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ABSTRACT

This paper presents a model economy in which the "balanced" growth is
determined endogenously. The growth process in this economy does not
depend on exogenous specifications such as human capital accumulation or
technological progress. Rather, it is determined within the model and
governed by two economic forces: (1) the intertemporal substitution of
consumption and labor and (2) the intertemporal production opportunities.
In equilibrium, the real quantities (i.e., consumption, capital, employment
and output) will all evolve as logarithm random walks with drift. Therefore,
the time series generated by this model is not trend stationary and the
propagation of technological disturbances is permanent. This result is
consistent with the empirical findings of Nelson and Plosser (1982).
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AGGREGATE FLUCTUATIONS AND ECONOMIC GROWTH:
A CASE OF RANDOM-WALK HYPOTHESIS

1. INTRODUCTION

That the study of aggregate fluctuations can be conceptually separated from the

theory of economic growth seems to be the implicit view in the modern theory of business

cycles. Based on this view, models of economic fluctuations have been examined primarily

in a context where growth is either assumed away or triggered by exogenous considerations

such as population growth and technological progress. Consistent with this view is the

empirical strategy in which economic time series were often subject to a variety of

detrending schemes in order to remove the growth component. To a large extent, this view

may be attributed to the empirical observation that many economic aggregates like

consumption and real GNP tend to wander regularly along a steadily growing path over a

long span of time. This empirical regularity has often been taken to suggest that the

economic cycles can be explained without reference to the growth of the economy which,

presumably, has little to do with short-run and transitory perturbations. Because of its

conceptual appeal and empirical convenience, this view has received wide acceptance in the

literature.

By contrast, the approach taken in this paper is that the nature of aggregate

fluctuations cannot be abstracted from the process of economic growth, a point emphasized

in the recent works of Romer (1985) and King and Robelo (1986). It is my contention that

business cycles can be better understood when growth dynamics are taken into account. In

a sense, these contrasting views reflect the longstanding debate among economists about

the proper ways to describe economic processes. For instance, can aggregate economic

data, say real output, be best described by a stationary stochastic process? The fact that
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many economic aggregates appear to be "explained" fairly well using high-order stationary

autoregressions does not imply that they are indeed generated by such processes. Nelson

and Plosser (1982), for example, could not reject the hypothesis that many U.S. aggregate

time series data are characterized by logarithmic random walks (more generally,

nonstationary integrated processes). Certainly, this issue cannot be settled on a purely

statistical and empirical basis.

A somewhat confusing element that has contributed to the above debate is the

stochastic theory of economic growth. In a well-known result, existing growth models

assert that per capita quantities, including output, capital and consumption, possess

stationary distributions under reasonable assumptions (see Brock and Mirman (1972) for

an example). This result implies that technological shocks are transitory in nature and real

quantities can therefore be practically described by stationary processes. However, the

stationarity of per capita quantities does not necessarily carry over to the aggregates. To

see this, one must recognize that most existing growth models assume, implicitly or

explicitly, an exogenous process for fixed factors of production such as labor. Depending

upon how these driving processes are specified, stationary as well as nonstationary time

series can be generated.

The difficulty in endogenously determining economic growth is related to the

well-known dilemma of indeterminacy of firm size when a constant returns to scale

technology is specified. That is, any factor allocation fulfilling the firm's zero profit and

marginal conditions will be equally acceptable from the firm's point of view. Therefore,

aggregate dynamics are usually generated by artificially specifying a stochastic process for

some set of scale factors. As shown in this paper, however, constant returns to scale need

not present this problem when in a general equilibrium framework consumers' labor supply

decisions can be used by firms to pin down their sizes. Based on this observation, a model
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economy can be constructed in which labor supply (or population) is endogenously

determined rather than exogenously specified. Firms then use this information in

formulating their optimal production plan. The process of sustained growth determined

through this mechanism does not originate from the increasing returns of technology as in

Romer (1985), nor is it related to human capital technology as in King and Robelo (1986).

Instead, it is a self-induced process governed by two economic forces: (1) the intertemporal

substitution of consumption and labor and (2) the intertemporal production opportunities.

