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Computing Dynamic
Heterogeneous-Agent
Economies: Tracking the
Distribution

Grey Gordon

T
he evolution of prices in dynamic heterogeneous-agent economies
typically depends on the state of every agent, thereby requiring
that a distribution be a state variable. The contribution of this

paper is to introduce a method for computing equilibrium in these mod-
els by including an entire distribution if finite-dimensional– or a fine
approximation of it if infinite-dimensional– as a state variable. The
insight of Krusell and Smith (1997, 1998) is that this approach is not
necessary if a model features quasi-aggregation, the condition where
prices can be accurately forecasted using just a few state variables.
However, not all economies feature quasi-aggregation, and I show that
the method presented in this paper is capable of accurately computing
equilibrium in at least one of these: Huffman’s (1987) overlapping-
generations (OLG) economy paired with an extreme calibration used
in Krueger and Kubler (2004). Even when quasi-aggregation obtains,
including a distribution as a state variable may be desirable from a
conceptual or purely pragmatic perspective. I show that the method
accurately computes equilibrium in an economy of this type also: a ver-
sion of Krusell and Smith’s (1998) (KS) economy where households face
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occasionally binding constraints. The method is feasible for these two
economies with equilibrium for both computed in just a few minutes in
Matlab.1 As discussed momentarily, Smolyak’s (1963) sparse-grid in-
terpolation algorithm introduced to economics by Krueger and Kubler
(2004) makes this possible.

Smolyak’s algorithm is a projection method that uses collocation
on a very sparse grid.2 The algorithm approximates a function by inter-
polating its value at a set of predefined gridpoints (collocation points)
using weighted sums of polynomials. The fineness of the approximation
is controlled by using different “levels of approximation.”For the low-
est level of approximation, which is the only one used in this paper, the
number of gridpoints grows only linearly in dimension. More specifi-
cally, given a function of dimension d, Smolyak’s algorithm gives 2d+1
points that the function must be evaluated at in order to approximate
it. In contrast, linear interpolation or any tensor-product interpolation
method would require at least 2d points. To see the difference this
makes, consider that the distributions (and hence state spaces) used
in this paper have up to 200 elements: to approximate a function of
this dimension using linear interpolation would require more than 1048

trillion function evaluations compared with only 401 for Smolyak inter-
polation. Not only is the Smolyak algorithm computationally effi cient,
but Barthelmann, Novack, and Ritter (2000) prove the approximation
has nearly optimal error bounds for smooth functions.3 The disad-
vantage of Smolyak’s algorithm is that approximations to nonsmooth
functions may be quite poor.

The application of Smolyak’s algorithm presented in this paper
leverages the strengths of the Smolyak algorithm, computational ef-
ficiency and accuracy for smooth functions, while avoiding its main
weakness, poor approximation of nonsmooth functions. While many
heterogeneous-agent models feature policy functions that are kinked in
individual wealth or income and hence are not smooth, as long as they
are smooth in the aggregate state, they can be approximated well by
the Smolyak algorithm. This is accomplished through indexing policy
functions by individual states and constructing a Smolyak approxima-

1 Carroll’s (2006) endogenous gridpoints method is used to solve the household
problem. Value function iteration is also feasible, just slower and less accurate than
Carroll’s Euler-equation-based method.

2 For an excellent introduction to projection methods, including projection methods
that use collocation, the reader is referred to Judd (1998). For an accessible exposition
of the Smolyak algorithm, the reader is referred to Krueger, Kubler, and Malin (2011).
Section 1 of this paper also discusses the algorithm.

3 The error bounds depend not only on the number of times a function is continu-
ously differentiable, but also on how little curvature a function has. The term “smooth”
is used atypically here to cover both of these properties.
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tion to each indexed policy function. For example, given a capital
policy function k′(k, µ), where k is a household’s current capital hold-
ings and µ is a distribution of holdings across households, the Smolyak
approximation to k′(k, µ) would likely be poor if k′ were kinked in k.
However, if k′ is fairly smooth in µ for fixed k, then the indexed pol-
icy function k′k(µ) could be accurately approximated using Smolyak
interpolation.4 By indexing policies in this way, the resulting Smolyak
approximations may be accurate even if the policies are “not smooth.”
I refer to this approach as the Smolyak method.

Recognizing the computational challenge posed by solving a model
where the distribution was part of the state space, Krusell and Smith
(1997, 1998) found a clever way of circumventing it. By replacing the
distribution with a few aggregate statistics and assuming that house-
holds perceive prices to be functions of only these statistics (and the
aggregate shocks), a law of motion for them enables households to pre-
dict current and future prices and hence to optimize. Given optimal
household policies, it is then possible to check the accuracy of the per-
ceived prices and law of motion through simulation. If a small set of
statistics can be found that results in an accurate law of motion and ac-
curate price forecasts, then quasi-aggregation is said to obtain, in which
case it is hoped that the computed bounded-rationality equilibrium is
close to the equilibrium of the full-rationality model. Equilibrium has
typically been computed by guessing on a law of motion, solving the
household problem, simulating the economy, and updating the law of
motion using data from the simulation. I refer to this approach as the
KS method.

The Smolyak method has three advantages over the KS method.
First, the Smolyak method does not rely on quasi-aggregation, an equi-
librium property that is not known a priori. Second, there is no need
to simulate the economy to compute the solution. Not only can this
result in substantial time savings, but it also means the computed so-
lution is not a random variable. Third, for certain classes of models,
namely those where the distribution is finite-dimensional, the solution
can be regarded as a full rational-expectations equilibrium.5

While the Smolyak method has several advantages over the KS
method, this paper is in no way a critique of it. When the KS method
works, that is when quasi-aggregation obtains, it is extremely powerful.

4 Of course, approximating each function requires that the number of values k takes
on is finite. Section 2 discusses how to apply the Smolyak algorithm even if k takes on
an infinite number of values.

5 Even if the distribution has infinite dimension but is represented by a finite num-
ber of elements, as is the case when using the method of Ríos-Rull (1997), the solution
may be regarded as an approximate full rational-expectations equilibrium.
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Indeed, whereas the Smolyak method has gridpoints growing linearly
in the dimension of the underlying state space, the KS method’s grid-
points need not grow at all! Moreover, quasi-aggregation has obtained
in a wide variety of models. The KS method is robust, conceptually
simple, and easy to program, and so is a powerful tool.

Yet there are cases where the KS method does not work well. As
already mentioned, I present one such OLG economy that has a known
solution due to Huffman (1987) and calibration due to Krueger and
Kubler (2004) (KK).6 In the most extreme case, where there are only
three generations, a linear forecasting rule for the aggregate capital
stock results in an R2 statistic of 0.676 and a maximum percent error
of 3.17. In contrast, the Smolyak method’s forecast performs very well
resulting in an R2 statistic of 0.999 and a maximum percent error of
0.07. While the performance of the KS method could be improved by
adding more moments, here that would mean the distribution could be
completely summarized because only the oldest two generations have
positive capital holdings. Moreover, the Smolyak method is already
faster in this case than the KS method. The Euler-equation errors,
a measure of household optimization error, are similar across the two
models with the KS method better in terms of maximum errors and
the Smolyak method better in terms of average errors.

Even when the KS method does work well, the Smolyak method
may achieve a similar level of accuracy and possibly be even faster
to run. As for accuracy, in the modified Krusell and Smith (1998)
economy studied, I find the computed equilibria are virtually identical
across methods, both in terms of optimization errors and simulated
aggregate moments: the Euler-equation errors for the Smolyak method
(-2.22 maximum and -4.97 average) are slightly smaller than those of
the KS method (-1.89 maximum and -4.79 average), and the simulated
capital series are at most 0.28 percent apart. As for speed, the KS
method will typically be faster. However, this depends on the cost of
household optimization relative to the cost of simulation. In the KS
economy, the former cost dominates and the Smolyak method takes
6.4 minutes compared with 3.3 minutes for the KS method. However,
in the OLG economy, the latter cost dominates when the number of
generations is less than fifty, making the Smolyak method faster.7

6 A more realistic example where quasi-aggregation does not obtain comes from the
equity-premium literature. Chien, Cole, and Lustig (2009) find that including even five
moments of the distribution results in an R2 of only 0.50 to 0.75 when forecasting the
pricing kernel (cf. Table 2 of their paper).

