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T he equilibrium of a dynamic macroeconomic model can usually be
represented by a system of nonlinear difference equations, and in con-
temporary models these systems can be large and difficult to solve.

Even for small models, it is common research practice to use approximations
that allow for analytical statements about the model’s behavior. The most
popular form of approximation is linearization around a steady state.1

To study linear approximations, economists have access to the methods
for solving dynamic linear models described in Sargent (1979) and Blanchard
and Kahn (1980). Blanchard and Kahn provide conditions under which there
exists a unique nonexplosive solution to a system of linear difference equa-
tions. In his analysis of first- and second-order linear difference equations,
Sargent explains how, in some cases, models based on optimizing behavior
justify the exclusion of explosive solutions as equilibria. Subsequently, atten-
tion has shifted toward explicitly nonlinear optimization-based models, but
the methods described by Sargent and Blanchard and Kahn have been widely
used to study the linear approximations to nonlinear models.

For as long as linear approximations have been used, economists have
been aware of certain limitations. In particular, linear approximations may be
quantitatively inaccurate unless one restricts attention to the model’s behav-
ior near the point around which the linearization was taken. Recent work by
Benhabib, Schmitt-Grohé, and Uribe (2001) has highlighted an additional lim-
itation of linearization that is potentially more severe: linearization may lead
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1 A steady state is a point x̄ such that if x̄ is an equilibrium in any period t, then x̄ is also
an equilibrium in period t + 1.
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one to incorrect conclusions about the existence or uniqueness of equilibrium.
These scholars have argued, based on this reasoning, that a monetary policy
rule widely advocated for its stabilization properties may actually subject the
economy to multiple equilibria. Our purpose in this article is to provide a
simple exposition of the type of problems highlighted by Benhabib, Schmitt-
Grohé, and Uribe. While we do not advocate that linearization be abandoned
entirely, it is important for users to be aware of the risks.

We use two simple models to illustrate the risks of linearization. In both
models, the dynamics boil down to one equation in one variable. This simplic-
ity means that it is straightforward to compare the results based on linearization
to the model’s global properties.

In the first model, the single equation concerns the evolution of the stock of
government debt. We will show that analysis of this model based on lineariza-
tion can lead one to an erroneous conclusion about whether an equilibrium
exists. A researcher might conclude, for example, that a particular tax policy
rule leads to the nonexistence of equilibrium when, in fact, an equilibrium
does exist for all but extreme initial values of debt. Or, linearization could
suggest that an equilibrium always exists when actually there is none outside
a narrow range of initial levels of debt.

In the second model, the single equation concerns the evolution of the
inflation rate. There, an equilibrium always exists, but naive analysis based
on linearization can lead one to erroneously conclude that there is only one
equilibrium when in fact there are many. Thus, a researcher using linearization
might advocate a particular policy rule based on its promise of delivering a
unique equilibrium when in fact that rule is susceptible to multiple equilibria.
This precise critique has been made by Benhabib, Schmitt-Grohé, and Uribe
against recent work advocating “active Taylor rules” for monetary policy.

In more complicated models, it may not be possible to determine whether
a linear approximation results in misleading conclusions about the unique-
ness and existence of equilibrium. However, in closing we will offer some
suggestions for minimizing the risk of being misled.

1. MACROECONOMIC EQUILIBRIUM

A typical macroeconomic model consists of a set of maximization problems
and a set of market clearing conditions pertaining to a vector of variables.
Solving a model involves two steps: The first step is to derive the optimality
conditions that describe solutions to the maximization problems in isolation.
The second step is to collect these conditions with the market clearing condi-
tions and manipulate them so that the variables whose values are not known
at the beginning of a period (for example, the price of a unit of capital) are
expressed as functions of the variables whose values are known at the begin-
ning of a period (for example, the capital stock). We refer to the former set
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of variables as nonpredetermined, and the latter set as predetermined. If at
least one such vector-valued function exists, then an equilibrium of the model
exists. If there is exactly one such function, equilibrium is unique, whereas
multiple functions correspond to multiple equilibria. The second step can
be difficult, especially for models with many variables, and it often requires
some numerical approximations. The most popular approximation method is
linearization around a steady state.

