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Indeterminacy from
Inflation Forecast Targeting:
Problem or
Pseudo-Problem?

Bennett T. McCallum

M onetary economists have been rather proud about developments
in their subject over the past two decades. There has been great
progress in formal analysis and also in the actual conduct of mon-

etary policy. Analytically, the profession has developed an approach to pol-
icy analysis that centers around a somewhat standardized dynamic model
framework that is designed to be structural—respectful of both theory and
evidence—and therefore usable in principle for policy analysis. This frame-
work includes a policy instrument that agrees with the one typically used in
practice and, in fact, models of this type are being used (in similar ways) by
economists in both academia and in central banks, where several economic
researchers have gained leading policymaking positions. Meanwhile, in terms
of practice, most central banks have been much more successful than in pre-
vious decades in keeping inflation low while avoiding major recessions (with
a few exceptions) prior to 2008. Furthermore, these improvements have been
interrelated: The “inflation targeting” style of policy practice that has been
adopted by numerous important central banks—and that arguably has been
practiced unofficially by the Federal Reserve1—is strongly related in princi-
ple to the prevailing framework for analysis. For a recent exposition discussing
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this development, by an author who has participated both as researcher and
policymaker, see Goodfriend (2007).

There are, nevertheless, reasons for concern about current analysis includ-
ing ongoing disputes about the empirical performance of key relationships in
the semi-standard model; about communication and commitment mechanisms
in theory and especially in practice; about the relationship of monetary policy
to credit, fiscal, and foreign exchange policies; and about a myriad of technical
details.2 Also, there is much uneasiness about current policy approaches in
the face of major credit market difficulties and indications of rising inflation.

In this context, the present article will be devoted to one specific prob-
lematic feature of the recent analytical literature, namely, a lack of agreement
concerning the importance of multiple-solution indeterminacies in the analy-
sis of monetary policy rules. References to “indeterminacy,” in the sense
of more than one dynamically stable solution, or “determinacy” appear on
about 75 different pages of the hugely influential treatise on monetary policy
analysis by Woodford (2003a) and are ubiquitous in the literature,3 with a
substantial majority of references expressed from the point of view that takes
indeterminacy per se to be a matter of serious concern, e.g., implying that
policies leading to model equilibria with that property should be rigorously
avoided. The motivation is that indeterminacy should be avoided because it
implies both that the policymaker cannot know which candidate equilibrium
will prevail and also the possibility that “sunspot” effects may be created so
as to greatly increase the volatility of crucial variables.4 Several writers, how-
ever, have expressed the view that indeterminacy per se is not necessarily a
problem—that a more appropriate criterion would be based on the concept of
learnability of potential equilibria. This latter position has been taken overtly
by McCallum (2001, 2003), Bullard and Mitra (2002), and Bullard (2006),
and is stated or indirectly implied in a large number of writings by Evans and
Honkapohja, including their influential and authoritative treatise (2001).

In the present article I wish to develop the position that indeterminacy
is not necessarily problematic in the context of one particular application,
namely, inflation forecast targeting in the sense of Taylor-style policy rules that
respond, not to current (or past) inflation rates, but to currently expected values
of inflation in future periods. That such indeterminacies might be brought
about, and be undesirable, by strong responses of this type was first suggested

2 In some quarters there is substantial concern over the neglect, in current mainstream analysis,
of monetary aggregates. That topic is, however, distinct from those to be discussed in the present
paper. For recent perspectives, see Woodford (2008) and McCallum (2008).

3 Using the EBSCOhost search engine, one finds that, over the time span January 1995–June
2008, the number of papers and books with both “indeterminacy” and “monetary policy” appearing
in their abstract is 78, while the number with these two terms appearing in their text is 166. There
is some double-counting in these figures as both journal articles and working papers are included
in the database.

4 Some additional discussion is provided toward the end of Section 1.
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by Woodford (1994)5, and the argument was further developed by Bernanke
andWoodford (1997), Clarida, Galı́, and Gertler (2000), and (most thoroughly)
Woodford (2003a, 256–61). Subsequently, many other authors have adopted
this point of view, which is briefly mentioned in the textbooks of Walsh (2003,
247) and Galı́ (2008, 79–80). Indeed, it is apparently the prevailing point
of view among analysts, despite the positive actual experience of the Bank
of England over (say) 1996–2006.6 I have briefly taken the opposing line of
argument, that strong responses to expected future inflation rates will not be
problematic, in McCallum (2001) and (2003), but those papers were primarily
occupied with more general topics, which prevented a full development of this
particular issue.7

In what follows, I will begin in Section 1 with an exposition of the nature
of the indeterminacy problem in the context of inflation forecast targeting.
Section 2 will then be devoted to the concept of learnability of a rational
expectations (RE) solution. The position taken here is that the learnability of
any particular RE solution should be considered a necessary condition for that
solution to be plausible and, therefore, an equilibrium appropriate as a basis
for thinking about real-world policy. In Section 3, numerical examples are
developed to illustrate the points that have been made more generally, but also
more abstractly, in Sections 1 and 2 and in previous writings. Section 4 then
takes up the somewhat esoteric topic of “sunspot” solutions, i.e., solutions
that include random components that are entirely unrelated to the specified
model, including its exogenous variables. Finally, Section 5 provides a brief
conclusion.

1. BASIC ANALYSIS

For concreteness, let us now adopt a simple model, representative of the recent
literature, in which to discuss the issues at hand. It can be expressed in terms
of a familiar three-equation structure as follows:

yt = Etyt+1 + b (Rt − Etπt+1)+ vt b < 0, (1)

5 It has been, accordingly, referred to by Svensson (1997) as “the Woodford warning.”
6 It is well known that the Bank of England’s policy during these years was to make adjust-

ments in their policy rate in a Taylor-rule manner that responded to discrepancies between expected
inflation two years ahead and the target rate.

