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Why Do Platforms Use Ad
Valorem Fees? Evaluating
Two Alternative
Explanations

Zhu Wang

P
latforms that intermediate transactions between sellers and buy-
ers have become increasingly important in the economy. Peo-
ple are familiar with, for example, online marketplaces (such as

Amazon and eBay), payment platforms (such as Visa, MasterCard, and
Paypal), and hotel booking sites (such as Booking.com and Expedia).
However, there has been a great pricing puzzle associated with these
platforms in that they almost universally rely on ad valorem fees, in
which cases platforms charge sellers fees proportional to the transaction
value plus sometimes small per-transaction fees. Given that these plat-
forms do not incur significant costs that vary with transaction value,
it is puzzling why ad valorem fees are so prevalently used.

In this article, we review two alternative explanations on this pric-
ing puzzle. One theory, provided by Shy and Wang (2011) and others,
emphasizes the vertical relation between the platform and the sellers.
It is shown that in the case where the platform (i.e., the upstream)
and the sellers (i.e., the downstream) both have market power (i.e., so-
called “double marginalization”)1, the platform extracts a higher profit
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1 In the industrial organization literature, double marginalization refers to the phe-
nomenon in which different firms at different vertical levels in the supply chain (e.g.,
upstream and downstream) have their respective market powers and apply their own
markups in prices. For example, consider that a firm with market power buys an in-
put from another firm that also has market power. The producer of the input will
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by using a proportional fee than using a per-transaction fee. Another
explanation, offered by Wang and Wright (2017), instead focuses on the
price discrimination angle. The key idea is that for a platform deal-
ing with transactions of many different goods that vary widely in their
costs and values, ad valorem fees serve as an effi cient form of price
discrimination that increases the platform’s profit. While these two
explanations provide alternative views, we will show that they indeed
complement each other in explaining the ad valorem fee puzzle.

Our article contributes to a growing literature on platforms and
their fee structures. In fact, besides the two theories analyzed in this
article, there are additional (competing or complementary) views on
ad valorem platform fees. For example, Loertscher and Niedermayer
(2012) consider a mechanism design approach in an independent private
values setup with privately informed buyers and sellers, in which an
intermediary’s optimal fees converge to linear fees as markets become
increasingly thin. Muthers and Wismer (2013) show that if a platform
can commit to proportional fees, this can reduce a hold-up problem
that arises from the platform wanting to compete with sellers after
they have incurred costs to enter the platform. Hagiu and Wright
(forthcoming) provide a theory that ad valorem contracts align the
incentives between upstream firms (principals) and downstream firms
(agents), which allows the principal to achieve the same profits as if it
could observe the demand shocks and control price.

The article is organized as follows. In Section 1, we first lay out
two simple models that each justify one of the two explanations: dou-
ble marginalization versus price discrimination. In Section 2, we then
study a generalized model that accommodates both explanations. Our
findings suggest that, in reality, platforms may choose a simple ad val-
orem fee schedule that addresses both double marginalization and price
discrimination considerations. In Section 3, we apply the generalized
model to a calibration exercise using data on DVD sales on Amazon
and quantify the relative importance of the two explanations. Finally,
Section 4 offers concluding remarks.

price above marginal cost when it sells the input to the other firm, who will then price
above marginal cost again when they sell the final product that uses the input. This
means the input is being marked up above marginal cost twice, which is called double
marginalization.
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1. TWO ALTERNATIVE EXPLANATIONS

In this section, we lay out two simple models that each highlight one of
the two alternative explanations: double marginalization versus price
discrimination.

Double Marginalization

We first study a model environment similar to Shy and Wang (2011),
where double marginalization motivates the use of ad valorem fees.2

Consider that a monopoly seller sells a good on a monopoly platform.
The good is indexed by c, the per-unit cost of the good to the seller,
which is known to everyone in the market. There is a unit mass of
buyers, each of whom wants to purchase one unit of the good. The
value of the good to a buyer is c (1 + b), where b ≥ 0 is a parameter
that the buyer draws.3 We assume that 1 + b is randomly distributed
according to a cumulative distribution function F . Only buyers know
their own b, while F is public information.

For illustrative purposes, we assume that F takes on a simple Pareto
distribution

F (x) = 1− x−λ. (1)

Accordingly, the number of transactions Qc for the good c is the mea-
sure of buyers who obtain a nonnegative surplus from buying the good
at price pc, Pr (c (1 + b)− pc ≥ 0). Therefore, the demand function for
good c is

Qc(pc) = 1− F
(pc
c

)
=
(pc
c

)−λ
, (2)

which has the constant elasticity λ. For the monopoly pricing problem
to be well-defined, we require that λ > 1.