We will describe two simple models, which will then be used in our anal-
ysis of linearization. In both models, there is assumed to be an infinitely lived
representative consumer who receives a constant endowment of consumption
goods each period. The consumer discounts future utility at rate β per period.
In the first model, there is a government that purchases a constant amount of
the consumption goods each period. The government issues debt and levies
lump- sum taxes in order to pay for its consumption. In the second model,
there is no government spending; however, the consumer derives utility from
real money balances as well as consumption. The government issues nominal
money by making lump-sum transfers to consumers.

A Model with One Dynamic Variable, Predetermined

The representative consumer has preferences for current and future consump-
tion (ct ) given by the maximization problem

max
∑

βtu(ct ), (1)

subject to the budget constraint

ct + bt+1 + τ t ≤ y + rt−1bt , (2)

where u () is an increasing and concave function; bt is the quantity of one-
period, real government debt maturing in period t, paying a gross interest
rate of rt−1; τ t is the lump-sum tax levied in period t ; and y is the constant
endowment received each period. Denoting by λt the Lagrange multiplier on
the budget constraint at time t , the first order condition for consumption is

u′(ct ) = λt ; (3)

the marginal value to the consumer of an additional unit of income is equal to
the marginal utility associated with using that income for consumption. The
first order condition for bond holding is

λt = βrtλt+1; (4)

the marginal utility of income in the current period is equated to the present
discounted utility of converting current income into future income at the given
interest rate rt . The transversality condition is

lim
t−→∞ βtλtbt+1 = 0; (5)
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this condition can be viewed as the first order condition for bond purchases
in the “final period.” It would be suboptimal for a consumer to accumulate
bonds so that the present utility value of consumption that could be realized
by selling those bonds in the distant future did not go to zero.

The government budget constraint is

bt+1 + τ t ≥ g + rt−1bt , (6)

whereg is the constant level of per-period government purchases of goods. The
left-hand side is the government’s sources of revenue, and the right-hand side
is the government’s uses of revenue. In equilibrium the goods market clears,
implying that government consumption plus private consumption equals the
total endowment of goods:

ct + g = y. (7)

Because the endowment and government consumption are constant, pri-
vate consumption must also be constant:

ct = c ≡ y − g ∀t. (8)

Since equilibrium consumption is constant, the marginal utility of consump-
tion is constant, and thus, from (3) and (4), the real interest rate is constant in
equilibrium:

rt = β−1. (9)

It remains to solve for the equilibrium quantity of government debt (bt+1)
and the tax rate (τ t ). The two equations left to determine these variables
are the government budget constraint (6) and the transversality condition (5).
One might think that the consumer’s budget constraint (2) is an additional
equation. However, if we substitute the market clearing condition (7) into
the consumer’s budget constraint, the consumer’s budget constraint and the
government budget constraint become identical:

bt+1 = (g − τ t ) + β−1bt . (10)

This result is an implication of Walras’s law (see Varian [1992, 317]).
It is clear that the government budget constraint and the transversality

condition are not sufficient to determine a unique equilibrium path, or even a
finite number of equilibrium paths for bt+1 and τ t . In order to narrow the set
of equilibria, the standard research practice is to specify a policy rule for the
quantity of debt issued or, more commonly, for the tax rate. Given a rule that
sets the tax rate as a function of other variables, one can determine whether
equilibrium exists and is unique.

Note that if the rule makes the tax rate a function of no variables other than
bt+1 or bt , substituting the tax rule into (10) yields one equation that implicitly
determines the current period debt as a function of the predetermined debt from
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the previous period. Henceforth, we will assume that the tax rule sets the lump-
sum tax as a function of only the predetermined level of debt, τ t = h (bt ) . In
this case, (10) explicitly describes the evolution of government debt:

bt+1 = g − h (bt ) + β−1bt . (11)

Below we will assume a particular form for h () , and thus we will be able to
determine whether equilibrium exists and is unique.