7 Woodford (2003b) criticized my 2003 paper primarily with regard to aspects concerning
its subsidiary position with respect to a specific MSV (minimum state variable) solution. He did
express an objection in the case of the application at hand, from a perspective that will be discussed
below.
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πt = βEtπt+1 + κ (yt − ȳt )+ ut κ > 0; 1 > β > 0.
(2)

Rt = (1 − μ3)
[
(1 + μ1) πt + μ2

4
(yt − ȳt )

]
+ μ3Rt−1 + et μ1 ≥ 0. (3)

Here, yt and πt are output and inflation expressed as fractional deviations
from steady state andRt is a one-period nominal interest rate that serves as the
policy instrument. Thus, (1) is an IS-type relation consisting of a consumption
Euler equation in combination with the overall resource constraint, (2) is a
Calvo-style price adjustment equation, and (3) is the monetary policy rule.8

Also, ȳt is the flexible-price, natural rate of output, assumed to be generated
exogenously by an AR(1) process9 with AR coefficient ρa and innovation
standard deviation SD(a). In the policy rule, the implicit target rate of inflation
is zero. We will take the shock processes for ut and et to be white noise (with
standard deviations SD(u) and SD(e)) and the process for vt to be AR(1) with
AR coefficient ρ and standard deviation SD(v).

In the policy rule, the policy parameters μ1 and μ2 govern the strength
of the central bank’s policy response to deviations of inflation and output,
respectively, from their target values, while μ3 reflects the extent of interest
rate smoothing. We begin with the central bank’s policy responding to current
observed inflation, πt , and subsequently consider rules with a response to
expected future inflation. In what follows, I will, for clarity, typically take
μ2 to be zero so that policy is responding only to inflation (usually with
considerable smoothing). This practice (i.e., setting μ2 = 0) changes the
numerical values at which effects such as indeterminacy occur but does not
alter the arguments to be made in any essential manner.

Let us begin the analysis by also setting μ3 = 0 and ut = 0 so that there
is no smoothing and no price-setting shock. Then, substitution of equation (3)
into (1) yields

yt = Etyt+1 + b
[
(1 + μ1) πt + et − Etπt+1

] + vt , (4)

and we can consider (2) and (4) as a two-equation system determining the
evolution ofπt and yt . The “fundamentals” or minimum-state-variable (MSV)
solution will have these variables determined as linear functions of vt , et , and
ȳt .10 As one final simplification we take the latter (ȳt ) to be constant and

8 Constant terms are omitted from (1) and (3) only for expositional simplicity. The analysis
that follows implicitly presumes that nonzero constants are present in both of these relationships.

9 That is, autoregressive of order one.
10 Here I am using MSV as an alternative name for the fundamentals solution in the manner

of Evans and Honkapohja (2001, 193–4), not in the manner proposed by McCallum (1983, 2003)
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normalize it at zero. Then a fundamentals solution to the model (2)(4) will be
of the form

yt = φ11vt + φ12et and (5)

πt = φ21vt + φ22et , (6)

with constant terms again omitted only for simplicity.
In this case, the expected values one period ahead are Etyt+1 = φ11ρvt

and Etπt+1 = φ21ρvt . Then we can substitute these two expressions plus
(5) and (6) into (2) and (4) to obtain undetermined-coefficient relations that
express the φij coefficients of the solution expressions in terms of the para-
meters of the structural equations (2) and (4). The results of that (tedious but
straightforward) exercise are as follows:

φ11 = 1 − βρ

(1 − ρ) (1 − βρ)− bκ (1 + μ1 − ρ)
, (7)

φ12 = b

1 − κb (1 + μ1)
, (8)

φ21 = κ

(1 − ρ) (1 − βρ)− bκ (1 + μ1 − ρ)
, and (9)

φ22 = κb

1 − κb (1 + μ1)
. (10)

Here, the specified signs of the basic parameters imply that φ11 > 0, φ12 < 0,
φ21 > 0, and φ22 < 0, so the solution equations show that a positive shock to
demand (vt ) increases both inflation and output while a positive shock to the
policy rule (et ) decreases both inflation and output. From the expressions it
can also be seen that (since b < 0) an increase inμ1 increases the values of the
positive denominators in all four expressions, implying that the variances of
both inflation and output are decreased by a stronger positive policy response
to observed inflation.

Are there other solutions, i.e., other expressions in addition to (5) and (6),
that give values of the jointly dependent variables yt and πt in terms of exoge-
nous and/or predetermined variables while satisfying the structural equations
(1)–(3)? Without attempting an exhaustive search, let us (for comparison be-
low) consider whether πt−1, the lagged inflation rate, might be an additional

or Evans (1986). The latter, but not the former, involves a concept that is, in all cases, unique
by construction.
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variable that should appear in the solution equations. Thus, we add πt−1 to
(5) and (6) with coefficients φ13 and φ23, and then repeat the steps leading to
(7)–(10). Upon doing so, we find that φ23 must satisfy the cubic equation

(
φ23 − βφ2

23

)
(1 − φ23) = κb (1 + μ1) φ23 − κbφ2

23. (11)

One root of the latter is clearly 0 and the other two must satisfy the quadratic
(1 − βφ23) (1 − φ23) = κb (1 + μ1)− κbφ23, which can be written as

βφ2
23 − [β + 1 − κb]φ23 + [

1 − κb (1 + μ1)
] = 0. (12)

For μ1 = 0, (12) can be written as
[
(1 − κb)− βφ23

]
(1 − φ23) = 0, from

which we see that the two roots are 1 and (1 − κb) /β. Since b < 0 and κ
> 0, the latter is unambiguously greater than 1. With μ1 > 0 but very small,
there are two positive real roots that both exceed 1, and for larger μ1 there are
conjugate complex roots with modulus greater than 1. Thus, with positive μ1,
there is no stable root to the quadratic (12) and therefore no stable root to the
cubic except 0. With negative μ1, by contrast, one root of (12) would equal 1
and the other would be positive and smaller than 1. Thus, there is an additional
stable solution when μ1 is negative but no additional stable solution—that is,
additional to the fundamentals solution given by (5)–(10)—when it is positive.
This finding, of course, represents the Taylor principle for the model at hand,
in the case withμ2 = 0. This conclusion agrees exactly with that of Woodford
(2003a, 254), which is obtained by an alternative procedure.11

With that background, we now turn to the case of inflation forecast target-
ing, in which the central bank’s policy rule responds not to current inflation,
but toEtπt+1, the current expectation of inflation one period into the future.12

Going through steps to obtain the fundamentals solution as before, we find
the equations comparable to (7)–(10) to be:

φ11 = 1 − βρ

(1 − ρ) (1 − βρ)− bκρμ1
, (13)

φ12 = b, (14)

φ21 = κ

(1 − ρ) (1 − βρ)− bκρμ1
, and (15)

11 Note that Woodford’s condition (2.7, Ch. 4) is more general in that it permits responses
to the output gap. His analytical procedure is more amenable to generalization than the one given
here, but the latter is more elementary in terms of concepts utilized.