The platform incurs a cost of d ≥ 0 per transaction, and it can
potentially charge fees to either the buyer side or the seller side or

2 In a similar vein, several studies (e.g., Foros et al. 2013; Gaudin and White 2014;
and Johnson 2017) have explored the advantages of the so-called agency model used by
mass retailers such as Amazon, where the retailer lets suppliers (i.e., sellers) set final
prices and receive a share of the revenue, which is equivalent to using a percentage fee.
Like Shy and Wang (2011), they also show that the revenue sharing used in the agency
model has the advantage of mitigating double marginalization.

3 A higher c (i.e., higher cost) implies in the model that the gains from trade are
higher in expectation (due to the multiplicative connection between c and b). One in-
terpretation for this specification, as shown in Wang and Wright (2017), is that such
a platform reduces trading frictions, and as a result the value to buyers of using the
platform (so that they can avoid the loss of using a less-effi cient trade intermediary) is
proportional to the cost or price of the goods traded. Note that the assumption b ≥ 0
is an innocuous normalization because consumers whose valuation for a product is less
than its cost can be ignored.
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both. Regardless of which side is charged, the final price faced by
buyers will reflect any fees, and the buyer treats these the same whether
she faces them directly or through sellers. Due to this standard result
on the irrelevance of the incidence of taxes across the two sides, we can
assume without loss of generality that only the seller side is charged.

In terms of timing, the platform moves first and announces the fee
schedule it would charge the seller. Taking the fee schedule as given,
the seller then decides the price of the good. Finally, buyers make
purchase decisions.

Given the model setup, we are interested in the following question:
If the platform can choose among a per-transaction fee, a proportional
fee, or a mix of both fees, what type of fee schedule would the platform
prefer?

To answer the question, we consider that the platform decides on an
affi ne fee schedule, T (pc) = t0 + t1pc, which covers all the possibilities
listed above. We assume that the platform cannot subsidize the seller
to operate by setting t0 < 0. Doing so is likely to create an adverse
incentive for which the seller could just collect t0 but not sell anything
real. This imposes the requirement that t0 ≥ 0.

The model can be solved backward. Because the platform would
make its fee decision by incorporating the seller’s response, we solve the
seller’s problem first. The seller, taking the affi ne fee schedule (t0, t1)
charged by the platform as given, would choose pc to maximize her
profit:

max
pc

(pc − c− t0 − t1pc)
(pc
c

)−λ
,

which implies

p∗c =
λ (c+ t0)

(λ− 1) (1− t1)
. (3)

Anticipating the seller’s pricing decision p∗c , the platform would
then choose t0 and t1 to solve

π = max
t0,t1

(t0 + t1p
∗
c − d)

(
p∗c
c

)−λ
subject to the constraint t0 ≥ 0. We can verify that the constraint
t0 ≥ 0 is binding at the maximum, so the optimal affi ne fee schedule is
just a proportional fee:

t0 = 0, t1 =
c+ d(λ− 1)

λc+ d(λ− 1)
. (4)

Given that λ > 1, we know 1 > t1 > 0.
This simple model yields several useful findings. First, in the pres-

ence of double marginalization (i.e., when both the platform and the
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seller have market power), the platform strictly prefers a proportional
fee to a per-transaction fee. Note that the use of a proportional fee
allows the platform to mitigate, but not eliminate, double marginaliza-
tion. In fact, if the seller side has no market power (or the platform
owns the seller), the platform, being the single monopoly in the mar-
ket, would earn an even higher profit and would be indifferent with a
proportional fee or a per-transaction fee, as we will show in the analysis
coming next. Second, to implement the optimal proportional fee, the
platform needs to know c unless the marginal cost d of the platform is
zero, in which case the platform has a simple formula t1 = 1/λ. Con-
sidering that d is typically small in reality, a platform may use t1 = 1/λ
as a good proxy even if it has no knowledge of c.

The model above serves as a simple illustrative example. As shown
in Shy and Wang (2011) and others, the result holds in more general
settings, including the cases where sellers engage in Cournot competi-
tion with or without free entry.4

Price Discrimination

In contrast to the double marginalization explanation, we now study
an alternative model proposed by Wang and Wright (2017) where price
discrimination motivates the use of ad valorem fees. In doing so, we
consider the same model setup as above except for two things: (i) a
variety of goods is being sold on the platform, with the costs c differing
widely across goods; and (ii) for each good c, there are multiple sellers
who engage in Bertrand competition, so sellers have no market power.5

The rest of the model specification remains unchanged– for each good
c, there is a unit mass of buyers each of whom wants to purchase one
unit of the good. Buyers draw their benefit 1 + b from a simple Pareto
distribution, and as a result sellers face constant-elasticity demand.
The platform considers charging sellers an affi ne fee schedule, T (pc) =
t0 + t1pc, subject to the constraint t0 ≥ 0.

