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Saving for Retirement with
Job Loss Risk

Borys Grochulski and Yuzhe Zhang

I
n this article, we study optimal saving and consumption decisions.
The optimal saving problem is among the most basic questions in
economics and �nance. How does one best decide on what portion

of income they should consume now and what portion they should
save for their future consumption needs? One important aspect of this
question concerns saving for retirement. What is an optimal plan for
saving enough to be able to retire? In particular, how does this plan
depend on the risk of losing one�s job? How much more should one
save if the risk of becoming jobless increases?

Our primary objective in this article is to review several important
results from the general theory of optimal consumption and saving deci-
sions, as well as provide some novel analysis of the problem of saving for
retirement in particular. The problem of optimal timing of retirement
is most conveniently studied in a continuous-time framework, which we
employ for our analysis. Our secondary objective is to provide an ac-
cessible exposition of the techniques useful in solving continuous-time
models of the type we examine.

The basic framework economists have used to study the intertempo-
ral tradeo¤ between current and future consumption has the following
structure. An economic agent earns a stream of labor income that can
change stochastically over time. At each point in time, the agent al-
locates his labor income to either current consumption or to savings.
The agent�s preferences over consumption streams are represented by
a concave utility function, i.e., the agent is averse to �uctuations in his
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consumption. The duration of the agent�s career is in the basic model
approximated by in�nity, i.e., the agent earns labor income and con-
sumes inde�nitely into the future. The portion of his labor income that
the agent does not immediately consume adds to his �nancial wealth.
In the basic model, there is only one asset in which all of the agent�s
�nancial wealth is invested. The asset pays o¤ a riskless rate of return
equal to the agent�s intertemporal rate of time preference� the rate
of return with which the agent�s optimal consumption path absent all
uncertainty would be constant forever.

The model we study in this article extends this basic framework by
adding to the optimal consumption and saving decision a labor supply
decision operating on the extensive margin, meaning we allow the agent
to stop working. If the agent quits, he loses his labor income but gains
leisure. The decision to quit is irreversible, so quitting means retiring.
In retirement, the agent lives o¤ of his savings and enjoys leisure. As
in the basic model, the agent remains in�nitely lived in our analysis.

For tractability and ease of exposition, we assume in our model
a particularly simple stochastic structure for the agent�s labor income
process. The agent earns a constant stream of labor income for as long
as he is not �red. If he is �red, he earns nothing and cannot go back
to working ever again. Thus, being �red is in our model equivalent
to being sent to involuntary retirement. The observed time path of
the agent�s labor income in our model is thus constant, at some posi-
tive level, until the agent either is �red or quits. Afterward, it is also
constant at the level of zero.

Ljungqvist and Sargent (2004, Ch. 16) review the solution to the
optimal consumption and saving problem in the basic framework with
income �uctuating stochastically but without retirement. The main
property of the optimal consumption plan is unbounded growth of
�nancial wealth and consumption: Provided that the labor income
process does not settle down in the long run (rather, it remains suf-
�ciently stochastic), in almost all possible resolutions of uncertainty,
the amount of �nancial wealth the agent holds and the amount the
agent consumes grow over time without bound. When we allow for en-
dogenous retirement, this property of the optimal wealth accumulation
and consumption plan no longer holds. In all possible resolutions of
uncertainty, wealth and consumption converge to a �nite limit.

The intuition behind this result is simple. We show that the agent�s
optimal retirement plan takes the form of a wealth threshold rule: The
agent retires as soon his accumulated �nancial wealth reaches a certain
threshold. With this rule, wealth will not grow without bound prior to
retirement. With �nite wealth and no labor income after retirement,
the agent�s optimal consumption also remains bounded in the long run.
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In fact, consumption is constant and equal to the amount of interest
income generated by the agent�s wealth in retirement.

The dynamics of consumption and savings are in our model as
follows. Wealth and consumption increase monotonically over time for
as long as the agent does not involuntarily lose his job. If the agent is
�red, his wealth accumulation is stopped and his consumption jumps
downward. If the agent reaches the voluntary retirement threshold,
his wealth and consumption reach their permanent, retirement levels
smoothly. For any level of �nancial wealth the agent starts out with,
we compute the planned duration of the agent�s career, i.e., his time to
planned retirement. Agents with lower initial wealth retire later.

We provide several comparative statics results. We show how the
agent�s optimal path of wealth accumulation and consumption prior to
retirement depends on the risk of losing his job, on the value of leisure
he obtains in retirement, and on the level of the rate of return paid
by the asset in which the agent invests his savings. Higher job loss
risk implies the agent saves more, consumes less, and retires faster.
Lower utility of leisure implies the agent saves less, consumes more,
and retires later. When the interest rate is higher, the agent retires
with lower wealth and generally consumes more prior to retirement. In
solving for the agent�s optimal retirement rule, we discuss the option
value of postponing retirement.

In addition, we discuss, in the context of our model, two standard
properties of the solution to the optimal consumption and saving prob-
lem. We show that in the model with retirement, like in the standard
model without retirement, the agent�s marginal utility of consumption
is a martingale, which means the conditional expected change in its
value is always zero. We also review the result known as the perma-
nent income hypothesis (PIH). De�ned narrowly, PIH states that the
agent chooses to consume exactly the income from his total wealth at
all times. Total wealth consists of both �nancial and human wealth,
where human wealth is de�ned as the expected present value of all
labor income the agent is to earn in the future. With quadratic prefer-
ences, PIH holds in the standard model without retirement. We show
that adding an endogenous retirement decision to the model does not
overturn PIH.

We provide an elementary-level discussion of all dynamic optimiza-
tion techniques involved in the analysis of our continuous-time model,
thus making it accessible to a broad audience.
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Related Literature

Our study is related to the literature on optimal consumption and
saving decisions with �uctuating income and incomplete markets, and
to the literature on the optimal timing of retirement.

The vast literature on the optimal saving problem with �uctuat-
ing income is summarized in Ljungqvist and Sargent (2004, Ch. 16).
Classic studies of this problem, which include Friedman (1957), Bewley
(1977), and Hall (1978), take the agent�s stochastic income process as
exogenous, which means they abstract from retirement. Chamberlain
and Wilson (2000) allow for stochastic changes to the interest rate and
show under weak conditions that optimal consumption diverges with
probability one. Marcet, Obiols-Homs, and Weil (2007) extend the
classic framework by including the agent�s labor supply decision along
the intensive margin. They show that with endogenous labor income
the result of divergence of almost all consumption paths does not hold
due to a wealth e¤ect suppressing the agent�s labor supply and thus
eventually eliminating �uctuations in the agent�s income. Our analysis
is similar but allows for changes in labor supply along the extensive
margin, i.e., it incorporates the retirement decision.

Similar to our analysis, Ljungqvist and Sargent (forthcoming) study
an optimal consumption and saving problem with endogenous retire-
ment. They focus on the impact of the curvature of the life cycle income
pro�le on savings and the timing of retirement in a �nite-horizon model
in which all income shocks are unanticipated. Our model assumes a
�at income pro�le in an in�nite-horizon model in which the agent an-
ticipates the risk in his income and responds to it.

Kingston (2000) and Farhi and Panageas (2007) study the optimal
retirement timing decision combined with the problem of optimal sav-
ing and asset allocation prior to retirement, where available assets are
one risky and one riskless asset, as in Merton (1971). They show that
the option to delay retirement lets agents take on more risk than they
would have chosen otherwise. In particular, Farhi and Panageas (2007)
show that investors close to retirement may �nd it optimal to invest
more heavily in stocks than those whose retirement is far o¤ in the
future. Our analysis is di¤erent as we do not consider a portfolio allo-
cation problem in this article. Rather, we assume an incomplete market
structure in which the riskless asset is the only vehicle for saving and
wealth accumulation, as in the classic models of optimal consumption
and saving decisions.

Our article is organized as follows. Section 1 presents our model.
Section 2 discusses the optimal consumption pattern after retirement.
Section 3 describes the optimal timing of retirement. Sections 4 and
5 study consumption and wealth accumulation prior to retirement.
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Sections 6 and 7 provide comparative statics results with respect to
several parameters of the model, with particular attention given to the
job loss hazard parameter. Section 8 concludes. Appendix A contains
proofs. Appendixes B and C discuss two extensions of the model.

