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The Effects of Permanent
and Transitory Shocks under
Imperfect Information

Andrew Foerster and Pierre-Daniel Sarte

T
he conventional framework in modern macroeconomics assumes
that households know all information pertinent to the trade-offs
they face and have rational expectations. Within this frame-

work, they optimally adjust their behavior in response to disturbances
in the economy in a way that is forward-looking. Thus, the persistence
of shocks matters. Moreover, in an economy driven by shocks that dif-
fer in their degree of persistence, households can perfectly distinguish
between these shocks. Permanent shocks move the economy to a new
steady state while transitory shocks have no effect in the long run.

The idea that persistent and transitory shocks have different effects
in a setting where agents are forward-looking is well-documented. Blan-
chard and Quah (1989), for example, use this fact to identify demand
shocks as those that only have temporary effects on unemployment
and output but supply shocks as those that have permanent effects on
output. In a similar vein, King et al. (1991) identify permanent pro-
ductivity shocks to the common trend in output, consumption, and in-
vestment. They find that permanent shocks account for over two-thirds
of output fluctuations over the two- to five-year horizon. However, they
also show that including nominal variables decreases the explanatory
power of balanced-growth shocks on output fluctuations.

The underlying class of models used, for example, by either Blan-
chard and Quah (1989) or King et al. (1991), is one in which agents
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have perfect information and know all relevant shocks. With imperfect
information, for instance in a setting where agents may not be able
to distinguish between transitory and persistent shocks, the long-run
identifying restrictions used by these papers remain, but the effects of
shocks differ in the short and medium run.1 Households have to solve a
signal extraction problem in which they try to distinguish between the
different types of shocks they face. This signal extraction problem, in
turn, can have significant implications for the way in which the econ-
omy reacts to shocks at short or medium horizons (see, for example,
Edge et al. (2007) and Blanchard et al. (2013)).

In this paper, we use the one-sector neoclassical growth model with
permanent and temporary shocks to productivity growth to explore
the implications of imperfect information on household behavior. We
describe how to solve the model when households cannot distinguish be-
tween permanent and transitory shocks in real time. We show that the
solution method involves recasting the driving process in terms of the
estimates of exogenous states and households’forecast errors implied
by the signal extraction problem. We further show that the calculation
determining the stability of the model’s dynamics is independent from
this signal extraction problem. Thus, standard linear rational expec-
tations toolkits may be readily used to solve the imperfect information
model. Given this information friction, we then highlight the fact that
real variables not only respond to fundamental shocks to productivity
growth but also to errors made in forecasting these shocks.

Section 1 presents evidence that shocks to total factor productiv-
ity (TFP) growth in the postwar United States are characterized by
both a permanent and a transitory component. Section 2 then de-
scribes a model environment in which households cannot distinguish
between these components and presents the solution method. Section
3 shows how the model’s dynamic responses to productivity shocks dif-
fer from the complete information case, as well as how inferences about
which shock (i.e., temporary or permanent) occurred affect how quickly
households adjust their behavior in response to the shock. Section 4
concludes.

1 Imperfect information in macroeconomic models has increasingly been used to ex-
plain economic fluctuations. Collard et al. (2009), for example, use a New Keynesian
model to show how several different forms of informational frictions featured in recent
literature improve their model’s explanatory power over the same model under perfect
information.
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1. AN UNOBSERVED COMPONENT MODEL OF
TREND PRODUCTIVITY GROWTH

Let ∆ ln zt denote the annualized growth rate (400 × the difference of
the logarithm) of quarterly measurements of aggregate TFP at date
t. We allow TFP growth to be driven by both permanent and tempo-
rary shocks. Thus, the univariate unobserved component (UC) model
expresses ∆ ln zt as the sum of a permanent component, τ t, and a tran-
sitory component, εt. Specifically,

∆ ln zt = τ t + εt, (1)

where

τ t = τ t−1 + ηt, (2)

and

ηt ∼ N
(
0, σ2

η

)
,

εt ∼ N
(
0, σ2

ε

)
.

