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Optimal Nonlinear Income
Taxation with Costly Tax
Avoidance

Borys Grochulski

T he central idea behind an important branch of modern public finance
literature is that imperfect government information about taxpayers’
individual characteristics limits the economic outcomes attainable by

taxation and redistribution policies. This idea, first explored in a seminal
article by James Mirrlees (1971), provides a framework for studying the fun-
damental question of how income should be taxed.1 In this framework, which
has become known as the Mirrlees approach to optimal taxation, an optimal
tax system is one that implements the best economic outcome attainable under
the constraints imposed by limited physical resources and limited government
information. Optimal tax systems derived within the Mirrlees framework con-
tribute to our understanding of the observed tax institutions and can serve as
a basis for deriving normative prescriptions for tax policy reforms.

In this article, we use the Mirrlees approach to study the question of opti-
mal income taxation in an environment in which agents can avoid taxation by
hiding income. In this environment, the government cannot observe individual
income of the agents in the population, but only the income that agents choose
to display. Income displayed may be less than actual income. However, the
process of income hiding is costly; when income is being concealed, some
resources are wasted on income-hiding activities. The concealed income is
never observed by the government; it is consumed by the agents in private.
True income, therefore, cannot be taxed. Taxes only can be levied on the
displayed income.

I would like to thank Marina Azzimonti-Renzo, Brian Minton, Ned Prescott, and Alex Wolman
for their helpful comments. The views expressed in this article are those of the author and not
necessarily those of the Federal Reserve Bank of Richmond or the Federal Reserve System.

1 Stiglitz (1987) provides an overview of early contributions to this literature. Recent contri-
butions, which are mostly concerned with dynamic models (e.g., Kocherlakota 2005 and Albanesi
and Sleet 2006), are reviewed in Kocherlakota (2006).
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The government’s objective is to use redistributive taxation to provide
agents with insurance against the individual income risk. The income con-
cealment technology available to agents restricts the amount of tax revenue
that can be raised and used for redistribution. If the marginal tax rate applied
to income level y is higher than the agents’ cost to conceal the yth dollar of
their income, it is in the best interest of all agents whose true income is y to
conceal the last dollar of their income, display income y − 1, and incur the
concealment cost, rather than to display y fully and pay the high marginal tax.
Therefore, if the marginal tax rate on y is too high, no one will display y and
the marginal gain in the amount of government revenue raised from y will be
zero. Crucial here is the level of the concealment cost. The maximal amount
of revenue the government can raise is determined by the structure of the unit
income concealment cost across all income levels in the population.

An optimal tax system implements the best scheme for income redistri-
bution among all those feasible under the income concealment technology
available to the agents. We characterize optimal income tax structures under
a flexible specification of the income concealment cost function. Our main
result is that progressive income taxes are optimal in our model when the unit
cost of income hiding is increasing with true realized income.

This result contrasts the characterizations of optimal marginal income tax
rates obtained in the existing literature. Following Mirrlees (1971), virtually
all papers in the private-information-based optimal taxation literature study
environments in which agents have private information about their individual
productivity.2 In these environments, each agent’s income is the product of
his skill and effort. While income is publicly observable, individual skill and
effort are not. Taxes, therefore, can be a function of the observed income but
cannot be conditioned on the unobservable skill or effort. An important feature
of optimal taxes obtained by Mirrlees in this private-skill environment is that
the optimal income tax schedule is eventually regressive: marginal income
tax rates are decreasing for income levels close to the top of the population
distribution of income. This feature of the optimal income tax system in
private-skill economies has been shown in subsequent studies to be robust to
assumptions about the support of the skill distribution, heterogeneity of labor,
and general equilibrium effects (see Stiglitz 1987 for a review).

Our main result demonstrates that the prescriptions for optimal income
taxation obtained under the Mirrlees approach are very sensitive to the

2 Varian (1980) and Albanesi (2006) are exceptions. These papers study optimal tax structures
in models with moral hazard, i.e., in situations in which agents can take private actions prior to
the resolution of the underlying uncertainty. The environment we study in this article is radically
different, since in our model, agents can take a private action (i.e., conceal income) after the
uncertainty is realized. Our model is an application, as well as an extension, of the costly state
falsification (CSF) model of Lacker and Weinberg (1989). In Section 7, we discuss the relationship
between our model and the CSF literature.
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exogenous specification of economic fundamentals and informational fric-
tions. If the underlying friction is the unobservability of skill and effort,
optimal marginal tax rates eventually have to decrease. If the friction is the
possibility of hidden income falsification, then increasing marginal income
tax rates may be optimal.

This lack of robustness of the theoretical prescriptions obtained in the
Mirrlees approach makes apparent that empirical work is needed to determine
what are “the right” frictions—the frictions that could be used to derive useful
policy recommendations. This question is beyond the scope of this article.
However, the optimality of progressive income taxation obtained in our in-
come falsification environment is consistent with the observed progressivity
of income tax systems used in many countries, including the United States.

In addition to the main result, we obtain an auxiliary result, which is more
generally useful for studying the environments with costly state falsification,
i.e., environments in which it is costly to conceal income. This result identifies
subadditivity of the concealment cost function as a sufficient condition for the
optimality of no-falsification allocations, in which displayed income coincides
with true realized income across the whole support of the income distribution.

Slemrod andYitzhaki (2002) provide an overview of a large existing liter-
ature on tax avoidance and evasion. This literature defines tax evasion as
criminal tax avoidance. Tax avoidance, in turn, is defined as taking full
advantage of legal methods of reducing tax obligations. The literature on
tax avoidance is mainly descriptive (see Stiglitz 1985). Virtually all existing
theoretical models of tax evasion are built around the costly state verification
model of Townsend (1979). In these models, agents can underreport income
and the tax authority can perform an audit, i.e., discover, at a cost, the true re-
alized income. The underreported income, if discovered, is taxed at a penalty
rate. Most papers in this literature restrict income tax rates or penalty rates,
or both, to be linear in income, some take the penalty rates as exogenous.

This article differs from the papers in this literature in two respects. First,
we assume that true realized income can never be discovered by the tax au-
thority, and, therefore, never taxed (thus, there are no penalty tax rates in our
model). The interpretation of this assumption is consistent with the literature’s
notion of tax avoidance, rather than evasion. In our model, income hiding is
meant to represent all costly but legal actions that agents take to reduce their
tax obligations. In reality, these actions involve shifting income across time
and tax jurisdictions, transferring the ownership of productive assets, attribut-
ing income to tax-exempt sources, etc. All these activities decrease taxable
income, and are, usually, costly. In the model, we abstract from the specific
nature of these activities. Instead of introducing them in a specific form, we
model tax avoidance indirectly by introducing a general income concealment
technology similar to the costly state falsification technology of Lacker and
Weinberg (1989).
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The modeling methodology is the second important difference between
this article and the existing literature on taxation constrained by tax avoidance
and evasion. As mentioned before, we use the Mirrlees approach, in which
resource feasibility and the underlying friction in the environment (private
information) are the only source of restrictions on the set of taxes that can
be used by the government. To emphasize, in the Mirrlees approach, no
exogenous restrictions on the set of available policy instruments are introduced
beyond those implied by the fundamentals of the environment. The existing
tax evasion literature, in contrast, introduces exogenous restrictions on income
and penalty tax rates.3

In order to solve a Mirrlees optimal taxation problem, we go through
three main steps. First, we provide a complete specification of all economic
fundamentals that constitute the model environment. Second, in the specified
environment, we characterize the set of most desirable economic outcomes.
Third, we obtain a characterization of optimal tax structures by deriving a tax
system that implements an optimal outcome in a market equilibrium of this
economy.

This article is organized into seven sections in which we go through the
three steps of the Mirrlees optimal taxation problem. Sections 1 through 3
provide necessary definitions. In Section 1, a macroeconomic version of the
costly state falsification environment is defined. In Section 2, we specify what
constitutes an outcome (allocation) and a best outcome (constrained optimal
allocation) in this environment. In Section 3, we provide a formal definition of
fiscal implementation of an optimal allocation. In Section 4, we characterize
and implement the optimum of a benchmark model in which government
information is complete. Section 5 is devoted to characterization of the optimal
allocation under costly state falsification, that is, with incomplete government
information. Our main result is derived in Section 6, in which we study fiscal
implementation of the constrained optimum. In Section 7, we discuss the
extent to which our results can be generalized with respect to the considered
class of income falsification cost functions. We also discuss the relation of our
specification of the falsification technology to the specifications considered in
the costly state falsification literature. Section 8 concludes the article.