1. MODEL

We will study the following partial equilibrium model in continuous
time with a single agent. The agent consumes a single consumption
good and leisure. The agent is initially employed. When employed, the
agent earns a �ow of labor income of y > 0 units of the consumption
good per unit of time. The agent also consumes a �ow of leisure of
lW > 0 units per unit of time. If the agent is not working, his labor
income is zero but his �ow of leisure is lR > lW . The agent�s preferences
over deterministic paths of consumption and leisure are represented by
a standard utility functionZ 1

0
e�rtU(ct; lt)dt;

where ct is consumption, lt 2 flW ; lRg is leisure, and r > 0 is the agent�s
intertemporal rate of time preference.

While employed, the agent faces the risk of losing his job. If he
loses his job, he never works again, which e¤ectively means that losing
one�s job represents in our model involuntary retirement. The job loss
shock arrives stochastically with a constant hazard rate � > 0. That
is, for any date t at which the agent is employed and for any s > 0,
the probability that the agent will have not lost his job by date t + s
is e��s.

In addition to losing his job involuntarily, the agent can quit. In
this case, as well, the separation from employment is permanent, i.e.,
quitting means retiring. If he retires, the agent gives up the �ow of
labor income y and gains the �ow of extra leisure lR � lW > 0.

At each point in time, the agent decides how much of his current
income to consume and how much to save. There is only one asset
in which the agent can invest his savings. It is a riskless asset with a
constant rate of return equal to the agent�s rate of time preference r.
Denote the amount of the riskless asset held by the agent at date t,
i.e., the agent�s �nancial wealth at t, by Wt.

With these assumptions, the law of motion for the agent�s �nancial
wealth Wt is as follows. While working, the �nancial wealth changes
according to

dWt = (rWt + y � ct)dt: (1)
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Thus, for example, if the agent were to consume exactly his labor in-
come while working, i.e., if ct = y, then his �nancial wealth would
grow exponentially at the rate of interest r. When not working (i.e., in
retirement), the agent�s wealth follows

dWt = (rWt � ct)dt: (2)

The agent maximizes

E

"Z minf�;�fg

0
e�rtU(ct; lW )dt+

Z 1

minf�;�fg
e�rtU(ct; lR)dt

#
; (3)

where � is the agent�s planned, voluntary retirement time, � f is the time
he is forced into involuntary retirement, and the expectation E is taken
over the realizations of the involuntary job loss shock. In particular,
we will take the utility function to be separable in consumption and
leisure:

U(c; lW ) = u(c);

U(c; lR) = u(c) +  ;

where u is strictly increasing and a strictly concave utility of consump-
tion and  � 0 is the utility of the extra leisure the agent enjoys in
retirement. In this speci�cation, the agent�s lifetime utility (3) can be
more simply written as

E
�Z 1

0
e�rtu(ct)dt+ e

�rminf�;�fg 

r

�
:

2. OPTIMAL SAVING AND CONSUMPTION
IN RETIREMENT

We start by discussing the agent�s optimal use of savings in retirement.
Because the return on the �nancial wealth held by the agent is equal to
the agent�s rate of time preference and the agent faces no uncertainty
in retirement, it is natural to guess that in retirement the agent will
keep assets constant, dWt = 0, and consume his capital income, i.e., the
return rWt at all t. Thus, the natural guess is that if the agent retires
with assets Wt, the maximum present value of total lifetime utility he
can obtain after retirement, denoted by V (Wt), is

V (Wt) =
1

r
u(rWt) +

 

r
: (4)

In the remainder of this section, we will use a standard dynamic
programming argument to con�rm that this guess is correct. In the
process, we will derive an optimality condition on the value function
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V� known as the Bellman equation� that will be useful when we dis-
cuss the agent�s optimal consumption and saving behavior prior to
retirement in the next section.

Following the dynamic programming approach, we take a small
time interval [t; t + h) and assume that from time t + h onward the
agent will apply the optimal saving and consumption policy, which is
not known to us as of now. Given this assumption, we seek an optimal
consumption rate c within the time interval [t; t+h). Because h is small,
we can consider c to be constant over the interval [t; t + h). The true
optimal consumption rate to be applied at time t, ct, will be obtained
by taking the limit as h goes to zero.

Because the agent follows an optimal consumption plan after t+h,
the total discounted value he will obtain as of time t+h will be V (Wt+h),
where Wt+h is the amount of �nancial wealth the agent holds at t+ h.
For a given consumption rate c to be applied in [t; t + h), the total
discounted utility value the agent obtains as of time t isZ h

0
e�rs (u(c) +  ) ds+ e�rhV (Wt+h): (5)

Because this plan is a feasible consumption plan for an agent with
nonnegative wealth, the maximal utility value V (Wt) must be at least
as large as the value of this plan, so for any c it is true that

V (Wt) �
Z h

0
e�rs (u(c) +  ) ds+ e�rhV (Wt+h):

When h becomes arbitrarily small, the maximized value of the right-
hand side of this expression approaches the value on the left-hand side,
which we can write as

V (Wt) = max
c

�Z h

0
e�rs (u(c) +  ) ds+ e�rhV (Wt+h)

�
(6)

with h approaching zero. Since h is very small, we can replace the
expression on the right-hand side of (6) with its �rst-order approxima-
tion. For a function f di¤erentiable at some point t, for small h, we
can approximate f(t + h) with f(t) + f 0(t)h. In this approximation,
the �rst of the two terms in (5) equals

0 + (u(c) +  )h;

and the second term equals

V (Wt) +

�
�rV (Wt) + V

0(Wt)
dWt

dt

�
h:

The value in (5) is therefore approximated by

V (Wt) +
�
u(c) +  � rV (Wt) + V

0(Wt)(rWt � c)
�
h;
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where we have used the law of motion for assets in retirement (2). With
this approximation, we can thus write (6) as

V (Wt) = max
c

�
V (Wt) +

�
u(c) +  � rV (Wt) + V

0(Wt)(rWt � c)
�
h
	
:

(7)
Dividing by h and simplifying terms, we obtain the following condition
for the value function V :

rV (Wt) = max
c

�
u(c) +  + V 0(Wt)(rWt � c)

	
: (8)

We will refer to this condition as the Bellman equation for the value
function V . This equation shows how the agent�s total utility V (Wt)
(converted to �ow units by multiplying it by r) depends on current
utility and the change in �nancial wealth. Higher c will increase the
current utility �ow u(c) +  at the cost of lower saving rWt � c. The
marginal value of wealth V 0(Wt) shows how costly a change in saving
is to the agent in utility terms. In choosing the consumption rate c the
agent optimally balances this tradeo¤ between his utility from current
consumption and his utility from future wealth.

Next, by di¤erentiating the Bellman equation (8), we will obtain the
optimal consumption policy function. Note that the Envelope Theorem
lets us treat c as a constant in this di¤erentiation. Indeed, di¤erentia-
tion gives us

rV 0(Wt) = V 00(Wt)(rWt � ct) + V 0(Wt)r;

which simpli�es to

0 = V 00(Wt)(rWt � ct): (9)

Assuming the second derivative V 00 is nonzero, we divide both sides by
V 00(Wt) to obtain

ct = rWt: (10)

This con�rms our guess that the optimal consumption policy for the
agent in retirement is to consume the interest income from his �nan-
cial assets at all t . Using this policy in the law of motion for wealth in
retirement, (2), we con�rm that dWt = 0 and so assets and consump-
tion remain constant in retirement. Substituting constant consumption
ct+s = rWt into the agent�s utility function at all times t+ s following
the retirement date t leads to the value function (4), con�rming the
guess we made at the beginning of this section.

We will also note that the �rst-order condition for the maximum
on the right-hand side of (8) is

u0(ct) = V 0(Wt):
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This condition, along with the policy function (10), lets us determine
the marginal value of wealth in retirement as

V 0(Wt) = u0(rWt): (11)

Clearly, the same result can be obtained by di¤erentiating (4) directly.1

3. OPTIMAL RETIREMENT DECISION

In this section, we show that the optimal retirement policy for the
agent is a threshold policy: The agent retires when his wealth reaches
a speci�c threshold level. At this threshold, the marginal value of
income the agent can earn if he works is exactly matched by the value
of the extra leisure the agent can get if he retires.