12 This terminology does not agree with that of Svensson (1997) but is, I think, consistent
with general usage.



B. T. McCallum: Indeterminacy: Problem or Pseudo-Problem? 31

φ22 = κb. (16)

By inspection we can see that the signs are as before. We can also see that in
this case a stronger policy response (larger μ1) has no effect on the variability
of inflation or output that occurs in response to a policy shock. Also, it is easy
to determine that the denominators in (13) and (15) are smaller than in (7) and
(9), so stabilization with respect to demand shocks is less effective than when
policy responds to the current inflation rate.

Our present interest in the contrast, however, concerns the multiplicity of
stable solutions that is possible under the policy rule that responds to expected
inflation,Etπt+1. One way to demonstrate the existence of this multiplicity is
to again go through the steps leading to solution expressions while including
lagged inflation as an additional state variable in solutions such as (5) and (6),
i.e., by using

yt = φ11vt + φ12et + φ13πt−1 (5’)

πt = φ21vt + φ22et + φ23πt−1. (6’)

That change implies thatEtyt+1 = φ11ρvt+φ13(φ21vt+φ22et+φ23πt−1) and
Etπt+1 = φ21ρvt +φ23(φ21vt +φ22et +φ23πt−1). Then, undetermined coef-
ficient reasoning implies that the values for the φij are given by six relations
analogous to those used in deriving (11) and (12), among which are

φ13 = bμ1φ
2
23 + φ13φ23 and (17)

φ23 = βφ2
23 + κφ13. (18)

From these, φ13 can be solved out, yielding the cubic equation

φ23 = βφ2
23 + κbμ1φ

2
23/ (1 − φ23) . (19)

Clearly, one solution to the latter is provided by φ23 = 0, which then by (18)
implies φ13 = 0. This eliminates the πt−1 variable and leads back to the
fundamentals solution obtained previously. But (19) is also satisfied by roots
of the quadratic

βφ2
23 − [

1 + β + κbμ1

]
φ23 + 1 = 0, (20)
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i.e., by

φ23 = d ± [
d2 − 4β

]0.5

2β
, (21)

where d is the term in square brackets in (20). Therefore, for some values of the
parameters κ , β, b, and μ1 there may be other real solutions, in addition to the
fundamentals solution, that are stable.13 (If such solutions are dynamically
explosive, they do not create indeterminacy.) Tedious but simple algebra
shows that with κ > 0, b< 0, and 0<β < 1, the region of determinacy includes
all values ofμ1 between 0 andμc1 = −2(1+β)/κb, which is positive. Forμ1
< 0 there are two positive real solutions with one of them stable (smaller than
1.0 in absolute value) so there is a second stable solution (indeterminacy), just
as in the case with current inflation in the policy rule. But now it is the case
that for μ1 > μc1 there are two real solutions to the quadratic, both negative,
and one of them is stable. Thus, in this case we have a nonfundamentals
solution for which there is no transversality condition to rule out the implied
dynamic behavior as a rational expectations equilibrium. Instead, there is an
infinite multiplicity of stable RE solutions indexed by the initial start-up value
of πt−1. In such cases, moreover, “sunspot” solutions are also possible in the
sense of not being ruled out by the conditions of RE equilibria.14 This is the
problem suggested by the “Woodford warning” and presented in Woodford
(2003a, 252–61, 2.11) where he generalizes our expression for μc1.15 Similar
results are developed by King (2000, 78–82). The danger in question is made
less likely, it should be mentioned, when values of μ2 exceed zero.16

In what follows, it will be of considerable importance to take account of
interest rate smoothing, that is, cases in which μ3 in policy rule (3) is positive.
For these cases, the analogous critical value will be denoted μcc1 and is given
by

1 + μcc1 =
[

1 + 2 (1 + β)

−bκ
] (

1 + ρ

1 − ρ

)
. (22)

This expression is the special case, with no response to the output gap, of
Woodford’s expression (2003a, 258, 2.13) of Chapter 4.

13 Analyses are provided by Bullard and Mitra (2002; 1,121–3) and Woodford (2003a, 256–
60).

14 A sunspot solution is one that includes random variables (of a martingale difference variety)
that have no connection with other elements of the model. Such solutions will be considered in
Section 5.

15 Ours is a special case of Woodford’s formula, as the latter formula admits the possibility
of responses to the current output gap, as well as to expected inflation.

16 See, e.g., Bullard and Mitra (2002) and Woodford (2003a, 257–8).
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Thus far, I have discussed inflation forecast targeting only for the case in
which the expected inflation rate, to which the central bank responds, is one
period into the future, i.e.,Etπt+1. But clearly it could instead beEtπt+j with
j > 1.17 Since algebraic analysis of such cases is tedious, and since some
additional concreteness to the discussion might in any case be useful, I will
proceed by way of numerical calculations pertaining to a specific quantitative
version of the model at hand. For our basic results, let us adopt the following
calibrated parameter values, which have been chosen to be representative of
semi-realistic specifications: β = 0.99, b = −0.6, κ = 0.05, ρ = 0.5, and
ρa = 0.95.18 Also, we have a policy rule that responds to expected inflation j
periods into the future, with j = 0, 1, 2, 3,or 4, that involves no response to the
output gap and includes interest rate smoothing of a realistic magnitude. Thus,
we use equation (3) withμ2 = 0 andμ3 = 0.8. The object now will be to look
for critical values of μ1 at which determinacy is lost, and multiple solutions
begin, as μ1is increased. Results are shown in the next-to-last column of the
following:

j Inflation Variable in Critical Value, μcc1 Critical Value with
Policy Rule with μ2 = 0 μ2 = 0.5

0 �pt None None
1 Et�pt+1 1,202–1,203 1,221–1,222
2 Et�pt+2 105–106 117.8–117.9
3 Et�pt+3 16–17 25.8–25.9
4 Et�pt+4 3.5–3.6 10.4–10.5

Thus, with j = 0, we have the familiar result that the Taylor principle holds
in the sense that, with current inflation in the Taylor-style rule, determinacy
obtains for all values of 1 + μ1 > 1. With Et�pt+1 in the rule, determinacy
holds for all μ1 up through 1,202, but indeterminacy sets in before μ1 reaches
1,203. And for expectations of inflation farther in the future, the determinacy
region becomes progressively smaller until it disappears entirely at j = 5.19

The importance of cases with j greater than 1 or 2 is underlined by the afore-
mentioned example of the Bank of England, which in recent years conducted
policy so as to bring the expected inflation rate average over j = 5, 6, 7, and
8 into equality with its target value of 2.5 percent per annum.20

17 Of course averages or other combinations would also be possible.
18 The values of β and ρa are quite standard in the literature, while the value for b is

representative of most analysts (though not Woodford [2003a]). For κ , 0.05 is a bit larger than
Woodford’s 0.024 and, finally, my choice of ρv is quite arbitrary but designed to reflect a moderate
degree of positive autocorrelation.