The novelty of this model is that diminishing returns to factors of production do

not constrain the growth of the economy as they do in conventional models. The reason for

this is the absence of fixed factors in the technology. As a result, economic agents are fully

capable of transferring resources across time. This transfer permits greater propagation in

technological disturbances. In fact, with identically and independently distributed (i.i.d.)

productivity shocks and homogeneous preferences, the model predicts that the aggregate

capital stock, output, consumption, and labor employment will all evolve as logarithmic

random walks with drift. Temporary real shocks that occur at a particular point in time

will be propagated permanently into the future and shift the entire equilibrium path. Such

processes are not trend stationary and clearly do not possess stationary distributions.

This result is quite similar to that obtained by King and Robelo (1986), but the

growth mechanisms in our model do not depend on an explicit exogenous technology for

producing human capital. Rather, the mechanisms are endogenously governed by the

consumers' willingness and ability to smooth out their consumption over time. The model

has important implications for macroeconometrics. In particular, because of the

nonstationarity in levels, we have to search for transformation schemes in order to apply

stationary time series methods. Our results suggest the use of first differencing as a way of

achieving stationarity, a longstanding practice that has rarely been justified on the basis of
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coherent economic theory. It is noteworthy that the random walk process in our model

identifies the specific form of nonstationarity used in the test of Nelson and Plosser (1982).

The rest of the paper is organized as follows. In section 2, I construct a model

economy where population growth is endogenously determined. The model incorporates

important elements of both real business cycles and stochastic growth models. Section 3

discusses the determination of the equilibrium. A solution for the optimal decision rules

and value function is presented in section 4. The quantity dynamics are analyzed in

section 5. The paper is concluded in section 6.

2. THE MODEL

Consider an economy populated by a large number of identical households, whose

preferences depend positively on the amount of goods consumed and negatively on the

labor participation of the family. The preferences of the stand-in representative household

are characterized by the utility function u(ct, nt), where ct and nt denote the household's

consumption and labor participation at time t, respectively. The labor participation nt in

this model measures the population or the labor force of the representative family. One

may imagine that at the beginning of each period, the head of the household decides how

many children he is willing to bear which will then engage in the economy's production

process. Under this interpretation, the production of children generates a negative service

to the household's utility because it represents the amount of labor supply.' For

simplicity, we abstract from the problem of family formation and assume the child bearing

cost is negligible.

For analytical tractability, we confine ourselves to the case where the utility
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function u(ct, nt) is homogeneous of degree y, where y is a constant between 0 and 1. Note

that the parameter a can also be used to measure the intertemporal substitution elasticity

of consumption and labor, which is equal to 1/(1-y). In addition, we assume

(a) ul > 0, u2 < 0, u1 1 <0, u2 2 < 0;

(b) The "preferred set" {(ct,nt) I u(ct,nt) > iU} is strictly convex;

(c) For a given utility level, limnt, 0 [-u2 /u1 ] = 0 and limc [-u2 /u 1] =

These assumptions are standard in economic analysis. Specifically, (a) requires the

diminishing marginal utility of consumption and increasing penalty of labor supply.

Assumption (b) implies that the indifference curve is upward sloping and strictly convex

toward the axis of nt. A necessary and sufficient condition for this to hold is

2uu2u 1 2 - 1 u2 2 - u2 U1 1 > 0

Assumption (c) requires that the slope of the indifference curve be 0 as nt - 0 and infinite

as ct -. o . This assumption is sufficient for ruling out the corner solutions.

Now, we turn to the the production side of the economy. At the beginning of time

t, the representative household is equipped with pre-determined capital stock kt-i and

labor supply nt-1 He observes a technological shock At and produces yt units of goods

according to the following constant returns to scale technology:

=t AtF(kt_,, nti1)

The technological shock At is assumed to be a positive i.i.d. random variable drawn from a

known probability distribution. The production technology specified above is identical to
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that in Long and Plosser (1983) and Mao (1986). Because of the assumed lag structure in

the technology, the economy behaves like a stochastic endowment economy.