7 Parallelization of the household problem, which was not used, could shift this bal-
ance substantially in favor of the Smolyak method. Value function iteration in particular
is known to parallelize well (see Aldrich et al. 2011).
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The Smolyak method may also be more intuitive than the KS
method for certain classes of models. For instance, dynamic models
of voting do not typically have a natural “suffi cient statistic”represen-
tation.8 Instead, researchers have typically used coarse histograms to
summarize the distribution, as is done in Krusell and Ríos-Rull (1999).
While there is usually some way of approximating the aggregate state
space with just a few statistics, the Smolyak method provides an alter-
native that may be both feasible and accurate, as it is in two non-trivial
economies.

Since the seminal papers of Krusell and Smith (1997, 1998), many
methods have been developed to solve dynamic heterogeneous-agent
models. For a thorough review of current methods, the reader is re-
ferred to the January 2010 special issue of the Journal of Economic
Dynamics and Control “Computational Suite of Models with Hetero-
geneous Agents: Incomplete Markets and Aggregate Uncertainty”(vol-
ume 34, issue 1), the comparison paper Terry (2017), and Childers
(2018). I highlight a few of these that are most closely related to
the Smolyak method. The first approach is the “backward induction”
method of Reiter (2010). As in the KS method, the aggregate state
space is a small set of statistics. A distinguishing aspect of his ap-
proach is that these statistics map into a specific “proxy”distribution
that agents use to make forecasts. A qualitatively similar approach is
due to Algan, Allais, and den Haan (2010): like Reiter (2010), they link
a few moments to a specific distribution but do so in a different way.
A third approach is due to den Haan and Rendahl (2010). Roughly
speaking, they construct an approximation to the true policy function
that results in exact aggregation. While these methods have many mer-
its, they place special structure on either the distribution (in the case
of Reiter 2010 and Algan et al. 2010) or on the policy functions (in the
case of den Haan and Rendahl 2010) to construct a law of motion. The
Smolyak method does neither of these.

In the same OLG economy studied here, Krueger and Kubler (2004)
use Smolyak interpolation to solve for a full rational-expectations equi-
librium with a large state space. Their approach differs from the one
I present because they make no distinction between individual and ag-
gregate states.9 This means that the same approximation must be used

8 An exception to this is Azzimonti, de Francisco, and Krusell (2006), where the
mean and median of wealth are proven to be suffi cient statistics.

9 For KK, the state space is a distribution of capital holdings, k, and a particular
generation’s capital holdings is just “read off” this distribution. However, by expand-
ing the state space to (k,k), where k is a particular generation’s capital holdings, it
is possible to use a fine approximation for the individual state k and a coarse approx-
imation for the aggregate state k. Essentially this separates the role of prices, which
are determined from k, from the role of individual wealth, which is proportional to k.
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for both, and so a higher-order Smolyak approximation (one that grows
quadratically or cubically in dimension) is required to achieve suffi cient
accuracy. Consequently, their method can only handle economies with
relatively small state-space dimensions.10

Smolyak interpolation is not the only method that could be used
to include the distribution as a state variable. In particular, the re-
cently developed cluster-grid projection method of Judd, Maliar, and
Maliar (2010) is capable of handling problems of very large dimension.
Relative to Smolyak interpolation, their method provides greater flexi-
bility in terms of where gridpoints are placed and which basis functions
are used. This comes at the cost of using weakly more gridpoints else
equal.11 Whether the cluster-grid projection method provides a feasi-
ble and accurate alternative to Smolyak interpolation in this context is
left as a question for future research.

This paper is organized as follows. Section 1 describes the Smolyak
algorithm. Section 2 discusses the Smolyak method, i.e., the application
of the Smolyak algorithm used to approximate equilibrium. Section
3 presents the OLG and KS models and their calibrations. Section
4 discusses implementation details specific to the models. Section 5
analyzes the performance of the Smolyak and KS methods. Section 6
concludes. The appendix examines alternative implementations of the
Smolyak method.

1. THE SMOLYAK ALGORITHM

This section describes how functions can be approximated using the
Smolyak algorithm. To distinguish the algorithm from its application
to approximating equilibrium, the latter is referred to as the Smolyak
method.

Let f be an arbitrary function mapping Rd to R with typical ele-
ment x. The Smolyak algorithm is best described in three steps, which
I present as a “black box.” See Krueger, Kubler, and Malin (2011)

While in equilibrium, k must be consistent with k. This only matters when simulating
the economy and is trivial to enforce.

10 KK report that the Euler-equation errors and computation times increase rapidly
in the number of generations. They conclude their algorithm can only be applied if the
number of generations is less than thirty (p. 19). The Smolyak method presented in
this paper can easily handle one hundred generations, and the maximum errors appear
to asymptotically approach −2.46 (roughly a one-dollar mistake for every $300 spent).
See Table 4 of this paper.

11 Judd et al. (2010) find the method works best (both in terms of accuracy and
numerical stability) when the number of gridpoints is larger than the number of basis
functions. The authors argue that a 20 percent increase in the number of points (relative
to collocation that has the fewest possible number) has a “sizable effect on accuracy”
(p. 30).
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(KKM) for a careful exposition of all the necessary steps. The code
provided is organized similarly to the description given here.12 Atten-
tion is restricted to the lowest level of approximation.13

Step 1 — Set Up

Fix bounds x and x̄ in Rd on the state space such that x < x̄. These
bounds define a hypercube. The Smolyak algorithm then provides n :=
2d+1 collocation points {xi}ni=1 within this hypercube. The advantage
of the Smolyak algorithm lies in the construction of these points, whose
number grows only linearly in dimension.

Step 2 — Polynomial Construction

Evaluate f at each of the n collocation points. The Smolyak algorithm
then provides polynomial coeffi cients θ. The coeffi cients θ implicitly
define an approximating polynomial f̂ .

Step 3 — Polynomial Evaluation

Given coeffi cients θ, the Smolyak algorithm provides a way to evaluate
f̂ at arbitrary x (inside or outside of the hypercube).

The collocation points and interpolating polynomial are constructed
in such a way that the following conditions are guaranteed:

1. f̂ agrees with f at each collocation point, i.e. f̂(xi) = f(xi) for
all i ∈ {1, . . . , n}.

2. If f is a linear combination of the polynomials x2
j , xj , and 1 for

j ∈ {1, . . . , d}, then f̂ agrees with f everywhere in the hyper-
cube.14

3. If f is not perfectly reproduced but is at least continuous, then
the polynomial f̂ is an almost optimal approximation in a certain

12 The code is available at sites.google.com/site/greygordon. There are several al-
ternatives to my code. In particular “spinterp” is a free Matlab sparse-grid interpolation
toolbox available at www.ians.uni-stuttgart.de/spinterp/. This toolbox has more features
than what I provide. Additionally, KKM provide Fortran routines.

13 This is the only one that’s feasible for very large distributions. However, for
small- to medium-sized distributions, a higher level of approximation may be feasible.
It is easy to try a higher level of approximation when using the provided code.

14 Unfortunately, there are no cross terms for this level of approximation. However,
this does not prevent obtaining an accurate solution for the two nontrivial economies
considered in this paper.
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sense.15 In general, the less curvature f has, the better f̂ will be
as an approximation.

For additional details on the algorithm and its properties, the in-
terested reader is referred to KKM and Barthelmann et al. (2000).