19 Complete disappearance might not occur, depending on specificational details, if the
model’s equations were enriched so as to imply more persistence. One reader has asked how
to interpret the magnitudes of μ1. One relevant point is that the original Taylor rule value is 0.5,
but the literature seems to suggest that values up to 5.0, at least, are practical. More implausibly,
but still of analytical relevance, some writers have implicitly suggested that no finite value is large
enough.

20 See, for example, Bean and Jenkinson (2001) and U.K. Treasury (2003).
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As mentioned above, policy-rule responses to the output gap can also
be helpful in creating determinacy. To illustrate this possibility, the final
column in the table shows the critical value for μ1 when the output response
coefficient, μ2, is set equal to 0.5. It will be seen that for each j , the critical
value is increased, thereby reflecting a larger range of μ1 values over which
determinacy prevails. The quantitative magnitude of this improvement is not
great, however.

What are the undesirable consequences of indeterminacy? Since I am
doubtful that there are any, I will quote other writers. Woodford (2003a, 45)
states that

. . . even if one restricts one’s attention to bounded solutions . . . there
is an extremely large set of equally possible equilibria. These include
equilibria in which endogenous variables such as inflation and output
respond to random events that are completely unrelated to economic
“fundamentals” (i.e., to the exogenous disturbances that affect the structural
relations . . . ) and also equilibria in which “fundamental” disturbances
cause fluctuations in equilibrium inflation and output that are arbitrarily
large relative to the degree to which the structural relations are perturbed.
Thus, in such a case, macroeconomic instability can occur owing purely
to self-fulfilling expectations.

More compactly, Lubik and Schorfheide (2004, 190) state that “broadly
speaking, indeterminacy has two consequences. First, the propagation of
fundamental shocks, such as technology or monetary policy shocks, [through]
the system is not uniquely determined. Second, sunspot shocks can influence
equilibrium allocations and induce business-cycle fluctuations that would not
be present under determinacy.” From a more specific perspective, several
writers have attributed poor performance of U.S. monetary policy during the
1970s to a policy rule that permitted indeterminacy.21

2. LEARNABILITY, NOT DETERMINACY

Having posed the indeterminacy problem, I now proceed to argue that it is
in fact a pseudo-problem, i.e., one that should not be considered as relevant
for policymaking in actual economies. The basic argument is that for any
RE solution to be considered plausible, and therefore potentially relevant for
policy analysis, it should be learnable, in the sense of Evans and Honkapohja
(2001).22 Then this requirement, which pertains to a specific least-squares

21 For this interpretation, see, e.g., Clarida, Galı́, and Gertler (2000) and Lubik and
Schorfheide (2004).

22 The Evans and Honkapohja (E&H) learning procedure has been described by various au-
thors, including Bullard and Mitra (2002), Bullard (2006), and McCallum (2001, 2003, 2007), as
well as a long list of papers by E&H.
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learning procedure, eliminates the multiplicity of stable solutions described
above, that is, for cases withμ1 > μcc1 . Furthermore, from a broader and more
general perspective, there is a strong tendency for the learnability requirement
to rule out, as implausible, RE solutions other than a single, learnable, funda-
mentals solution.

The essential rationale for the learnability requirement is as follows: In
any dynamic market economy, individual agents seeking optimal (or even
desirable) outcomes for themselves will need to form expectations regarding
future values of some endogenous variables. To do this in a manner con-
sistent with the RE hypothesis, the agents must have a considerable amount
of quantitative information regarding the time series properties of these vari-
ables, i.e., knowledge beyond a listing of relevant variables and functional
forms. That quantitative knowledge cannot be gained by introspection or
divine intervention or magic; instead, it must be obtained from information
generated by the economy itself. A plausible model of this economy should
then be one in which the agents can learn accurately about the quantitative
properties of the model economy on the basis of data generated by that model.
More specifically, any RE solution in the model must, to be plausible, be one
that is learnable in the sense of there existing the possibility of the model’s
agents learning about the properties of that solution from data generated by
the model economy. Of course, there are many conceivable learning schemes
that an analyst could specify. For that reason, some economists have objected
to results based on this particular learning mechanism, arguing that many oth-
ers would be possible. I would argue, however, that the least-squares (LS)
learning process is strongly “slanted” or “biased” toward a positive finding,
i.e., toward generating a finding that the potential equilibrium in question is
learnable. Specifically, the process is such that agents are depicted as forecast-
ing on the basis of least-squares estimates of a vector-autoregression model
that is correctly specified, i.e., includes the relevant lagged variables and the
proper number of lags, and is re-estimated each period using data generated
up through the previous period. Any particular RE solution is regarded as
learnable if, as time passes with agents basing their expectations (forecasts)
each period on these regressions, the system approaches this RE equilibrium.
Thus, it is the case that “the LS learning process in question assumes that (i)
agents are collecting an ever-increasing number of observations on all rele-
vant variables while (ii) the structure is remaining unchanged. Furthermore,
(iii) the agents are estimating the relevant unknown parameters (iv) with an
appropriate estimator (v) in a properly specified model. Thus if a proposed
RE solution is not learnable by the process in question—the one to which
the Evans and Honkapohja (E&H) results pertain—then it would seem highly
implausible that it could prevail in practice” (McCallum 2007; 1,378).