Assume c takes on a finite number of distinct values in the set of C.
The probability distribution of c on C is denoted gc, with

∑
c∈C gc = 1.

As before, we solve the sellers’problem first. For each good c, taking

4 Cournot competition refers to an oligopoly market structure in which multiple
firms producing a homogeneous product compete by choosing outputs independently and
simultaneously. Assuming a fixed number of Cournot sellers, Shy and Wang (2011) show
that the platform earns a higher profit by using a proportional fee than a per-transaction
fee. Miao (2013) shows that the result continues to hold under free entry of sellers.

5 Bertrand competition is a model of competition in which multiple firms producing
a homogeneous product compete by setting prices simultaneously and consumers want
to buy everything from a firm with a lower price.
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the affi ne fee schedule as given, Bertrand sellers compete by setting the
lowest possible price just to break even, so that

p∗c = c+ t0 + t1p
∗
c =⇒ p∗c =

c+ t0
1− t1

.

Anticipating sellers’pricing decisions, the platform would then choose
t0 and t1 to solve

Π = max
t0,t1

∑
c∈C

gc

[
(t0 + t1p

∗
c − d)

(
p∗c
c

)−λ]
. (5)

To derive the solution to (5) intuitively, we first consider the hy-
pothetical scenario where the platform could perfectly observe the cost
and valuation for each good c and set a different optimal fee (t0, t1) for
each as follows:

Πc = max
t0,t1

(t0 + t1p
∗
c − d)

(
p∗c
c

)−λ
,

which is equivalent to solving

Πc = max
t0,t1

(
t0 + ct1
1− t1

− d
)(

1 +
t0 + ct1
(1− t1)c

)−λ
.

The first-order condition implies a unique value of t
∗
0+ct

∗
1

1−t∗1
such that

t∗0 + ct∗1
1− t∗1

=
c+ λd

λ− 1
, (6)

which could be potentially consistent with different fee schedules (t∗0, t
∗
1).

For example, the optimal fee could be a pure per-transaction fee or a
pure proportional fee, but those fee schedules have to depend on c.
However, one can verify that there is a unique affi ne fee

t∗0 = d; t∗1 =
1

λ
(7)

that also satisfies the condition (6), but the fee schedule does not de-
pend on c. This means that the affi ne fee (7) maximizes the platform’s
overall profit (5) without requiring the platform to keep track of the
goods traded.

This yields several new findings. First, for a given good, when the
cost c is known to the platform and sellers have no market power, the
platform is indifferent between charging a proportional fee and a per-
transaction fee. This contrasts our finding above that a proportional
fee is strictly preferred to a per-transaction fee when sellers do have
market power. Second, the platform can maximize profit by imple-
menting the affi ne fee (7) without conditioning on c, which is a great
advantage. There are often a large number of goods being traded on
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a platform, and the platform may not be able to track each good’s
cost and value. In this case, using the affi ne fee (7) requires no infor-
mation of c, so it can be easily used by the platform. This results in
optimal price discrimination in the sense that charging ad valorem fees
(7) allows the platform to achieve the same level of profit that could
be obtained under third-degree price discrimination as if the platform
could perfectly observe the cost and valuation for each good traded.
Finally, note that the optimal affi ne fee (7) has a per-transaction term
t∗0 > 0 only if the platform incurs a positive marginal cost d; otherwise,
a proportional fee t1 = 1/λ is optimal. Again, considering that d is
typically small in reality, a simple proportional fee t1 = 1/λ can be a
good proxy in practice.

The model is a simple illustrative example. Wang and Wright
(2017) show the result holds broadly, including the demand takes more
general functional forms or involves unobserved random variations.

2. A GENERALIZED ANALYSIS

The two theories noted above provide alternative justifications for the
use of ad valorem fees by platforms. However, these two theories are
not necessarily exclusive to each other. In this section, we provide a
generalized analysis that accommodates both explanations. We show
in reality a platform can choose a simple ad valorem fee that addresses
both double marginalization and price discrimination considerations.
The analysis and results in this section draw heavily from the online
appendix of Wang and Wright (2017).

