the neoclassical model in which the saving rate is given exogenously. But that difference is
unimportant for the issues at hand.

38 Account is taken in a different way than in our discussion surrounding equation (34),
however, since human capital enters the production function as an additional input rather than as
an efficiency term attached to labor input.

39 Of course they do not use the δ = 1 assumption that permits us to derive the s = αβ
result.

40 They treat cross-country differences in log A as a component of the regression’s disturbance
term. This is not innocuous, as will be seen momentarily.
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the various countries. Thus they conclude that “the Solow model is consistent
with the international evidence if one acknowledges the importance of human
as well as physical capital” (1992, p. 433).41

This argument is ingenious and the finding is interesting, but the sug-
gestion that it serves to rescue the neoclassical model from its critics seems
inappropriate.42 For the model was designed to provide understanding about
growth, not about international differences in income levels. In support of this
last assertion, it may be noted that there is no mention of using the model for the
latter purpose in Solow (1956, 1970, 1994), or Meade (1962), or Hahn (1987).
That use seems to have been discovered by Mankiw, Romer, and Weil (1992).43

In this regard, another objection to the Mankiw, Romer, and Weil analysis
has been expressed by Grossman and Helpman (1994). As mentioned above,
that analysis assumes that γ, the rate of technological progress, is the same
for all countries in their cross-section regressions—which thereby pushes γt
into the constant term in expressions like (48). But, as Grossman and Helpman
(1994, p. 29) say, “if technological progress [actually] varies by country, and
[variation in γt] is treated as part of the unobserved error term, then ordinary
least squares estimates of the . . . equation will be biased when investment-GDP
ratios are correlated with country-specific productivity growth. In particular, if
investment rates are high where productivity grows fast, the coefficient on the
investment [or saving] variable will pick up . . . part of the variation due to
their different experiences with technological progress. . . . [Furthermore,] an
economist would certainly expect investment to be highest where capital pro-
ductivity is growing the fastest.” Thus the Mankiw, Romer, and Weil (1992)
estimate of the effect of the saving/investment variable is overstated and the
slope-coefficient test is consequently biased. Whether this bias is large quan-
titatively has not yet been established, but in any event it pertains only to
the neoclassical model’s role of explaining cross-section income levels, which
seems rather incidental.44

41 It should be said, however, that the Mankiw, Romer, and Weil (1992) measure of human
capital leaves much to be desired. In particular, they use an estimate of the fraction of the working
age population that is currently enrolled in secondary school. A measure of the fraction of the
current working age population that attended (in the past) secondary school would be much more
appropriate.

42 Mankiw (1995, p. 423) says that from the standpoint of enhancing understanding, “the
neoclassical model is still the most useful theory of growth that we have.”

43 A word of explanation is needed here since Denison (1967) and others have in fact looked
at cross-country differences in income levels. The point is that they have done so in a way that
relies on transitional differences, whereas the Mankiw, Romer, and Weil equation (48) pertains to
steady-state differences.

44 Very recently, Islam (1995) has implemented a panel-data approach to conditional con-
vergence regressions, thereby permitting some production function parameters to differ across
countries. His approach retained the assumption that γ is the same for all countries, however, so
it does not address the specific criticism stressed by Grossman and Helpman.



64 Federal Reserve Bank of Richmond Economic Quarterly

8. CONDITIONAL CONVERGENCE

Because conditional convergence has figured prominently in the literature’s
controversies, it should be useful to describe—as promised above—this con-
cept. From equation (23) we have log k̂t+1 = α log k̂t + (1 − α) log k̂∗, which,
since log ŷt = log A + α log k̂t, implies

log ŷt+1 = α log ŷt + (1 − α) log ŷ∗. (49)

Iteration then shows that

log ŷt+j = αj log ŷt + (1− αj) log ŷ∗, (50)

so that we have

log yt+j − log yt = (1 − αj)[log ŷ∗ − log yt] + j log(1 + γ). (51)

But log ŷ∗ = log A + log[αβA/(1 + ν)(1 + γ)]. Thus in a cross section of
economies one needs to take account of potential cross-economy differences in
taste, technology, and population-growth parameters even if it is assumed that
γ is the same everywhere. But with proxies for these included in a regression
with (1/j)(log yt+j − log yt) on the left and log yt on the right-hand side, the
coefficient on the latter is predicted by this special case of the neoclassical
model to be −(1 − αj)/j. Some simple endogenous growth models such as
(29) and (30) with α + η = 1 suggest, by contrast, that the coefficient on
log yt should be zero. So a significant negative coefficient would constitute
evidence against these rudimentary specifications. Other two-sector versions
such as (33) – (38) feature transitional dynamic adjustments, however, that are
not ruled out by findings of conditional convergence. That has been established
by Mulligan and Sala-i-Martin (1993) and will be demonstrated below for our
version of the Lucas model. Thus the fact that most existing studies of the type
under discussion do find significant negative coefficients does not discriminate
between endogenous and neoclassical specifications.