In our analysis of the optimal voluntary retirement rule, we will use
one intuitive property of the optimal pre-retirement wealth accumula-
tion path. Namely, that the optimal wealth accumulation path is non-
decreasing, i.e., the agent actually does save for retirement. That the
agent will choose an increasing wealth accumulation path fWt; t � 0g
prior to retirement is very intuitive in our model because the agent�s
labor income process is non-increasing and the return on savings is
equal to the agent�s rate of time preference. It is clear from (1) that
Wt decreases only if ct > rWt + y, i.e., when the agent consumes more
than his capital income rWt and labor income y combined. Doing so
clearly cannot be optimal for the agent given the labor income process
the agent faces. The agent earns constant labor income y > 0 when he
works and has no labor income after he quits or loses his job. In order
to smooth consumption, the agent will want to save at least a part of
his labor income for as long as he works, i.e., will choose ct � rWt + y
prior to retirement. In Section 5, we will characterize precisely what
portion of y will be saved at each point in time. For now, we will just
state that ct > rWt + y is never optimal for the agent, and thus Wt is
at least weakly increasing over time.

We now move on to the agent�s optimal retirement decision. We will
analyze this decision in two steps. First, we will compare the agent�s
value from retiring now, i.e., at some given time t, with the value from
retiring a little later, i.e., at t + h, for a small h > 0. Then, we will
argue that if the agent prefers to retire at t rather than retire at t+ h
for a small h, then he also prefers to retire at t over retiring at any
future date, which means the agent�s overall optimal retirement time
is t.

1 Further, di¤erentiating (4) twice, we have V 00(Wt) = ru00(rWt) < 0, which justi�es
the assumption of nonzero V 00 we made when we divided (9) by V 00(Wt).
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As before, we will use the �rst-order approximation for payo¤s at
t+ h. In addition, we will discretize the involuntary job loss shock by
assuming that if the agent loses his job by time t + h, this loss will
occur only at t + h and not earlier. With h approaching zero, these
approximations will be su¢ ciently precise.

Suppose then that the agent is employed and has �nancial wealth
Wt as of some time t. As we know from the previous section, the agents�
value of retiring now is V (Wt). The value of postponing retirement by
a small amount of time h, denoted here by V h(Wt), is

V h(Wt) = max
c

�Z h

0
e�rsu(c)ds+ e�rhV (Wt+h)

�
with wealth following (1) between t and t+h, as the agent keeps working
between t and t + h. Note that it does not matter if at t + h the job
loss shock happens or does not happen, because the agent is retiring
at t+ h anyway. Since h is small, we use the �rst-order approximation
and express V h(Wt) as

V h(Wt) = max
c

�
V (Wt) +

�
u(c)� rV (Wt) + V

0(Wt)
dWt

dt

�
h

�
= max

c

�
V (Wt)+

�
u(c)� rV (Wt)+V

0(Wt)(rWt + y � c)
�
h
	
;

where the second line uses (1).
Using the �rst-order approximation (7) for the value of retiring at

t, V (Wt), we have that postponing retirement by h is strictly preferred
to retiring immediately, i.e., V h(Wt) > V (Wt), if and only if

max
c

�
V (Wt) +

�
u(c)� rV (Wt) + V

0(Wt)(rWt + y � c)
�
h
	

> max
c

�
V (Wt) +

�
u(c) +  � rV (Wt) + V

0(Wt)(rWt � c)
�
h
	
:

Dividing by h, simplifying, and taking terms that do not depend on c
out of the maximization on each side, we have

max
c

�
u(c)� V 0(Wt)c

	
+ V 0(Wt)y > max

c

�
u(c)� V 0(Wt)c

	
+  :

Since the maximization problems on both sides of this inequality are
the same, we simplify the above condition further to obtain

V 0(Wt)y >  : (12)

This says that whenever the utility �ow from the additional leisure
the agent can obtain by retiring is smaller than the utility he draws
from the �ow of his labor income, the agent will prefer to postpone
retirement. From (11) we know that the agent�s marginal value of
wealth in retirement is V 0(Wt) = u0(rWt). Thus, inequality (12) is
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equivalent to

 

y
< u0(rWt): (13)

Let u0�1 denote the inverse function of u0. Since the right-hand side of
(13) is strictly decreasing in Wt, it is true that this inequality holds for
all Wt < W �, where the threshold value W � is given by

W � =
1

r
u0�1

�
 

y

�
: (14)

This means that postponing retirement (by at least a small instant) is
preferred at all wealth levels Wt strictly smaller than W �. The agent
thus will not retire voluntarily with wealthWt < W �. Intuitively, for as
long as his wealth is below W �, by continuing to postpone retirement,
the agent obtains a larger current �ow return (his labor income is more
valuable than the leisure forgone to obtain it) and retains the option
to retire later.

Now that we know the agent will not retire with wealth smaller than
W �; we should ask if the agent will choose to retire as soon as his wealth
reaches W �. We know already that the agent with wealth Wt equal to
or larger than W � prefers to retire at t over retiring a bit later. But
what about the possibility of retiring much later? Does Wt �W � also
mean that the agent prefers to retire at date t rather than at any future
date T > t? The answer is yes because, as we argued earlier in this
section, the time path of wealth the agent chooses is never decreasing.
Indeed, suppose the agent�s wealth as of t satis�es Wt � W �, but he
does not retire until some later date T > t. Because the path of wealth
is non-decreasing, Ws � W � at all dates s in t � s � T . In particular,
for a small h > 0, at date s = T � h, the agent�s wealth is greater
than or equal to W �, so, by our previous argument, the agent prefers
to retire at T � h rather than wait until T . Because his wealth is not
smaller than W � at T � 2h, as well, the agent will prefer to retire at
T � 2h rather than at T � h. Extending this reasoning backward in
time all the way back to date t shows that the agent�s overall preferred
retirement rule is to retire as soon as his wealth reaches W �.

In sum, the optimal retirement rule takes on a threshold form.
The agent chooses to postpone retirement for as long as his wealth is
below the thresholdW � and retire immediately when his wealth reaches
W �. It is worth noting in (14) that the optimal wealth threshold W �

increases in labor income y, decreases in the value of leisure  , and
does not depend on the intensity of the job loss risk �. If  = 0, i.e., if
working is not costly to the agent in terms of forgone leisure at all, then
W � =1. In this case, the agent never chooses to retire voluntarily.
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The Option Value of Postponing Retirement

Because retirement is permanent in our model, when the agent retires
he loses the option of working at later dates. The threshold retirement
rule we derived tells us, however, that the value of this option is zero
for the agent in the problem we study.

In general, a one-time, irreversible action has a positive option value
for an agent if he is willing to forgo an immediate bene�t that the action
can produce in order to retain the option of taking the action in the
future.2 In our model, the agent retires as soon as the current �ow
return from doing so turns positive, i.e., when the value of the �ow of
leisure,  , becomes as large as the value of the �ow of labor income y,
V 0(Wt)y. The agent is not willing to delay retirement beyond that point
because once wealth reaches W � the agent will continue to prefer the
�ow of leisure  over the �ow of his labor income y at all future times in
all possible realizations of uncertainty he faces. In fact, once the agent
retires with wealth Wt � W �, there is no realization of uncertainty in
which he might want to go back to working, even if he could return.

The value of having the option to work in the future that the agent
gives up by retiring would in our model be positive if the parameters
determining the threshold wealth level W � could change in a way that
increases the value of working relative to the value of consuming leisure.
In particular, the value of this option would be positive if the agent
could receive a positive income shock increasing the level of his labor
income y, or a taste shock decreasing the utility of leisure  , or a taste
shock increasing the agent�s marginal utility of consumption u0, or a
shock destroying a part of the agent�s �nancial wealthWt. In Appendix
C, we discuss this point in more detail, focusing on the possibility of
an increase in labor income y.