2. THE SMOLYAK METHOD

This section describes the Smolyak method, that is, the application of
the Smolyak algorithm to approximating equilibrium. First, a typical
definition of equilibrium is redefined as a set of functions of only the
aggregate state. Second, the algorithm is used to approximate these
functions.

Redefining Equilibrium

Let f represent a typical policy function, value function, price function,
or law of motion. Without loss of generality, assume that f is a function
of some “individual”state x ∈ X and an “aggregate”state ω ∈ Ω that
is common across functions.16 For notational convenience, also assume
X is shared by all functions and is non-empty. A typical definition of
equilibrium is then a possibly uncountable collection of functions

{f(x;ω)} (1)

that satisfy conditions that are not explicitly stated, such as optimality,
budget balance, market clearing, and consistency of a law of motion.
Consider a new definition of equilibrium comprised of indexed functions

F := {fx(ω)|fx(ω) = f(x;ω)∀x ∈ X,ω ∈ Ω} (2)

that satisfy implicitly the same conditions as before. Now the original
equilibrium has been represented as a (large) collection of functions of
only the aggregate state.

A worked example

To fix ideas, consider the following worked example. Suppose there
are two agents i = 1, 2 in the economy, each with some bonds b, and

15 Barthelmann et al. (2000) show it is not the best (in the sense of minimizing
the sup norm) interpolating polynomial, but it is close to it in that its error bounds are
the same up to a logarithmic factor in the number of collocation points. See Theorem
2 and Remark 4 in their paper.

16 Note that correspondences can be treated as a possibly uncountable collection of
functions. Also note that if a function does not depend on the aggregate state, it can
just be regarded as a trivial function of the aggregate state.
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the budget constraint c+ q(ω)b′ = b, where the equilibrium bond price
q depends on the distribution of wealth ω. In this simple case, we
can literally track the exact asset holdings of each agent, ω = (b1, b2),
but this will not be the case in the more complicated KS model. The
bond is in zero net supply, so the equilibrium price q(ω) is such that
total demand for the bond is zero. In choosing optimal bonds and
consumption, the agents must know not only what the price is today,
given by q(ω), but also the price at every point in the future. This is
done by assuming a law of motion Γ that maps the current aggregate
state to the next period aggregate state: ω′ = Γ(ω). With that in
hand, prices in one period will be q(Γ(ω)), prices in two periods will
be q(Γ(Γ(ω))), and so on. Supposing flow utility is log(c) and the
time discount factor is β, optimality requires the consumption policy
function c(b;ω) and savings policy g(b;ω) satisfy the budget constraint
and a Euler equation.17

Equilibrium can be stated as follows. A recursive competitive equi-
librium is a price q(ω) and consumption and savings policies, c(b;ω)
and g(b;ω), such that all the following hold:

c(b;ω) + q(ω)g(b;ω) = b ∀b, ω (BC)

1

c(b;ω)
q(ω) = β

1

c(g(b;ω); Γ(ω))
∀b, ω (EE)

0 =
∑
i

g(ωi;ω) ∀ω (MC)

(g(ω1;ω), g(ω2;ω)) = Γ(ω) ∀ω (LOM).

(3)

Here, ωi means the ith component of ω, which is the bond holdings of
agent i. When BC and EE hold, the policy functions solve the house-
hold problem. When MC holds, market clearing obtains. And when
LOM holds, the law of motion is consistent with individual policies.

To rewrite equilibrium in terms of indexed functions, we define– for
every b– functions cb(ω) = c(b;ω) and gb(ω) = g(b;ω). Then we write

cb(ω) + q(ω)gb(ω) = b ∀ω (BCb)

1

cb(ω)
q(ω) = β

1

cgb(ω)(Γ(ω))
∀ω (EEb)

0 =
∑
i

gωi(ω) ∀ω (MC)

(gω1(ω), gω2(ω)) = Γ(ω) ∀ω (LOM),

(4)

where now instead of one BC and one EE equilibrium condition, we
have as many BC and EE conditions as there are b values.

17 A transversality condition or no-Ponzi condition is also required.
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Applying the Smolyak Algorithm

With equilibrium redefined, it is now straightforward to approximate
it using the Smolyak algorithm. First consider the easiest case where
Ω is a subset of Rd for some d <∞ and X is a finite set.

1. Fix bounds ω and ω̄ on the aggregate state space such that ω < ω̄.

2. Use the Smolyak algorithm to generate collocation points Ωc :=
{ωi}ni=1, where n = 2d+ 1.

3. Make a guess on fx(ω) for all x ∈ X and for each ω ∈ Ωc for
each fx ∈ F . Alternatively, make a guess on only a subset of F ,
but a subset that is suffi cient to construct all the other functions
through equilibrium conditions.18

4. Use the Smolyak algorithm to construct approximations f̂x(ω).
If the guesses were made for a subset of F , then approximations
will only be explicitly constructed for this subset with the other
functions approximated implicitly.

5. Determine whether the approximated functions nearly satisfy all
the equilibrium conditions. If they do, stop. If they do not, pro-
ceed from step (3) with new guesses. Alternatively, change the
bounds and proceed from (1), explicitly approximate other func-
tions in (3) and (4), or pursue different definitions of equilibrium
functions or the aggregate state space (e.g., using logs instead of
levels).19

While in abstract this is complicated, the process is simple. Basically,
guess on function values at the collocation points, construct Smolyak
approximations, and check whether the approximated functions consti-
tute an approximate equilibrium.

The preceding algorithm assumed that X was a finite set and that
Ω had finite dimension. If X is not a finite set, then f(x;ω) for fixed
ω must be approximated by its values in a finite set X̃. This set will
typically just be the nodes used for an interpolation, projection, or
quadrature method. If ω ∈ Ω has infinite dimension, then it must be
approximated using a vector ω̃ in a subset Ω̃ of Rd for some d < ∞.
If ω is a distribution, then a natural way to accomplish this is with
the method of either Ríos-Rull (1997) or Young (2010).20 If ω is not a

18 For instance, one could explicitly approximate consumption and price functions
with the savings function being given implicitly through the budget constraint.

19 One could also check whether a higher level of approximation is feasible.
20 These methods handle distributions of the type µ(a, s), where a ∈ [a, ā] and

s ∈ S, where S is a finite set. If S is infinite, it must be discretized.
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distribution, then some other method must be used, which will depend
on the application. Using X̃ and Ω̃ in place of X and Ω, the algorithm
above can then be applied.

The worked example continued

What does this look like in practice? Reconsider the worked example.
In this case, the set X is all possible bond values– which is R– and
hence infinite. Because of this, some interpolation or projection scheme
has to be used for the individual state b, not just the aggregate state
ω. For simplicity, suppose one wanted to represent c and g by a linear
interpolant in b conditional on ω. To be extra simple, suppose we only
had two interpolation notes, b = b1 and b = b2 with b1 < b2. Now take
X̃ as the interpolation nodes, X̃ = {b1, b2}.

To apply the Smolyak method, step 1 requires the choice of bounds
ω and ω. Here, those might naturally be ω = (b1, b1) and ω = (b2, b2).
With those in place, step 2 of the method produces collocation points
Ωc. Then, in step 3, for each ω ∈ Ωc, one has to supply a guess
on cb1(ω), cb2(ω), gb1(ω), gb2(ω), and q(ω). This is five numbers
for each ω, and since the dimensionality of ω is two in this exam-
ple, there are n = 5 (since n = 2d + 1) values of ω in Ωc. Con-
sequently, the guess on the approximate equilibrium functions can be
summarized by a length 25 vector x. Specifically, the 25 values in x are
{cb1(ω), cb2(ω), gb1(ω), gb2(ω), q(ω)|ω ∈ Ωc}. Then with x, the Smolyak
method produces approximations {ĉbi(·), ĝbi(·), q̂(·)|i ∈ {1, 2}} in step
4.