The UC model is essentially a state-space model with an unobserved
state, τ t, an observation equation, (1), a state transition equation, (2),
and unknown variances, σ2

η and σ
2
ε. The relative size of these variances,

to be estimated below, tell us about the importance of permanent and
temporary shocks in driving TFP growth.

Figure 1 shows the data along with the estimated trend. The data
are taken from Fernald (2014), who constructs a quarterly, utilization-
adjusted measure of TFP for the United States since 1947.

We estimate the empirical model using Bayesian methods and rely
on a Gibbs sampler to draw repeatedly from the posterior distribution,
a combination of the likelihood and a prior. The use of priors allows
us to nudge the posterior estimates to be economically meaningful. In
this case, our estimates of σ2

η and σ
2
ε imply that the state, τ t, evolves

at relatively low frequency while still capturing some of the variation
in the original series. Table 1 shows our estimates of the variances,
σ2
η and σ

2
ε. The median estimates, as well as their 68 percent credible

intervals, suggest that most of the variation in the data is explained
by the transitory component, εt. At the same time, the permanent
component also has some variation and plays a role since the 68 percent
credible interval associated with σ2

η does not contain zero.
The fact that a substantial part of the variation in the data is

attributed to the transitory component rather than the trend is also
clear in Figure 1. Interestingly, the trend in TFP growth declines over
the full sample period, 1947—2018, but shows an uptick during the
information technology revolution of the mid-1990s to mid-2000s.
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Figure 1 U.S. Total Factor Productivity Growth

Notes: The figure shows annualized growth rates for quarterly utilization-adjusted
TFP from Fernald (2014) and the estimate of the trend from the unobserved com-
ponent model. Dotted lines indicate the 68 percent credible interval.

Table 1 Variance Estimates

Median 16th 84th Median 16th 84th

σ2
η 0.160 0.125 0.209 σ2

ε 3.319 3.180 3.461

2. THE ONE-SECTOR GROWTH MODEL WITH
IMPERFECT INFORMATION

To the extent that shocks affecting productivity growth may be perma-
nent or temporary, these have different effects on agents’decisions. For
convenience, it is generally assumed in macroeconomic models that the
representative household has full information and knows which type of
shock is affecting the economy. In practice, however, households would
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not be able to distinguish between permanent and temporary shocks
from simply observing realized TFP growth.2 The following model,
therefore, lays out how to solve the household’s problem in the pres-
ence of this informational friction. Relative to the standard setup, the
household in this case faces an additional filtering problem in which it
must infer estimates of permanent and transitory shocks in deciding
how much to consume and save.

We write the household’s problem as:

max
ct,kt+1

Ẽ0

∞∑
t=0

βtφ ln ct (P1)

subject to

ct + kt+1 − (1− δ)kt = Atk
α
t `

1−α
t︸ ︷︷ ︸

yt

, α ∈ [0, 1], (3)

k0 > 0 given,

where ct, kt, and `t denote consumption, capital, and labor input, re-
spectively. Capital depreciates at rate δ and, in a competitive environ-
ment, 1− α captures the share of labor payments in value added.

The “tilde” over the expectations operator accounts for the fact
that the information set available to households does not distinguish
between persistent and transitory shocks. This implies that households
face a signal extraction problem. We show below that the implied fil-
tering exercise that needs to be solved does not affect the standard cal-
culation of eigenvalues determining whether the dynamic equilibrium
is saddle-path stable or, alternatively, unique. This filtering problem,
however, does lead to Markov decision rules that differ from those in
the perfect information case insofar as expectations of future shocks
now involve estimates of the unobserved exogenous states.

Let

zt = At`
1−α
t ,

where, for ease of presentation, we set the level of exogenous labor, `t,
equal to 1. As in Section 1, we assume that the growth rate of zt is
driven by both persistent shocks, ηt, and transitory shocks, εt,

∆ ln zt = τ t + εt, (4)

2 Moreover, there may be other types of shocks, unrelated to fundamentals and that
effectively constitute noise, that households are unable to distinguish from fundamental
shocks affecting the economy. See, for example, Blanchard et al. (2013).
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τ t = (1− ρ)gz + ρτ t−1 + ηt. (5)

There is an apparent tension here between the UC model in Section
1, which includes a random walk term, and the model presented in
this section, which requires stationarity of the growth rates, ρ < 1.
We resolve this tension by assuming that the τ term follows a highly
persistent but stationary AR(1) model with root local to unity. This
process is approximated as a random walk in the empirical description
of zt.