4. CONSUMPTION, SAVING, AND WEALTH
ACCUMULATION PRIOR TO RETIREMENT

In this section, we study the agent�s optimal saving and consumption
decisions prior to retirement, i.e., when his wealth is strictly less than
W �. The guess-and-verify method we used earlier to solve for opti-
mal consumption in retirement will not work here because wealth and
consumption have nontrivial dynamics prior to retirement. In order to

2 For example, it is often optimal for a business owner to keep her business open
for some time after it begins to make a loss (a �ow of negative pro�t). The option
for the pro�ts that the business may generate in the future has a value that keeps the
owner from shutting the business down as soon as the current pro�t �ow turns negative
(see Leland [1994]). Pindyck (1991) discusses the option value of undertaking a one-time
investment in a stochastic environment.
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study these dynamics, we will derive intertemporal optimality condi-
tions leading to a dynamic system in wealth and consumption. We will
then use standard methods to analyze this system.

Bellman Equation

Let us denote by J(Wt) the maximal discounted expected utility value
a working agent can obtain given his wealth Wt. Since retiring imme-
diately is optimal when Wt � W �, we have J(Wt) = V (Wt) for all
Wt � W �. Since not retiring is strictly preferred by the agent when
Wt < W �, we have J(Wt) > V (Wt) for all Wt < W �. We look now
to learn more about J(Wt) for Wt < W �. We proceed by deriving the
Bellman equation for J analogous to the Bellman equation for V we
derived earlier.

Take a small h > 0 and assume that an agent who works at t and
holds �nancial wealth Wt chooses to consume at some constant rate c
inside the time interval [t; t+ h). In addition, assume that if the agent
wants to quit inside (t; t + h), he will do so only at t + h. Likewise,
assume that if the agent loses his job involuntarily during this short
period of time, this will happen only at the end of the period, i.e., at
date t+h. As before, these assumptions will be innocuous when we take
the limit with h going to zero. Following the dynamic programming
approach, we suppose that from time t+h onward the agent applies an
optimal (to us yet unknown) consumption and saving policy. The total
utility value the agent obtains by following this strategy with some
�xed consumption rate c isZ t+h

t
e�rsu(c)ds+ e�rh

h
e��hJ(Wt+h) + (1� e��h)V (Wt+h)

i
: (15)

The term in square brackets represents the expectation of the value the
agent will draw at time t+ h. With probability e��h he does not lose
his job as of t + h and J(Wt+h) represents the continuation value he
obtains at that time. With probability 1 � e��h he loses his job, and
thus the continuation value he obtains at t+ h is the retirement value
V (Wt+h).

With the optimal choice of c, the value in (15) approaches the
overall maximal value the agent can obtain, J(Wt), which we write as

J(Wt) = max
c

nR t+h
t e�rsu(c)ds

+e�rh
h
e��hJ(Wt+h)+ (1� e��h)V (Wt+h)

io
(16)
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with h approaching zero. Since h is very small, we can apply the �rst-
order approximation to the value in (15) and write it as

J(Wt) +
�
u(c)� (r + �)J(Wt) + J

0(Wt)(rWt + y � c) + �V (Wt)
�
h:

Using this approximation in (16), we have

J(Wt) = max
c

�
J(Wt) +

�
u(c)� (r + �)J(Wt)+

+J 0(Wt)(rWt + y � c) + �V (Wt)
�
h
	
:

Dividing by h and simplifying terms, we get the Bellman equation for
J :

(r + �)J(Wt) = max
c

�
u(c) + J 0(Wt)(rWt + y � c) + �V (Wt)

	
: (17)

To compare it with the Bellman equation for V , (8), let us rewrite (17)
as

rJ(Wt) = max
c

�
u(c) + J 0(Wt)(rWt + y � c)

	
� � (J(Wt)� V (Wt)) :

(18)
Bellman equations (8) and (18) di¤er in three ways. First, the trade-
o¤ between consumption and saving is di¤erent, as prior to retirement
the agent earns the stream of income y. Second, the level of J is
also in�uenced by the lower �ow of leisure prior to retirement. These
two di¤erences are re�ected in the expression inside the maximiza-
tion with respect to c in (18). Third, (18) contains an extra term,
�� (J(Wt)� V (Wt)), that re�ects the possibility of the agent�s invol-
untarily losing his job. In this term, � is the intensity with which the
agent loses his job and J(Wt)� V (Wt) is the loss of value that occurs
in that event.

Euler Equation

As before, we use the envelope and �rst-order conditions associated
with the Bellman equation. Using the Envelope Theorem in di¤erenti-
ation of the Bellman equation (17) yields

(r + �)J 0(Wt) = J 00(Wt)(rWt + y � ct) + J 0(Wt)r + �V
0(Wt):

Simplifying terms and rearranging, we get

�
�
J 0(Wt)� V 0(Wt)

�
= J 00(Wt) (rWt + y � ct) : (19)

Unlike in the post-retirement problem we studied earlier, in the pre-
retirement problem the envelope condition (19) does not by itself deter-
mine the optimal consumption rule. However, it gives us an important
intertemporal optimality condition for consumption known as the Euler
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equation. To derive it, we use the chain rule to express the time deriv-
ative of J 0(Wt) as

dJ 0(Wt)

dt
= J 00(Wt)

dWt

dt
= J 00(Wt)(rWt + y � ct);

where the second equality uses (1). This lets us write (19) as

dJ 0(Wt)

dt
= �

�
J 0(Wt)� V 0(Wt)

�
:

Next, we use the �rst-order condition in the maximization problem in
the Bellman equation (17),

u0(ct) = J 0(Wt); (20)

to write the above as
du0(ct)

dt
= �

�
u0(ct)� V 0(Wt)

�
:

Finally, we use (11) to eliminate V 0 from the above equation and express
it purely in terms of the marginal utility of consumption:

du0(ct)

dt
= �

�
u0(ct)� u0(rWt)

�
: (21)

This is the Euler equation for consumption prior to retirement. It shows
how the marginal utility of consumption changes along an optimal path
of consumption and �nancial wealth accumulation prior to retirement.3

Martingale Property

Before we use the Euler equation to study optimal consumption and
asset accumulation, let us discuss an implication of the Euler equation
known as the martingale property of marginal utility. As studied by
Hall (1978) and many others, (21) implies that at all times prior to
retirement the expected change in marginal utility of consumption is
zero, i.e., marginal utility of consumption is a so-called martingale.4 In
discrete-time models that are most commonly used in the literature,
the Euler equation takes the familiar form of u0(ct) = Et [u0(ct+1)] at
all t, where Et [�] is the conditional expectation operator. In discrete
time, it is thus easy to see that the expected change in u0 is zero. In
continuous time, the martingale property is slightly less self-evident
but can still be seen as follows.

3 Note that, trivially, the Euler equation also holds after retirement.
4 Because consumption is constant in retirement, marginal utility of consumption is

trivially also a martingale after the agent retires, voluntarily or not.
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Take a small h > 0 and a date t at which the agent is not retired.
In the time interval [t; t + h), the agent will be hit with the job loss
shock with probability 1�e��h, which will cause his marginal utility at
t+h to change (jump) by u0(rWt+h)�u0(ct+h). With probability e��h,
the agent will not lose his job, in which case the change in his marginal
utility over the time interval [t; t + h) will be simply u0(ct+h) � u0(ct).
Marginal utility is a martingale when the average (i.e., expected) value
of these two changes is zero, i.e., when

(1� e��h)
�
u0(rWt+h)� u0(ct+h)

�
+ e��h

�
u0(ct+h)� u0(ct)

�
= 0:

Rearranging this condition, we have

u0(ct+h)� u0(ct) = (e�h � 1)
�
u0(ct+h)� u0(rWt+h)

�
= �h

�
u0(ct+h)� u0(rWt+h)

�
;

where the second equality uses the linear approximation e�h = 1+ �h.
Dividing by h and taking formally the limit as h! 0; we get the Euler
equation (21). Thus, the Euler equation (21) says exactly that the time
trend du0(ct)=dt in marginal utility along the path that consumption
follows conditional on the job loss shock not occurring is the negative
of the jump in marginal utility that occurs if the agent loses his job,
u0(rWt)�u0(ct), times the intensity of the job loss �. This trend exactly
o¤sets the jump-induced change in marginal utility, making the overall
expected change in marginal utility zero, i.e., marginal utility indeed is
a martingale.5