In the generalized analysis, we consider a variety of different goods
being traded on a platform. We suppose that for each good there are
nc ≥ 1 identical quantity-setting sellers on the platform (i.e., Cournot
competitors). This covers different intensities of seller competition,
including the two special cases discussed in Section 1: when nc = 1, a
good is sold by a monopoly seller; when nc → ∞, sellers are perfectly
competitive. As before, each seller obtains the goods at a unit cost c
and sells them at a retail price pc.

On the demand side, we assume as before that the value of good
c to a buyer drawing the benefit parameter b ≥ 0 is c (1 + b). To
generalize the analysis, we now consider that 1 + b is distributed ac-
cording to the broad family of generalized Pareto distributions (GPD),
of which the simple Pareto distribution is a special case. Accordingly,
the cumulative distribution function F is defined as

F (x) = 1− (1 + λ (σ − 1) (x− 1))
1

1−σ , (8)
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with λ > 0 being the scale parameter and σ < 2 being the shape para-
meter. Only buyers know their own b, while F is public information.

Note that the generalized Pareto distribution implies the demand
functions for sellers on the platform are defined by the class of demands
with constant curvature of inverse demand6

Qc(pc) = 1− F
(pc
c

)
=

(
1 +

λ (σ − 1) (pc − c)
c

) 1
1−σ

. (9)

The constant σ is the curvature of inverse demand, defined as the elas-
ticity of the slope of the inverse demand with respect to quantity. When
σ < 1, the support of F is [1, 1 + 1/λ (1− σ)] and it has increasing haz-
ard. Accordingly, the implied demand functions Qc(pc) are log-concave
and include the linear demand function (σ = 0) as a special case. Al-
ternatively, when 1 < σ < 2, the support of F is [1,∞), and it has
decreasing hazard. The implied demand functions are log-convex and
include the constant elasticity demand function (σ = 1 + 1/λ) as a
special case. When σ = 1, F captures the left-truncated exponen-
tial distribution F (x) = 1 − e−λ(x−1) on the support [1,∞), with a
constant hazard rate λ. This implies the exponential (or log-linear)

demand Qc(pc) = e−
λ(pc−c)

c .
Taking as given that demand belongs to the generalized Pareto

class, we allow c to take on potentially many different values in [cL, cH ],
with the set of all such values being denoted C. The cumulative distri-
bution of c on C is denoted G, and gc is the probability corresponding
to the realization c.

The platform incurs a cost of d ≥ 0 per transaction. Without loss
of generality, we assume that the platform only charges the seller side
to maximize its profit.

Below, in Section 2.1, as a benchmark, we first derive the plat-
form’s optimal affi ne fee in a setting with generalized Pareto demand
and Bertrand sellers (or equivalently, sellers engage in Cournot com-
petition, but the number of sellers goes to infinity). This extends the
results we derived in Section 1.2, and we name the resulting fee sched-
ule the “Bertrand affi ne fee.” In this general case, as in Section 1.2,
the Bertrand affi ne fee achieves optimal price discrimination given that
sellers have no market power. In Section 2.2, we show that in a set-
ting where sellers have market power and engage in Cournot compe-
tition, the Bertrand affi ne fee continues to do well. Particularly, we
show that without knowing each good’s cost and how many sellers are

6 This class of demands has been considered by Bulow and Pfleiderer (1983),
Aguirre et al. (2010), Bulow and Klemperer (2012), and Weyl and Fabinger (2013),
among others.
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competing, the platform can continue to use the Bertrand affi ne fee
and earn a higher profit than if it knew everything and set the opti-
mal per-transaction fee for each good. This is because the Bertrand
affi ne fee now achieves more than price discrimination; it also mitigates
double marginalization. We then derive analytical results for the case
d = 0 and show that while the Bertrand affi ne fee is not necessarily the
optimal affi ne fee when sellers have market power, it can be very close.
Therefore, in practice, a platform can implement the Bertrand affi ne
fee as a good proxy.

Bertrand Affine Fee

We start with deriving the Bertrand affi ne fee. Consider that the plat-
form charges sellers the fee schedule T (pc). Assuming that sellers en-
gage in Bertrand competition, the price pc for good c solves

pc = c+ T (pc) . (10)

Accordingly, the platform’s profit is Πc = (T (pc)− d)Qc (pc) for good
c, where Qc (pc) is given by (9). The platform’s problem is to choose
T (pc) to maximize

Π =
∑
c∈C

gcΠc. (11)

In Wang and Wright (2017), it is shown that the optimal fee sched-
ule is affi ne, given by

T (pc) =
λd

1 + λ (2− σ)
+

pc
1 + λ (2− σ)

, (12)

which maximizes (11).7 Similar to our finding in Section 1.2, while
the affi ne fee (12) does not condition on c, it achieves optimal price
discrimination. To see this, note that the solution in (12) is equivalent
to the platform charging the optimal per-transaction fee

T ∗c =
λd+ c

λ (2− σ)
(13)

for each different good c, which would be possible if the platform could
identify each good c and set its optimal per-transaction fee accordingly.