3 In introducing exogenous restrictions on the set of tax instruments available to the govern-
ment, most of the existing tax evasion literature follows the so-called Ramsey approach, in which
exogenous restrictions on policy instruments (linearity, most commonly) are imposed. Schroyen
(1997) studies a tax evasion model with nonlinear income taxes and exogenous penalties.
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1. ENVIRONMENT

Consider a single-period economy with a continuum of ex ante identical agents
whose preferences are represented by the expected utility function

E [u(c)] ,

where u is twice continuously differentiable with u′ > 0, u′′ < 0.
Agents face idiosyncratic income risk. At the beginning of the period, each

agent receives individual income y ∈ [y0, y1]. The cumulative distribution
function of income is F . Given a law of large numbers, F(y) represents both
the ex ante probability of an agent’s income realization less than or equal to
y, and the ex post fraction of agents whose realized income is less than or
equal to y. Aggregate income in this economy, denoted by Y , is equal to the
expected value of each agent’s individual income, i.e.,

Y = E[y] =
∫ y1

y0

ydF(y).

Individual realizations of income y are not immediately observable to the
public, but, instead, can be, in part or in whole, privatively concealed before
income becomes publicly observable. The process of concealment of income
is costly: a fraction of each dollar concealed is lost in the process of hiding it
from public view. The remaining fraction of each concealed dollar, denoted
by λ(y) ∈ [0, 1], however, remains in hidden possession of an agent and is
available for consumption. Note that the cost to conceal a dollar of income
can vary with the income level.

Given this concealment technology, the amount of hidden (i.e., concealed)
consumption available to an agent whose realized income is y ∈ [y0, y1] and
who displays to the public the amount ỹ ≤ y is given by∫ y

ỹ

λ(t)dt.

The remaining portion of the concealed income∫ y

ỹ

(1 − λ(t))dt = y − ỹ −
∫ y

ỹ

λ(t)dt (1)

is lost as a deadweight cost of falsification. The unconcealed part of income, ỹ,
becomes public information and, therefore, is subject to social redistribution
(i.e., taxation).

2. CONSTRAINED OPTIMUM DEFINED

Since individual income realizations are stochastic and agents are risk-averse,
there are welfare gains to be realized from social insurance. Insurance can be
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provided by committing ex ante to redistribute ex post some resources from
those whose realized income is high to those whose income is low. What is the
best possible scheme of income redistribution for providing social insurance
in this environment?

In this section, we introduce a standard notion of constrained optimal-
ity and define constrained optimal social redistribution mechanisms. These
mechanisms are defined as solutions to the so-called social planning problem.
This section is focused on defining the social planning problem under the pos-
sibility of income falsification by the agents. Our discussion of the solution
of this problem is deferred to Section 5.

Mechanisms

The social objective is to choose a set of rules governing all interactions be-
tween agents so that the final outcome of these interactions is the best possible.
Agents possess private information about their income and can take private
action (that is, hide income). The rules to be decided on, therefore, have
to prescribe how agents are to communicate their private information, what
private action they are supposed to take, and, finally, how resources are to be
redistributed among the agents. A complete description of these rules is called
a mechanism.

In a general form, a mechanism in our environment involves the following
stages of interaction:

1. The mechanism itself is committed to by all parties.

2. Agents receive private information.

3. Communication takes place.

4. Agents take private actions.

5. Redistribution takes place.

6. Agents consume.

The social planning problem is to choose a mechanism that leads to a final
allocation of consumption that maximizes the ex ante expected utility of each
agent in this economy.4

The set of mechanisms that can be used is very large. In particular, since
communication is costless in our environment, one can use mechanisms with
extensive communication between agents. However, essentially all that needs
to be communicated is, at most, the agents’ private information about their

4 As all agents are ex ante identical, the expected utility of the representative agent is a natural
choice of the social objective function, which is widely used in macroeconomics. In particular,
this objective is consistent with the standard notion of Pareto optimality.
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realized income. All other communication is superfluous, that is, cannot
lead to a welfare gain. This intuition is formalized in a general result called
the Revelation Principle. This result states that when searching for an opti-
mal mechanism, it is enough to search among the so-called direct-revelation
incentive-compatible (DRIC) mechanisms.

In a direct-revelation mechanism, all that agents communicate is simply
their private information, i.e., in our case, the individual realizations of income.
A mechanism is incentive compatible (IC) in our environment if, given a
recommendation of private action to be taken and a resource redistribution
plan, all agents find it optimal to reveal their information truthfully and follow
the recommended course of action. The Revelation Principle states that any
final allocation that can be attained with some mechanism can also be attained
with a DRIC mechanism. Thus, when one searches for an optimal mechanism,
it is enough to look at DRIC mechanisms, which we do hereafter.

To summarize, under a DRIC mechanism, six stages of interactions be-
tween agents take place according to the following timeline:

1. Society announces the recommended amount of income hiding, y −
ỹ(y), for each actual realization of income y ∈ [y0, y1], and commits to
a schedule c for redistribution of displayed income ỹ, where, for each
ỹ ∈ [y0, y1], c(ỹ) denotes the amount of resources publicly assigned
to each agent who displays income ỹ.

2. Agents receive their individual income realizations y.

3. Agents communicate their realizations of y.

4. Agents follow the action recommended by hiding y− ỹ(y) and making
ỹ(y) available to the public.

5. Redistribution of the unconcealed income ỹ occurs according to c.

6. Agents with income y consume

c(ỹ(y))+
∫ y

ỹ(y)

λ(t)dt, (2)

where
∫ y
ỹ(y)

λ(t)dt represents the hidden (not observed by the public)
consumption of the unwasted portion of the concealed income.

Incentive Compatibility

Under the Revelation Principle, the choice of the recommendation schedule
ỹ(y) is constrained by the requirement of incentive compatibility. Since both
the actual income realized and the concealed fraction of it are private infor-
mation, it is not possible to determine if agents really hide and display the
amounts recommended. Thus, the recommendation has to be consistent with
agents’ self-interest. In order to precisely describe this requirement, let us
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introduce the following piece of notation. Given that society is committed to
redistributing the unconcealed income according to the allocation c, let θc(y)
denote the set of income display levels that maximize utility attained by an
agent whose true realized income is y. That is,

θc(y) = arg max
θ∈�(y)

u

(
c(θ)+

∫ y

θ

λ(t)dt

)
, (3)

where �(y) is the set of all income levels that an agent whose actual income
is y can feasibly declare as his true income without being discovered.5 In our
environment, for each y ∈ [y0, y1], the set �(y) is given by

�(y) = {ỹ | ỹ ≤ y, and ỹ ∈ suppF } .
There are two constraints that determine �(y): the individual resource con-
straint and the so-called support constraint. Since the unconcealed amount ỹ
becomes publicly observable, ỹ cannot be larger than y, which is represented
by the individual resource feasibility constraint. The set suppF contains all
values of income y ∈ [y0, y1] such that the probability of income realization
y is strictly positive under the distribution F . As the distribution F and its
support are publicly known, an agent declaring an income realization that
is impossible under F, clearly, is lying. This is represented by the support
constraint.

A recommended income declaration schedule ỹ : [y0, y1] → [y0, y1] and a
consumption redistribution allocation c : [y0, y1] → R are (jointly) incentive
compatible if

ỹ(y) ∈ θc(y) (4)

for all y ∈ [y0, y1].
The requirement of incentive compatibility states that a mechanism cannot

give any agent an incentive to deviate from the recommended course of ac-
tion. The fact that θc(y) is not necessarily a singleton [for some consumption
allocations, there will be multiple solutions to the maximization problem on
the right-hand side of (3)], is not generally considered a problem. If the rec-
ommended action is a selection from θc(y), agents have no reason to deviate.
We denote the desired selection from θc(y) by ỹc(y). This notation explicitly
recognizes the fact that incentive compatibility is a joint requirement on the
recommended action ỹ(y) and the consumption allocation schedule c.