Dynamic Analysis

As we saw earlier, consumption and �nancial wealth have trivial dy-
namics in retirement: Both remain constant over time. Prior to retire-
ment, however, wealth and consumption do change over time. We will
now use the Euler equation (21) and the law of motion for wealth (1)
to study the dynamics of wealth and consumption prior to retirement.
To do this, we use the chain rule

du0(ct)

dt
= u00(ct)

dct
dt

and the strict concavity of u, implying u00 6= 0, to express the Euler
equation (21) as

dct
dt
= �

u0(ct)� u0(rWt)

u00(ct)
: (22)

5 In this respect, the marginal utility process is in our model similar to a compen-
sated Poisson process. See Problem 1.3.4 in Karatzas and Shreve (1997).
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Figure 1 Phase Diagram for (W,c)

Together with the law of motion for �nancial wealth Wt, (1), this
gives us a dynamic system describing the evolution of consumption and
wealth prior to retirement. In the rest of this subsection, we will study
qualitative properties of this system. We will use a phase diagram to
describe the shape of the time paths in the plane (W; c) that satisfy the
di¤erential equations (1) and (22). Any such path is called a solution
to the system (1), (22), and there are an in�nite number of them (every
point in the domain for (W; c) belongs to one solution). The solutions
represent all paths of consumption and wealth accumulation the agent
might want to follow while working that are consistent with intertem-
poral optimization. That is, any path that is not a solution to (1), (22)
is not optimal for the agent. In order to select the optimal path from
among all solutions to this system, a boundary condition is needed. In
standard in�nite-horizon analysis, the transversality condition serves
this role. In our model with endogenous retirement, this condition will
be provided by the optimal voluntary retirement rule we obtained in
the previous section.

The phase diagram for the system of di¤erential equations (1), (22)
is shown in Figure 1. It provides a graphical representation of the
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directions in which the system (Wt; ct) moves along all possible solution
paths. In Figure 1, these directions are marked by horizontal and
vertical arrows. These arrows are determined as follows.

From (22) we see that along a solution path consumption will in-
crease over time, i.e., dct=dt > 0, if and only if u0(ct)�u0(rWt) < 0 , i.e.,
if and only if ct > rWt. The line c = rW therefore divides the state
space (W; c) into two regions: one in which consumption grows over
time (the region above this line), and one in which it decreases over
time (the region below it). Similarly, we have from (1) that Wt grows
over time if and only if ct < rWt + y. Therefore, the line c = rW + y
divides the state space (W; c) into a region of wealth growth (below this
line) and a region of wealth decline (above it). Since the two lines are
parallel, we see that there are three regions in the state space (W; c)
di¤erentiated by distinct dynamic properties of the system (Wt; ct).
Above the line c = rW + y, wealth declines and consumption grows.
In the band rW < c < rW + y, both wealth and consumption grow.
Below the line c = rW , wealth grows and consumption declines.

The qualitative conclusions we can obtain from the phase diagram
are as follows. Inside the band rW < c < rW + y, solution paths
increase in both the c and the W direction and fall into one of the
following three types. Paths of the �rst type will reach the upper
straight line c = rW + y, where they bend backward as Wt begins
to decrease while ct continues to increase. Paths of the second type
will reach the lower straight line c = rW , where they bend downward
with ct declining and Wt continuing to increase. Note that none of the
paths of the �rst or second type return to the band rW < c < rW + y
once they leave it. Paths of the third type will stay inside the band
rW < c < rW + y forever.

Further characterization of the solution paths can be obtained an-
alytically in the special case in which the Euler equation (22) is linear
or numerically in other cases. In the remainder of this article, we will
focus on the case with a linear Euler equation and discuss analytical
solutions. As we will see in the next section, the Euler equation is lin-
ear when the utility function u is quadratic. In Appendix B, we brie�y
discuss how the results change for other utility functions, in particular
for preferences exhibiting constant relative risk aversion (CRRA).

5. EXACT SOLUTION WITH LINEAR
EULER EQUATION

We specialize the utility function to

u(c) = �1
2
(c�B)2
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and restrict its domain to c � B. Under this speci�cation, mar-
ginal utility is linear and therefore the Euler equation (22) is linear in
consumption as well as in wealth:

dct
dt
= � (ct � rWt) : (23)

The system of di¤erential equations (1), (23) is now linear and can
be solved in closed form. In particular, we have the following lemma
providing analytical expressions for all solution paths of the system (1),
(23).

Lemma 1 Let f(Wt; ct); t � 0g be a solution path. If there exists �
such that c� = rW� + y, then

ct = rWt +
ry

r + �

�
1� e�(r+�)(��t)

�
+ ye�(r+�)(��t): (24)

If there exists � such that c� = rW� , then

ct = rWt +
ry

r + �

�
1� e�(r+�)(��t)

�
: (25)

Otherwise,

ct = rWt +
ry

r + �
: (26)

Proof. In Appendix A.
Figure 2 plots several sample solution paths f(Wt; ct); t � 0g of the

three types given in the above lemma. Solution paths (24) bend back-
ward with wealth declining over time at all dates t > � , where � is such
that c� = rW� +y. None of these solution paths will be optimal for the
agent because, as we saw earlier, it is never optimal for the agent to see
his �nancial wealth decrease while he is saving for retirement. Along
all solution paths (25) and (26) wealth is increasing. These paths,
therefore, are our candidates for the optimal path of consumption and
saving prior to retirement.

The Optimal Accumulation Path

As we saw in Section 3, the agent�s retirement decision is determined by
a simple wealth threshold rule. The agent retires as soon as his wealth
reaches the level W �. The threshold W � depends on the parameters
r,  , and y, as shown in (14). At retirement (and forever after), the
agent�s optimal level of consumption is ct = rW �. The Euler equation
(23) and the wealth accumulation equation (1) tell us that prior to
retirement the agent follows one of the non-backward-bending paths
depicted in Figure 2. For a given value ofW �, which one of these paths
will the agent follow?
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Figure 2 Solution Paths with Quadratic Utility

Notes: Parameters used in this plot: y = 1, r = 0:04, � = 0:02.

Since the agent�s wealth and consumption remain constant in re-
tirement, in Figure 2 the evolution of wealth and consumption after
voluntary retirement is represented by a single point for each threshold
value W �. That point is (W �; rW �). Thus, once the agent retires, the
time path of his wealth and consumption is absorbed at (W �; rW �).
It is easy to see in Figure 2 that for each value W � � 0 there is a
unique solution path f(Wt; ct); t � 0g leading to the point (W �; rW �).
That path is the optimal path for the agent whose retirement wealth
threshold is W �. Why this path? Because all other paths would imply
a jump in consumption at retirement, which the agent wants to avoid.
Because his utility function is concave, the agent prefers a smooth con-
sumption path with no jump at retirement. The level of consumption
in voluntary retirement, rW �, thus determines the optimal accumula-
tion path the agent follows prior to retirement. It is the single path
that intersects the line c = rW at W =W �.



Grochulski and Zhang: Saving for Retirement 65

For example, the solution path labelled A in Figure 2 crosses the
line c = rW atW = 8. Thus, this solution path is optimal for the agent
whose desired retirement wealth isW � = 8. Likewise, the solution path
B is optimal for the agent whose desired retirement wealth isW � = 15.
The solution path C follows a straight line parallel to the line c = rW
and therefore never crosses it. This solution path is optimal for the
agent whose retirement threshold is W � = 1, which means the agent
plans to never retire voluntarily. From the formula (14) we see that
W � = 1 when  = 0, i.e., when the agent does not at all value
the extra leisure he can obtain by retiring. Since the value of the extra
leisure is zero for this agent, it is natural that he never chooses to retire.
This is the case studied in standard in�nite-horizon models of optimal
saving and consumption decisions, e.g., Ljungqvist and Sargent (2004,
Ch. 16).

Note that the argument implying that the agent�s preferred path of
wealth and consumption is the one that leads to the point (W �; rW �)
does not use the assumption of quadratic preferences. Rather, this
argument is based on the agent�s preference for smooth consumption,
and so it applies to any concave utility function u. Thus, although the
shape of the optimal path of wealth accumulation and consumption
f(Wt; ct); t � 0g will in general not be the same as that presented in
Figure 2, it will be true for any concave utility function that the optimal
accumulation path is the unique solution path that leads to the point
(W �; rW �).6

Also, the phase diagram in Figure 1, which works for any concave
u, shows that the only way for a solution path to approach (W �; rW �)
is through the middle band rW < c < rW + y of the state space
(W; c), where Wt and ct are both strictly increasing over time. This
con�rms the validity of the assumption we made in Section 2 about
wealth following an increasing path prior to retirement.