The first-order conditions associated with problem (P1) are

φ

ct
= λt,

λt = βẼtλt+1

(
αzt+1k

α−1
t+1 + 1− δ

)
,

where the λt are Lagrange multipliers. The first-order conditions can
be summarized as

1 = βẼt
ct
ct+1

(
αzt+1k

α−1
t+1 + 1− δ

)
. (6)

Balanced Growth

In the model we have just presented, there exists a long-run steady state
in which all variables grow at the same constant rate. Specifically,
consider the case where all variables are growing at a constant rate
along a nonstochastic, steady-state path, εt = ηt = 0 and τ t = τ t−1 ∀t.
Then, equations (4) and (5) imply that

∆ ln zt = gz

so that
zt
zt−1

= egz ≈ 1 + gz (7)

for reasonable growth rates.
Let gc, gk, and gy represent the growth rates of consumption, the

capital stock, and GDP, respectively. The resource constraint (3) then
implies that (1 + gc) = (1 + gk) = (1 + gy). In addition, the technology
implies that (1+gy) = (1+gz)(1+gk)

α. Thus, along a balanced growth
path,

(1 + gc) = (1 + gk) = (1 + gy) = (1 + gz)
1

1−α .

Making the Model Stationary

Since variables in the model grow at a constant rate in the long run,
solving for the model’s transitional dynamics requires that these vari-
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ables be detrended in such a way that the detrended variables are

constant in the steady state. Let µt = z
1

1−α
t . Hence, we normalize

the model’s variables as follows, c̃t = ct
µt
, k̃t+1 = kt+1

µt
, ỹt = yt

µt
, and

z̃t = zt
zt−1

. Under this normalization, note that detrended GDP is given

by ỹt = z̃
−α
1−α
t k̃αt .

In detrended form, the resource constraint (3) becomes

c̃tµt + k̃t+1µt − (1− δ)k̃tµt−1 = z̃tzt−1k̃
α
t µ

α
t−1,

or

c̃t + k̃t+1 − (1− δ)z̃
−1

1−α
t k̃t = z̃

−α
1−α
t k̃αt . (8)

The Euler equation (6) becomes

1 = βẼt
c̃tµt

c̃t+1µt+1

(
αz̃t+1ztk̃

α−1
t+1 µ

α−1
t + 1− δ

)
,

or

1 = βẼt
(

c̃t
c̃t+1

)
(z̃t+1)

−1
1−α

(
αz̃t+1k̃

α−1
t+1 + 1− δ

)
. (9)

Finally, the process driving productivity in (4) and (5) becomes

ln z̃t = τ t + εt, (10)

τ t = (1− ρ)gz + ρτ t−1 + ηt. (11)

The Steady State of the Stationary Model

Consider a steady state where εt = ηt = 0 ∀t. Then, τ t = τ t 1 = gz
and the steady state of the stationary model comprises a system of
three equations,

ln z̃ = gz =⇒ z̃ = 1 + gz,

1 = β (1 + gz)
−1

1−α
(
α (1 + gz) k̃

α−1 + 1− δ
)
,

c̃+ k̃
(

1− (1− δ)(1 + gz)
−1

1−α
)

= (1 + gz)
−α
1−α k̃α,

in three unknowns, c̃, k̃, and z̃. Denote the solution to this system of
equations by c̃∗, k̃∗, and z̃∗, with implied values for ỹ∗.
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Dynamics of the System

Given the model’s normalized equations such that detrended variables
are constant in the steady state, we are now ready to solve for the
model’s (linearized) transitional dynamics. In what follows, the “hat”
notation stands for percent deviation from steady state for the nor-
malized variables (i.e., for some variable x, and with some abuse of
notation, x̂t = log(x̃t/x

∗) = ̂̃xt). In linearized form, our system of
equations becomes

0 = ĉt − Ẽtĉt+1 −
1

1− α Ẽtẑt+1 + β(1 + gz)
−α
1−αα

(
k̃∗
)α−1

Ẽtẑt+1

+ β(1 + gz)
−α
1−αα(α− 1)