At this point, if b had only been allowed to reside in a finite set, one
would immediately check the equilibrium conditions in (4). Here, with
the added complication of b allowed to be any R value, in general one
must take the functions of aggregate states ω for each individual state
b1, b2, and construct the policy and price functions for any combination
of (b, ω) by applying the linearity in b:

c(b;ω) = (1− b− b1

b2 − b1
)ĉb1(ω) +

b− b1

b2 − b1
ĉb2(ω)

g(b;ω) = (1− b− b1

b2 − b1
)ĝb1(ω) +

b− b1

b2 − b1
ĝb2(ω)

q(ω) = q̂(ω)
Given these policy and price functions, the equilibrium conditions

in (3) can be checked and the guess x modified until the error is suffi -
ciently small or cannot be made smaller. However, a natural choice for
minimizing the error would be to make it zero at all twenty-five values
of (b, ω) ∈ X̃ × Ωc, i.e, to use collocation for both the individual and
aggregate states. This is equivalent to forcing the equilibrium condi-
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tions in (4)– BCb1 , BCb2 , EEb1 , EEb2 ,MC,LOM– to hold exactly at
each of the five ω ∈ Ωc.

3. MODELS AND CALIBRATIONS

This section describes the OLG and KS models and calibrations. In the
case of the OLG economy, an analytic solution is also given. The OLG
model is set up to be qualitatively similar to the KS model so that
both feature capital, inelastic labor supply, production, total factor
productivity shocks, and log utility. The model calibrations are similar
in several respects but differ drastically with respect to time discounting
and depreciation.

OLG Economy

The OLG economy is very similar to Krueger and Kubler (2004) and
based on Huffman (1987). The model is set up in sequential rather
than recursive form to simplify notation.

A neoclassical production firm operates a production technology
ztF (Kt, Nt) = ztK

α
t N

1−α
t with α ∈ (0, 1) that uses as inputs capi-

tal Kt rented at rate rt and labor Nt hired at wage wt and is sub-
ject to a productivity shock zt that evolves according to a Markov
chain. Capital depreciates at a stochastic rate δt that also evolves
according to a Markov chain. The firm takes prices as given and so
the equilibrium rental and wage rates are rt = ztα(Kt/Nt)

α−1 and
wt = zt(1− α)(Kt/Nt)

α, respectively.
Households consist of generations 1 through T < ∞ with no in-

tragenerational heterogeneity. The measure of households is constant
across generations with the total measure of households normalized to
T . It is assumed, and this is key for tractability, that households have
log utility, a strictly positive labor endowment in their first period of
life, and no labor endowment for the rest of their life. The time t labor
endowment of the youngest generation denoted l1t and normalized to T
is supplied inelastically resulting in total labor supply Nt = 1(= l1t /T ).
The time t labor endowment for generation i in 2, . . . , T is denoted
lit and is equal to zero. At time t = 0, households are endowed with
capital holdings denoted by a vector k0 = (k1

0, k
2
0, . . . , k

T
0 ), where kit

denotes the capital holdings of generation i at time t. The resulting
time 0 aggregate capital endowment is K0 =

∑
k0/T . Assume that

newborn households have zero capital holdings.
Households maximize expected discounted lifetime utility subject

to a budget constraint, nonnegative consumption, and a natural bor-
rowing limit (equal to zero). The budget constraint at time t is given
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by

cit + ki+1
t+1 = (1 + rt − δt)kit + wtl

i
t (5)

for generations i ∈ {1, . . . , T − 1} and

cit = (1 + rt − δt)kit + wtl
i
t (6)

for generation i = T . Utility of a household beginning life in period t
is given by

t

T∑
j=1

βj−1 log(cjt+j−1), (7)

where β ∈ (0, 1) is the time discount factor.
The necessary and suffi cient first-order condition of an age i < T

household at time t is given by

1/cit = βEt(1 + rt+1 − δt+1)/ci+1
t+1. (8)

Using backward induction, the solution to the household problem is
shown to be

ki+1
t+1 = γi(1 + rt − δt)kit

k2
t+1 = γ1wtl

1
t

γi =
β
∑T−1−i

j=0 βj∑T−i
j=0 β

j

(9)

for all i in {1, . . . , T − 1} and for all t. Note that γi is the marginal
propensity of generation i to save and is constant.

With this solution to the household problem, it is straightforward
to calculate the law of motion. Let the time t distribution of capital
holdings across generations be given by the vector kt = (0, k2

t , . . . , k
T
t ).

Then the time t capital stock is Kt =
∑

kt/T , and since total labor
supply equals one, the marginal product of capital is rt = ztαK

α−1
t

and the marginal product of labor is wt = zt(1−α)Kα
t . Using (9), the

time t+ 1 distribution of capital holdings is shown to be

kt+1 = (0, γ1wtl
1
t , γ

2k2
t (1 + rt − δt), . . . , γT−1kT−1

t (1 + rt − δt)), (10)

which is a correspondence of only the time t aggregate shocks (δt, zt)
and distribution kt. This law of motion will be used to check the
forecast accuracy of both the KS and Smolyak methods. Equilibrium
is given by the capital policies in (9), the law of motion in (10), and
competitive factor prices. Goods market clearing is ensured by Walras’s
law.
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KS Economy

The KS economy used is a slightly modified version of the original
KS (1998) model and is laid out in den Haan, Judd, and Juillard
(2010) (dHJJ). The only difference between the two is dHJJ add unem-
ployment insurance so that the zero-borrowing constraint is sometimes
binding. The model is set up in recursive form to save on notation.

A neoclassical production firm operates a production technology
zF (K,N) = zKαN1−α with α ∈ (0, 1) that uses as input capital
K rented at rate r and labor N hired at wage w and is subject to
a productivity shock z. The productivity shock z takes on one of
two values z ∈ {g, b} and evolves according to a Markov chain Πzz′ .
Capital depreciates at a constant rate δ. Perfect competition ensures
r = zα(K/N)α−1 and w = z(1− α)(K/N)α.

Households have stochastic employment status s taking on one of
two values s ∈ {1, 0} with s = 1 representing employment and s = 0
representing unemployment. Employed workers receive a labor endow-
ment ē that they supply inelastically to the firm for labor income wē.
Unemployed workers receive unemployment insurance equal to wū from
the government. Unemployment insurance is funded by the government
which levies labor income tax τ on employed workers and runs a bal-
anced budget.

Employment status evolves with the productivity shock according
to a Markov chain Πss′,zz′ . The (exogenous) stock of unemployed work-
ers U is assumed to be a function of only the current shock and so is
denoted Uz.21 The employment process implies total labor supply is
known as a function of z with Nz = (1 − Uz)ē. For the government
budget to balance, τ must be a function of z with τ z = ū

ē
Uz

(1−Uz) . House-
holds seek to maximize the expected discounted lifetime log-utility of
consumption discounted at rate β.

The problem of the household is

V (k, s; z, µ) = max
c,k′

log(c) + β
∑
s′z′

Πss′,zz′V (k′, s′; z′, µ′) (11)

subject to

c+ k′ = (1 + r − δ)k + swē(1− τ z) + (1− s)wū
c ≥ 0

k′ ∈ [0, k̄]

µ′ = Γzz′(µ),

(12)

21 For ease of exposition, I set up the model as being “initialized” from a long-run
distribution. In general, U as well as N and τ must be determined from the distribution.
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Table 1 OLG Calibration

Parameter Value Parameter Value

β 0.70 z [1.05, 1.05, 0.95, 0.95]
α 0.36 Πδz 1/4
δ [0.9, 0.5, 0.9, 0.5]

where r = r(z, µ) and w = w(z, µ), µ is a joint distribution of capital
holdings and employment status across households (giving K and N),
and k̄ is an exogenous upper bound on possible capital choices (chosen
large enough so as to not be binding in equilibrium). Equilibrium is
a collection of policy, value, and price functions c, k′, V, r, w, together
with a law of motion Γzz′ (for each z, z′) such that V , c, and k′ solve the
household problem taking r, w, and Γzz′ as given, factor prices r and w
are competitive, and the law of motion Γzz′ is consistent with individual
policies and exogenous transition probabilities. Goods market clearing
is ensured by Walras’s law. Unfortunately, there is no known solution
for this model.22

Calibration

For the OLG economy, I focus on the extreme calibration presented by
KK in which quasi-aggregation fails for small T . Depreciation takes on
one of two values δ ∈ {0.9, 0.5}, and the productivity shock takes on
one of two values z ∈ {1.05, 0.95}. Both of these are iid and the four
combinations of δ and z occur with equal probability Πδz = 1/4. The
discount factor β is taken to be 0.7. The parameters are summarized
in Table 1.