Our result in Section 1.2 is a special case of the Bertrand affi ne fee
given by (12), with σ = 1 + 1/λ. In the general case, the platform’s
optimal affi ne fee again has a fixed per-transaction component only if

7 With this model setting, the optimal platform fee schedule is affi ne and does not
condition on c if and only if the distribution of buyers’ benefits F is the generalized
Pareto distribution. See Wang and Wright (2017) for a detailed proof.
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there is a positive cost to the platform of handling each transaction
(i.e., d > 0). Given λ > 0 and σ < 2, the fee schedule is increasing
(higher prices imply higher fees are paid) but with a slope less than
unity (this implies (10) has a unique solution for any given c > 0). The
result in (12) also implies the platform can maximize its profit without
tracking each individual good c or knowing the distribution G of goods
that are traded.

Seller Market Power and Bertrand Affine Fee

We now study the platform’s fee setting when sellers do have market
power. We will show in the case of Cournot sellers, the platform can
continue to use the Bertrand affi ne fee, which not only addresses the
price discrimination, but also mitigates double marginalization. As
a result, it leads to a higher platform profit than using optimal per-
transaction fees.

Optimal per-transaction fees

To start, we consider the problem of a platform with full information
on c (i.e., each good’s cost) and nc (i.e., the number of Cournot sellers)
setting an optimal per-transaction fee for each good.

Suppose the platform charges a per-transaction fee Tc for good c.
Let qc,i denote the output sold by seller i for good c. Each seller i
sets qc,i taking the output by competing sellers qc,−i = Qc − qc,i as
given and maximizes its profit (pc − c− Tc) qc,i. Assuming F follows
the GPD distribution (8), the total demand for good c is given by (9),
which implies that the inverse demand is

pc = c

(
1 +

Q1−σc − 1

λ(σ − 1)

)
.

Therefore, an individual seller’s profit maximization problem is

max
qc,i

c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
qc,i − (c+ Tc)qc,i.

The first-order condition for good c is

c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
= qc,i

(
c(qc,−i + qc,i)

−σ

λ

)
+ c+ Tc.

In a symmetric Cournot equilibrium, qc,i = qc for every seller, so the
total sellers’output is Qc = ncqc. We can then rewrite the first-order
condition as

c(ncqc)
1−σ − c

λ(σ − 1)
=
c(ncqc)

1−σ

ncλ
+ Tc
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and derive

Qc = ncqc =

(
cnc + λ(σ − 1)Tcnc
cnc − (σ − 1)c

) 1
1−σ

. (14)

Accordingly, the price of good c is

pc = c

(
1 +

λTcnc + c

λc(nc + 1− σ)

)
=

Tcnc
(nc + 1− σ)

+
1 + (nc + 1− σ)λ

(nc + 1− σ)λ
c.

(15)
The platform takes (14) as given and maximizes its profit by setting

a per-transaction fee for good c as follows

max
Tc

(Tc − d)

(
cnc + λ(σ − 1)Tcnc
cnc − (σ − 1)c

) 1
1−σ

.

The first-order condition implies the optimal per-transaction fee T fc :

T fc =
λd+ c

λ (2− σ)
, (16)

which is the same optimal per-transaction fee that we derive in the
Bertrand seller setting (13). The optimal per-transaction fee does not
depend on the number of sellers and so also holds for a monopoly seller.
Note that to ensure a meaningful solution (i.e. T fc > d) , it is required
that

d (σ − 1) +
c

λ
> 0. (17)

This is satisfied for the GPD demand specification: When demand is
log-linear or log-convex, the GPD specification requires that σ ≥ 1 so
the condition in (17) holds. When demand is log-concave, the GPD
specification requires that σ < 1 and d < c

λ(1−σ) , so the condition in
(17) again holds.

Substituting (16) into (14) and (15), we get

pc =
ncd

(2− σ)(nc + 1− σ)
+
nc + (2− σ) + (2− σ)(nc + 1− σ)λ

(2− σ)(nc + 1− σ)λ
c,

(18)
and

Qc =

(
λ(σ − 1)ncd+ cnc

(2− σ)(cnc − (σ − 1)c)

) 1
1−σ

. (19)

As a result, the platform profit from good c is

πc =

(
(σ − 1)d

2− σ +
c

(2− σ)λ

)(
λ(σ − 1)ncd+ cnc

(2− σ)(cnc − (σ − 1)c)

) 1
1−σ

.
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Comparing Bertrand affi ne fee and optimal
per-transaction fees

We now compare Bertrand affi ne fee and optimal per-transaction fees
in the Cournot seller setting.