(
k̃∗
)α−1

Ẽtk̂t+1,

scĉt+skk̂t+1−(1−δ)(1+gz)
−1

1−α skk̂t+
(1− δ)(1 + gz)

−1
1−α sk

1− α ẑt = αk̂t−
α

1− αẑt,

where sc = c̃∗/ỹ∗ and sk = k̃∗/ỹ∗. We summarize these equations into
the following system,[

1 βα(1− α)(1 + gz)
−α
1−α

(
k̃∗
)α−1

0 sk

]
︸ ︷︷ ︸

A

Ẽt
[
ĉt+1

k̂t+1

]

=

[
1 0

−sc α+ (1− δ)(1 + gz)
−1

1−α sk

]
︸ ︷︷ ︸

B

[
ĉt
k̂t

]
(12)

+

 0

−
(
α+(1−δ)(1+gz)

−1
1−α sk

)
1−α


︸ ︷︷ ︸

C

ẑt + Ẽt

[
−1

1−α + β(1 + gz)
−α
1−αα

(
k̃∗
)α−1

0

]
︸ ︷︷ ︸

D

ẑt+1.

Aside from the expectations operator, which conditions on an informa-
tion set that does not allow households to distinguish between perma-
nent and transitory shocks, the system of equations (12) is otherwise
expressed in a format identical to that studied in King and Watson
(2002). In the next section, we show that despite the information fric-
tion, the dynamics of the above system, along with the driving process,

ẑt = ln

(
z̃t

1 + gz

)
= ln (z̃t)− gz = τ t − gz︸ ︷︷ ︸

τ̂ t

+ εt, (13)

τ̂ t = ρτ̂ t−1 + ηt, (14)
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may nevertheless be expressed in a way that allows it to be solved using
standard linear rational expectations solution toolkits.

Solving the Model with Imperfect
Information

Since the matrix A in (12) is invertible, the system of equations may
alternatively be expressed as

Ẽt
[
ĉt+1

k̂t+1

]
= W

[
ĉt
k̂t

]
+ Ψ(F)Ẽtẑt, (15)

where W = A−1B and Ψ(F) is defined similarly, where F denotes the
forward operator. Moreover, consider a decomposition of W such that
W = V −1µV , where µ is a diagonal matrix containing the eigenvalues
of W . Equation (15) may then be expressed as

Ẽtdt+1 =

[
µs 0
0 µu

]
dt + Ψd(F)Ẽtẑt,

where dt =

[
d1,t

d2,t

]
= V

[
ĉt
k̂t

]
and Ψd(F) = VΨ(F). In other words,

the information problem households face does not affect the calcula-
tion of eigenvalues that determine whether the dynamic equilibrium is
saddle-path stable or, alternatively, unique. Put another way, in this
context, the determination of the initial conditions for the costate vari-
able, ĉ0 (or alternatively λ̂0), still follows Blanchard and Kahn (1980).3

Solving the model with imperfect information, therefore, reduces as
a first step to solving a signal extraction problem involving the term
Ψ(F)Ẽtẑt in equation (15). Markov decision rules will differ from those
of the perfect information case insofar as expectations of future shocks
then depend on estimates of unobserved exogenous states, τ̂ t. We ob-
tain these estimates using a Kalman filter, which offers an algorithmic
approach to predicting current-state variables and updating these es-
timates given new information. Consistent with the Kalman filter, we
denote by τ̂ t|t−1 and τ̂ t|t estimates of τ̂ t conditional on information
available at date t− 1 and t, respectively.

Given the driving process, (13) and (14), standard Kalman filtering
gives the following prediction equations,

τ̂ t|t−1 = ρτ̂ t−1|t−1,

3 For the problem at hand, the equilibrium is indeed unique as the system contains
one stable eigenvalue, µs < 1, and one unstable eigenvalue, µu > 1.
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and

ẑt|t−1 = τ̂ t|t−1 = ρτ̂ t−1|t−1,

where ẑt|t−1 is the household’s forecast of productivity, ẑt, conditional
on all information available up to date t − 1. Furthermore, given a
steady-state Kalman gain matrix, K, the Kalman updating equation is

τ̂ t|t = τ̂ t|t−1 +Kat, (16)

where at is the forecast error,

at = ẑt − ẑt|t−1,

observed in period t. The Kalman gain, 0 ≤ K ≤ 1, controls the
extent to which the household updates its estimate of the state upon
realization of its forecast error.