The economic problem of the representative household is to achieve maximal

lifetime utility by allocating the stochastic output yt, which is given at the beginning of

each period, between consumption and savings (capital) over time, and by choosing

whatever labor supply (population) that will bring about this optimal plan. For simplicity,

we assume the capital stock is fully depreciated so that kt can be regarded as investment at

time t. This assumption also serves to insure that any persistence of the equilibrium

quantities does not derive from the storage technology of the capital stock. The

commodity feasibility constraint is therefore

Ct + t < Att-11 t-1) E t

With an immortal family, the optimization problem can be formally stated as follows:

max nt tE'[ , u(ct, nt) ] 0 < /3 < 1

subject to

c + kt < AtF(kt-i nti) yt, for all t

(1) ct > °, kt > 0, nt > °, for all t

Co + ko < yO

The initial stock yo is given

where E0 is the expectations operator conditional on information available at time 0, and /3

is the time preference discount factor. The model is closed by requiring that the

household's expectations be rational.
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The model as it is stated is a typical real business cycle model in that the

intertemporal production technology plays an important role in generating quantities

dynamics. Instead of treating labor as hours worked as in previous models (e.g., Long and

Plosser (1983) and Kydland and Prescott (1982)), however, labor supply in this model is a

measure of "bodies" that corresponds to the usual employment statistics. Since the

household can fully adjust its labor supply at any point in time, production opportunities

will not be constrained by a fixed supply of factors, such as time endowment, which will

limit the degree of intertemporal substitution in production. Because of this, the economic

agent has greater flexibility to smooth his consumption over time in response to unexpected

random shocks. This flexibility permits a greater propagation of technological disturbances

as opposed to previous business cycles models.

The model can also be regarded as one example of a stochastic growth model.

However, conventional growth theory is mainly concerned with the process of capital

accumulation and its relation to consumption smoothing. As mentioned before, the

decision of labor supply is either indeterminate or implicitly assumed to be exogenous.

From the viewpoint of business cycles, this is not a desirable feature because the variation

of labor employment constitutes an indispensable part of economic fluctuations. By

allowing endogenous determination of individual's labor supply, the model can display

self-sustained growth even when technological progress does not persist in the economy.

The way we approach this problem is different from King and Robelo (1986), in which

endogenous growth depends on a process of human capital accumulation which is a specific

form of technological progress.

In the tradition of the business-cycle literature, our major concern is with the

stochastic properties of the time series generated by this model. Without solving the model

explicitly, the next section proceeds to define an equilibrium for this economy and to

discuss some of its properties.
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3. EQUILIBRIUM

The central planning problem specified in the last section defines a sequence of

Pareto allocations over time. Associated with this sequence is a set of supportive "shadow

prices" that can be used to map the Pareto optima into competitive equilibria. The basic

approach here is to interpret the optimal shadow prices as the competitive prices which

consumers and producers used to solve their own optimization problems in decentralized

markets. These prices will consist of not only spot prices, such as the wage rate, but also

the interest rate that prevails in the contingent market for future consumption and output.

Given these shadow prices, agents (consumers and firms) can be induced to behave in a

way that conforms to the rules specified by Pareto optima. In other words, the optimal

decision rules of the central planning model will duplicate a competitive equilibrium

determined in markets (see Sargent (1980) and Prescott and Mehra (1983) for a formal

argument). We will not spell out details of the market arrangements here.

In view of the above remarks, we study the equilibrium using the dynamic

programming algorithm. Let V(yt, At) be the value function associated with the problem

(1), defined recursively by

(2) V(yt, At) = jkmax t u(yt-kt, nt) + Et [V[At+
1
F(kt, nt), At+l]]

Note that V(.) is the maximal obtainable expected return at time t given the current
**

realization of yt and At. An equilibrium is characterized by the decision rules, kt and nt

(presumably, a function of yt and At), together with a bounded value function that solves

the above optimality equation. Associated with this solution is a transient probability

distribution for outputs that are generated by the optimal decision rules and the random
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shocks. One of our goals is to characterize such a probability distribution by extracting

information from the above optimization problem.