Under various particular specifications of the income distribution F , the
IC requirement (4) can be written out more explicitly. As an example, consider

5 Note that detectable deviations can be deterred by a commitment to punish them strongly
enough so that no agent finds it optimal to use them. The set �(y) describes all undetectable
deviations, which cannot be deterred in this simple way.
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the case in which suppF = {y0, y1} with

Pr {y = y0} = F(y0),

Pr {y = y1} = 1 − F(y0),

where 0 < F(y0) < 1. In this case, we have �(y1) = {y0, y1} while, due
to the individual resource constraint ỹ ≤ y, �(y0) = {y0}. Agents with
the low income realization y0 have no possibility of hiding income, so no IC
constraints are required for them. The IC condition (4) for those with high
income y1 is given by

u

(
c(ỹc(y1))+

∫ y1

ỹc(y1)

λ(t)dt

)
≥ u

(
c(θ)+

∫ y1

θ

λ(t)dt

)

for θ ∈ �(y1) = {y0, y1}. Since the utility function u enters both sides of this
constraint symmetrically, the above IC condition for utilities is equivalent to
the following condition expressed directly in terms of consumption:

c(ỹc(y1))+
∫ y1

ỹc(y1)

λ(t)dt ≥ c(θ)+
∫ y1

θ

λ(t)dt

for θ ∈ �(y1) = {y0, y1}. This condition is trivially satisfied for θ = ỹc(y1),
which leaves one IC condition for each possible display recommendation
ỹc(y1). In particular, for the recommendation of full display, ỹc(y1) = y1, the
IC condition is given by

c(y1) ≥ c(y0)+
∫ y1

y0

λ(t)dt,

which simply states that for the full display recommendation to be IC, the
publicly assigned consumption c(y1) must be at least equal to the sum of the
publicly assigned consumption c(y0) and the hidden consumption

∫ y1

y0
λ(t)dt

that high-income agents can obtain by hiding the amount y1 − y0.
In Section 5, we focus on another special case, namely, the full support case

in which suppF = [y0, y1]. Our general specification of the IC requirement
encompasses both of these extreme cases, as well as a variety of intermediate
specifications.

Resource Feasibility

Among the incentive-compatible mechanisms, we are interested in those that
are self-financing, or resource feasible. A DRIC mechanism is resource fea-
sible if the promised consumption allocation c can be delivered without using
any more resources than those displayed by agents. That is, a DRIC mecha-
nism is resource feasible if the following condition is satisfied:∫ y1

y0

[
c (ỹc(y))− ỹc(y)

]
dF(y) ≤ 0. (5)
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For brevity, a direct-revelation incentive-compatible and resource-feasible
mechanism will be called an incentive-feasible (IF) mechanism.

The Social Planning Problem

The social planning problem in our environment is to find a welfare-maximizing
incentive-feasible mechanism (ỹc, c). This social planning problem can be
written concisely as the following mathematical programming problem, which
will be referred to as problem SPP:

max
ỹc(y),c(ỹc)

∫ y1

y0

u

(
c (ỹc(y))+

∫ y

ỹc(y)

λ(t)dt

)
dF(y),

subject to

ỹc(y) ∈ arg max
θ∈�(y)

u

(
c(θ)+

∫ y

θ

λ(t)dt

)
(6)

for all y, and ∫ y1

y0

[
c (ỹc(y))− ỹc(y)

]
dF(y) ≤ 0. (7)

A constrained optimal mechanism, or just an optimum, is given by a
solution to the planning problem SPP. We will use (ỹ∗, c∗) to denote an optimal
mechanism.

Remarks

1. Consumption is delivered to agents in two ways: the publicly observ-
able consumption c (ỹc(y)) and the hidden consumption

∫ y
ỹc(y)

λ(t)dt .
The public consumption allocation c depends on the true realization of
income y only through the displayed amount ỹc(y). In general, one
could allow for c to be a function of both the reported income y and
the displayed income ỹ. For incentive reasons, however, the direct de-
pendence of c on y has to be trivial. To see this, let c depend on both
ỹ and y, and suppose that there exist realizations y1 and y2 in [y0, y1]
such that

c(ỹc(y
1), y1) > c(ỹc(y

2), y2).

If ỹc(y1) = ỹc(y
2), agents with true realized income y2 will not reveal

it truthfully. Instead, they will report y1 because this report gives them
more final (private plus hidden) consumption:

c(ỹc(y
1), y1)+

∫ y2

ỹc(y1)

λ(t)dt > c(ỹc(y
2), y2)+

∫ y2

ỹc(y1)

λ(t)dt.
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Thus, ỹc(y1) = ỹc(y
2) must imply that c(ỹc(y1), y1) = c(ỹc(y

2), y2)

for all y1 and y2 in [y0, y1], i.e., the direct dependence of c on the re-
vealed income has to be trivial. Intuitively, given a fixed display amount
ỹ, announcements of y are “cheap talk,” which should be ignored.

2. Given the “cheap talk” property of the revealed income y, the directly
revealed information about y is not used in consumption assignment c.
Thus, the third stage of the general DRIC mechanism, at which agents
reveal their actual income y, can be skipped. We see that, in the CSF
model, a direct-revelation mechanism does not have to actually call for
direct revelation of the realized uncertainty.

3. Since the utility function u is strictly increasing, a recommendation
ỹc(y) is incentive compatible if and only if it maximizes the consump-
tion of the agent with realized income y. Thus, the function u can be
dropped from the objective on the right-hand side of (6), which makes
the IC constraint linear in c.

4. The IF mechanisms discussed above operate under the assumption that
society can fully commit ex ante to redistributing resources ex post
according to the agreed upon plan, c. This assumption is important. In
general, for incentive reasons, it is ex ante optimal for c to redistribute
displayed resources ỹc(y) partially. Ex post, however, agents cannot
hide resources that have already been revealed. At this point, if society
could reconsider the allocation policy c, it would prefer to redistribute
the revealed income more fully (take more from those who reveal a
lot). We assume that society can commit ex ante to not reconsidering c
ex post. If it could not commit to c, agents would not display income
according to ỹc(y), and, in effect, less insurance could be implemented.

3. FISCAL IMPLEMENTATION DEFINED

In the Mirrlees approach to the problem of optimal taxation, an optimal tax
system is defined as one that obtains optimal allocation of resources as an
equilibrium of a market economy with taxes. Having defined optimal alloca-
tions in the previous section, we devote this section to defining equilibrium in
a market economy with taxes. In our simple environment, in which income
is given to agents exogenously, all redistribution of income is done through
taxes and thus there is no need for markets. Thus, the general market/tax
mechanism can be specialized to a simple tax mechanism, which we define
below.

Let us then assume that the task of implementation of the optimal social
redistribution policy, along with the power to tax all unconcealed income, is
given to a government. The government chooses a tax function T : [y0, y1] →
R, where T (ỹ) represents the tax levied on agents whose declared income is
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ỹ. Taxes can be negative, in which case they represent net transfers from the
government to the agents.

The timing of events under a tax mechanism is as follows:

1. The government commits to a tax function T .

2. Agents receive their individual income realizations y.

3. Agents hide the amount y − ỹ(y) and display ỹ(y).

4. Redistribution of the unconcealed income ỹ occurs according to T .

5. Agents with income y whose displayed income is ỹ(y) consume

ỹ(y)− T (ỹ(y))+
∫ y

ỹ(y)

λ(t)dt,

where ỹ(y) − T (ỹ(y)) is the after-tax unconcealed income, and∫ y
ỹ(y)

λ(t)dt is the hidden consumption of the unwasted portion of the
concealed income.

Note that, unlike the direct-revelation mechanism used in the social plan-
ning problem, the tax mechanism does not specify any recommendation on
what portion of realized income y is to be hidden. In a tax mechanism, agents
are simply confronted with a tax schedule T . Agents must make the decision
on how much income to hide and how much to display, without any explicit
recommendation.