Consider Cournot sellers facing an affi ne fee schedule T (pc) = t0 +
t1pc for each transaction. With GPD demand, the sellers’problem is
to choose qc,i to maximize

((1− t1)pc − c− t0)qc,i, (20)

where

pc = c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
. (21)

In a symmetric Cournot equilibrium, qc,i = qc for every seller, so the
total sellers’output isQc = ncqc. The first-order condition then requires

(1− t1)c
(

1

λ(σ − 1)
− 1

)
+ c+ t0 =

(1− t1)cQ1−σc

λ

(
1

σ − 1
− 1

nc

)
.

(22)
Substituting the Bertrand affi ne fee from equation (12) into (22)

gives the same price and output for a given c as we found above in (18)
and (19) for the full information case. That is, the price and output for
each good are identical to that implied by the optimal per-transaction
fee (16). However, the per-transaction fee for good c implied by the
Bertrand affi ne fee is now

T ∗ (pc) = t0 + t1pc =

(
λ

1 + (2− σ)λ
+

nc
(1 + (2− σ)λ)(2− σ)(nc + 1− σ)

)
d

+

(
1

1 + (2− σ)λ

)(
nc + (2− σ) + (2− σ)(nc + 1− σ)λ

(2− σ)(nc + 1− σ)λ

)
c,

which is strictly higher than the fee in (16) if and only if the condition
(17) holds. This implies the platform earns a higher profit using the
Bertrand affi ne fee than if it used the optimal per-transaction fee for
each different good assuming full information. This result holds for any
nc ≥ 1 and so also holds for monopoly sellers.

This result shows that the Bertrand affi ne fee can be used in this
setting to solve the price discrimination problem. It delivers the same
price and output for each good without using any information on each
good’s cost. At the same time, the Bertrand affi ne fee generates a
higher profit for the platform because it mitigates the double mar-
ginalization problem associated with using the optimal per-transaction
fee for each good, allowing the platform to collect a higher fee from
each good while achieving the same level of final price and output.



Wang: Why Do Platforms Use Ad Valorem Fees? 165

Comparing Bertrand affi ne fee and optimal
affi ne fee

We have so far shown that Bertrand affi ne fee profit dominates per-
transaction fee when sellers have market power. In this section, as-
suming d = 0, we show that the Bertrand affi ne fee schedule (12) is
indeed very close to the optimal affi ne fee schedule under Cournot sell-
ers.8 Note that given d = 0, the Bertrand affi ne fee (12) implies the
proportional fee schedule

T ∗ (pc) =

(
1

1 + (2− σ)λ

)
pc. (23)

We can then check whether this is the optimal affi ne fee schedule under
Cournot sellers.

Consider a platform maximizing its profit by using an affi ne fee
schedule t0+ t1pc. As before, we assume that the platform cannot sub-
sidize sellers to operate by setting t0 < 0. This imposes the requirement
that t0 ≥ 0.

Cournot sellers take the platform affi ne fee schedule T (pc) = t0 +
t1pc as given for each transaction. As shown above, with a GPD de-
mand, the sellers’problem is given by (20) and (21), and the first-order
condition for seller’s profit-maximizing problem is given by (22).

Anticipating sellers’responses, the platform then solves the follow-
ing problem:

π = max
t0,t1

∑
c

gc (t0 + t1pc)
(

1− F
(pc
c

))
subject to the constraint t0 ≥ 0 as well as the conditions

pc = c

(
1 +

Q1−σc − 1

λ(σ − 1)

)
(24)

and

(1− t1)c
(

1

λ (σ − 1)
− 1

)
+ c+ t0 =

(1− t1)cQ1−σc

λ

(
1

σ − 1
− 1

nc

)
,

(25)
where (24) is given by the GPD demand and (25) is the first-order con-
dition (22). We can verify that the constraint t0 ≥ 0 is binding at the
maximum, so the optimal affi ne fee schedule is also just a proportional
fee schedule. Moreover, given that t0 = 0, pc/c does not depend on
c, so the platform can solve for the optimal t1 without knowing the

8 If d > 0, the results will depend on the distribution of c. We discuss this case in
Section 3.
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distribution of c. The first-order condition on t1 requires

(1 + λ (1− σ)) (1− t1 − t1λ (1− σ)) (1− t1)− t1λ (1 + λ (1− σ))

= nc

(
t1

1− t1
λ2 (2− σ)− λ

)
. (26)

The optimal proportional fee implied by (26) is in general not equal
to the proportional fee implied by (23), but based on an examination of
some common demand functions, it is very close and so are the profits,
as discussed below.