It should be mentioned explicitly that the foregoing exposition makes use
of the LCD assumptions, which lead to the conclusion that the coefficient on
log yt is a function only of the capital-elasticity parameter α. More generally,
without those assumptions this coefficient will depend also on other parameters
including ν, γ, and the rate of depreciation—at least in the standard approxima-
tion that is typically used in the literature (see Barro and Sala-i-Martin [1995],
p. 81, or Mankiw [1995], p. 310).

To see that conditional convergence is a property of the LCD version of
the Lucas model, as stated above, rewrite the solution equation (42) as follows:

log kt+1 − log kt = (1− α)[log ht − log kt] + η log ht

+ log[αβ(1− β)1−αA/(1 + ν)]. (52)
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This shows clearly that conditional convergence holds for log kt, i.e., that log kt

will have a negative slope coefficient in a regression with log kt+1− log kt as the
dependent variable, when log ht, log st, log(1 + ν), and log(1− β) are included
as regressors. Furthermore, the same is true for log yt, as can be seen by using
the production function to eliminate kt and kt+1 in favor of yt and yt+1.

Quite recently, an interesting implication of the literature’s empirical find-
ings on conditional convergence was pointed out by Cho and Graham (1996).
The basic finding is that in cross-section regressions with large samples of
heterogeneous countries, estimates of the slope coefficient b1 in relations of
the form

log yt+j − log yt = b0 + b1[log y∗t − log yt] (53)

are positive, when expressions for y∗t are ones suggested by the neoclassical
model. But one of the main reasons that the conditional convergence formula-
tion was invented is that in such samples of countries one frequently obtains
positive estimates of b3 in regressions of the form

log yt+j − log yt = b2 + b3 log yt. (54)

Equating the right-hand sides of (53) and (54), however, we see that

b0 + b1[log y∗t − log yt] = b2 + b3 log yt, (55)

plus regression residuals. But with b1 > 0 and b3 > 0, (55) indicates that
output is smaller in relation to its steady-state value (of the current period) for
high-income countries than for low-income countries. In other words, if low-
income countries have less capital than in the CE steady state, then they are
relatively closer to their steady-state positions than are rich nations and, in that
sense, have less economic development yet to be accomplished, i.e., negative
catching up! Admittedly, estimates of b3 are quite unrealiable and often in-
significantly positive. But suppose, then, that we take b3 to be essentially zero.
Then (55) suggests that low-income countries are on average neither closer
to (proportionately) nor farther from their steady-state positions than are rich
countries.

9. CONCLUSION

Let us conclude with a brief summary of the arguments developed above. Our
review of the neoclassical model emphasizes that it is in fact not a model
of ongoing growth, since it implies that per capita output rates will approach
constant values in the absence of exogenous (therefore unexplained) technolog-
ical progress. Several analytical results are exposited, including the distinction
between golden rule and optimal steady states. Following this review, it is
argued that the neoclassical approach not only fails to provide an explanation
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of everlasting steady-state growth, but also cannot plausibly explain actual ob-
served cross-country growth rate differences by reference to transitional (i.e.,
non-steady-state) episodes. It can, with the inclusion of human capital inputs,
explain a substantial portion of observed cross-country differences in income
levels, but there are some questionable aspects of this accomplishment and, in
any event, explaining levels is not the main task of a theory of growth.

The endogenous growth literature attempts to provide explanations for on-
going, steady-state growth in per capita output values and consequently for
growth rate differences across countries. Three types of endogenous growth
models are presented, featuring (i) externalities resulting from linked capital-
and-knowledge accumulation, (ii) accumulation of human capital (i.e., individ-
uals’ workplace skills), and (iii) continuing growth in the stock of existing
productive “designs,” with the entire stock facilitating the creation of addi-
tional designs (that are produced in response to private rewards). The last
of these types seems most plausible as a mechanism capable of generating
long-lasting growth. The likelihood of obtaining steady-state (never-ending but
non-explosive) growth from any of the models seems very small, however,
since such a result would require highly special (zero measure) parameter val-
ues. The endogenous growth approach seems fruitful, nevertheless, as it can
in principle rationalize long-lasting growth and growth rate differences across
economies and will indicate with reasonable accuracy the effects of changes in
policy, tastes, or technology that alter the steady-state capital/labor ratio.