To find out what allocation of consumption is implemented by a tax sched-
ule T , which we need to know in order to evaluate welfare attained by T , we
need to predict how much income agents of various income levels will conceal
at stage 3 of the above mechanism, given that they know T is the tax schedule
they will face at stage 4. This can be done by finding, for each T , the set of
solutions to the agents’ individual utility maximization problem.

This problem is formulated as follows. Agents of income y choose income
displayed ỹ ≤ y, public consumption cP , and hidden consumption cH so as
to maximize utility

u(cH + cP ),

subject to the budget constraint for hidden consumption

cH ≤
∫ y

ỹ

λ(t)dt,

and the after-tax budget constraint for public consumption, which under the
tax function T is given by

cP ≤ ỹ − T (ỹ).

Let us denote by θT (y) the set of individually optimal display levels for
agent y under taxes T , and let ỹT (y) be any selection from this set. Clearly,
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since u is increasing, given an individually optimal displayed income level
ỹT (y), individually optimal hidden and public consumption levels are such
that the two budget constraints are satisfied as equalities. Thus,

θT (y) = arg max
ỹ≤y

u

(
ỹ − T (ỹ)+

∫ y

ỹ

λ(t)dt

)
.

A tax schedule T implements an optimal mechanism (ỹ∗, c∗) if the fol-
lowing two conditions are met:

ỹ∗(y) ∈ θT (y) (8)

for each y ∈ [y0, y1], and

c∗(ỹ) = ỹ − T (ỹ) (9)

for each ỹ ∈ [y0, y1].
The first condition in the above definition says that the tax schedule T

must be such that the socially optimal hiding policy ỹ∗ is individually opti-
mal in the tax mechanism under schedule T . Intuitively, this condition is a
form of incentive compatibility requirement on the tax system T . The second
condition requires that, for each level of displayed income ỹ, the transfers pre-
scribed by T exactly replicate the transfers prescribed by the socially optimal
redistribution schedule c∗. We will refer to (9) as the replication condition.

The implementation conditions (8) and (9) guarantee that the hidden and
public consumption delivered by the tax mechanism T exactly replicate the
hidden and public consumption of the optimal DRIC mechanism (ỹ∗, c∗) for
each y ∈ [y0, y1]. Therefore, welfare attained by the tax mechanism T is
equal to the maximal welfare attainable in this environment. For this reason,
a tax system that implements an optimum is called an optimal tax system.

Also, transfers implemented by an optimal T are budget feasible for the
government. Since an optimal mechanism (ỹ∗, c∗) is resource feasible, we
have that

0 ≤ −
∫ y1

y0

[
c
(
ỹ∗(y)

) − ỹ∗(y)
]
dF(y)

= −
∫ y1

y0

[
ỹ∗(y)− T

(
ỹ∗(y)

) − ỹ∗(y)
]
dF(y)

=
∫ y1

y0

T (ỹT (y))dF (y),

which means that net tax revenue is nonnegative under T . The inequality
above follows from (7), i.e., the fact that (ỹ∗, c∗) is resource feasible. The first
equality follows from the implementation condition (9), and the second from
the implementation condition (8).

In this article, we are interested in a characterization of a tax system T

that is optimal in the environment defined in Section 2, in which hiding of
income is costly.
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4. SOLVING THE FULL INFORMATION BENCHMARK CASE

Before we proceed to the optimal taxation problem with income hiding, we
describe in this short section the solution to the optimal taxation problem in
an environment in which income hiding is not possible. This case serves as a
benchmark against which we can compare optimal allocations and tax systems
obtained in environments with income falsification.

When income cannot be hidden, we can think of it as being public infor-
mation as soon as it is realized. Thus, there is no private information to be
communicated, nor is there any private action to be taken. The only object
that needs to be specified by a mechanism in the full information case is the
allocation of consumption c(y) for each realized income level y ∈ [y0, y1].
Resource feasibility is the sole constraint that the consumption allocation c
has to satisfy. Namely, ∫ y1

y0

c(y)dF (y) ≤ Y.

What allocation of consumption is optimal under full information? Clearly,
it is the full-insurance allocation under which all income risk is insured and
thus all agents’ consumption is the same, i.e.,

c(y) = cFI

for all y ∈ [y0, y1]. Why? Any allocation with unequal consumption can
be improved upon, since all agents have the same preferences with marginal
utility decreasing in consumption. It is socially beneficial to redistribute a unit
of consumption from those who have more to those who have less because
the utility gain to the poorer caused by such a transfer is larger than the utility
loss to the richer and, hence, the total social welfare is increased. Under full
information, such a transfer, as self-financing, is feasible. Thus, the optimal
redistribution scheme is to allocate consumption equally to all.

What is the maximal level cFI of the same-for-all consumption that can
be attained? The resource feasibility constraint implies that

Y =
∫ y1

y0

cFIdF (y) = cFI , (10)

that is, each agent’s consumption equals per capita income.
How can this allocation be implemented with a tax system? Since, ob-

viously, there is no hidden consumption in the public information case, each
agent’s final consumption is simply equal to the consumption of publicly
assigned resources. Therefore, the only condition for implementation is the
condition

cFI = y − T (y)

for all y ∈ [y0, y1]. Using (10), we conclude that the tax system

T (y) = y − Y
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is optimal in the full information benchmark.
In the full information benchmark case, the optimal marginal tax rate is

100 percent. Agents with the realized income y0 pay a tax of y0 −Y , which is
a negative number, i.e., they receive a transfer. As realized income increases
in the population, the size of the transfer from the government to the agents
decreases 1 to 1 with income. The agents whose realized income is exactly
equal to the average income Y pay zero. All income above the average level
Y is taxed out. The implemented distribution of consumption is uniform: all
agents consume Y .

5. CHARACTERIZING CONSTRAINED OPTIMAL
ALLOCATIONS

As the first step toward a characterization of optimal taxes in the class of
environment with private income and private action, we characterize in this
section optimal allocations of those environments.

We start out by noting that the full information optimum cannot be achieved
in the private information case when the cost of falsification is less than 100
percent. For the full information optimum to be implementable, it must be the
case that

cFI ≥ cFI +
∫ y

θ

λ(t)dt

for all y and all θ ∈ �(y), which, given that λ is nonnegative, is true only if
λ(t) = 0 for all t ∈ suppF .

Intuitively, the full-insurance allocation cFI does not give agents any
incentive to display income, as consumption publicly assigned to agents is
independent of income they display. If λ is not identically equal to zero,
agents can benefit from hiding income. Since low declared income does not
cause any loss of publicly assigned consumption, all agents will display the
lowest possible income realization, i.e., y0. The promise of cFI = Y for each
agent will be impossible to fund with the total displayed income of y0 < Y .
This makes the full information optimum infeasible outside of the trivial case
in which λ(y) = 0 for all y.

In contrast, the no-redistribution allocation c(ỹ) = ỹ can always be imple-
mented with the recommendation for all agents to display all income. Thus,
we see how the need to provide incentives puts a limit on the amount of
redistribution (i.e., social insurance) that can be implemented when income
falsification is possible.

What is the maximal amount of social insurance that can be provided
when agents can falsify income? To answer this question, we need to solve
the social planning problem SPP.
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A No-Falsification Theorem

Problem SPP (defined on page 86) is not very convenient to work with, since
it involves the recommendation ỹc, which depends on the allocation c. Each
time we want to evaluate welfare generated by a candidate redistribution policy
c, we need to specify an incentive-compatible display recommendation ỹc.
Optimization, therefore, takes place jointly over the choice of c(y) and ỹc(y)
for all y ∈ [y0, y1]. The social planning problem would be much simpler if
we could fix a display recommendation and search only over the consumption
allocations c. It turns out that, in the class of economies we consider, such a
simplification is possible.

Suppose that we confine attention to mechanisms that recommend full dis-
play of income for all realizations of y ∈ [y0, y1]. We call such mechanisms
no-falsification (NF) mechanisms. Below, we prove a result that states that
when searching for an optimal mechanism, confining attention to NF mech-
anisms is without loss of generality. The Revelation Principle implies that
limiting attention to incentive-feasible mechanisms is without loss of welfare.
We show something stronger: it is without loss of welfare to confine attention
to those IF mechanisms that are NF mechanisms.