Consider first the case of constant elasticity demand, where σ =
1 + 1

λ and λ > 1. In this case, both (23) and (26) yield t1 = 1/λ and
so have identical profits. Thus, in this case, the Bertrand affi ne fee
coincides with the optimal affi ne fee schedule. This result confirms our
findings in Sections 1.1 and 1.2 that when d = 0, the optimal affi ne
fee under double marginalization (i.e., t0 = 0, t1 = 1/λ) coincides with
that which achieves optimal price discrimination (which is again t0 = 0,
t1 = 1/λ).

Next, consider the case of exponential demand where σ = 1. Then
(26) implies the optimal proportional fee satisfies

(1− t1)3 + λ(1− t1)(nc − t1) = nct1λ
2,

which has a unique solution. In contrast, (23) implies the proportional
fee

t1 =
1

1 + λ
.

The two fees are not exactly equal, but they are very close. For the
empirically meaningful range where the proportional term t1 of the
Bertrand affi ne fee satisfies t1 ≤ 50 percent (or equivalently, λ ≥ 1),
the Bertrand affi ne fee can recover more than 98.5 percent of the profit
under the optimal affi ne fee schedule when all sellers are monopolists
(so nc = 1 for all c). Moreover, the profit gap between using the
Bertrand affi ne fee and using the optimal affi ne fee schedule decreases
monotonically in nc, and the two converge as the number of Cournot
sellers gets large.

Finally, consider the case of linear demand where σ = 0. Then (26)
implies that the optimal proportional fee satisfies

(1− t1)2 (1 + λ) (1− t1 − t1λ)− t1(1− t1)λ (1 + λ)

= nc
(
2t1λ

2 − λ(1− t1)
)
,

which has a unique solution. In contrast, (23) implies the proportional
fee

t1 =
1

1 + 2λ
.
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For the empirically meaningful range where the proportional term t1
of the Bertrand affi ne fee satisfies t1 ≤ 50 percent (or equivalently,
λ ≥ 0.5), the Bertrand affi ne fee can recover more than 97.5 percent of
the profit under the optimal affi ne fee schedule when all sellers are mo-
nopolists (so nc = 1 for all c). Again, the profit gap between using the
Bertrand affi ne fee schedule and using the optimal affi ne fee decreases
monotonically in nc, and the two converge as the number of Cournot
sellers gets large.

The findings in Section 2 are summarized below.
Assume that the demand functions for sellers on the platform belong

to the generalized Pareto class with λ > 0 and σ < 2 and that for each
good c there are nc ≥ 1 identical sellers that set quantities. Then we
have the following results:
(i) the platform obtains a higher profit using the Bertrand affi ne fee
than if it sets the optimal per-transaction fee for each good;
(ii) if sellers face constant elasticity demand (σ = 1 + 1

λ and λ > 1)
and d = 0, the Bertrand affi ne fee is the optimal affi ne fee schedule;
(iii) if sellers face exponential demand (σ = 1), λ > 1, and d = 0,
the Bertrand affi ne fee can recover more than 98.5 percent of the profit
under the optimal affi ne fee schedule;
(iv) if sellers face linear demand (σ = 0), λ > 0.5, and d = 0, the
Bertrand affi ne fee can recover more than 97.5 percent of the profit
under the optimal affi ne fee schedule.

3. A QUANTITATIVE EXERCISE

Finally, we may consider the general case in which d > 0 and compare
the platform’s profit from the Bertrand affi ne fee (12) with its profit
from the optimal fee schedules, including nonlinear ones. This exercise
was carried out in detail in Wang and Wright (2017), and we summarize
the findings here.

Once we allow for a nonlinear fee schedule, the optimal fee schedule
will depend on the distribution of goods G(c). This is also true for the
optimal affi ne fee schedule once we allow d > 0. Therefore, to proceed,
one needs to assume some realistic distribution for c and calculate the
profitability of different fee schedules numerically. Wang and Wright
(2017) use the distribution based on fitting a log-normal distribution
to the actual distribution of sales obtained from sales ranks of DVDs
sold on Amazon.9 It is assumed that sellers face constant elasticity

9 Using a web robot, Wang and Wright (2017) collected data on every DVD listed
under “Movies & TV” on Amazon’s marketplace in January 2014. Given shipping fees
are often not included in the listed price, the focus is on the items where the listed
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demand, and d = 1.35 and σ = 1.15 so that the calibrated Bertrand fee
schedule matches the actual fee schedule used by Amazon for DVDs
(which is $1.35+15 percent). Sellers are assumed to be monopolists
(i.e., nc = 1).10