The imperfect information problem introduces estimates of the un-
observed exogenous states, τ̂ t|t and τ̂ t−1|t−1, as state variables (rather
than the states themselves) and modifies the driving process faced by
the representative household. However, given this modified process, the
model may then be solved using standard linear rational expectations
solution toolkits. For example, in the formulation of King and Watson
(2002), the system of equations to be solved continues to be given by
(12), but in place of equations (13) and (14), as the relevant driving
process, we instead have that

ẑt =
[

0 ρ 1
]  τ̂ t|t

τ̂ t−1|t−1

at

 ,
and  τ̂ t|t

τ̂ t−1|t−1

at

 =

 ρ 0 0
1 0 0
0 0 0

 τ̂ t−1|t−1

τ̂ t−2|t−2

at−1

+

 K
0
1

 at.
It follows, therefore, that the key difference in solving the model with
and without perfect information lies in the treatment of the driving
process, not in any other aspect of the solution method. Under the
conventional perfect information setup, the representative household is
assumed to know all shocks affecting the economy so that the driving
process, (13) and (14), include the actual exogenous state, τ̂ t, and dis-
turbances, ηt and εt. In contrast, in the imperfect information case,
the household is unable to distinguish between shocks so that the rel-
evant driving process includes contemporaneous estimates of the ex-
ogenous state, τ̂ t|t and τ̂ t−1|t−1, as well as the date t forecast error,
at = ẑt − ẑt|t−1, via the Kalman filter.
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Intuitively, since the representative household cannot distinguish
between shocks under the imperfect information setup, those shocks
cannot be driving its decisions. Instead, in each period t, the household
is able to observe the current realization of productivity, ẑt, relative to
the forecast it made based on all available information up to t−1, ẑt|t−1,
and hence knows its forecast error, at = ẑt − ẑt|t 1. The forecast error
then, in turn, becomes the object that drives decisions as the household
adjusts its behavior, depending on the magnitude and direction of the
error, in accordance with the Kalman gain K. Details of the compu-
tation of the forecast errors and steady-state Kalman gain, given the
properties of the underlying shocks, are provided in the Appendix.

3. COMPARING THE SOLUTIONS WITH PERFECT
AND IMPERFECT INFORMATION

Figure 2 shows the response of GDP growth to a 1 percentage point
increase in TFP growth under perfect information. The left panels
depict the responses to a permanent shock in TFP growth, while in
the right panels, the shock is temporary (in this case, the shock lasts
exactly one period). When the shock to TFP growth is permanent, as
illustrated in the top left-hand panel, GDP growth initially increases to
3 percent from its prior steady-state value of 2 percent. After the initial
burst, growth slows slightly but then increases toward its new steady
state. In the case of temporary shocks, GDP growth notably increases
at the time the shock materializes but then slowly reverts back to its
unchanged steady state (here, 2 percent).

To get a sense of how the GDP growth response (to variations in
TFP growth) changes under the imperfect information setup, we con-
sider special cases of the Kalman gain, K. In particular, recall that the
Kalman gain governs the degree to which the representative household
adjusts to its forecast errors. At one extreme, when K = 0, the house-
hold never adjusts its estimate of the state, τ̂ t|t = τ̂ t 1|t 1 in equation
(16), which is to say that it treats every shock as temporary. At the
other extreme, K = 1, the household reacts fully to every forecast er-
ror, τ̂ t|t = τ̂ t 1|t 1 + at in equation (16), which is to say that it treats
every disturbance as permanent. More generally, the optimal value of
K is determined by the estimates of the variances of the shocks, mean-
ing the representative household updates forecast errors based on the
likelihood of receiving permanent and transitory shocks.