A Model with One Dynamic Variable,
Nonpredetermined

The second model we will consider is one in which we again end up with a
single dynamic equation, although in this case the equation will not contain
a predetermined variable. Here the representative consumer has preferences
for current and future real money balances (mt ) as well as consumption (ct ),
given by the maximization problem

max
∑

βt [u(ct ) + v(mt)], (12)

where u () and v () are increasing, concave functions.2 In this model, the gov-
ernment issues non-interest-bearing money by making lump-sum transfers to
consumers.3 The consumer maximizes utility subject to the budget constraint

ct + Mt

Pt

+ Bt+1

Pt

= y + Mt−1

Pt

+ Rt−1Bt

Pt

+ T Rt

Pt

. (13)

In (13), ct and y are as defined above. The new variables in (13) are the
nominal money supply (Mt = mtPt ), the price level (Pt ), the quantity of one-
period nominal bonds maturing in periods t + 1 and t (Bt+1, Bt ), the nominal
interest rate on bonds maturing in the current period (Rt−1), and the quantity
of nominal transfers from the government to the household (T Rt ).4

Just as in the first model, the first order condition for consumption is given
by (3), with λt now the Lagrange multiplier on the budget constraint (13). The
first order condition for real money balances is

v′(mt) − λt + β
Pt

Pt+1
λt+1 = 0. (14)

If the consumer increases real balances marginally in period t, he or she gains
current utility directly (v′(mt) > 0) but sacrifices current period consumption

2 We also assume limm→0 v′ (m) < u′ (y) and v′ (m̆) = 0, where m̆ < ∞. The former condi-
tion implies that, at a sufficiently high (finite) nominal interest rate, the economy will demonetize.
The latter condition implies that, at a nominal interest rate of zero, individuals become satiated
with a finite level of real balances.

3 See Brock (1975) and Obstfeld and Rogoff (1983) for further discussion of related models.
4 Although we have included nominal bonds in the consumer’s budget constraint, their quantity

will be zero in equilibrium (we assume that the government does not issue or purchase bonds,
and since households are identical, the quantity of bonds must be zero).
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valued at λt . The same nominal balances are available in the next period as
a source of income to be used for consumption. However, the real value
in the next period of those nominal balances is deflated by the inflation rate
Pt+1/Pt , and the marginal utility is discounted back to the current period by
the factor β. Condition (14) states that these effects are mutually offsetting:
optimal behavior implies that a marginal change in real balances leaves utility
unchanged.

The first order condition for holdings of nominal bonds is

λt = β
Pt

Pt+1
Rtλt+1. (15)

The interpretation of (15) is similar to that of (4). However, because here the
bonds pay off in dollars instead of goods, current real income is converted
into future real income at rate Pt

Pt+1
Rt. Finally, the transversality condition for

money is5

lim
t−→∞ βtλtmt = 0. (16)

This has a similar interpretation to the bond transversality condition in the first
model.

The government budget constraint is

Mt/Pt + T Rt = Mt−1/Pt ; (17)

the left-hand side is the government’s sources of revenue, and the right-hand
side is the government’s uses of revenue. Because we assume that any changes
in the money supply are automatically accomplished by lump-sum transfers,
the government budget constraint does not play any role in the determination
of equilibrium.

In equilibrium the goods market clears, implying that private consumption
equals the total endowment of goods:

ct = y. (18)

As before, constant consumption implies that the marginal utility of consump-
tion is constant, and in this case, from (15), the equilibrium nominal interest
rate is equal to expected inflation divided by the discount factor

Rt = β−1 Pt+1

Pt

(19)

(this is a version of the Fisher equation relating nominal and real interest rates;
see Fisher [(1930) 1954]). Combining (15), (3), and (19), we see that there
is a simple relationship between the nominal interest rate and the marginal

5 There is also a transversality condition for bonds. However, since the quantity of bonds is
zero, this condition is automatically satisfied.
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utilities of consumption and real balances:

v′(mt) = u′ (c)
(

1 − 1

Rt

)
. (20)

The marginal utility of consumption is known, so equation (20) then can be
used to express mt as a function of Rt ; it is a money demand function. In
turn, equation (19) determines Rt as a function of expected inflation. Without
a specification of monetary policy, however, we cannot determine the price
level or expected inflation. The standard research practice is to specify a policy
rule for the quantity of money or the nominal interest rate. Given a rule that
sets one of these variables as a function of other variables, one can determine
whether equilibrium exists and is unique.