The equilibrium prices for this economy are determined simultaneously with real

quantities Specifically, assuming that the value function exists and is differentiable with

respect to yt, then the process {V1 (ytAt)} is a sequence of spot output prices that will

support the Pareto allocations. In our model, this supporting price is equal to the marginal

utility of consumption evaluated at the optimum.2 Given these prices, the expected real

interest rate at time t, denoted rte, is defined to be

re= V (yt, At) -1
Et([ Vl(yt+',At+i)]

That is, (1 + re) is the ratio of the present value prices for outputs at time t and t+1. It is

the one period ahead ex ante (prior to the occurrence of At+,) interest rate that will clear

the futures market for output.

Now, assuming that the value function V(yt, At) exists, then the solutions of the

optimality equation (2) must satisfy the following first order conditions:

(3) u1 (y-kt, nt) = / Et[Vl(yt+1, At+,) At+1]F1(kt, nt)

(4) -u 2 (yt-kt, nt) = / Et[Vl(yt+ 1, At+i) At+]F 2 (kt, nt)

where yt+l is the optimal output at time t+1 contingent on the realization of At+i

Equations (3) and (4) require that the marginal cost and benefit arising from the trade-off

of consumption and labor over time be equal in equilibrium. In other words, a small
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deviation from the optimal plan should leave the life time utility intact. As usual, this

optimal plan should also fulfill the following transversality condition:

lim BtE0 [Vj(y*, At) yt] = 0

The transversality condition says that the expected present value of output cannot be

valued at infinity, which implies, as in growth models, that the capital stock and labor

supply will not grow "too fast" in equilibrium. We assume this condition is fulfilled for the

rest of the paper.

The difference equations (3) and (4) impose certain restrictions on the equilibrium

paths of the capital stock and the labor supply. These restrictions, although not explicitly

specified, reflect two basic choices facing individuals: (i) the substitution between goods

and (the negative of) labor at a given point of time and (ii) the allocation of output and

consumption over time. To see how the equilibrium is determined by these forces, divide

(4) by (3) to get

(5) -u 2 (yt-k~t , nt)/ul(yt-kt, nt) F2 (kt, nt)/Fl(kt, nt)

Equation (5) is the efficiency condition that governs the allocation of goods and labor at a

given point of time. It requires that the rates of contemporaneous substitution in

preferences and production be equal in equilibrium. That is, the isoquant must be tangent

to the indifference curve at each point in time. As shown in figure 1, this condition alone

does not determine the equilibrium because there are a large number of candidate

allocations on the tangent loci. To locate the equilibrium, one must take into account the

allocation of goods over time.
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The individual's intertemporal decision is illustrated in figure 2, in which the

horizontal and vertical axes measure the output at time t and t+1, respectively. For the

sake of exposition, let us assume for the moment that the labor supply is fixed at some

given level, say, n t Then, according to the production technology, there is a

transformation possibility between current and future consumption, conditional on nt and

the realization of the random shock At+1. Since At+1 is unknown at time t, the expected

frontier E(At+i)F(kt, nt) is employed as the relevant transformation scheme. The slope of

this transformation curve (measured in absolute value) is the expected marginal product of

capital and measures the feasible substitution of consumption over time. Given this

production opportunity, the individual allocates a portion of current output into saving to

maximize utility. Clearly, the optimum will be achieved at the point where the expected

rate of return on saving (i.e., the marginal product of capital) equals the rate of

intertemporal substitution in consumption. That is, the indifference curve will be tangent

to the production frontier in equilibrium. This is the standard efficient condition that

governs the allocation of goods over time. With labor supply being fixed at n1 , the point

E1 is the best outcome that can be obtained.