APPENDIX A

The purpose here is not to furnish rigorous mathematical proofs but instead to
provide some intuition concerning the role and nature of transversality condi-
tions in infinite horizon optimization problems. Let us proceed in the context of
the problem of Section 1, to maximize (1) subject to constraint (3). We begin
with a T-period finite horizon version for which the Lagrangian expression is

L1 = u(c1) + βu(c2) + . . . + βT−1u(cT) + λ1[f (k1) − c1 − (1 + ν)k2

+ (1− δ)k1] + βλ2[ f (k2)− c2 − (1 + ν)k3 + (1 − δ)k2]

+ . . . + βT−1λT[ f (kT)− cT − (1 + ν)kT+1 + (1 + δ)kT]. (A1)

For t = 1, 2, . . . , T we have the first-order conditions

u′(ct)− λt = 0 (A2)

−(1 + ν)λt + βλt+1[ f ′(kt+1) + 1− δ] = 0. (A3)
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In addition there is the derivative with respect to kT+1, ∂L1/∂kT+1 = −λTβ
T−1

(1+ν). If the problem were such that one could be assured of a positive solution
for kT+1, as is the case for c1, . . . , cT and k2, . . . , kT , then one might be
inclined to set this partial equal to zero. But of course the household would
like for kT+1 to be negative and very large, since that would permit cT to be
very large. Thus the inherent constraint kT+1 ≥ 0 becomes relevant and leads
to the two-part Kuhn-Tucker condition

−λTβ
T−1(1 + ν) ≤ 0 − kT+1[λTβ

T−1(1 + ν)] = 0. (A4)

Since λ1, . . . , λT will by (A2) be strictly positive, the first of these is
irrelevant, and the second implies that kT+1 = 0.

Now consider the infinite horizon version of the same problem by letting
T→∞. Heuristically we again have conditions (A2) and (A3), relevant for all
t = 1, 2, . . . . And in place of (A4) we now have the TC

lim
T→∞

kT+1β
T−1λT = 0. (A5)

Here the interpretation is that the present value of kT+1 in marginal utility units
must approach zero as T grows without bound. Since βT−1→0, this does not
require that kT+1→0.

Note that it is fortunate that the TC is available, for without it (or some
replacement) the two difference equations (A2) and (A3) could not provide
a well-defined path in the infinite horizon case for there is only one relevant
initial condition present (i.e., the given value of k1). This, then, is the role of
the TC condition, to provide an additional side condition for starting up the
solution sequence c1, c2, . . . , k2, k3, . . . . It serves to prevent the optimizing
agent from starting on paths that satisfy (A2) and (A3) but lead to negative
values of kt or to wastefully large accumulations of assets that are never turned
into consumption.

For the infinite horizon problem at hand, it is the case that (subject to the
Kuhn-Tucker “constraint qualification”) conditions (A2) and (A3) for t = 1, 2,
. . . and condition (A5) are necessary and jointly sufficient for optimality. There
are a few exceptional setups with concave objective functions and convex con-
straint sets, and lots of differentiability, for which the TC is not necessary for
optimality. But in most infinite horizon problems, the TC is also necessary—as
is shown by Weitzman (1973).
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APPENDIX B

Here we show that if the production function in per capita terms is

y = f (n, k, t) (B1)

and is homogeneous of degree one (HD1) in n and k, then steady-state growth is
possible only when the technical progress term involving t is labor augmenting.
To begin, let us assume that labor supply is inelastic so that n = 1. Then HD1
implies that λf (1, k, t) = f (λ,λk, t) for any λ > 0. So if we define x = k/y, then
1 = f (1/y, x, t), which permits us to define the function φ such that y = φ(x, t).
Calculating the partial derivative with respect to k then gives

∂y/∂k = φ1(x, t)[−ky−2∂y/∂k + y−1], (B2)

which can be rearranged to yield

∂y/∂k =
φ1(x, t)

φ(x, t) + xφ1(x, t)
. (B3)

Thus for ∂y/∂k to be independent of t, we must be able to write the right-hand
side of (B3) as c(x), say, implying that φ1(x, t) = c(x)[φ(x, t) + xφ1(x, t)] or

φ1(x, t)
φ(x, t)

=
c(x)

1− xc(x)
(B4)

so that φ(x, t)/φ1(x, t) is independent of t. But that implies that φ(x, t) can be
written as

φ(x, t) = A(t) ψ (x), (B5)

say, so y = A(t) ψ (x) and x = ψ −1[ y/A(t)]. Then k = xy = yψ −1[ y/A(t)] and

k/A(t) = [ y/A(t)] ψ −1[ y/A(t)] ≡ G[ y/A(t)]. (B6)

Finally, inversion of G yields

y/A(t) = G−1[k/A(t)] = g[k/A(t)]. (B7)

Thus it must be that y = f (1, k, t) is of the form y = f̃ (A(t), k).
This proof has been adapted from Uzawa (1961). The statement involving

(B5) is treated by Uzawa as obvious. Uzawa’s proof pertains, it should be
noted, to a proposition that is more general than the one proved by Barro and
Sala-i-Martin (1995, pp. 54–55) or Solow (1970, pp. 35–37).
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