Note that if the rule makes the nominal interest rate depend only on Pt or
Pt+1, substituting the policy rule into (19) yields one forward-looking differ-
ence equation in the price level. Henceforth, we will assume that the monetary
policy rule sets the nominal interest rate as a function of the current inflation
rate, Rt = R (Pt/Pt−1) . In this case, the difference equation describes infla-
tion, which we will denote by π (that is, πt = Pt/Pt−1):

β−1πt+1 = R (πt ) . (21)

Below we will assume a particular form for R () , and thus we will be able to
determine whether there is a unique nonexplosive equilibrium.

The reader may be struck by the fact that the difference equation in (21)
is independent of the preference specification in (12). It is a common feature
of simple monetary models that one can derive a difference equation in either
real balances or the price level (inflation is a transformation of the price level).
However, in general, one must bring in information from the “other” part
of the model in order to determine whether candidate paths are equilibria.
Anticipating the discussion below, here the linearization ignores information
from preferences, whereas the global analysis does not.

2. LINEARIZATION

The models we are working with contain just one dynamic variable and can
be written in the form

Etyt+1 = f (yt ), (22)

where yt is the endogenous dynamic variable.
Linearization involves first computing a steady state of this equation and

then taking a first order Taylor-series approximation around that steady state. A
steady state of the difference equation system is a point ȳ such that ȳ = f (ȳ),
and the linear approximation around this steady state is

(Etyt+1 − ȳ) = f ′(ȳ)(yt − ȳ). (23)
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Figure 1 Dynamics of a Univariate Linear Difference Equation

1 2 3 4

1

0

This approximation is guaranteed to be valid only for small deviations from
the steady state. The univariate linear difference equation system (23) can be
written

Et ỹt+1 = Aỹt , (24)

where ỹt ≡ yt − ȳ.

Once we have the linearized equation, we can ask how many nonexplosive
solutions there are in the neighborhood of the steady state. In general, when yt

is predetermined, |A| must be less than one for a unique nonexplosive solution
to exist; when yt is nonpredetermined, |A| must be greater than one.

The logic behind these conditions is easy to see when A is positive.6

Figure 1 plots two possible cases for this univariate linear difference equation:
A > 1 and 0 < A < 1. The interpretation of these two cases depends on
whether the variable yt is predetermined.7

6 The case where A < 0 is similar. There, −1 < A < 0 produces dampened oscillations
rather than monotone convergence; A < −1 produces explosive oscillations. The number of
equilibria can then be determined in the same manner as in the case where A > 0.

7 Using a plot of yt+1 versus yt (such as Figure 1), it is simple to trace the time path for
yt starting from an initial point y0. Start with y0 on the horizontal axis, and draw a vertical line
up to the function yt+1. Then draw a horizontal line to the 45-degree line and a vertical line
back to the horizontal axis. This is y1. Repeat to get y2, etc. If yt is a predetermined variable,
then the initial condition is known, and the process just described reveals the path of yt (if there
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First, suppose yt is not predetermined, so that the initial condition y0 is
not known but instead needs to be determined in equilibrium. Then if A > 1,

any initial value y0 other than the steady state leads to yt exploding either
upward or downward: the steady state ȳ is the unique nonexplosive solution.
If A < 1, then yt will converge back to the steady state regardless of the
initial condition y0: at any point in time there is a continuum of nonexplosive
solutions, one of which is the steady state.

Now consider the case where yt is predetermined, so that at any point in
time yt is known and yt+1 can be read off the graph. Then if A > 1, unless y0

happens to be equal to the steady state value, yt will explode over time: for
most initial conditions, a nonexplosive solution does not exist. If A < 1, then
yt will converge back to the steady state regardless of the initial condition y0:
at any point in time there does exist a unique nonexplosive solution.

For models containing more than one variable, there are related conditions
involving the eigenvalues of a matrix A (see Blanchard and Kahn [1980]).
Sargent (1979, 177) describes the general principal as that of “solving stable
roots backward and unstable roots forward.”