This result, which we call a no-falsification theorem, significantly sim-
plifies the social planning problem SPP. It implies that the recommendation
ỹc can be taken to be ỹc(y) = y for all y, independently of the candidate
allocation c. This greatly reduces the dimensionality of the social planning
problem, as now optimization is only over the allocation functions c.

Formally, we will say that an incentive-feasible mechanism (ỹc, c) is a
no-falsification mechanism if

ỹc(y) = y

for all y ∈ [y0, y1].
An incentive-feasible, no-falsification (IFNF) mechanism can be expressed

simply as an allocation function c, with ỹc implicitly specified as ỹc(y) = y

for all y.
The main result of this section is the following:

Theorem. For any IF mechanism (ỹc, c), there exists an IFNF mechanism
ĉ that delivers the same social welfare as (ỹc, c).

Proof. Let (ỹc, c) be an IF and resource-feasible mechanism. Define an
IFNF mechanism ĉ as follows:

ĉ(y) = c (ỹc(y))+
∫ y

ỹc(y)

λ(t)dt.

We first show that ĉ is incentive compatible. Suppose it is not. Then, the
incentive compatibility constraint (6) has to be violated at ĉ, which means that



B. Grochulski: Optimal Taxation with Tax Avoidance 93

there exist y and z ∈ �(y) such that

ĉ(y) < ĉ(z)+
∫ y

z

λ(t)dt.

Substituting for ĉ(y) and ĉ(z) from the definition of ĉ, the above is
equivalent to

c (ỹc(y))+
∫ y

ỹc(y)

λ(t)dt < c (ỹc(z))+
∫ z

ỹc(z)

λ(t)dt +
∫ y

z

λ(t)dt

= c (ỹc(z))+
∫ y

ỹc(z)

λ(t)dt, (11)

where the equality follows from the additivity of the definite integral with
respect to the limits of integration. Denoting ỹc(z) by x, we rewrite the above
inequality as

c (ỹc(y))+
∫ y

ỹc(y)

λ(t)dt < c (x)+
∫ y

x

λ(t)dt.

Note now that x ∈ �(y). Indeed,

x = ỹc(z) ∈ suppF,

because x = ỹc(z) ∈ �(z), and

x ≤ z ≤ y, (12)

because z ∈ �(y) and x ∈ �(z). But this contradicts the incentive compat-
ibility of the mechanism (ỹc, c), because x is a feasible display level for an
agent with realized income y that provides strictly more consumption (i.e.,
also utility) than the recommended display level ỹc(y). This contradiction
implies that ĉ is incentive compatible.

Welfare generated by ĉ is equal to welfare generated by (ỹc, c), as, by
definition of ĉ, both mechanisms deliver the same consumption to agents
of all income levels. Note that ĉ delivers publicly the same consumption that
(ỹc, c) delivers as a sum of public and hidden consumption for each realization
of income y.
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It remains to be shown that ĉ is resource feasible. The resources needed
to deliver ĉ are∫ y1

y0

ĉ (y) dF (y) =
∫ y1

y0

[
c (ỹc(y))+

∫ y

ỹc(y)

λ(t)dt

]
dF(y)

=
∫ y1

y0

[
c (ỹc(y))− ỹc(y) + ỹc(y)+

∫ y

ỹc(y)

λ(t)dt

]
dF (y)

=
∫ y1

y0

[
c (ỹc(y))− ỹc(y)

]
dF(y)

+
∫ y1

y0

[
ỹc(y)+

∫ y

ỹc(y)

λ(t)dt

]
dF(y)

≤
∫ y1

y0

[
ỹc(y)+

∫ y

ỹc(y)

λ(t)dt

]
dF(y) (13)

≤
∫ y1

y0

[
ỹc(y)+ y − ỹc(y)

]
dF(y) (14)

= Y,

where (13) follows from (5), that is, the fact that (ỹc, c) is resource feasible,
and (14) from the fact that

λ(t) ≤ 1

for all t . Since ĉ is an incentive-compatible, no-falsification mechanism,
agents display all income truthfully. Thus, since the amount of resources
available for redistribution under ĉ is∫ y1

y0

y dF(y) = Y,

ĉ is resource feasible and the proof is complete.

Remarks

1. Note in the last step of the preceding proof that, in a large class of
environments, inequality (14) is strict. When ỹc(y) < y for some y
such that λ(y) < 1, under the mechanisms (ỹc(y), c), agents engage in
a wasteful activity of hiding income. Under the NF mechanism ĉ, this
inefficiency is eliminated. Therefore, wheneverλ < 1, NF mechanisms
are not merely as good as falsification mechanisms, but strictly better.

2. A key step in showing the incentive compatibility of the NF mechanism
ĉ is the equality in (11). This equality holds true because the cost of
hiding the amount y−x is equal to the sum of costs of hiding y−z and
z− x. The proof of our no-falsification result would not go through if
the cost of hiding y − x were strictly larger than the sum of costs of
hiding y−z first and z−x next. In Section 7, we discuss an example of
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such an environment. There, also, we discuss how our no-falsification
theorem is related to the results of Lacker and Weinberg (1989).

3. Another important step in the proof involves showing that ỹc(z) ∈
�(y). This holds because in our environment it is possible to hide the
whole income. Suppose that there is an upper bound on the proportion
of income that can be hidden. Say only 20 percent of actually realized
income can be hidden. With this bound in place, it may be impossible
to display ỹc(z)when true income is y because, despite being a feasible
display, for the true income z, ỹc(z) may be less than 80 percent of y,
which means that it is not a feasible display for the true income y.
Clearly, this will be the case when 0.8z ≤ ỹc(z) < 0.8y. Thus, under
such a partial concealment technology, our no-falsification theorem
fails. This point follows from an insight of Green and Laffont (1986).

Simplifying the Social Planning Problem

By our no-falsification theorem, we hereafter confine attention to NF mech-
anisms without loss of generality. The incentive compatibility constraint (4)
of an NF mechanism

y ∈ θc(y),
for all y ∈ [y0, y1] can be equivalently written as

c(y) ≥ c(θ)+
∫ y

θ

λ(t)dt (15)

for all y ∈ [y0, y1] and all θ ∈ �(y).
The resource feasibility constraint (5) under an NF mechanism

simplifies to ∫ y1

y0

c (y) dF (y) ≤ Y. (16)

Under an NF mechanism, all consumption is public (as no resources
are hidden). Welfare attained by an IFNF mechanism c, therefore, is given
simply by

∫ y1

y0

u (c (y)) dF (y). (17)

The social planning problem SPP restricted to the class of no-falsification
mechanisms, thus, is to find a schedule c(y) so as to maximize social welfare
(17) subject to incentive compatibility (15) and resource feasibility (16).

This formulation of the social planning problem is much simpler (as no
function ỹc is involved). It will be useful, however, to simplify it even further.
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Simplifying the IC Constraints

When suppF contains many points, the number of constraints in the condition
(15) is large, as incentive compatibility of c needs to be checked for all y in
suppF and all ỹ in suppF below y. This is true, in particular, for the case of
full support, that is, if

suppF = [y0, y1].

In this section, we show how, in the full support case, incentive compat-
ibility conditions (15) can be equivalently expressed with a smaller number
of so-called local IC constraints. Replacing the global conditions (15) with
the local constraints defined below does not alter the requirement of incentive
compatibility, but the social planning problem is simpler to handle when local
constraints are used.

Define the local IC constraints as

dc(y) ≥ λ(y)dy (18)

for all y ∈ [y0, y1]. The notation dc(y) stands for the change in c when y is
changed infinitesimally (similar to the notation dF(y) we have already used
to denote integration with respect to differences in the distribution function
F ). If c is differentiable, the above condition reduces to

c′(y) ≥ λ(y)

for all y ∈ [y0, y1].
Intuitively, the local IC constraints prevent agents from hiding small

amounts of output. Take an agent whose realized income is y. The rec-
ommended display under an NF mechanism c is to hide nothing. The agent
considers a small deviation from no-falsification, which means hiding a small
amount of income, dy. The private benefit of doing so comes in the form of a
small amount λ(y)dy of resources available to the agent for hidden consump-
tion. The local IC constraint (18) requires that the loss in publicly assigned
consumption resulting from this underreporting, dc(y), be large enough to at
least offset the agent’s gain in hidden consumption.