Figure 3 depicts the economy’s response to both permanent and
temporary increases in TFP growth when the representative household
treats every disturbance as permanent. This is for illustrative purposes
only since, in practice, estimates of the driving process and its prop-
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Figure 2 Impulse Responses under Perfect Information

Notes: The figure shows the responses of GDP growth to a 1 percentage point
increase in TFP growth The shock to TFP growth in the left panels is permanent,
while the shock in the right panels lasts exactly one quarter.

erties will determine the size of the steady-state Kalman gain. This
gain, in turn, will lie strictly between 0 and 1 as long as the history
of TFP growth reflects both permanent and temporary shocks, made
evident by nonzero estimates of their respective variances, as shown in
the Appendix.

In the extreme case, where K is pinned down to 1, the relevant
driving process for the representative household follows

τ̂ t|t = τ̂ t|t−1 + at,

at = zt − ρτ̂ t−1|t−1,

where the true underlying shocks are still given by equations (13) and
(14).
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Figure 3 Impulse Responses under Imperfect Information,
Where K = 1

Notes: See notes to Figure 2. The middle row shows the date t forecast error, 
the difference between the current realization of productivity and the household 
estimate of productivity conditional on information available up to date t — 1.

As the left panels of Figure 3 illustrate, when the increase in TFP 
growth is permanent, the household makes a one-period forecast error 
at the time of the shock, equivalent to the surprise it would have ob-
served under perfect information, but no further forecast errors after 
that date. This is because the household treats every disturbance as 
permanent and thus, in this case, accurately assesses the nature of the 
shock. It follows that the response of GDP growth to a permanent in-
crease in TFP growth, depicted in the bottom left-hand panel of Figure 
3, is identical to that in the perfect information case.

When the increase in TFP growth is temporary, shown in the right-
hand panels of Figure 3, the household makes a forecast error at the 
time the shock materializes as before but also in the following period 
when the shock dies out while it is expected to last indefinitely. In this
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Figure 4 Impulse Responses under Imperfect Information,
Where K = 1/2

Notes: See notes to Figure 2 and Figure 3.

case, GDP growth increases at the time of the shock as in the perfect
information case, shown in the bottom right-hand panel of Figure 3,
but unlike the perfect information case, GDP growth falls below its
steady state in the following period as the household realizes that the
shock was only temporary. Because the household turned out to be
overly optimistic, the mistake in this case is associated with a negative
forecast error.

The stark nature of the driving process, where disturbances are
either i.i.d. or fully permanent, combined with extreme values of the
Kalman gain, implies that forecast errors are short-lived. In an interme-
diate case, where the representative household thinks it equally likely
that shocks are permanent as they are temporary, K = 1/2, forecast
errors persist beyond two periods and the effects of having imperfect
information, therefore, are more drawn out relative to the perfect in-
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formation environment. This is shown in Figure 4, where the impulse
responses for both shocks are now smoother or more persistent despite
the one-time nature of the disturbances. This effect would be even
more pronounced in an economic environment where, as in Blanchard
et al. (2013), both temporary and permanent shocks to the growth
rate of TFP are themselves persistent.

Ultimately, the contrast between Figure 2 and Figure 4 highlights
the possibility of real economic responses, in this case highlighted by
GDP growth, to errors made by households and firms in reading the
economic environment rather than actual changes in fundamentals.
In such a world, the correlation between economic variables and the
processes thought to drive them would be lower than expected, and
assessments of the economy would be more challenging to make from
a policymaker’s perspective.

4. CONCLUDING REMARKS

While the conventional framework in modern macroeconomics assumes
that households have perfect information and rational expectations, the
economic environment is complicated enough in practice that they are
unlikely to be able to distinguish between different types of shocks in
real time. One important such distinction is that between temporary
and persistent shocks to fundamentals. In this paper, therefore, we use
the one-sector neoclassical growth model, driven by permanent and
temporary shocks to productivity growth, to explore key implications
of imperfect information on household behavior.