What is the relationship between a model’s determinacy (or indetermi-
nacy) and the learnability of its equilibria? McCallum (2007) demonstrates
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that, for a very broad class of linear models, determinacy implies learnability
(of the single stable solution) under the assumption that the economy’s agents
have access to current-period values of endogenous variables in the learning
process. If only lagged values are available in that process, however, deter-
minacy does not imply learnability. More importantly for the topic at hand,
it is shown that models with indeterminacy (more than one stable solution)
may have one or more learnable equilibria.23 If in fact they have one, and the
others are not learnable, then there would seem to be only one equilibrium
that is plausible and therefore relevant for policy analysis.

It may be useful to provide a brief summary of the formulation and results
developed in McCallum (2007). Accordingly, we consider a model of the
form

yt = A Etyt+1 + C yt−1 +D ut , (23)

where yt is a m×1 vector of endogenous variables,A andC are m×m matrices
of real numbers, D is m×n, and ut is a n×1 vector of exogenous variables
generated by a dynamically stable process,

ut = P ut−1 + εt , (24)

with εt a white noise vector and P a matrix with all eigenvalues less than 1.0
in modulus. It will not be assumed that A is invertible. This specification
is useful in part because it is the one utilized in Section 10.3 of Evans and
Honkapohja (2001), for which conditions relevant for learnability are reported
on their p. 238.24 Furthermore, the specification is very broad; in particular,
any model satisfying the formulations of King and Watson (1998) or Klein
(2000) can (with the use of auxiliary variables) be written in this form—
which will accommodate any number of lags, expectational leads, and lags of
expectational leads. In this setting, we consider solutions to model (1)–(2) of
the form

yt = � yt−1 + � ut , (25)

in which � is required to be real. Then we have that Etyt+1 = �(�yt−1 +
�ut)+�Put , and straightforward undetermined-coefficient reasoning shows
that � and � must satisfy

23 Cases with more than one learnable equilibrium seem to be quite rare but are possible in
principle.

24 Constant terms can be included in the equations of (1) by including an exogenous variable
in ut that is a random walk whose innovation has variance zero. In this case there is a borderline
departure from process stability. The conditions on E&H (2001, 238) actually pertain to E-stability;
see the discussion below.
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A�2 −�+ C = 0, and (26)

� = A�� + A�P +D. (27)

For any given �, (27) yields a unique � generically,25 but there are many
m×m matrices that solve (26) for �. These result from different orderings of
the generalized eigenvalues of the matrix pencil B − λA. If more than one of
the �s that satisfies (26) has all its eigenvalues less than 1 in modulus, there
are multiple stable solutions, i.e., indeterminacy.

Let us then turn to conditions for learnability of specific solutions. First
we review the main results outlined in McCallum (2007) with details of the
argument relegated to Appendix A. We begin with the assumption that agents
have full information on current values of endogenous variables during the
learning process, and then we will mention a second assumption, namely, that
only lagged values of endogenous variables are known during the learning
process. The manner in which learning takes place in the E&H analysis is
as follows. Agents are assumed to know the structure of the economy as
specified in equations (1) and (2), in the sense that they know what variables
are included, but do not know the numerical values of the parameters. What
they need to know, to form expectations, are values of the parameters of the
solution equations (25). In each period t they form forecasts on the basis of
least-squares regression of the variables in yt−1 on previous values of yt−2

and any exogenous observables. Given those regression estimates, however,
expectations of yt+1 may be calculated assuming knowledge of yt or, alter-
natively, assuming that yt−1 is the most recent observation that is usable in
the forecasting process. In the former case, the conditions reported by E&H
(2001, 238) are that the following three matrices must have all eigenvalues
with real parts less than 1.0:

F ≡ (I − A�)−1A, (28a)

[
(I − A�)−1 C

]´⊗ F , and (28b)

P´⊗ F . (28c)

In the second case, however, the analogous conditions (E&H 2001, 245) are
that the following matrices must have all eigenvalues with real parts less than
1.0:

25 Generically, I − P´⊗ [(I − A�)−1A] will be invertible, permitting solution for vec(�).
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A (I +�) , (29a)

�́⊗ A+ I ⊗ A�, and (29b)

P´⊗ A+ I ⊗ A�. (29c)

Except in the case that� = 0, which will obtain whenC = 0, these conditions
are not equivalent to those in (28).

It is important to note that use of the first information assumption is not
inconsistent with a model specification in which supply and demand decisions
in period t are based on expectations formed in the past, such as Et−1yt+j or
Et−2yt+j . It might also be mentioned parenthetically that conditions (28) and
(29) literally pertain to the E-stability of the model (23)(24)—see Evans (1986)
and, for a heuristic introduction, McCallum (2003; 1,157–9)—under the two
information assumptions, not its learnability. Under quite broad conditions,
however, E-stability is necessary and sufficient for LS learnability. This near-
equivalence is referred to by E&H as the “E-stability principle.” Since E-
stability is technically easier to verify, applied analysis typically focuses on it
rather than on direct exploration of learnability.

Given the foregoing discussion, it is a simple matter to verify that if a
model of form (23)(24) is determinate, then it satisfies conditions (28). First,
determinacy requires that all eigenvalues of F must have moduli less than 1.0,
so their real parts must all be less than 1.0, thereby satisfying (28a). Second,
from equation (26) it can be seen that (I − A�)−1C = �. Therefore, matrix
(28b) can be written as �́ ⊗ F . Furthermore, it is a standard result (E&H
2001, 116) that the eigenvalues of a Kronecker product are the products of the
eigenvalues of the relevant matrices (e.g., the eigenvalues of �́ ⊗ F are the
products λ�λF ). Therefore, condition (28b) holds. Finally, since | λF |< 1,
condition (28c) holds provided that all | λP | ≤ 1, which we have assumed by
specifying that (24) is dynamically stable.