We show now that, if F has full support, the global IC constraints (15)
and local IC constraints (18) are equivalent.6

If c satisfies the global constraints (15), it must also satisfy the local
constraints (18). The global IC constraint (15) at y with display level θ is
given by

c(y)− c(θ) ≥
∫ y

θ

λ(t)dt.

Taking the limit θ → y, we obtain (18) at y.

6 In order to avoid technical detail, the argument is presented quite informally.
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The local constraints, in turn, guarantee the incentive compatibility of
allocation c in the global sense. To see this, fix an arbitrary y and θ ≤ y, both
in [y0, y1]. The local IC constraints imply that for all t ∈ [θ, y] we have

0 ≤ dc(t)− λ(t)dx.

By the positivity of the operation of integration, we, thus, have

0 ≤
∫ y

θ

dc(t)−
∫ y

θ

λ(t)dt

= c(y)− c(θ)−
∫ y

θ

λ(t)dt,

which shows that the global IC constraint is satisfied for y and θ . Since the
choice of y and θ was arbitrary, the same is true for all y and θ ≤ y in [y0, y1]
and, thus, all IC constraints (15) are satisfied.

Having shown that local IC constraints are necessary and sufficient for
incentive compatibility of an IFNF mechanism c, we can express the social
planning problem simply as follows: find an allocation c that maximizes social
welfare in the class of all allocations that are resource feasible and locally
incentive compatible. The reduction of the original planning problem SPP
to this form is going to pay off now in that the solution to the reduced-form
problem will be easy to find.

Solving the Social Planning Problem

Intuitively, the local IC constraints (18) put a lower bound on how flat the dis-
tribution of consumption can be. At the full-insurance allocation, consumption
distribution cFI is completely flat:

dcFI (y) = 0.

If this distribution cannot be achieved, due to λ(y) > 0, the best distribution
that can be implemented is the one that comes as close to cFI as possible.
Thus, intuition says that the best among all IC allocations should be the one
at which the slope of c(y) is as small as possible at all levels of y. Given the
lower bound imposed by the local IC constraints, this means that the slope of
c at y should be equal to λ(y), for all y.

This intuition is correct as can be seen from the following argument.
Suppose to the contrary there exists an optimal allocation c such that

dc(y ′) > λ(y ′)dy ′ (19)

for some y ′ ∈ [y0, y1]. Consider also an alternative allocation c̄, which is
identical to c except in a small neighborhood of y ′, where c̄ prescribes a little
more redistribution than c. More income redistribution aty ′ means that c̄ grows
more slowly in the neighborhood of y ′ than does c, that is, dc̄(y ′) < dc(y ′).
With a sufficiently small increase in the amount redistributed, however, the
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differential dc̄(y ′) can be made arbitrarily close to dc(y ′). In particular, given
that at c the local incentive constraint around y ′ is slack, the increase in the
amount redistributed can be made sufficiently small so as to have

dc̄(y ′) ≥ λ(y ′)dy ′,

which means that c̄ is incentive compatible. As under any NF allocation,
agents hide no income under c̄, so the amount available for redistribution
under c̄ is Y . Since c̄ uses the same amount of resources as c, Y is sufficient to
fund the total consumption promised by c̄, so c̄ is resource feasible. Also, as c̄
provides marginally more consumption to agents with higher marginal utility,
it generates higher social welfare than c. This contradicts the optimality of c.

The above argument implies that any optimal allocation, denoted by c∗,
must satisfy

dc∗(y) = λ(y)dy (20)

for all y ∈ [y0, y1], i.e., all local IC constraints are binding at a solution to
social planning problem.

Note now that the binding local IC constraints pin down the optimal allo-
cation up to a constant. Integrating (20) we get∫ y

y0

dc∗(t) =
∫ y

y0

λ(t)dt,

that is,

c∗(y) = c∗(y0)+
∫ y

y0

λ(t)dt.

This formula tells us a lot about the structure of optimal allocation of con-
sumption. It is optimal to assign to an agent with realized income y only as
much consumption as he could guarantee himself by declaring the lowest in-
come realization, y0. The incentive to display y fully is delivered by publicly
giving the agent exactly as much as what he could get by hiding y − y0. The
amount of this “incentive payment” is equal to

∫ y
y0
λ(t)dt .

The constant c∗(y0) can be obtained from the resource feasibility
constraint:

Y =
∫ y1

y0

c∗(y)dF (y)

=
∫ y1

y0

[c∗(y0)+
∫ y

y0

λ(t)dt]dF(y)

= c∗(y0)+
∫ y1

y0

∫ y

y0

λ(t)dtdF (y)

= c∗(y0)+
∫ y1

y0

(1 − F(t))λ(t)dt,
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which implies that

c∗(y0) = Y −
∫ y1

y0

(1 − F(t))λ(t)dt. (21)

The optimal amount of consumption assigned to an agent at the very bottom
of income distribution is equal to what it would be in the full-insurance case
(cFI = Y ), less the average incentive payment made to other agents whose
income exceeds the low realization y0.

Since the constant c∗(y0) is uniquely determined in (21), the optimal
allocation c∗ is uniquely pinned down as

c∗(y) = Y −
∫ y1

y0

(1 − F(t))λ(t)dt +
∫ y

y0

λ(t)dt (22)

for all y ∈ [y0, y1]. Consumption assigned to agents with income y is equal
to the average income, minus the average population incentive payment, plus
the incentive payment specific to agents of income y.

As an example, consider the special case in which the cost of hiding income
is independent of income, i.e., take λ(y) = λ for all y. In this case, we get

c∗(y0) = Y − λ

∫ y1

y0

(1 − F(t))dt

= Y − λ(Y − y0)

= λy0 + (1 − λ)Y,

and

c∗(y) = λy0 + (1 − λ)Y + λ(y − y0)

= λy + (1 − λ)Y.

The optimal assignment of consumption, in this case, does not depend on
the income distribution F . Consumption assigned to agents with income y
is a weighted average of their income y and the average income Y , where
the weight assigned to the average income is equal to the per-dollar income
falsification cost 1 − λ. In particular, when this cost is 100 percent, the full-
insurance allocation cFI = Y is implementable. If this cost is zero, no social
insurance can be implemented, and the no-redistribution allocation c(y) = y

is optimal.

6. FISCAL IMPLEMENTATION OF THE CONSTRAINED
OPTIMUM

The no-falsification theorem does not only help solve the social planning prob-
lem, but also makes fiscal implementation of the optimum straightforward.

In order to implement an IF mechanism (ỹc, c), we need to find an income
tax schedule T : [y0, y1] → R+ that satisfies two implementation conditions:
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the incentive compatibility condition (8) and the transfer replication condition
(9). If the mechanism to be implemented is a no-falsification mechanism,
however, the incentive compatibility condition follows from the transfer repli-
cation condition, and thus only one simple condition has to be checked.

Therefore, a tax schedule T implements the optimal IFNF mechanism c∗,
if and only if

c∗(y) = y − T (y)

for all y ∈ [y0, y1].
This condition uniquely pins down the optimal tax schedule, which will

be denoted by T ∗. Substituting for c∗(y) from (22), we get

T ∗(y) = y −
∫ y

y0

λ(t)dt − Y +
∫ y1

y0

(1 − F(t))λ(t)dt

for all y ∈ [y0, y1].
As we see, the structure of the optimal tax system T ∗ is determined by the

unit income falsification cost function 1 − λ. Optimal marginal income taxes
are given by

dT ∗(y) = (1 − λ(y))dy.

At all points of continuity of λ, we, thus, have

d

dy
T ∗(y) = 1 − λ(y),

that is, the optimal marginal income tax rate applied to the income level y is
equal to the per-dollar income falsification cost at y.

Since our model does not put any restrictions on the shape of the function
λ, a large class of tax schedules T is consistent with optimality under some
specification of λ. In particular, if the unit cost of income falsification 1−λ(y)
is increasing in y, progressive taxation of income is optimal in our model.
Clearly, it is easy to provide a specification for the function λ that generates an
optimal tax system that is piecewise-linear, similar to the income tax schedule
currently used in the United States.