Note that these conditions are concerned with the existence of nonex-
plosive solutions. It is common practice for researchers to restrict attention
to nonexplosive solutions. Sometimes equilibrium must be nonexplosive be-
cause of a transversality condition. In other cases, nonexplosiveness is not a
requirement of equilibrium, but researchers find other equilibria unappealing
on a priori grounds. Our tax model falls into the former category: explosive
behavior (at a rate greater than β−1) cannot occur in equilibrium because of
the transversality condition. In our monetary model, explosive behavior of the
price level cannot be ruled out as an equilibrium per se, but we will nonetheless
restrict attention to nonexplosive equilibria.8

3. THREE PITFALLS OF EXCESSIVE RELIANCE ON
LINEARIZATION

We have mentioned that linear approximations are less reliable far from the
steady state. This fact typically motivates researchers who use linearization
to study only examples in which there are small deviations around the steady
state. However, linearization may even give incorrect answers near the steady
state by suggesting an incorrect number of nonexplosive equilibria. This
possibility exists because a linear approximation treats the local properties of
the dynamic system as though they govern the model’s global behavior, and

is an equilibrium path). If yt is not predetermined, then the process reveals whether there is a
unique initial condition for which yt does not exhibit explosive behavior.

8 As is clear from Obstfeld and Rogoff (1983), in monetary models, ruling out candidate
equilibria based on simple explosiveness conditions is inappropriate. We use these conditions to
make our points more clearly.
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Figure 2 Two Policy Rules for Lump-Sum Taxes

the global behavior can be crucial in determining the number of nonexplosive
equilibria. Locally the dynamics may imply that a variable explodes away from
the steady state, whereas the global dynamics exhibit sufficient nonlinearity
so that the explosiveness is shut off at some point. The opposite situation
can also occur. Using the models described earlier, we illustrate three ways
in which linear approximation can lead to an incorrect conclusion about the
number of nonexplosive equilibria in a model.

Spurious Nonexistence

It is possible that linearization suggests that there is no nonexplosive solution
when global analysis reveals that one in fact exists. In the tax model above,
the following tax policy gives such a result:

τ t = h(bt ) = τ̄ + τ 1(bt − b̄)3, (25)

where

b = 1

1 − β−1 (g − τ̄ ). (26)

This policy rule is plotted in Figure 2 as the dashed line; it raises the lump-sum
tax when the level of debt is above b̄ and lowers the lump-sum-tax when the
level of debt is below b̄. The responsiveness of taxes to debt is nonlinear, rising
in magnitude the further the stock of debt is from b̄. This behavior appears
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reasonable, in that it might be expected to bring the level of debt back toward
a steady state from any initial condition.

Combined with the government budget constraint (10), the tax rule yields
an equation describing the evolution of the stock of government debt:

bt+1 = g − τ̄ − τ 1(bt − b̄)3 + β−1bt . (27)

Linearizing (27) around b̄, which is a steady state, we get

bt+1 − b̄ = β−1
(
bt − b̄

)
. (28)

Notice that in the linearized form of the tax policy, taxes do not respond to debt:
τ t = τ̄ . Given this nonresponsiveness, it is not surprising that an application
of the conditions discussed in Section 2 indicates that an equilibrium does not
exist unless the initial debt stock is equal to b̄. According to the linearized
model, for any initial debt level other than b̄, the quantity of debt will grow at
rate 1/β, violating the transversality condition.

The global analysis of (27) tells a very different story. A plot of bt+1

versus bt is given in Figure 3a.9 It turns out that there are three steady states:
b̄1, b̄, and b̄2. If the initial debt happens to be equal to one of those steady
state values, there is a unique equilibrium with constant debt. If the initial
debt is not equal to one of the steady state values, but it lies in one of the
intervals (b̄1, b̄) or (b̄, b̄2), then there is a unique equilibrium in which the
debt converges to b̄1 or b̄2, respectively. The debt levels bl and bu correspond
to a unique equilibrium in which the debt cycles between those two levels. If
the initial debt is between bl and the steady state b̄1 (or between b̄2 and bu),
then there is a unique equilibrium in which the debt converges to one of the
steady states. Finally, if the initial debt is either below bl or above bu, then
there is no equilibrium, because the debt path implied by (27) violates the
transversality condition.