3. NUMERICAL ANALYSIS

We now continue with the numerical example introduced in Section 1, where it
was shown that the critical value, at which strong responses of monetary policy
to expected inflation j periods into the future creates indeterminacy, decreases
as j is increased—thereby making the problem (if it is one) more serious. We
now look beyond that familiar finding, however, in a manner suggested by the
discussion provided above. For specificity, let’s focus on one particular case—
that in which�pt+2 is the inflation variable in the rule. Specifically, we inspect
the system eigenvalues for a policy feedback value ofμ1 = 105, just below the
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critical value. There the nonzero and finite eigenvalues are 0.6187 + 0.7857i,
0.6187 − 0.7857i, and 0.4920. Thus, the modulus of each of the complex
values is 1.0000418, whereas the eigenvalue pertaining to the single relevant
predetermined variable, Rt−1, is 0.4920. If we increase μ1 to 106, however,
the three nontrivial eigenvalues become 0.6159 + 0.7864i, 0.6159 − 0.7864i,
and 0.4913. These are very little changed, but now the modulus of the two
complex values is 0.998903. Thus, there are three stable eigenvalues but still
only one predetermined variable, so there are three stable solutions. Among
these, consider first the MOD solution, which has the same ordering as in the
previous case. Then for E-stability we need, from (28a) and (A6) of Appendix
A, the inverses of the two complex eigenvalues to have real parts less than 1.
In fact, these inverses are 0.617236 − 0.78817i and 0.617236 + 0.78817i, so
both have real parts less than 1, meeting this criterion. The criteria (28b) and
(28c) are both clearly met, as well. Thus, the MOD solution is E-stable and
learnable.

What about the other stable solutions? One cannot exchange the place
of the eigenvalue 0.4920 with either one of the complex numbers because
that would give a solution expression that assigns complex values to reduced-
form coefficients (thereby implying that numerical observations on interest
rates, inflation rates, etc., are complex!). The only way to get a real solution
is to reorder by shifting both complex eigenvalues to below the line, with
both 0.4920 and 0 shifting to above the line.26 But that implies that both of
the latter have inverses—therefore eigenvalues of F—with real parts greater
than 1. Accordingly, this solution violates the criterion (28a) necessary for
E-stability and learnability. There is, therefore, only a single RE solution of
form (25) for the calibration at hand. It features only a single RE solution that
is plausible.

It is of some interest to continue with this example by examining impulse
response functions (IRFs) pertaining to these alternative solutions. In Figure
1, we have impulse responses for the endogenous variables yt ,�pt , ỹt , andRt
generated by a unit shock to the innovation in the policy rule when theμ1 policy
parameter is set at 104, just below the critical value at which indeterminacy
arises. In Figure 2, we show the IRFs for the MOD solution when μ1 = 106,
just above the critical value. It will be readily observed that the responses
are very similar in these two cases—indeed, are visually identical. Next,
consider the implications of the hypothesis that one of the alternative (non-
MOD) stable solutions is relevant for values of μ1 > 105, even though the
MOD solution is relevant at μ1 = 105. Thus, in Figure 3 we report the

26 The line, that is, that separates eigenvalues associated with predetermined variables from
the others.
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Figure 1 Responses to Unit Shock to IS, μ1 = 104
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IRFs at μ1 = 106 for the alternative stable solution,27 and in this case there
is clearly no similarity to Figure 1. Indeed, the initial-period response is in
the opposite direction from that in Figure 1 for both the inflation and interest
rate variables. In sum, we find that there is no discontinuity pertaining to the
impulse response functions around the critical value, according to the MOD
solution. But with the alternative ordering (yielding a solution analogous to
that with φ23 given by (21) in Section 1) there is a drastic change (relative to
the IRFs for the only stable solution with μ1 < 105) resulting from a very
small change in one parameter value (μ1) (see Figure 3). This contrast seems
to be strongly suggestive of the idea that the MOD solution is, in this case,
much more plausible than the alternative solution, dynamic stability of the
latter notwithstanding.

27 The different arrangements of the complex eigenvalues yield identical impulse response
functions.
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Figure 2 Responses to Unit Shock to IS, μ1 = 106
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4. SUNSPOT EQUILIBRIA

Thus far, we have seen that nonfundamental equilibria of the form consid-
ered in (5’)–(6’) are not learnable, thereby lending support to the position that
strenuous inflation forecast targeting is not dangerous. We have not, however,
considered all possible forms of indeterminacy. In particular, in his critical
review of the argument pertaining to inflation-forecast targeting in McCallum
(2003), Woodford (2003b; 1,181–2) has shown that in cases with indetermi-
nacy, solutions of a certain “sunspot” type—one that depends on an extraneous
variable that evolves exogenously according to a finite-state Markov chain—
can be learnable. This result accords with the analysis of Honkapohja and
Mitra (2004; 1,753–4), who conduct a detailed analysis of Markov SSE (sta-
tionary sunspot equilibria) cases as well as non-Markov SSE cases. For some
relevant discussion, see Appendix B.

It is nevertheless my belief that the indeterminacy under discussion
pertains to RE solutions that are not plausible. This belief is based not on
any refutation of the formal learnability analysis, but instead on a judgment
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Figure 3 Responses to Unit Shock to IS, μ1 = 106 (alt. soln.)
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concerning the way in which the formal analysis is used to gain insight into
actual behavior in real-world economies. Specifically, the learning process
described above in previous sections postulates individual agents who in ef-
fect base their expectations on forecasting rules implied by correctly specified
(but unconstrained) vector-autoregression (VAR) models constructed using
data from previous periods. To me this seems to be going as far as common
sense allows in attributing sophistication to the expectation-formation pro-
cesses of individuals in actual economies. But the forecasting rules needed
for achievement of the Markov SSE solutions are not implied by VARs of this
type; they require state-dependent intercept terms. That is, estimation of ba-
sic VARs over indefinitely long spans of time would not lead to forecast rules
with the type of state-dependent parameters needed to support sunspot SSEs.
Thus, I contend that such equilibria are simply implausible and should not be
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considered when discussing possible RE equilibria relevant for the design of
monetary policy.28

Now, I can well imagine that some readers might be inclined to respond
to this argument with the objection that rational expectations is itself im-
plausible, so that there is an inconsistency in this argument. But of course,
taken literally, RE itself is implausible—as early critics emphasized. Never-
theless, RE is rightly regarded by mainstream researchers as the appropriate
assumption for the purpose of economic analysis, especially in the context of
macroeconomic policy analysis. That is the case because RE is fundamen-
tally the assumption that agents optimize with respect to their expectational
behavior—just as they do (according to basic neoclassical economic analysis)
with respect to other regular economic activities such as selection of consump-
tion bundles, selection of quantities produced and inputs utilized, etc.—for a
necessary condition for optimization is that individuals eliminate any system-
atically erroneous component of their expectational behavior. Moreover, RE
is doubly attractive (to researchers) from a policy perspective, for it assures
that a researcher does not propose policy rules of a type that is designed to
exploit allegedly consistent patterns of suboptimal expectational behavior by
individuals.