What, in conclusion, does our model suggest about why we observe pro-
gressive taxation in many countries, including the United States? Our model
shows that, if the cost of falsification is increasing in income, it is optimal to
tax higher income at a higher rate because in this way, the maximal amount
of desirable social insurance can be provided without pushing people into
wasteful tax avoidance activities. In this sense, our model provides a possible
explanation for the observed progressivity of income taxes.
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7. SOME EXTENSIONS AND ALTERNATIVE
SPECIFICATIONS

The no-falsification property is a key feature of the optimal mechanism for
the provision of social insurance in the class of environments we have consid-
ered so far. In this section, we study the extent to which our no-falsification
theorem can be extended to environments with more general falsification cost
technologies.

The class of falsification cost functions that we considered so far consists
of all functions that can be expressed as the definite integral (1). We have
demonstrated that a useful no-falsification theorem holds for all such cost
functions. The proof of this theorem uses the additivity property of the definite
integral. It turns out, however, that this proof goes through under a weaker
condition of subadditivity of the falsification cost function. Therefore, the
no-falsification result extends to a larger class of environments than merely
those in which the falsification cost function can be expressed as an integral
of the form given in (1).

We identify subadditivity of the falsification cost function as a key condi-
tion for the no-falsification result as well as for the optimality of no-falsification
mechanisms. In the first subsection, we show that subadditivity is sufficient
for the no-falsification result, which implies that no-falsification mechanisms
are optimal whenever the falsification cost function is subadditive. In the sec-
ond subsection, we show that no-falsification mechanisms are not optimal in
general. We give an example of a falsification technology under which all
no-falsification mechanisms are welfare-dominated by a mechanism that uses
falsification.

In the third and final subsection, we discuss the relation between our model
and the costly state falsification literature.

A Generalized No-Falsification Theorem

Our no-falsification theorem can be extended to any subadditive cost function
ψ : D → R+, where

D = {
(y, x) ∈ [y0, y1]2 | x ≤ y

}
,

and where subadditive means that for all x ≤ z ≤ y, x ≥ y0, y ≤ y1,
we have

ψ(y, x) ≤ ψ(y, z)+ ψ(z, x).

In fact, under this more general specification of the falsification cost function,
our proof goes through without change. In particular, for any IF mechanism
(ỹc, c) we define the no-falsification mechanism ĉ as

ĉ(y) = c (ỹc(y))+ y − ỹc(y)− ψ(y, ỹc(y)).
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As we work step-by-step through the original proof, it follows that ĉ is always
at least as good as (ỹc, c) for any subadditive cost function ψ .

The class of subadditive cost functions contains many flexible specifica-
tions. Therefore, by our no-falsification theorem, the class of environments
in which the NF mechanisms are optimal is fairly large.

Is subadditivity of the cost function ψ necessary for the no-falsification
result? When the cost function ψ is not subadditive, as mentioned already in
Remark 2 on page 94, our proof of the no-falsification theorem does not go
through because from the supposition that the NF mechanism ĉ is not IC, it
no longer follows that the mechanism (ỹc, c) is not IC. To see this, note that
the fact that there exists z ∈ �(y), such that

ĉ(y) < ĉ(z)+ y − z− ψ(y, z)

implies that

c (ỹc(y))+ y − ỹc(y)− ψ(y, ỹc(y)) < c (ỹc(z))+ z− ỹc(z)

−ψ(z, ỹc(z))+ y − z− ψ(y, z)

= c (ỹc(z))+ y − ỹc(z)

− [
ψ(y, z)+ ψ(z, ỹc(z))

]
but does not, in general, imply that

c (ỹc(y))+ y − ỹc(y)− ψ(y, ỹc(y)) < c (ỹc(z))+ y − ỹc(z)− ψ(y, ỹc(z)).

This last implication fails when

ψ(y, ỹc(z)) > ψ(y, z)+ ψ(z, ỹc(z)),

that is, when the cost of two piecemeal falsifications is smaller than the cost
of making the same falsification in one big step.

We see that when the falsification cost function is not subadditive, there
are IC allocations of final (private plus hidden) consumption that cannot be
achieved with an NF mechanism. This, in itself, does not imply that NF
mechanisms are sub-optimal. It is possible that the allocations that are not
implementable without falsification are welfare dominated by allocations that
can be implemented in an NF mechanism. In the next subsection, however, by
means of an example, we show that, in general, this is not true. In fact, under
some income-hiding cost functions, mechanisms that prescribe falsification
are optimal.

Optimality of Falsification Mechanisms

In this subsection, we specify a particular falsification cost function and derive
the best NF mechanism. Then we provide an example of a falsification mech-
anism that welfare dominates the best NF mechanism in this environment.

Consider the following falsification cost function:

ψ(y, x) = max {y − x − δ, 0} (23)
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for all (y, x) ∈ D. Under this specification, the first δ dollars of income can
be hidden costlessly, while the resource cost of hiding anything in excess of δ
is 100 percent. Clearly, this cost function is not subadditive.

What is the best no-falsification mechanism under this cost function? We
see that an allocation c is consistent with no-falsification if and only if

dc(y) ≥ dy (24)

for all y. Indeed, if dc(y) < dy, agents can benefit from hiding up to δ dollars
of income because their hidden consumption increases one-to-one with every
dollar hidden while their public consumption decreases at a slower rate for
falsifications smaller than δ. Clearly, if dc(y) ≥ dy, then no agent benefits
from hiding income and, thus, no-falsification is incentive compatible. Also,
it is clear that among all allocations satisfying (24), the one at which all
constraints (24) bind, provides the most insurance and, hence, the highest ex
ante social welfare among all NF mechanisms. Thus, the best NF mechanism,
denoted as cNF , satisfies

dcNF (y) = dy

for all y. Integrating, we get

cNF (y)− cNF (y0) = y − y0

for all y. Resource feasibility implies that

cNF (y0) = y0.

Under the falsification cost (24), therefore, the best NF mechanism coincides
with the no-insurance allocation

cNF (y) = y

for all y. Intuitively, since small falsifications are costless to agents at all
income levels, full display of income is incentive compatible only when there
is no redistribution (taxation) of the displayed income, which means that no
insurance of the individual income risk is possible.

Now consider the following falsification mechanism (ỹc̄(y), c̄):

ỹc̄(y) = max {y − δ, y0} ,
c̄(y) = c̄

for all y. In this mechanism, the recommendation function ỹc̄(y) says that
agents should hide δ and display y−δ, or, if y−δ < y0, agents should display
the lowest income realization y0 and hide y − y0. The redistribution function
c̄ simply assigns a constant amount of resources to all agents, regardless of
their displayed income.

It is easy to see that this mechanism is IC. First, no one has an incentive to
hide less than the recommended amount, because the public consumption al-
location c̄(y) = c̄ does not reward agents who display larger income. Second,
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hiding more than δ for agents with income y > y0 + δ yields no additional
hidden consumption because the marginal cost of hiding is 1 for all income
hidden in excess of δ. Finally, hiding more than y − y0 when y < y0 + δ

violates the support condition ỹ ∈suppF . Thus, (ỹc̄(y), c̄) is IC.
The mechanism (ỹc̄(y), c̄) is also resource feasible if we set

c̄ =
∫ y1

y0

ỹc̄(y)dF (y)

= y0F(y0 + δ)+
∫ y1

y0+δ
(y − δ)dF (y).

With this choice of c̄, the mechanism (ỹc̄(y), c̄) is incentive feasible. Assuming
δ < y1 − y0, that is, that not all income in excess of y0 can be hidden at zero
cost, we have

c̄ > y0.

Under this falsification mechanism, the final consumption c̄ph(y) provided
to an agent with income y,

c̄ph(y) =
{
y + c̄ − y0 if y < y0 + δ,
c̄ + δ if y ≥ y0 + δ

(25)

is the sum of the public consumption c̄ and the hidden consumption y −
max {y − δ, y0}.