For the KS economy, the calibration is the same as in dHJJ, which is
only a slight modification of the original KS calibration. The calibra-
tion matches select business-cycle statistics at a quarterly frequency.
Relative to the OLG calibration, households are much more patient
with a discount factor of 0.99, capital depreciates much more slowly at
0.025, the productivity shocks are somewhat smaller at 1.01 and 0.99,
and the productivity shock is not iid but has persistence Πgg = Πbb =

22 Interestingly though, there is a solution for a “nearby” economy. If all households
are unemployed, there is no unemployment insurance, and the production technology is
zKα, then the equilibrium capital policy function is k′ = β(1 + r − δ)k. This is the
limiting case of the Huffman (1987) example.
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Table 2 KS Calibration

Parameter Value Parameter Value

β .99 Π00,gg
1
3
Πgg

α .36 Π00,bb
3
5
Πbb

δ .025 Π00,gb
5
4

Π00,bb

Πbb
Πgb

ē, ū 10/9, .15 Π00,bg
3
4

Π00,gg

Πgg
Πbg

Ug, Ub .04, .1 Π10,zz′ (Uz′ − Uz
Π00,zz′

Πzz′
)/(1− Uz)Πzz′

g, b 1.01, .99 Π01,zz′ Πzz′ −Π00,zz′

Πgg,Πbb 7/8, 7/8 Π11,zz′ Πzz′ −Π10,zz′

7/8. All the parameters, including the employment process parameters,
are listed in Table 2.

4. IMPLEMENTATION

This section discusses implementation issues specific to solving the
OLG and KS economies using both the Smolyak and KS methods. In
abstract, the procedure for computing equilibrium is the same across
both economies and both methods. Fixing a law of motion, backward
induction along with Carroll’s (2006) endogenous gridpoints method is
used to solve the household problem. The household capital policies are
then used to update the law of motion. This procedure is repeated un-
til the change in the consumption policy and law of motion is less than
10−7 in levels. The rest of this section discusses the solution procedures
in more detail.

Specific Implementation for OLG

There are several implementation choices to be made when using the
Smolyak method to compute the OLG economy. One pertains to repre-
senting the distribution of capital holdings. In particular, the distribu-
tion can be represented, as in the theoretical model, by using the levels
of capital holdings across agents, k = (0, k2, . . . , kT ). However, one
can instead use (K, s), where s represents the capital-holding shares
s = k/

∑
k. Of course, it is possible to switch between the state spaces

using k = sKT , but the two state spaces will result in different nu-
merical solutions. It was found that using (K, s) produced less error
in both the forecasted capital stock and in the Euler equations, and so
this is adopted as the benchmark method. The appendix presents accu-
racy numbers for the other state-space representation. The state-space
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bounds were taken to be ±20 percent of the (nonstochastic) steady-
state capital stock and ±40 percent of the steady-state share distribu-
tion. In general, it is a good idea to place state-space bounds as ±X
percent of the steady-state values as this will cluster the collocation
points around the steady-state values.

Another implementation choice applies only if using shares in the
state space and regards handling of the restriction

∑
s = 1. The

Smolyak algorithm is not designed to handle this case because it gives
collocation points {(K, s)} ⊂ RT+1 that in general will not satisfy this
restriction. The method I adopt is to use a mapping from the hypercube
[0, 1]T into the unit-simplex ∆(T − 1) ⊂ [0, 1]T . In particular, given a
collocation point (K, s̃) with

∑
s̃ 6= 1, the mapping s = s̃/

∑
s̃ is used

to recover (K, s) with
∑

s = 1. For the reverse mapping, s̃ = s is used.
The appendix explores a different mapping that is more uniform in a
probabilistic sense but produces a worse approximation.

A final implementation choice regards simulating the economy. One
can construct an approximation to the law of motion and use it to
find the distribution of capital in the next period. Alternatively, one
can construct approximations to the capital policy functions and use
these to find the distribution. In solving the model, this is a nonissue
because the two agree at the collocation points. It was found that
approximating the capital policies produced less error, and so this is
adopted in the benchmark. The appendix presents accuracy numbers
for the other method.

To solve for equilibrium using the KS method, the law was up-
dated by nonstochastically simulating the economy for 5,000 periods,
discarding the first 1,000 periods, and using least squares regression
to obtain a new law of motion (no relaxation was used).23 The grid
for aggregate capital was set to cover ±60 percent of the steady-state
capital stock with eleven evenly spaced points. A linear, rather than
log-linear, functional form for the law of motion was assumed, but the
two result in nearly identical approximations.24

Specific Implementation for KS

To solve for equilibrium in the KS economy using the Smolyak method,
the following implementation was used. After choosing a set K of cap-
ital gridpoints, the infinite-dimensional distribution µ(k, s) over k ∈

23 No relaxation was used for the Smolyak method either.
24 The Smolyak method’s law of motion was also represented using levels, so this

makes for a straightforward comparison. In Section 5, I argue no functional form will
result in quasi-aggregation for small T .
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[0, k̄], s ∈ {0, 1} was approximated by a discrete distribution µ̃(k, s)
over k ∈ K, s ∈ {0, 1} using the method of Young (2010). The cap-
ital grid was constructed using one hundred gridpoints resulting in a
distribution of dimension 200. Typically the population would be nor-
malized to unity implying the restriction

∑
µ̃(k, s) = 1 in which case

the collocation points would not all satisfy this restriction. However,
all that matters for prices is the capital-labor ratio, and so I did not
impose this.25 The bounds on the state space were taken to be ±100
percent of the steady-state distribution.26 Instead of iterating to con-
vergence on the household problem every time before updating the law,
it was found that iterating only ten times converged to arbitrary preci-
sion, did not require relaxation, and was fast (this process was repeated
until both the law of motion and household policies fully converged).

To solve for equilibrium using the KS method, the law was updated
by nonstochastically simulating the economy for 5,000 periods, discard-
ing the first 1,000 periods, and obtaining new coeffi cients through least
squares regression. The law was only updated after iterating to conver-
gence on the household problem. When updating the law, a relaxation
parameter of 0.5 was used because a looser value of 0.25 did not con-
verge. The grid for aggregate capital was set to cover ±30 percent
of the steady-state capital stock using eleven evenly spaced points. A
linear functional form for the law of motion was assumed.

5. PERFORMANCE

This section analyzes the performance of the Smolyak and KS methods
in computing the OLG and KS economies.

OLG Economy

To evaluate the accuracy of the Smolyak and KS solution methods for
the OLG economy, I focus on capital-stock forecast errors and Euler-
equation errors along a long simulated path. The path is simulated
using the true law of motion. The simulation length is set to 15,000
periods, and the first 1,000 periods are discarded.