We describe a method for solving the model under this information
friction and show that it involves a recasting of the driving process.
In particular, whereas the driving process is expressed in terms of the
fundamental states and shocks under perfect information, it is instead
expressed in terms of estimates of the exogenous states and households’
forecast errors under imperfect information. Importantly, we also show
that the stability of the model’s dynamics is independent of the signal
extraction problem from which these estimates and forecast errors are
derived. Therefore, standard linear rational expectations toolkits read-
ily apply. We highlight the fact that, under imperfect information, real
variables not only respond to fundamental shocks, but also to errors
made in forecasting these shocks. In this sense, variations in economic
activity do not have to primarily reflect fundamental changes to the
economic environment.
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APPENDIX

The observation and state equations in the standard Kalman filter
problem are respectively,

zt = Hτ t + ut, ut ∼ N (0, R) ,

and

τ t = Fτ t−1 + vt, vt ∼ N (0, Q) ,

where, in our case, H = 1 and F = ρ, ut = εt, and vt = ηt (for simplic-
ity, we leave out the “ˆ”notation over the variables). The Kalman filter
proceeds in two stages: a prediction stage and an updating stage. Dur-
ing the prediction step, the filter produces estimates of the state, τ t|t−1,
and its error covariance, Pt|t−1, at time t using information available
up to time t − 1. From these estimates, we further obtain a forecast
of zt|t 1 and its associated error covariance, St|t 1. In the updating
step, we use information from period t to improve the state and error
covariance estimates.

The prediction equations are:

• τ t|t−1 = Fτ t−1|t−1,

• Pt|t−1 = E[(τ t − τ t|t−1)(τ t − τ t|t−1)′|zt−1] = FPt−1|t−1F
′ +Q,

• zt|t−1 = Hτ t|t−1,

• St|t−1 = E[(zt − zt|t−1)(zt − zt|t−1)′|zt−1] = HPt|t−1H
′ +R.

The updating equations are:

• τ t|t = τ t|t−1 + Pt|t−1H
′S−1
t|t−1︸ ︷︷ ︸

Kt

(zt − zt|t−1),

• Pt|t = Pt|t−1 − Pt|t−1H
′S−1
t|t−1︸ ︷︷ ︸

Kt

HPt|t−1.

The Kalman gain, Kt, reveals the degree to which the estimates
change once zt is realized. Intuitively, a low gain means the new infor-
mation will have little impact on the estimates, while a high gain will
give the new information more weight. The steady-state Kalman gain
is then given by K = PH ′S−1, where P and S, respectively, solve

P = F (P − PH ′S−1HP )F ′ +Q
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and

S = HPH ′ +R.

We obtain Q and R by computing covariances of the shocks from the
UC model,

Q = σ2
η,

R = σ2
ε.

We then compute the steady-state Kalman gain by iterating on the
following equations, where, given iteration j − 1,

P
(j)
1 = FP

(j−1)
0 F ′ +Q,

S = HP
(j)
1 H ′ +R,

K(j) = P
(j)
1 H ′S−1,

and

P
(j)
0 = P

(j)
1 −K(j)HP

(j)
1 .

We stop the iterations when
∥∥∥P (j)

0 − P (j−1)
0

∥∥∥ < 10−8. The steady-state

Kalman gain is then K(j).
With H = 1 and F = ρ ≈ 1, vt = ηt and ut = εt, convergence as

j →∞ implies that

P
(∞)
1 = P

(∞)
0 + σ2

η,

S = P
(∞)
1 + σ2

ε,

K(∞) = P
(∞)
1 S−1,

P
(∞)
0 = P

(∞)
1 −K(∞)P

(∞)
1 .

Note that if K(∞) = 0, then it must be that P (∞)
0 = P

(∞)
1 , and hence

the equations imply σ2
η = 0. On the other hand, if K(∞) = 1, then

P
(∞)
0 = 0, and, therefore, σ2

ε = 0.
Thus, we have that the households’estimates of the states and their

forecast errors evolve according to:

at = (ρτ̂ t−1 + vt + εt)− ρτ̂ t−1|t−1,

τ̂ t = ρτ̂ t−1 + ηt.
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 τ̂ t|t
at
τ̂ t

 =

 ρ (1−K) 0 Kρ
−ρ 0 ρ
0 0 ρ

 τ̂ t−1|t−1

at−1

τ̂ t−1

+

 K K
1 1
1 0

[ ηt
εt

]