In this example, linearization leads us to conclude that an equilibrium
does not exist when in fact our analysis of the global dynamics shows that
there is an equilibrium for a wide range of initial conditions on the debt.
Since the nonexistence of equilibrium suggests that there is a fundamental
problem with a model, this possibility should lead to caution in interpreting
linearization when it results in a finding of nonexistence.

Spurious Existence

A second possibility is that there is a unique equilibrium to the linearized
model, but global analysis shows that there are no equilibria for a wide range
of initial conditions. Returning to the tax model, consider a tax policy given

9 In each panel of Figure 3, the dynamics of the linear approximation are indicated by a
dashed line.
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Figure 3 Three Nonlinear Difference Equations
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by

τ t = h(bt ) = −(bt − a)(bt − b̄)(bt − c) + bt . (29)

This function is plotted as the solid line in Figure 2, for carefully chosen values
of the parameters a, b̄, and c. For this rule, the tax rate rises with the debt stock
near the level b̄ but decreases with the debt stock far away from b̄. Substituting
(29) into the government budget constraint (10), the equation describing the
evolution of government debt is

bt+1 = g + (bt − a)(bt − b̄)(bt − c) − bt + β−1bt . (30)

Linearizing (30), we find

bt+1 − b̄ =
γ︷ ︸︸ ︷

((b̄ − a)(b̄ − c) − 1 + β−1)(bt − b̄), (31)

and we choose the parameters a, b̄, and c so that (b̄ − a)(b̄ − c) = 1 − β−1,

that is, γ = 0. For any starting value of bt , the linearized version implies that
government debt would converge immediately to the steady state b̄. This is
an example of the case where |A| < 1 and the one variable is predetermined.
Therefore, there appears to be a unique nonexplosive solution to the linearized
equations and thus a unique equilibrium.

The nonlinear difference equation (30) is graphed in Figure 3b. If the
initial debt is between b̄1 and b̄2, then there is a unique equilibrium in which
the debt converges to b̄. However, if the initial debt is outside this range, no
equilibrium exists; the debt path implied by (30) violates the transversality
condition.

Here linearization leads us to conclude that there is a unique equilibrium,
whereas global analysis reveals that existence depends on the initial debt stock.
One could argue that if the initial debt stock is within a reasonable range, then
there is a unique equilibrium and the linear dynamics give a good approx-
imation to that equilibrium. However, one could choose the parameters of
this example so that there is an arbitrarily small region in which the existence
results from the linear analysis hold.

Spurious Uniqueness

Finally, we can imagine a situation in which linearization suggests that there
is a unique nonexplosive equilibrium when in fact there are multiple nonex-
plosive equilibria. This is the case that has been highlighted in the recent work
by Benhabib, Schmitt-Grohe, and Uribe.10 Turning to the monetary model,

10 The research of Christiano and Rostagno (2001) is a related work that also uses global
analysis.
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consider the following interest rate rule:

Rt = 1

β
+ γ (πt − 1) , (32)

with γ > 1/β. This rule represents a well-defined, feasible policy for setting
the nominal interest rate, as long as the gross inflation rate is close to its targeted
steady state value of 1. Furthermore, this type of rule has been studied in both
empirical and theoretical contexts by authors such as Clarida, Gali, and Gertler
(2000). It is known as an active Taylor rule, because it is a Taylor-style rule
that raises the nominal interest rate more than one-for-one with the current
inflation rate.

Combining the policy rule with the Fisher equation relating inflation to
the nominal interest rate, we arrive at the following equation describing the
evolution of inflation:

πt+1 = 1 + βγ (πt − 1) . (33)

This difference equation has a unique steady state π̄ = 1 (the targeted steady
state). Furthermore, the equation is already linear, so we need merely note
that the coefficient on πt is greater than one to see that any path for inflation
other than the steady state will lead to inflation exploding upward (if π0 > 0)
or downward (if π0 < 0). Thus, there appears to be a unique nonexplosive
equilibrium.