25 Originally, the collocation points {µ̂} were mapped into the simplex using the
transformation µ̃ = µ̂/

∑
µ̂. However, it was found that not using this mapping resulted

in smaller Euler-equation errors and a more stable solution.
26 This isn’t entirely true as a small constant 10−6 was added to the upper bound

to ensure the hypercube had positive volume. Also, in general, a lower bound of zero
could cause problems, but this won’t be the case when the level of approximation is
one as it is here.
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Table 3 Error in the Law of Motion

Max % Error Minimal R2 Best Minimal R2

T KS Smolyak KS Smolyak Linear Log-Lin

3 3.17 0.07 .67568 .99940 .67587 .67635
6 1.03 0.27 .99505 .99987 .99520 .99766
10 1.05 0.65 .99784 .99982 .99792 .99982
25 1.04 0.85 .99807 .99981 .99816 .99984
50 1.04 0.85 .99807 .99980 .99816 .99984
100 1.04 0.85 .99807 .99980 .99816 .99984

To assess the accuracy of the approximate law of motion, the one-
step-ahead, capital-stock forecasts are compared with the realized val-
ues in several ways. One measure of the accuracy is given by the largest
forecast error |K̂ ′ −K ′|/K ′ observed during the simulation, where K̂ ′
is the forecasted value and K ′ the actual. Another measure is the R2

statistic, which indicates how much of the variation in K ′ is explained
by K̂ ′.27 As there is a separate approximate law of motion for each
(δ, z) pair, there are four R2 statistics, and the worst of these is re-
ferred to as “minimal R2.”For the KS method, an upper bound on the
minimal R2 value is found by running a linear regression ex post on the
simulated data. As a robustness check, a log-linear regression is also
run to calculate the best minimal R2 if a log-linear law of motion were
assumed for the KS method. The maximum error, minimal R2, and
best-possible minimal R2 values are reported in Table 3.

When the number of generations is small, the Smolyak method
performs much better than the KS method. The KS method produces
maximum errors as large as 3.17 percent and an R2 value as low as
0.676. In contrast, the Smolyak method’s maximum error is only 0.07
percent and its minimal R2 statistic is 0.999. That the Smolyak method
performs better in this case is confirmed visually in Figure 1, which
plots the capital-stock forecasts made by both the Smolyak and KS
methods with the true values.

While the Smolyak forecasts and true values are virtually indistin-
guishable, the KS forecasts deviate noticeably.

The reason quasi-aggregation fails to obtain for small T is clear.
When there are only three generations, marginal propensities to save
(which are roughly 0.54, 0.41, and 0 for generations 1, 2, and 3, respec-
tively) differ substantially. Moreover, a generation’s share of total cap-

27 Formally, this is computed as R2 = 1 −
∑

(K̂′ − K′2/
∑

(K′ − K̄′2, where the
summation is over a particular sample and K̄′ is the sample mean of the next period’s
capital stock.
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Figure 1 Capital-Stock Forecast Comparison for T = 3

ital and labor income fluctuates greatly because of large depreciation
shocks that only affect capital-rich generations. When the youngest
generation holds most of the income, the aggregate propensity to save
is roughly 0.54. If instead the middle-aged or oldest generation holds
most of the income, the aggregate propensity to save is closer to 0.41 or
0, respectively. Hence, what matters here is not just aggregate income
(given by the capital stock), but also the share of income held by each
generation, which varies substantially with the history of aggregate
shocks. As argued in KK, if either the marginal propensities to save
were similar or the distribution did not vary much, quasi-aggregation
would obtain.

Furthermore, this failure of quasi-aggregation for small T is not due
to the chosen functional form of the law of motion. This is made clear
in Figure 2, where a scatter plot of today versus tomorrow’s capital
stock is contrasted against the best linear rules (one for each pair of
shocks) one could have.
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Figure 2 Today Versus Tomorrow’s Capital Stock for T = 3

While a linear rule does not work well, this figure also demonstrates
that any forecast rule that is a function of today’s shocks and capital
stock will fail to produce a good fit because the capital-stock “clouds”
are stacked one on another.

For a larger number of generations, the KS and Smolyak methods
result in similar performance. For example, when there are one hundred
generations, the maximum observed error is 1.04 percent for the KS
method and 0.85 percent for the Smolyak method with minimal R2

values of 0.9981 for the KS method and 0.9998 for the Smolyak method.
The KS method’s performance noticeably improves as T is increased,
while the Smolyak method’s performance improves by one measure and
worsens by another.

The reason for the KS method’s improved performance is clear. In
the limiting economy, as T goes large, γi, the marginal propensity to
save of generation i, converges to β for any fixed i. Hence, nearly all
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households have nearly the same marginal propensity to save resulting
in quasi-aggregation. Since quasi-aggregation obtains, the KS method
performs well.

While quasi-aggregation obtains for large T , the Smolyak method’s
performance does not noticeably improve, in fact, it gets worse by one
measure. However, the advantage of the Smolyak method is that, by
keeping track of the entire distribution, its performance is not tied to
quasi-aggregation. Rather, the method’s performance hinges on the
polynomial structure of the law of motion, which does not fundamen-
tally change as T increases.

To test the accuracy of the household policy functions, both maxi-
mum and average Euler-equation errors are computed along the simu-
lated path. The errors are computed following Judd (1992) as

EEEit(ωt) = log10

∣∣∣∣∣1− u′−1(βEu′i+1
t+1 (ki+1

t+1(kit;ωt); ω̂t+1))R(ω̂t+1))

cit(k
i
t;ωt)

∣∣∣∣∣ ,
(13)

where R(ω̂t+1) = 1 + zt+1αK̂
α−1
t+1 − δt+1 and u(·) = log(·). For the

Smolyak method, ωt = (zt, δt,Kt, st), ω̂t+1 = (zt+1, δt+1, K̂t+1, ŝt+1),
and (K̂t+1, ŝt+1) is the aggregate-state in the next period, according
to the perceived law of motion. For the KS method, st and ŝt+1 are
simply dropped from the definition of ωt and ω̂t+1. The interpretation
of these errors, derived from Judd and Guu (1997), is that a one-dollar
mistake in optimization is made for every 10−EEE

i
t dollars spent. For

example, if EEEit is −3, then a one-dollar mistake is made for every
$1, 000 spent. Note that, as has typically been done in the literature,
the Euler errors are measured with respect to the perceived state in the
next period. In this sense, they isolate household optimization error
conditional on a law of motion from error in the law of motion.

Table 4 reports the maximum and average errors (across both gener-
ations and time). For the most part, the optimization errors of the two
methods are comparable. Whereas the KS method results in smaller
maximum errors, the Smolyak method results in smaller average errors.
For large T , the maximum percent errors for the Smolyak method are
noticeably larger than those for the KS method and result in a one-
dollar mistake for every $290 spent compared with $830 for the KS
method. The performance of both methods tends to decrease as T
increases but appears to level off for T ≥ 25.

Despite using a fairly coarse approximation for the aggregate state,
the Smolyak method produces both optimization errors and errors in
the law of motion that are quite small. Having an analytic solution
makes it possible to see why this is the case. The chosen implementa-
tion of the Smolyak method effectively constructs an approximation of
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Table 4 Euler-Equation Errors in the OLG Economy

Max Euler Errors Avg Euler Errors
T KS Smolyak KS Smolyak

3 -3.15 -3.28 -4.17 -4.42
6 -3.08 -2.99 -3.98 -4.15
10 -2.91 -2.65 -3.81 -4.18
25 -2.92 -2.46 -3.82 -4.14
50 -2.92 -2.46 -3.82 -4.13
100 -2.92 -2.46 -3.82 -4.13

the function

ki+1,ki,z,δ(K, s) = γi(1 + zαKα−1 − δ)ki (14)

for each i > 1, ki in a grid, and (z, δ) combination (i = 1 is similar).
Because α is in (0, 1), this function is not a polynomial. Hence, away
from the collocation points, the approximation is not perfect. How-
ever, note that this is a function of only one variable, K, and that
the polynomial basis used has terms K and K2. Because of this, the
approximation is quite good for any generation and any level of capital
holdings.