Accordingly, I contend that there is no inconsistency in using RE as one’s
expectational hypothesis while placing some limit on the scope of learning
processes that can lead to RE equilibria. This is, as mentioned above, fun-
damentally a specification regarding information availability. In standard RE
analysis it is assumed that agents have knowledge of the values of endogenous
(and some exogenous) variables only in the present and past, not the future.
Furthermore, in some influential papers, such as Lucas (1972), only partial in-
formation concerning current endogenous variables is available. There seems
to be no difference in principle from our preceding argument in assuming that
agents may not have observations on the current state of the system needed
for the learning analysis of the Markov SSE variety.

There is also an alternative class of sunspot equilibria that will be dy-
namically stable when the determinacy condition of Section 1 is not satisfied.
Specifically, in terms of our model (2) and (4), an arbitrary sunspot variable
ξ t with the property Et−1ξ t = 0 can be added to expressions like (5’) and
(6’), leading to stable solutions of that form. Honkapohja and Mitra (2004;
1,756) find, however, that “non-fundamental equilibria of the form (3) and (5)
[their equation numbers] are never E-stable.” Thus, this alternative class of

28 An alternative way of presenting this position would be to define an RE equilibrium in a
dynamic model for monetary policy analysis so as to require LS learnability (on the basis of basic
VAR forecasting rules) as a necessary condition—one that represents informational feasibility.
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sunspots does not, according to the learnability criterion promoted here, pose
a problem for actual monetary policy.29

Some expository material pertaining to the two classes of sunspot solu-
tions, and an apparent (but not actual) inconsistency in the results of
Honkapohja and Mitra (2004) and E&H (2003), is provided in Appendix B.

5. CONCLUSIONS

In the contemporary mainstream literature on monetary policy analysis, it
is typically contended that inflation forecast targeting—use of an interest
rate policy rule that responds to currently expected inflation for some future
period(s)—will, if applied too strongly, generate indeterminacy in the sense
of a multiplicity of dynamically stable RE solutions. It is also concluded in
this literature that this outcome represents a practical difficulty for monetary
policymakers. By contrast, the present article argues that these findings of
indeterminacy do not pose any actual problem for monetary policymakers.
The reason is that in these analyses only one of the RE solutions possesses the
property of least-squares learnability, a concept that is necessary for the plau-
sibility of any rational expectations solution. Accordingly, other RE solutions
could not plausibly prevail because there is no way for individual agents in
the model (designed to depict reality) to obtain enough quantitative informa-
tion about the economy’s dynamics to form expectations in a way that would
support the solution in question. Typically, however, this objection does not
pertain to a single RE solution, which is the “natural” fundamentals solution.
Thus, this article contends that indeterminacy of the type in question represents
a pseudo-problem, not an actual problem for actual policymakers.

APPENDIX A

Here we provide additional development of results summarized in Section
2. Continuing from three lines below equation (27), the following analysis
centers around (26). Since we do not assume that A is invertible, we write

29 That finding is highly agreeable from the perspective of my argument. But even if it did
not hold, I would continue to suggest that these arbitrary sunspot solutions are highly implausible.
The crux of the matter is that the learning analysis treats the unspecified sunspot variables as
observable by individual agents. But sunspot variables are, by definition, ones that represent no
component of tastes, technology, government behavior, or institutional constraints—they represent
merely the arbitrary beliefs of (individual and independent) market participants.
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[
A 0
0 I

] [
�2

�

]
=

[
I −C
I 0

] [
�

I

]
, (A1)

in which the first row reproduces the matrix quadratic (26). Let the 2m×2m
matrices on the left and right sides of (A1) be denoted Ā and C̄, respectively.
Then instead of focusing on the eigenvalues of Ā−1C̄, a matrix that does not
exist whenA is singular, we instead solve for the (generalized) eigenvalues of
C̄ with respect to Ā. Thus, instead of diagonalizing Ā−1C̄, as in Blanchard and
Khan (1980), we use the Schur generalized decomposition, which establishes
that there exist unitary matricesQ and Z such thatQC̄Z = T andQĀZ = S

with T and S triangular.30 Then eigenvalues of C̄ with respect to Ā are defined
as tii/sii . Some of these are “infinite,” in the sense that some sii may equal
zero. This will be the case, indeed, whenever A and therefore Ā are of less
than full rank since then S is also singular. All of the foregoing is true for any
ordering of the eigenvalues and associated columns ofZ (and rows ofQ). For
the present, let us focus on the arrangement that places the tii/sii in order of
decreasing modulus.31

To begin the analysis, premultiply equation (A1) byQ. SinceQĀ = SH

and QC̄ = TH , where H ≡ Z−1, the resulting equation can be written as

[
S11 0
S21 S22

][
H11 H12

H21 H22

][
�2

�

]
=

[
T11 0
T21 T22

][
H11 H12

H21 H22

][
�

I

]
.

(A2)
The first row of (A2) reduces to

S11 (H11�+H12)� = T11 (H11�+H12) . (A3)

Then, if H11 is invertible, the latter can be used to solve for � as

� = −H−1
11 H12 = −H−1

11

(−H11Z12Z
−1
22

) = Z12Z
−1
22 , (A4)

where the second equality comes from the upper right-hand submatrix of the
identity HZ = I , provided that H11 is invertible, which we assume without
significant loss of generality.32,33

30 Provided only that there exists some λ for which det[C̄ − λĀ] �= 0. See Golub and Van
Loan (1996, 377) or Klein (2000). Note that in McCallum (2007) the matrices Ā and A are
denoted A and A11, respectively.

31 The discussion proceeds as if none of the tii /sii equals 1.0 exactly. If one does, the
model can be adjusted by multiplying some relevant coefficient by (e.g.) 0.9999.

32 This invertibility condition, also required by King and Watson (1998) and Klein (2000),
obtains except for degenerate special cases of (1) that can be solved by simpler methods than
considered here. Note that the invertibility of H11 implies the invertibility of Z22, given that Z
and H are unitary.