With these assumptions, it is found that the platform obtains a
profit of 0.383 with a fixed per-transaction fee (i.e., without any price
discrimination).11 If the platform could observe each different good
sold by the sellers, it could do better setting the per-transaction fee
that is optimal for each good c. This increases its profit by 17.7 per-
cent to 0.457, which represents the gain due to price discrimination.
Moreover, the benefits of price discrimination can be obtained by using
the Bertrand fee schedule, which does not require any information on
the values of c and has the added benefit of mitigating double mar-
ginalization. Indeed, the platform can increase its profit to 0.537, or a
further 16.3 percent, by using the Bertrand fee schedule. Taking into
account that sellers are monopolists and the particular distribution of c,
the platform can increase its profit by a further 1.5 percent by moving
to the optimal affi ne fee schedule.

Finally, Wang and Wright (2017) obtain the platform’s profit for
the optimal nonlinear fee schedule, which comes from solving for the
optimal polynomial fee schedule of degree k, starting with k = 1 (the
affi ne fee schedule) and considering higher and higher k until the plat-
form’s profit no longer increases. Compared with the optimal affi ne fee
schedule, moving to the optimal nonlinear fee schedule only increases
the platform’s profit by a further 1.3 percent. The results are summa-
rized in Table 1. The table also shows the results from repeating the
exercise with linear demand.

Quantitatively, the results show that the platform loses little from
restricting fee schedules to affi ne fee schedules or indeed the Bertrand
affi ne fees. In the constant-elasticity demand case, price discrimination
and double marginalization have similar quantitative effects on justi-
fying the platform’s use of the Bertrand affi ne fee: using the Bertrand

price included free shipping, resulting in a sample with 191,280 distinct items. The
data collected include the title, unique ASIN number identifying the DVD, the price,
and sales rank of each DVD. Given that the sale of each DVD is not directly observable,
a power law is used to infer it from the sales rank data, so Qc = aR−φc , where Qc is
the estimated sale of an item c and Rc is the corresponding sales rank. The parameter
a does not affect the analysis, so it is normalized as a = 1. It is assumed φ = 1.7,
which is the number suggested by an experimental study on DVD sales on Amazon.

10 This quantitative exercise evaluates how well the Bertrand affi ne fee performs
under Cournot sellers. Assuming monopoly sellers is the most extreme alternative to
Bertrand competition, so it provides the most conservative results.

11 Note that because the sales of DVDs are inferred from data on sales ranks with
scale normalized, only the relative (but not the absolute) value of the platform profit
is meaningful for comparison.
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Table 1 Profitability of Different Types of Fees

Constant-elasticity demand Linear demand
Fee schedule Profit Profit gain Profit Profit gain

Fixed per-transaction fee 0.383 0.632
Per-trans. fee varying by good 0.457 17.7% 0.966 42.4%
Bertrand affi ne fee 0.537 16.3% 1.039 7.2%
Optimal affi ne fee 0.545 1.5% 1.041 0.3%
Optimal nonlinear fee 0.553 1.3% 1.043 0.1%
Total profit gain (%) 36.7% 50.0%

affi ne fee increases platform’s profit by 33.8 percent compared with us-
ing a fixed per-transaction fee, where 17.7 percent comes from price
discrimination and 16.3 percent comes from mitigating double mar-
ginalization. In the linear demand case, price discrimination’s effect
turns out higher than double marginalization: using the Bertrand affi ne
fee increases platform’s profit by 49.6 percent compared with using a
fixed per-transaction fee, where 42.4 percent comes from price discrim-
ination and 7.2 percent comes from mitigating double marginalization.

4. CONCLUSION

In this article, we review two alternative explanations for why platforms
use ad valorem fees: double marginalization versus price discrimination.
Using a generalized framework, we show that the two theories comple-
ment each other in explaining this pricing puzzle, and their relative
importance is quantified in a calibration exercise.

Our findings set the stage for normative analysis. Given that plat-
forms do not incur significant costs that vary with transaction prices,
there have been policy concerns regarding their use of ad valorem fees.
Using the framework discussed in this article, one could evaluate the
welfare consequences of regulating platforms’use of ad valorem fees. In
fact, Shy and Wang (2011) and Wang and Wright (forthcoming) have
shown that banning platforms’use of ad valorem fees tends to reduce
social welfare in the presence of double marginalization or price dis-
crimination. Therefore, caution ought to be taken when policymakers
consider intervening in platforms’use of ad valorem pricing.
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