It is also possible to see what indexing the policy functions and
separating the individual from the aggregate state accomplishes. If
the policy function were not indexed, then the Smolyak approximation
would be applied to

ki+1,z,δ(ki;K, s) = γi(1 + zαKα−1 − δ)ki, (15)

which has a term ki and a cross term kiKα−1. To capture the impact
of this cross term, one would need a finer Smolyak approximation. If
in addition the aggregate and individual states were combined, the
Smolyak approximation would be applied to

ki+1,z,δ(K, s) = γi(1 + zαKα−1 − δ)siKT, (16)

which has cross terms siK and siK
α. This also would require a higher

level of approximation. Indexing policy functions and separating the
individual and aggregate states makes a fairly coarse Smolyak approx-
imation accurate.

Now the running times of the two methods are briefly considered. It
is important to remember that while the Smolyak method’s aggregate
state space grows linearly in T , the KS method’s aggregate state space
does not grow at all. Hence, for large T, it is guaranteed that the KS
method will be faster. However, for small T , the Smolyak method may
be faster because it doesn’t need to simulate the economy in order to
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Table 5 Running Times in Minutes for the OLG Economy

T KS Smolyak

3 0.12 0.004
6 0.20 0.02
10 0.25 0.05
25 0.59 0.29
50 1.21 1.18
100 2.29 4.97

update the law of motion. Table 5 reports the running times. For
T < 50, the Smolyak method is faster than the KS method; for T = 50
the times are roughly even, and for T > 50 the KS method is faster.
Note that while computation time for the KS method grows linearly
(roughly) in the number of generations, it grows quadratically for the
Smolyak method.

KS Economy

Because the KS economy does not have an analytic solution, it is dif-
ficult to assess the accuracy of the KS and Smolyak methods. This
is especially true for the Smolyak method. To test the law of motion,
researchers have typically compared simulated series generated using
only household policies with series generated using an approximate law
of motion. This is not really applicable to the Smolyak method: if the
law of motion is not explicitly approximated but rather given implic-
itly by the policy functions, then there is no disagreement between the
series. In other words, the Smolyak method has an R2 of 1 in this case.
However, that does not mean there is no error in the law of motion
because interpolating the policies is not typically an error-free process.

In light of this, the accuracy of the Smolyak method is assessed in
three ways. The first is to compute Euler-equation errors with respect
to the realized aggregate state in the next period rather than the per-
ceived aggregate state. This measure gives an idea of how much error
in the law of motion translates into error in household optimization.
The second is to compare the capital-stock series from the Smolyak
and KS simulations. In addition to the convincing argument made by
KS that their computed equilibrium must be close to the true equi-
librium, many different solution methods have computed nearly the
same equilibrium as the KS method (den Haan 2010). Hence, the KS
method’s solution can be used as an accuracy check. The third and fi-
nal test is the comparison of a simulated series generated by explicitly
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Table 6 Euler-Equation Errors in the KS Economy

Max Euler Errors Avg Euler Errors
KS Smolyak KS Smolyak

-1.89 -2.22 -4.79 -4.97

approximating the capital policies with a simulated series generated by
explicitly approximating the law of motion. Because it is possible to
simulate the economy with either approximation, this may be helpful in
assessing how well the Smolyak method is working.28 These three tests
are conducted using a simulation length of 5,000 periods with the first
1,000 periods discarded. The accuracy of the KS method is assessed
with the first test and also the typical comparison of the forecasted and
realized capital-stock sequences.

First, Euler-equation errors are computed along the simulated path
and both the maximum and average errors are reported in Table 6. The
Euler errors are calculated analogously to (11) except that the rental
rate and consumption in the next period are found using the realized
next-period moment or distribution and the errors are only counted
if the capital choice is strictly positive.29 The errors for the Smolyak
method are slightly smaller in both maximum and average terms, but
in this measure, the KS and Smolyak methods are roughly equivalent.

Second, the capital sequence generated by the KS method is com-
pared with that of the Smolyak method. Table 7 reports the maximum
and average differences between the Smolyak and KS aggregate capital
series, and Figure 3 plots them. Visually, the series are almost indis-
tinguishable, although at times, the Smolyak series lies slightly below
the KS one. Over the entire simulation, the series exhibit a maximum
difference of only 0.28 percent and an average difference of 0.14 per-
cent. However, while this difference is small, it is systematic with the
average nonabsolute difference also being 0.14 percent (measured using
the Smolyak series subtracted from the KS series) confirming what was
noticed visually. As the KS method is likely very close to the truth,

28 This is not sure to be helpful, however, because the capital policies and law of
motion have different properties. For instance, typically the law of motion will vary with
the distribution even if the capital policy does not. In this case, it would be better to
approximate the capital policies and compute the law of motion indirectly.

29 When the capital choice equals zero, the no-borrowing constraint is almost cer-
tainly binding, in which case the Euler-equation error is not useful.
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Figure 3 Simulated Capital Sequence Comparison

Table 7 Simulated Capital Sequence Comparison

Max Abs (%) Mean Abs (%) Mean (%) (KS-Smolyak)

0.278 0.141 0.141

the proximity of these two series confirms the accuracy of the Smolyak
method for this economy.

Third and finally, the maximum and average capital-stock “fore-
cast errors”at one, twenty-five, and one hundred steps ahead are ex-
amined. As already mentioned, the errors for the Smolyak method are
not forecast errors in the typical sense, but rather the discrepancy in
capital-stock series constructed by two simulation methods. For the
KS method, I proceed as usual, comparing the forecasts made by the
perceived and actual law of motion. Table 8 reports the errors, which
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Table 8 Law of Motion Forecast Errors in the KS Economy

1-Step Forecast 25-Step Forecast 100-Step Forecast
KS Smolyak KS Smolyak KS Smolyak

R2 .999999 .999998 .999780 .999918 .999474 .999888
Max Abs (%) .0073 .0204 .1007 .1533 .1530 .1882
Avg Abs (%) .0021 .0026 .0346 .0454 .0554 .0769
Avg (%) -.0013 .0026 -.0211 .0454 -.0349 .0769

are clearly small for both methods: even one hundred steps ahead, the
capital-stock forecast is off by at most 0.18 percent for the Smolyak
and 0.15 percent for the KS method.

The KS method outperforms the Smolyak method in all measures
except the R2, but its performance tends to deteriorate faster as the
forecast length increases. Of note is the systematic bias in the Smolyak’s
forecasts as seen in the mean absolute errors being the same as the mean
errors. While the KS method is guaranteed to be correct on average
(because it makes unbiased forecasts by construction), the Smolyak
method is guaranteed to be correct only as the level of approximation
goes large. It appears, however, that the lowest level of approximation
produces small errors in the KS economy just as it does in the OLG
economy.

Since the Smolyak method places no restrictions on the functional
form of the law of motion and appears to be accurate, it is interest-
ing to ask whether the Smolyak-approximated economy exhibits quasi-
aggregation. I test this by running linear and log-linear regressions ex
post on the simulated capital stock series from the Smolyak method.
As expected, the fit is extremely good with all the R2 values exceed-
ing 0.999999. This verifies directly, inasmuch as the Smolyak solution
approximates the truth, that KS’s argument for quasi-aggregation was
indeed correct: only the mean matters for this model.

The running times of the two methods are now briefly considered.
While the KS method (paired with Carroll’s 2006 endogenous grid-
points method) is very fast at 3.25 minutes, the Smolyak method is
also quite fast at 6.37 minutes. The Smolyak method performs quite
well in this regard as it has 401 collocation points compared with the
KS method’s eleven moment gridpoints. Its comparative advantage lies
in avoiding the simulation step, where much of the computation time
is spent for the KS method.
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6. CONCLUSION

The Smolyak method is a promising technique for computing equilib-
rium in dynamic heterogeneous-agent economies.