33 Note that it is not being claimed that all solutions are of the form (9).
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As mentioned above, there are many solutions � to (26). These corre-
spond to different arrangements of the eigenvalues, which result in different
groupings of the columns of Z and therefore different compositions of Z12

and Z22. Here, with the eigenvalues tii/sii arranged in order of decreasing
modulus, the diagonal elements of S22 will all be nonzero provided that S has
at least m nonzero eigenvalues, which we assume to be the case.34 Clearly,
for any solution under consideration to be dynamically stable, the eigenvalues
of � must be smaller than 1.0 in modulus. In McCallum (2007) it is shown
that

� = Z22S
−1
22 T22Z

−1
22 , (A5)

so � has the same eigenvalues as S−1
22 T22. The latter is triangular, moreover,

so the relevant eigenvalues are them smallest of the 2m ratios tii/sii (given the
decreasing-modulus ordering). For dynamic stability, the modulus of each of
these ratios must then be less than 1. (In many cases, some of the m smallest
moduli will equal zero.)

Let us refer to the solution under the decreasing-modulus ordering as the
MOD solution. Now suppose that the MOD solution is stable. For it to be
the only stable solution, there must be no other arrangement of the tii/sii that
would result in a � matrix with all eigenvalues smaller in modulus than 1.0.
Thus, each of the tii/sii for i = 1, . . . , m must have modulus greater than
1.0, some perhaps infinite. Is there some m×m matrix whose eigenvalues
relate cleanly to these ratios? Yes, it is F ≡ (I − A�)−1A, which appears
frequently in Binder and Pesaran (1995).35 Regarding F , it is shown that, for
any ordering such thatH11 is invertible, including the MOD ordering, we have
the equality

H11 F H
−1
11 = T −1

11 S11, (A6)

which implies that F has the same eigenvalues as T −1
11 S11. In other words,

the eigenvalues of F are the same, for any given arrangement, as the inverses
of the values of tii/sii for i = 1, . . . , m. Under the MOD ordering these are
the inverses of the first (largest) m of the eigenvalues of the system’s matrix
pencil. Accordingly, for solution (A4) to be the only stable solution, all the
eigenvalues of the corresponding F must be smaller than 1.0 in modulus. This

34 From its structure it is obvious that Ā has at least m nonzero eigenvalues so, since Q

and Z are nonsingular, S must have rank of at least m. This necessary condition is not sufficient
for S to have at least m nonzero eigenvalues, however; hence, the assumption.

35 There is no general proof of invertibility of [I −A�], but if A� were by chance to have
some eigenvalue exactly equal to 1.0, that condition could be eliminated by making some small
adjustment to elements of A or C.
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is a generalization of a result of Blanchard and Khan (1980) for a model with
nonsingular A.

Thus, we have established notation and reported results showing that the
existence of a unique stable solution requires that all eigenvalues of the defined
� matrix and the corresponding F must be less than 1.0 in modulus. It will
be convenient to express that condition as follows: all | λ� |< 1 and all
| λF |< 1.

APPENDIX B

To illustrate some concepts pertaining to sunspot equilibria, consider the sim-
ple univariate model

xt = aEtxt+1 + ut a �= 0, a �= 1, (B1)

where ut is generated by an AR(1) process with AR parameter ρ, assuming
| ρ | < 1.36 Then the fundamental RE solution will be of the form xt = φut
so Etxt+1 = ρφut and the undetermined-coefficient procedure relationship
φut = aρφut + ut implies that φ = 1/(1 − aρ). Thus, the fundamental
solution is

xt = 1

1 − aρ
ut . (B2)

To introduce sunspot phenomena, consider solutions of the form

xt = φ1xt−1 + φ2ut + φ3ξ t , (B3)

where ξ t is a “sunspot” variable—i.e., an extraneous variable generated by
any stochastic process such that Et−1ξ t = 0. Then we have

Etxt+1 = φ1

(
φ1xt−1 + φ2ut + φ3ξ t

) + φ2ρut + 0, (B4)

and substitution of (B3) and (B4) into (B1) yields

φ1xt−1 +φ2ut+φ3ξ t = a
[
φ1

(
φ1xt−1 + φ2ut + φ3ξ t

) + φ2ρut
]+ut . (B5)

36 Symbols are used here with meanings potentially different from those in the body of the
article and in Appendix A.
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For the latter to hold for all values of xt−1, ut , and ξ t—i.e., to be a solution—it
is necessary that

φ1 = aφ2
1, (B6a)

φ2 = aφ1φ2 + φ2aρ + 1, and (B6b)

φ3 = aφ1φ3. (B6c)

The first of these equations has two solutions, φ1 = 1/a and φ1 = 0. The
latter gives the fundamentals solution, but the former gives other solutions.
Thus, with φ1 = 1/a, (B6b) becomes φ2 = −1/aρ, while (B6c) reduces to
φ3 = φ3 (i.e., is satisfied by any finite value). Accordingly, there are sunspot
solutions satisfying

xt = (1/a) xt−1 − (1/aρ) ut + φ3ξ t , (B7)

where φ3 can be any real number. If | a |< 1, these solutions are explosive,
but we have an infinity of stable sunspot solutions if | a | > 1.

The learnability of solutions (B2) and (B7) has been studied by E&H
(2003), who show that the fundamentals solution is E-stable if a < 1 and is
not E-stable if a > 1, whereas the sunspot solutions (B7) are not E-stable (or
learnable) for any value of a.

E&H (2003) also consider, however, a special class of K-state Markov
sunspots such that xt = x̄ (i) when the state variable st equals the constant
s(i), for i = 1, 2, . . . , K , and evolves in accordance with a K-state Markov
process with fixed transition probabilities. In this case, it transpires that non-
fundamental solutions can be E-stable, even though such solutions can be
written as special cases of the form (B3). That seemingly contradictory re-
sult is actually compatible with the result of the previous paragraph because
adoption of the K-state Markov specification places additional structure on the
system that is not implied by (B3), and consequently uses, in effect, a different
“perceived law of motion” for the learnability analysis. E&H remark that “. . .
one way to view our results is that the learning processes are attempting to
learn different things for the different representations: for the AR(1) form of
SSEs the learning rule corresponds to least squares estimation of the coeffi-
cients, while for the two-state Markov representation of 2-SSEs the learning
scheme in effect estimates the support of the distribution” (2003, 179). My
reasons for rejecting these solutions are developed in Section 5.
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