Planned Retirement and Optimal
Saving Rate

Figure 2 provides a clear illustration of the following point. When the
option to retire is added to the standard, in�nite-lived-agent model of
optimal consumption and saving, the model�s prediction on the optimal
amount of saving unambiguously increases.

In its textbook version (see Ljungqvist and Sargent [2004]), the
standard model of optimal consumption and saving decisions abstracts

6 See Appendix B for the case of the CRRA utility function.
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from retirement. Labor income �uctuates stochastically, but the agent
does not have an option to retire and end his �ow of labor income
altogether. The model we consider in this article assumes a particularly
simple form of stochastic income �uctuations (labor income is a step
function initially positive and jumping down to zero at a random date
� f ), but allows for endogenous retirement.

In the special case with  = 0, our model is a version of the stan-
dard model with no retirement. As we saw earlier, when  = 0 the
agent never retires voluntarily, so his labor income e¤ectively follows
an exogenous process, as in the standard model. From (26) we have in
that case that the optimal fraction of labor income y to be saved by
the agent is

dWt=dt

y
=

rWt + y � ct
y

= 1� r

r + �

=
�

r + �
:

Thus, the standard model without retirement would predict �
r+� as the

agent�s optimal rate of saving out of labor income. With positive utility
of leisure,  > 0 , our model predicts voluntary retirement in �nite time
� as well as a higher optimal rate of saving prior to retirement. From
(25) we have

dWt=dt

y
=

rWt + y � ct
y

= 1� r

r + �

�
1� e�(r+�)(��t)

�
>

�

r + �
;

where the strict inequality follows from the agent�s time to retirement
being �nite, i.e., � � t < 1. Given that people do save for retirement
in reality, models that disregard retirement underpredict the optimal
rate of saving. Figure 2 shows this very clearly: The in�nite-horizon
solution path that runs parallel to the line c = rW is everywhere above
all solution paths that cross this line.

That the optimal saving rate should be higher when agents save for
retirement is of course very intuitive. With retirement, the agent�s labor
income is more front-loaded relative to the case without retirement. To
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smooth this front-loading out, the agent saves more. Our analysis lets
us see this point clearly in Figure 2.7

Time to Retirement

As we see in (25), the agent�s optimal consumption at time t depends
on the agent�s current wealthWt and the amount of time left before his
planned retirement, � � t. The agent�s target retirement wealth level
W � is given in (14). But how do we �nd the agent�s target retirement
time �?

From the law of motion for wealth prior to retirement, (1), we have

W� =Wt +

Z ��t

0
dWt+s =Wt +

Z ��t

0
(y � (ct+s � rWt+s))ds:

Using the retirement condition W� = W � and the consumption rule
(25) we have

W � = Wt +

Z ��t

0

�
1� r

r + �
(1� e�(r+�)s)

�
yds

= Wt +
�

r + �
(� � t) y + r

(r + �)2

�
1� e�(r+�)(��t)

�
y: (27)

For any given values for r, �, y, W �, and Wt, this condition can be
solved for the agent�s planned time to retirement � � t. Because the
right-hand side of (27) is increasing in both � � t and Wt, the time to
retirement is decreasing in current wealth.8

In sum, the dynamics of consumption and wealth accumulation are
as follows. The agent determines his target retirement wealth levelW �,
as in (14). Then the agent follows the unique wealth accumulation and
consumption path f(Wt; ct); t � 0g in Figure 2 that leads to the point
(W �; rW �). How far away from the retirement point the agent starts on
this path depends on his initial wealthW0. Unless he loses his job before
reaching wealth W �, the agent retires voluntarily as soon as his wealth
attains W �. After retirement, he consumes at the constant rate rW �

and his �nancial wealth remains constant at W �. Thus, the solution
path the agent follows in Figure 2 is absorbed at the point (W �; rW �).
If the agent is forced into involuntary retirement at some date � f < � ,
i.e., when his wealth is W�f < W �, his consumption jumps down at � f
from his preferred accumulation path to the point (W�f ; rW�f ), and is
absorbed there. That is, consumption stays constant in retirement at

7 The same is true in the case of CRRA preferences we discuss in Appendix B. See
Figure 7.

8 This also con�rms that wealth grows over time while the agent is working.
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the level rW�f < rW � and �nancial wealth stays constant at W�f <
W �.

Permanent Income Hypothesis

It is well known, see Ljungqvist and Sargent (2004, Ch. 16), that with
quadratic preferences the optimal saving and consumption rule satis�es
the permanent income hypothesis (PIH). Under PIH, it is optimal for
the agent at each point in time to consume simply the income from his
total wealth, where total wealth includes �nancial wealth and human
capital. Human capital of an agent is de�ned as the present value of
all the labor income that the agent is yet to earn. Thus, permanent
income has two components: the income from currently held �nancial
wealth and the income from currently held human capital.

That PIH holds in our model is most clearly evident in (26), i.e.,
in the case with  = 0 in which the agent never retires voluntarily. If
the agent�s stock of �nancial wealth is Wt, his permanent income from
it is rWt because, as we saw earlier, if the agent consumes rWt, he
never depletes his �nancial wealth and therefore is able to maintain
this consumption forever. If the agent is working at t, the expected
present value of his future labor income is

E
�Z �f

0
e�rsyds

�
=

y

r + �
:

Permanent income from human capital y=(r+�) is ry=(r+�) because
this is the perpetual �ow equivalent of stock y=(r + �). According to
PIH, with �nancial wealth Wt and with human capital y=(r + �), the
agent�s consumption at t should be r(Wt +

y
r+�), which it is, as we see

in (26).
The agent�s optimal rule for consumption and saving obeys PIH

also when he chooses to voluntarily retire at a future date � . In this
case, the agent�s human capital as of t < � is

E

"Z minf�f ;�g

0
e�rsyds

#
=

y

r + �

�
1� e�(r+�)(��t)

�
: (28)

Thus, (25) is consistent with PIH because the agent in this case as well
consumes exactly the return on his �nancial and human capital at all
times. Note that the value in (28) is less than y=(r+�) because a part
of expected future income is lost due to the agent�s planned retirement
at � . The closer t is to � , the lower the agent�s human capital. Because
the agent saves at all t < � , however, his �nancial wealth Wt grows as
t gets closer to � . It fact, �nancial wealth grows faster than human
capital declines, and so the agent�s permanent consumption increases
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over time for as long as the agent does not lose his job. As wealth
approachesW �, the agent�s human capital goes down to zero smoothly,
and his consumption increases smoothly to rW �. If the agent loses his
job involuntarily at some date � f before his �nancial wealth reaches
W �, the agent�s human capital discontinuously jumps down to zero
and his permanent consumption jumps down to just the return on his
�nancial assets, rW�f .

6. RETIREMENT SAVING AND THE
JOB LOSS RISK

In this section, we study the dependence of the optimal consumption
and saving plan on the job loss rate �.

Proposition 1 At any Wt < W �, the larger the job loss intensity
�, the lower consumption ct, the higher the wealth accumulation rate
dWt=dt, and the shorter the time to planned retirement ��t. If �!1,
then ct ! rWt, dWt=dt! y, and � � t! (W � �Wt)=y.

Proof. In Appendix A.
This proposition shows that if we compare two agents identical in

all respects (same wealth, same income) except for the job loss rate �,
the agent with larger job loss risk will consume less and save more than
the other agent. Intuitively, the agent with higher � holds less human
capital than the agent whose � is lower. The labor income �ow rate y,
the same for both agents, therefore, is higher relative to total wealth
for the agent with higher �, and so he will save a larger portion of y
than the other agent. In other words, labor income y is less permanent
for the agent with higher �, so intertemporal consumption smoothing
implies he will save more. Figure 3 illustrates this point by plotting
optimal paths for consumption and wealth for several values of �.