The problem with the above reasoning is that along the explosive paths
on either side of the steady state, the policy rule (33) eventually implies an
infeasible choice of the nominal interest rate. First, consider an inflation path
in which the initial inflation rate is positive (π0 > 1). Along such a path,
the inflation rate becomes arbitrarily high, and the path is hence ruled out as
explosive. But if the inflation rate becomes arbitrarily high, at some point the
gross nominal interest rate exceeds R∗ ≡ u′ (y) /

(
u′ (y) − limm→0 v′ (m)

)
.

At a gross nominal interest rate of R∗, the model economy demonetizes;
consumers will hold no money at interest rates equal to or greater than R∗,
because the marginal benefit of real balances is bounded above by a number
less than the marginal interest cost of holding real balances. The economy thus
does not have a well-defined point-in-time equilibrium at a nominal interest
rate above R∗. Similarly, if the initial inflation rate is negative (π0 < 1),
the dynamics in (33) indicate that the inflation rate will eventually become
arbitrarily large with a negative sign. But then at some point the policy rule
(32) requires that the gross nominal interest rate be less than unity. At a gross
nominal interest rate equal to unity, consumers are satiated with real balances.
The nominal interest rate cannot fall below unity because all agents would
choose to hold negative quantities of nominal bonds (money would have a
negative opportunity cost), and bonds are in zero net supply.

Because the interest rate rule given by (32) implies infeasible policy ac-
tions in certain situations, that rule is not a complete description of policy. A
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slightly modified rule that implies feasible policy actions in any situation is

Rt =




1, if πt < 1 + 1
γ

(
1 − 1

β

)
1
β

+ γ (πt − 1) , if 1
γ

(
1 − 1

β

)
< πt − 1 < 1

γ

(
R∗ − 1

β

)
R∗, if 1

γ

(
R∗ − 1

β

)
< πt − 1.

The difference equation describing equilibrium then becomes

πt+1 =




β, if πt < 1 + 1
γ

(
1 − 1

β

)
1 + βγ (πt − 1) , if 1

γ

(
1 − 1

β

)
< πt − 1 < 1

γ

(
R∗ − 1

β

)
βR∗, if 1

γ

(
R∗ − 1

β

)
< πt − 1.

This nonlinear difference equation is illustrated in Figure 3c. The conse-
quences of modifying the policy rule so that it always delivers feasible policy
actions are dramatic. In the linear difference equation (33), paths beginning
from an initial inflation rate away from the steady state generated explosive
behavior of inflation (see the dashed line in Figure 3c). By contrast, the modi-
fied policy rule implies that there are two steady states (π = β and π̄ = βR∗)
in addition to the targeted steady state, and paths that begin away from the tar-
geted steady state converge to one of these new steady states. Thus, instead of
there being a unique nonexplosive equilibrium, there is a continuum, indexed
by the initial inflation rate.

4. DISCUSSION

We have shown how approximating economic models by linearization around
a steady state may lead to incorrect conclusions about the existence or unique-
ness of equilibrium. In each of our examples, the misleading results implied by
linearization were associated with a particular government policy rule. How-
ever, there is no reason to believe that it is only government policies that can
lead to these problems with linear approximations. One should not assume
that because a particular model has no role for government policy, a linear
approximation will necessarily give the right answers about the existence and
uniqueness of equilibrium.

In the simple models studied here, it was easy to see—and hence avoid—
the problems associated with linearization. Unfortunately, with larger models
it is harder to see the red flags signaling that linearization may be giving
incorrect answers. Furthermore, global analysis (i.e., analysis of the model
without any approximations) is infeasible with larger models.11 There are,

11 We should note that Benhabib, Schmitt-Grohé, and Uribe (2001) conduct global analysis
of a two-variable system in continuous time. Kuznetsov (1998) discusses global analysis of a
two-variable system in discrete time.
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however, steps one can take to minimize the risk of falling victim to the
problems described above. Before linearizing it is important to determine
the number of steady states. If there is more than one steady state, it may
not be advisable to work with a linear approximation unless one has a strong
reason for believing that only one of the steady states is relevant. If there is
a unique steady state, then in some models a check on the results of linear
approximation can be provided by analyzing a simplified version of the model
in which it is feasible to compare the local linear and global dynamics. In the
case of a unique steady state, a promising approach currently receiving much
attention involves taking a local higher order approximation to the model’s
system of difference equations.12
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