While including a distribution as a state variable massively in-
creases the dimensionality of the state space, the Smolyak sparse-grid
interpolation algorithm makes this increase manageable. This tech-
nique developed in Smolyak (1963) and Barthelmann et al. (2000)
shows great promise for economic applications as Krueger and Kubler
(2004) first illustrated. The application of the Smolyak algorithm here
results not only in tractability, but also in very good accuracy. In the
KS economy, the Smolyak method produces errors similar to those of
the KS method. In the OLG economy, the Smolyak method performs
much better than the KS method when the number of generations is
small because it does not rely on quasi-aggregation which fails in this
case. Moreover, for models where the distribution is finite-dimensional,
as in the OLG model, the method can be regarded as solving for a full
rational-expectations equilibrium. In models where the distribution is
infinite-dimensional, as in the KS model, the method comes very close
to a full rational-expectations equilibrium.

Keeping track of the distribution does come at a cost: the Smolyak
method is not as easy to implement nor as fast as the KS method in
most cases. With regard to implementation, the code provided with
this paper is meant to reduce the programming costs as much as possi-
ble. With this code in hand, the Smolyak algorithm is not much more
complicated than any other interpolation scheme: values at a few pre-
defined points define an interpolating function. With regards to speed,
this paper has shown the Smolyak method need not be much slower
than the KS method. For models with larger aggregate state spaces or
where Carroll’s (2006) effi cient solution method cannot be used, par-
allelization (which has not been used in this paper) could prove very
helpful as the work by Aldrich et al. (2011) has shown.

While the application of the Smolyak algorithm here has been
to approximate full-rationality equilibrium as closely as possible, the
Smolyak algorithm could also be useful in solving for bounded-rationality
equilibrium quickly and accurately. While many methods could benefit
from the Smolyak algorithm, of particular promise is the explicit aggre-
gation technique of den Haan and Rendahl (2010). This method avoids
the simulation step of the KS method by explicitly aggregating “auxil-
iary”policy functions. In its most basic implementation, the auxiliary
policy functions are constructed to be linear in asset holdings but as
close as possible to the original policies. Because the auxiliary policies
are linear, they aggregate perfectly and the minimal aggregate state
space is average capital holdings for each type of agent. Having more
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types of agents or more curvature in the auxiliary policy functions re-
quires having more moments, but Smolyak interpolation is well-adapted
to handling this increase in aggregate moments. This pairing of den
Haan and Rendahl’s (2010) method with the Smolyak algorithm could
achieve some of the benefits of the Smolyak method (no simulation,
high accuracy) while being extremely effi cient. The exploration of this
idea is left for future research.
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APPENDIX

This appendix explores alternative implementations of the Smolyak
method in the context of the OLG economy (which has a known solu-
tion). Four different implementations are considered and their descrip-
tions are given below.

Sm1 — Benchmark Implementation

The state space uses shares s; the mapping from s̃ in the cube to
s in the simplex is s = s̃/

∑
s̃, and the reverse mapping is s̃ = s; the

distribution is forecasted using an approximated capital policy function
(not an approximate law of motion). Because of the loss in dimension
in mapping to the simplex, there are many reverse mappings into the
cube.30

Sm2 — Alternative Mapping

The state space uses shares s; the mapping from s̃ in the cube to s
in the simplex is s = − log(s̃)/

∑
− log(s̃), and the reverse mapping

is s̃ = e(10 log(.5)s); the distribution is forecasted using approximated
policy functions. The mapping is motivated by a method of drawing
uniformly from a unit simplex (which is accomplished by drawing from
the Dirichlet distribution with concentration parameter equal to 1).
Several reverse mappings were tried, but the one used worked best.31

Sm3 — Simpler State Space

The state space uses levels of capital stock for each generation k; there
is no mapping; and the distribution is forecasted using an approximated
capital policy function.

30 It’s unclear which of these reverse mappings is optimal, but the identity mapping
is a natural choice.

31 In some sense, the reverse mapping s̃ = e(T log(.5)s) should be optimal because
most of the time,

∑
− log(s̃) is equal to −T log(.5). Numerically, however, raising values

to such a large power creates instability. I found s̃ = e(10 log(.5)s) works fairly well.
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Table 9 Accuracy of the Law of Motion

Max % Error Minimal R2

T KS Sm1 Sm2 Sm3 Sm4 KS Sm1 Sm2 Sm3 Sm4

3 3.17 0.07 0.07 0.22 0.37 .676 .999 .999 .997 .996
6 1.03 0.27 0.27 0.84 1.25 .995 1.000 1.000 .996 .992
10 1.05 0.65 0.66 1.42 1.85 .998 1.000 1.000 .995 .989
25 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987
50 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987
100 1.04 0.85 0.86 1.66 2.14 .998 1.000 1.000 .994 .987

Sm4 — Simpler State Space, Alternative
Simulation Method

The state space uses levels of capital stock for each generation k; there
is no mapping; and the distribution is forecasted using an approximated
law of motion.

The accuracy numbers for the laws of motion are displayed in Table
9. For space, the R2 values are rounded to three decimal places. Alter-
native implementations of the Smolyak method display similar charac-
teristics to the benchmark implementation: each outperforms the KS
method for small T (which is when quasi-aggregation breaks down),
and the performance of each implementation decreases as the number
of periods increases. Sm1 and Sm2 display similar errors, which are
less than the errors of Sm3 and Sm4. This suggests that the precise
mapping of shares may not matter as much as the choice of whether or
not to use shares. That Sm1 and Sm2 perform better than Sm3 and
Sm4 is likely due to the ability of Smolyak interpolation to achieve high
accuracy in one dimension relative to accuracy in several dimension as
discussed in the main text. Because Sm1 and Sm2 include K in the
state space directly rather than indirectly through K =

∑
k/T , Sm1

and Sm2 exploit this feature of the Smolyak algorithm and so capture
more of the general equilibrium effects.

The Euler-equation errors are reported in Table 10. Again, the
alternative implementations display similar patterns to the benchmark
one: the errors are smaller than the KS method errors for T = 3 but
increase in the number of generations. Again, Sm1 and Sm2 fare better
than Sm3 and Sm4, with Sm1 outperforming Sm2 most of the time.
While the KS method tends to produce less error, the errors of the
Smolyak implementations would not typically be considered large, at
least in terms of average errors. Note that Sm3 and Sm4 have the
exact same solution but different simulations (and so result in different
maximum and average errors along the simulation path).
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Table 10 Accuracy of the Policy Functions

Max Euler Errors Avg Euler Errors
T KS Sm1 Sm2 Sm3 Sm4 KS Sm1 Sm2 Sm3 Sm4

3 -3.15 -3.28 -3.28 -3.27 -3.27 -4.17 -4.42 -4.41 -4.19 -4.16
6 -3.08 -2.99 -3.05 -2.24 -2.14 -3.98 -4.15 -4.11 -3.25 -3.27
10 -2.91 -2.65 -2.24 -1.94 -1.82 -3.81 -4.18 -3.71 -3.06 -3.08
25 -2.92 -2.46 -2.12 -1.86 -1.72 -3.82 -4.14 -3.73 -3.01 -3.03
50 -2.92 -2.46 -2.20 -1.86 -1.72 -3.82 -4.13 -3.82 -3.01 -3.03
100 -2.92 -2.46 -2.28 -1.86 -1.72 -3.82 -4.13 -3.92 -3.01 -3.03

Table 11 Running Times in Minutes

T KS Sm1/Sm2 Sm3/Sm4

3 0.12 0.00 0.00
6 0.20 0.02 0.02
10 0.25 0.05 0.05
25 0.59 0.29 0.34
50 1.21 1.18 1.40
100 2.29 4.97 6.00

The running times for the various implementations are reported in
Table 11. As running times are virtually the same for Sm1 as Sm2 and
Sm3 as Sm4, I only report joint Sm1/Sm2 and Sm3/Sm4 times. The
Sm3 and Sm4 implementations take slightly longer to run than the Sm1
and Sm2 implementations. This is not because the actual interpolation
takes any longer, but because extra iterations are required for the law
of motion to converge, which is itself due to larger errors in the law of
motion.