This comparative statics result can be interpreted as showing the
agent�s response to a completely unanticipated shock to the job loss
risk the agent faces in our model. Under the parametrization used in
Figure 3, if � = 0:02, the agent will follow the highest of the three
accumulation paths plotted in that �gure. If at some point prior to
retirement the intensity parameter � jumps to 0:1, the agent will switch
at that point to the lowest of the three paths. This means that his
saving rate will increase and consumption will decrease without any
change to his current income. This example illustrates a response of
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Figure 3 Optimal Accumulation Paths for Three Values of
the Job Loss Rate

Notes: Other parameters used in this plot: r = 0:04, y = 1,  such that W � = 20.

optimal consumption to a change in the expectations the agent holds
about the future.9

If � is very large, then, as Proposition 1 shows, the agent saves close
to 100 percent of his labor income y and consumes close to rWt. This
again is intuitive, as when � is large, the agent�s human capital is close
to zero and �nancial wealth constitutes the bulk of his total wealth.
The level of permanent consumption he can a¤ord is thus close to the
level he could maintain if he had lost his job already, which with assets
Wt is exactly rWt.

9 The discussion in this paragraph assumes that the agent does not anticipate that �
could jump, and that once it does jump, the agent �rmly expects it to never jump again.
Clearly, this is an oversimpli�cation. We can expect, however, that our conclusion here
continues to hold when the jumps in � are anticipated. That is, although the shape of
the accumulation paths in Figure 3 must be adjusted, we expect consumption to decline
when � increases in a model in which changes in � are anticipated by the agent.
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Figure 4 Dependence of Time to Retirement on the Job Loss
Rate

Notes: Parameters used in this plot are the same as those in Figure 3.

Proposition 1 also shows that conditional on not losing the job
before the planned retirement date � , the agent with larger � will reach
his desired retirement wealth levelW � faster. Note that the theoretical
limit with �!1 of the time to retirement, (W ��Wt)=y, is consistent
with the agent saving 100 percent of his labor income and living only
o¤ his asset income already before retirement.

Figure 4 plots the planned time to retirement � � t against wealth
Wt for several values of �. In the example presented in that �gure, we
have r = 0:04, which makes one unit of time correspond roughly to one
year. Annual labor income y is normalized to 1, and W � = 20, which
means that the agent wants to retire as soon as his stock of wealth
reaches the equivalent of 20 years of labor income. With � = 0:02,
meaning the event of involuntary and permanent job loss on average
occurs once in 50 years, the agent who starts out with zero initial
wealth plans to retire after about 32 years. With � = 0:04, i.e., when
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involuntary retirement is a once-in-a-quarter-century event, the agent
plans to retire after roughly 28.5 years. With � = 0:01, the permanent
job loss shock becomes a once-in-a-decade event in expectation. In this
case, the agent plans to retire after 25 years. These numbers illustrate
the fact that the agent can only partially insure himself against the
permanent job loss shock in our model. With � = 0:02, the probability
that an agent with zero wealth reaches voluntary retirement is e�0:02�32,
which equals roughly 53 percent. For an agent with the same initial
wealth but with � = 0:1; this chance is only e�0:1�25, i.e., about 8
percent.

Di¤erentiating with respect to � the expressions for optimal con-
sumption in (25) and (26), it is easy to check that the response of ct to
a given change in � is stronger the longer the agent�s planned time to
retirement � � t. In particular, the response of consumption to changes
in the job loss risk is the strongest in the case of  = 0, where the agent
plans to never retire voluntarily. This result is very intuitive given that
fast planned retirement means human capital is a small portion of the
agent�s total wealth.

7. ADDITIONAL COMPARATIVE
STATICS RESULTS

With closed-form solution for the optimal path of saving and consump-
tion, we can provide several additional comparative statics results.

We saw already in Figure 2 how the optimal path of consumption
and wealth accumulation depends on the parameter  . In (14), higher
leisure utility  implies a lower retirement threshold W �. In Figure 2,
we see that lowerW � means faster retirement with a higher saving rate
along the optimal accumulation path.

We can also examine how consumption, saving, and the retirement
decision depend on the level of labor income y. We know from (14)
that the retirement threshold wealth level W � is increasing in y. Using
(25), it is not hard to show that if two agents have the same �nancial
wealthWt and face the same job loss rate �, the agent with higher labor
income y will consume more and retire later. The numerical example
given in Figure 5 illustrates this point. In that �gure, paths leading to
lower retirement points are everywhere below those leading to higher
retirement wealth thresholds. Those higher paths correspond to higher
labor income y earned during employment.

Finally, we examine how the solution to the agent�s optimal con-
sumption, saving, and retirement problem depends on the real interest
rate r. Dashed lines in Figure 6 show three accumulation paths, each
optimal at a di¤erent level of r. That the retirement wealth threshold
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Figure 5 Consumption and Wealth Accumulation for Three
Di�erent Values of Labor Income

Notes: Other parameters as in Figure 2.

W � is lower at higher r can be seen from the terminal points of the
accumulation paths in Figure 6, or directly from the formula for W �

given in (14). Since the marginal value of wealth in retirement u0(rWt)
decreases in r, it is intuitive that when r is higher the agent chooses
to give up labor income y in return for utility  earlier, i.e., at a lower
wealth threshold. Figure 6 shows that prior to retirement, at higher r
both the agent�s consumption ct and his interest income rWt are higher.
Interest income is represented in Figure 6 by the straight lines rW con-
necting the origin to the terminal points of the optimal accumulation
paths. How the wealth accumulation rate dWt=dt = rWt � ct + y de-
pends on r is determined by the magnitudes of ct and rWt. In fact,
the rate of wealth accumulation is increasing in r at high levels of
wealth Wt and decreasing in r at low levels of Wt. For example, at
Wt = 12; the vertical distance between (any two) dashed lines (repre-
senting ct) is smaller than the vertical distance between the solid lines
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Figure 6 Optimal Consumption and Wealth Accumulation
Paths at Three Levels of the Interest Rate

(representing rWt). At Wt = 1, the opposite is true. The cumulative
e¤ect of these di¤erences on the agent�s wealth is positive. With some
algebra that we omit here, it can be shown that the agent retires faster
when r is higher. That is, for any given Wt the agent�s time to planned
retirement, � � t, is shorter the higher the interest rate r.

8. CONCLUSION

This article studies optimal consumption and saving decisions in an
in�nite-horizon model that allows for endogenous retirement. Relative
to the standard model with no retirement, the optimal saving rate is
higher. An increase in the job loss risk decreases consumption, even
without the actual job loss occurring. Accounting for retirement sub-
dues the magnitude of the response in consumption to changes in the
job loss risk. These results may be important for quantitative analyses
of observed consumption and saving decisions.
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The strong assumption we make on the shape of the agent�s pro�le
of labor income lets us abstract in this article from borrowing con-
straints. Since his income can only decrease, the agent never wants
to borrow in our model, so the no-borrowing constraint is natural in
our analysis, and it never binds. Increasing and hump-shaped paths
of income are standard in life-cycle models. Incorporating such paths
into our model would require an extension of our analysis accounting
for the possibility of binding borrowing constraints.

Our analysis of optimal saving for and timing of retirement can be
extended to study other types of actions for which savings are impor-
tant. For instance, due to down-payment requirements, the optimal
timing of a house purchase by a household will depend on the �nancial
wealth of the household. Our analysis in this article can be adapted
to study jointly the saving decisions and the optimal timing of this
purchase.