Clearly, the best NF mechanism cNF (y) = y and the mechanism (ỹc̄(y), c̄)
do not provide the same allocation of final consumption, and the consumption
profile c̄ph(y) cannot be replicated by an NF mechanism. It is not immediately
clear, however, that the falsification mechanism (ỹc̄(y), c̄) welfare-dominates
the best NF mechanism cNF (y) = y, as agents at the top of the distribution
of realized income are worse off under (ỹc̄(y), c̄), relative to the no-insurance
allocation cNF (y) = y. The following argument shows that the best NF
mechanism is in fact suboptimal.

Denote byG(c) the cumulative distribution function of the distribution of
final consumption c̄ph provided by the mechanism (ỹc̄(y), c̄). That is,

G(c) = Pr
{
y : c̄ph(y) ≤ c

} = F(c̄ph(c)).

Using (25), the formula for G can be explicitly written out as

G(c) =
{

0 if c < c̄,
F (c − c̄) if c ∈ [c̄, c̄ + δ),

1 if c > c̄ + δ.
(26)

The cumulative distribution function of consumption provided by the no in-
surance mechanism cNF (y) = y is simply given by F . In this notation, the
best NF mechanism is welfare dominated by (ỹc̄(y), c̄) if and only if∫ y1

y0

u(c)dF (c) <

∫ y1

y0

u(c)dG(c). (27)
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Given that all income hiding that takes place under (ỹc̄(y), c̄) is costless (i.e.,
no resources are wasted in the process of falsification), both consumption
allocations use the same amount of resources∫ y1

y0

cdG(c) =
∫ y1

y0

cdF (c) = Y, (28)

which means thatG and F are two distributions with the same mean value, Y .
Thus, given that u is strictly concave, the welfare domination condition (27) is
literally equivalent to the second-order stochastic domination of distribution
G over distribution F .7 It is a standard result (see, for example, Mas-Colell,
Whinston, and Green 1995) that G second-order stochastically dominates F
if and only if ∫ c

y0

[F(t)−G(t)] dt ≥ 0 (29)

for all c ∈ [y0, y1]. We now show that this condition is satisfied.
From (26), we get that the difference F(t)−G(t) is positive for t ≤ c̄+ δ

and then negative for t > c̄ + δ. The integral on the left-hand side of (29)
is, therefore, first increasing and then decreasing. Integrating (28) by parts
we get

∫ y1

y0

[F(t)−G(t)] dt = 0.

Also, naturally, we have ∫ y0

y0

[F(t)−G(t)] dt = 0.

These end-point conditions and the fact that the integral on the left-hand side
of (29) is first increasing and then decreasing imply that the integral on the
left-hand side of (29) is everywhere positive. Thus, (29) is satisfied for all
c ∈ [y0, y1], and G does second-order stochastically dominate F .

Intuitively, the falsification mechanism (ỹc̄(y), c̄) dominates the
no-insurance allocation cNF (y) = y because it manages to provide some
social insurance. At (ỹc̄(y), c̄), consumption provided to those with the
lowest income y0 is larger than cNF (y0) = y0, as c̄ > y0. Also, the consump-
tion profile c̄ph(y) is everywhere at least weakly flatter than the no-insurance
consumption profile cNF (y) = y, but not flatter than the full-insurance profile,
at which c(y) is constant. We see then that (ỹc̄(y), c̄) delivers a consumption
profile intermediate between the no-insurance and full-insurance allocations.

7 By definition, distribution G second-order stochastically dominates distribution F if, under
any strictly concave utility function, G delivers larger expected utility than F , which is exactly
what our condition (27) requires.
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Thus, (ỹc̄(y), c̄) welfare-dominates the no-insurance allocation, that is, the
best allocation among all attainable with an NF mechanism.

Relation to the CSF Literature

In the original paper introducing the costly state falsification (CSF) model,
Lacker and Weinberg (1989) (hereafter LW) study a class of falsification cost
functions ψ in which the cost of falsification depends only on the amount
hidden. In particular, conditional on the amount hidden, the falsification cost
does not depend on the actual income realization y. More precisely, the class
of falsification cost functions considered in LW consists of such falsification
cost functions ψ for which there exists a function g : R → R+ with g(0) = 0
such that

ψ(y, x) = g(y − x) (30)

for all x ≤ y, x ≥ y0, y ≤ y1.
Following LW, a number of papers in economics and finance have used the

CSF model in a variety of applications. These include managerial incentives
and asset pricing (Lacker, Levy, and Weinberg 1990), optimal insurance con-
tract design (Crocker and Morgan 1998), managerial compensation (Crocker
and Slemrod 2005, forthcoming), investor protection law and growth (Castro,
Clementi, and MacDonald 2004), and optimal dynamic capital structure of
the firm (DeMarzo and Sannikov 2006). All of these papers consider the LW
specification of falsification cost function (30).

This article differs from these papers in two respects. First, this article is,
to our knowledge, the first to apply the CSF model to the problem of optimal
redistributive taxation. Second, the class of integral falsification cost functions
that we consider is different from the LW class, which means that this article
studies a version of the CSF model that has not been previously studied in the
literature.

In the remainder of this subsection, we discuss the relationship between
the LW class of falsification cost functions and the class of cost functions
we study in this article. The class considered in this article consists of all
functions ψ that admit the integral representation (1), i.e., such functions ψ
for which there exists a function λ : [y0, y1] → [0, 1] such that

ψ(y, x) =
∫ y

x

(1 − λ(t))dt,

for all x ≤ y, x ≥ y0, y ≤ y1.
Neither the LW class nor our class of falsification cost functions is more

general than the other. Clearly, the integral cost function representation we
consider is not a special case of the LW specification, as in our model the
cost of hiding a fixed amount of income can depend on the realized income
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level, y. The LW specification is not a special case of the integral representa-
tion, either. A key property of the integral representation is additivity. The LW
specification encompasses nonadditive cost functions, for example, the nonad-
ditive cost function ψ(y, x) = max {y − x − δ, 0} considered in the previous
subsection admits the LW representation with g(h) = max {h− δ, 0}, where
h = y − x is the amount hidden.

These two classes of cost functions are not disjoint, for example, the
constant per dollar cost function belongs to both of them. Clearly, if in the
integral representation λ is constant, then∫ y

x

(1 − λ(t))dt = (1 − λ)

∫ y

x

dt = (1 − λ)(y − x) = g(x − y),

where g(h) = (1 − λ)h. Also, there are cost functions ψ that do not belong
to either of the two classes. An example is the function

ψ(y, x) = max {y − x − δ(y), 0} ,
with δ(y) a nonconstant function of y.

8. CONCLUSION

In this article we follow the Mirrlees approach to the question of optimal in-
come taxation. This question is studied in an environment in which agents
can avoid taxes by concealing income. The structure of the optimal income
tax schedule is determined by the properties of the income concealment tech-
nology. The main result obtained shows that, if the cost of concealment is
increasing with income, it is optimal to tax higher income at a higher marginal
rate because, in this way, the maximal amount of desirable social insurance
can be provided without pushing people into wasteful tax avoidance activities.
In this sense, our model provides a possible explanation for the progressiv-
ity of income taxes that we observe in many countries, including the United
States.

As an auxiliary result, we prove a no-falsification theorem for the class of
CSF environments in which the concealment technology is characterized by
subadditivity of the concealment cost function. We demonstrate that, in this
class of environments, it is without loss of generality to restrict attention to
mechanisms that recommend full display of all realized income for agents of
all income levels. This result can be useful more generally, that is, in different
applications of the CSF model.

Several possible lines of extension of our model are worth mentioning.
First, in contrast to the Mirrlees environments, the realized (pre-concealment)
income is exogenous in our model. In particular, pre-concealment income
does not respond to taxation. In a richer environment, the falsification ef-
fect that we study in this article would be only one of several forces shaping
optimal tax structures. Second, the class of income falsification technolo-
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gies considered in the model is large, which allows for a large variety of tax
structures to be consistent with optimality under some concealment technol-
ogy. Grounding the model more fundamentally in technology could provide
sharper predictions about the structure of optimal taxes. Third, and related,
falsification technology is taken as exogenous in the model. In particular, it
cannot be affected by the government. The results obtained could change if the
scope of tax avoidance activities available to the agents is explicitly modeled
as dependent on government policy.
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