APPENDIX: APPENDIX A

Proof of Lemma 1

Multiplying (1) by r and subtracting it from (23) we obtain a linear
di¤erential equation

d(cs � rWs)

ds
= (r + �)(cs � rWs)� ry;

which, with the notation zs = cs � rWs; we can write more compactly
as

dzs
ds

= (r + �)zs � ry: (29)

The solution to this equation is standard. Di¤erentiating zse�(r+�)s;
we have

d
�
zse

�(r+�)s
�
= dzse

�(r+�)s � (r + �)zse�(r+�)sds = �rye�(r+�)sds;

where the second equality uses (29). Integrating from t to � and solving
for zt yields

zt =
ry

r + �

�
1� e�(r+�)(��t)

�
+ z�e

�(r+�)(��t):

Writing the boundary condition c� = rW� +y as z� = y and using it in
the above general solution gives us (24). With the boundary condition
c� = rW� , we have z� = 0, which gives us (25). For (26), we take a
limit of (25) with � !1.
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Proof of Proposition 1

Write (25) as

ct � rWt =
r

r + �
y
�
1� e�(r+�)(��t)

�
and note that the right-hand side of this equality is decreasing in �
and goes to zero as �!1. This proves the proposition�s conclusions
about ct and, using (1), dWt=dt. Next, write (27) as

W � �Wt =
�

r + �
(� � t) y + r

(r + �)2

�
1� e�(r+�)(��t)

�
y

and check that the right-hand side of this equality is strictly increasing
with respect to both � and � � t. Because W � does not depend on �,
the left-hand side is constant. Thus, the time to retirement � � t must
decrease when � increases to keep the right-hand side constant.

APPENDIX: APPENDIX B

Figure 7 provides the analog of Figure 2 for a nonquadratic utility func-
tion u. In particular, this �gure depicts numerically computed solution
paths to the system of di¤erential equations (1)�(22) for constant rela-
tive risk aversion (CRRA) preference represented by the utility function
u of the form

u(c) =
c1�


1� 
 .

Qualitatively, these graphs are similar to one another for all values of

 > 0.

Our analysis determining the optimal accumulation path for a given
voluntary retirement wealth thresholdW � from Section 5 is unchanged.
The main di¤erence between CRRA preferences and quadratic prefer-
ences is that the permanent income hypothesis does not hold under
CRRA preferences. With CRRA preferences, agents have the so-called
precautionary motive for saving, which is absent under quadratic pref-
erences. When the precautionary saving motive is present, the agent
will increase the amount he saves in response to an increase in the risk-
iness of his income process, holding his expected income constant. (See
Ljungqvist and Sargent [2004] for a general discussion of precautionary
savings.)

In Figure 7, precautionary savings are best seen by comparing the
solution path labelled C with the dotted line labelled PIH. The
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Figure 7 Solution Paths for CRRA Preferences

solution path C in Figure 7 is analogous to the solution path C in
Figure 2. It is the single solution path that never leaves the middle
band of the graph bounded by the lines c = rW and c = rW + y. It is
the optimal solution path under CRRA preferences for an agent whose
 = 0, i.e., an agent who never chooses to retire voluntarily. The line
labelled PIH in Figure 7 is the solution path that would be optimal
for that agent if he did not have a precautionary saving motive (i.e., it
is an exact replica of the solution path C from Figure 2). At any level
of wealth Wt, the vertical distance in Figure 7 between line PIH and
the solution path C measures precautionary saving of the agent with
CRRA preferences. As we see, precautionary saving is positive at all
wealth levels and its magnitude decreases in Wt. In fact, solution C
converges to line PIH as Wt !1.

As in Figure 2, each solution path crossing the line c = rW is
an optimal accumulation path for an agent whose value of the leisure
preference parameter  is strictly positive. In these cases, as well,
precautionary saving can be seen by comparing corresponding solution
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paths in Figures 2 and 7. For any given voluntary retirement wealth
threshold W � > 0, the solution path leading to the retirement point
(W; c) = (W �; rW �) will in Figure 2 be strictly above the path leading
to the same path in Figure 7. The vertical distance between these two
paths will represent precautionary saving. All solution paths in Figure
7 converge to zero consumption when wealth goes to zero, while in
Figure 2 they do not. Comparing solutions with voluntary retirement
in �nite time, as in the case of no voluntary retirement, we thus see
that the precautionary saving motive is the strongest at very low wealth
levels.

APPENDIX: APPENDIX C

In this appendix, we discuss an extension of our model in which the
option value of delaying retirement is positive.

Let us add a positive labor income shock to our model. That is,
instead of assuming that at all times prior to retirement the agent�s
labor income is constant, suppose it can increase from y to �y > y.
Suppose this upward jump arrives with Poisson intensity � > 0. Also,
let�s assume the job loss shock is independent of the level of income
and, as before, it arrives with Poisson intensity � > 0.

We will show that with this positive income shock, the agent with
income y will not choose to retire as soon as his wealth reaches the
threshold W � but rather will prefer to keep working. The reason why
the agent prefers to keep working is that postponing retirement has
a positive option value when there is a chance that his labor income
increases in the future.

Let �J(Wt) be the maximal utility value the agent can obtain when
his income is already high, i.e., �y. Because once it hits �y income stays
constant until retirement; our previous analysis applies: The agent
whose income is �y will want to retire exactly when his wealth hits the
threshold

�W � =
1

r
u0�1

�
 

�y

�
>
1

r
u0�1

�
 

y

�
=W �:

We will show, however, that with low income y the agent will not want
to retire as soon as his wealth reaches W �. That is, the retirement
rule with wealth threshold level W � that we obtained in Section 3 is
no longer optimal for the agent.
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Consider the following strategy for an agent whose labor income
is low, y, and whose wealth is Wt. Suppose the agent works over a
small time interval [t; t + h). By time t + h, three things can happen.
The agent loses his job, gets a promotion, or neither. Suppose the
agent behaves optimally after a promotion thus obtaining in that event
the value �J(Wt+h). In the event of the job loss, he behaves optimally
in retirement and so he obtains V (Wt+h). If neither promotion nor
job loss happen, suppose the agent retires voluntarily at t + h, thus
obtaining the value V (Wt+h) in this event as well. Thus, the agent�s
strategy is to postpone retirement by h and see if he gets a promotion.
If he does not, he quits. Denote by �V h(Wt) the value that this strategy
gives the agent as of date t.

We proceed analogously to Section 4. We have

�V h(Wt) = max
c

nR h
0 e

�rsu(c)ds

+e�rh
�
e��h(1� e��h) �J(Wt+h) + e

��he��hV (Wt+h)

+
�
1� e��h

�
V (Wt+h)

�o
with wealth following (1) between t and t + h, as the agent works
between t and t+ h. Because h is small, we use the �rst-order approx-
imation and express �V h(Wt) as

�V h(Wt) = max
c

�
V (Wt) +

�
u(c) + � �J(Wt)� (r + �)V (Wt)

+ V 0(Wt)
dWt
dt

�
h
	
:

Next, we compare this value to the value of retiring immediately at t,
which we know to be V (Wt). We have that the value of postponing
retirement by at least h is strictly preferred to retiring immediately,
i.e., �V h(Wt) > V (Wt), if and only if

max
c

�
V (Wt) +

�
u(c) + � �J(Wt)� (r + �)V (Wt)

+ V 0(Wt)(rWt + y � c)
�
h
	

> max
c

�
V (Wt) +

�
u(c) +  � rV (Wt) + V

0(Wt)(rWt � c)
�
h
	
:

Dividing by h, simplifying terms, and removing the identical maximiza-
tion problems with respect to c on both sides of this condition simpli�es
it to

�
�
�J(Wt)� V (Wt)

�
+ V 0(Wt)y >  :

Now we note that �J(W �)�V (W �) > 0 because with high labor income
�y the agent only wants to retire with wealth �W � > W � and not earlier.
By de�nition of W �, we have V 0(W �)y =  . Therefore,

�
�
�J(W �)� V (W �)

�
+ V 0(W �)y >  :
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This means that with low income y and wealthW �; the agent prefers to
postpone retirement. The reason for this is that the term
�
�
�J(W �)� V (W �)

�
is strictly positive. This term represents the op-

tion value of delaying retirement. For as long as the agent is not retired,
he has a chance to see his labor income increase, in which case he would
prefer to continue working until his wealth reaches �W �. Because retire-
ment is permanent, by retiring with wealth W � < �W �, the agent closes
this possibility to himself or, in other words, gives up this option. By
delaying retirement, he keeps this option open.

By continuity, the above condition holds in the neighborhood of
W �, i.e., also for some wealth Wt > W �. At that wealth level we have
V 0(Wt)y <  , i.e., in terms of his current payo¤ the agent would be
strictly better o¤ to retire immediately. He does not choose to do so,
however, because the option value �

�
�J(Wt)� V (Wt)

�
is larger than

the payo¤ from retiring  � V 0(Wt)y.
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