Now, suppose the individual is allowed to adjust his labor supply. Then, for each

level of labor supply we have a different efficient allocation, which is represented by a point

on the tangent loci AB. Moving along this tangent loci reflects the fact that the individual

is now capable of altering the transformation possibilities through the choice of labor

supply. To pin down the equilibrium, recall that the capital stock and labor supply must

also satisfy equation (5), the contemporaneous efficiency condition. The allocations

fulfilling this condition are represented by a curve CD which corresponds to the tangent

loci shown in the figure 1. Clearly, the equilibrium will occur at the point E where AB and

CD intersect. This is the point where both intertemporal and contemporaneous efficiency

conditions are fulfilled at the same time.
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The foregoing analysis illustrates the importance of the labor supply as an

endogenous device in coordinating the use of resources. This feature is either absent or

limited in existing models. For example, consider the classical growth model where the

labor supply is inelastic and exogenously given by the size of population. Intuitively, the

equilibrium of this economy corresponds to a particular point on the tangent loci AB, say

E1 , figure 2. Since the economic agent can only move along a given production frontier, his

ability to transfer resources over time is limited by the productivity of capital, which is

diminishing by assumption. It is clear that, unless there is some kind of persistent

technological progress or the population is growing to such an extent that it will offset the

decreasing marginal product of capital, the economy cannot experience sustained growth.3

This is the underlying reason why stationarity will prevail in the classical model. Now,

with endogenous labor supply, the individual is no longer constrained to a fixed production

schedule. In fact, by changing his labor supply decision, not only can he alter the rate of

return on investment, but he can also manipulate intertemporal production opportunities.

Notice that his ability to do so is not limited by feasible constraints such as a fixed time

endowment. The extra degree of freedom leaves the household additional room for

smoothing consumption and income over time. Therefore, one would expect that the

equilibrium in this economy would display a stronger tendency for persistence. In fact, as

will be shown later, the equilibrium quantities of this model possess an extreme form of

smoothing property - logarithmic random walks with drift.

The next section explores the homogeneous structure of the underlying economy

and provides a solution to the optimization problem. The method we use is motivated by

Boyd (1985) and Mao (1986).
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4. SOLUTION

Solving the optimization problem (1) with a homogeneous structure relies on a

simple observation. As a specific example, consider the standard textbook problem where

consumers maximize utility over a linear feasible set. If the utility function is

homogeneous (or, more generally, homothetic), then the equilibrium will be invariant up to

a scalar shift of the budget line. In other words, the income path is a straight line starting

from the origin. The underlying reason for this, of course, is that the scalar transformation

of the budget set does not alter the preference ordering, and the equilibrium can therefore

be mapped to another under the same transformation.4 This simple fact allows us to derive

some useful properties of the value function.

To begin with, let us rewrite the optimality equation (2) as follows:

V(yt, At) = max u(ct, nt) + Et[ E fistu(cs, ns)]

(2') s.t. c + ks = A F(k5 -1 ns 1 ) y5I S > t±

Ct+ kt =t

Note that the optimization problem above amounts to the problem (1) from the vantage

point of time t. Let us assume that the sequence {cV, k5 , nS}t solves (2') with yt as the

initial stock. Then the maximum utility can be evaluated along this optimal time path as

follows:

V(yt, At) = u(yt-kt, nt) + Et[ E PStu(y-k* ns)*]

Now, suppose the individual is endowed with a different initial income given by
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ryt, r > 0. For our purposes, it does not matter whether the variation of Yt is due to an

unexpected shock at time t or a change in the production decision made at time t-1.

Given this new initial stock, what is the new equilibrium? Consider the sequence {rkV,

rnsit which is a scalar transformation of the old equilibrium. We claim that this sequence

is optimal with ryt as the initial income. First, the path {rk*, rnS}t' lies within (in fact,

on the boundary of) the feasible set because the production technology exhibits constant

returns to scale. Secondly, since the period's utility function is homogeneous of degree y,

we have

* * - St* * * 1

u(ryt-'rkt, Irnt) + E[t sE 1ptu(Tys- rks, rns)

=-T7 (yt-k*, n*) + r7 E E 3s tu(y*-k*, n)]

= T 7 V(yt, At)

*~~~~ *Clearly, if the sequence {k*, n*1' solves the problem for yt and At, then the transformation

{-ks, rn* }' also solves the problem for ryt and At. 5 This implies that the value function

obeys the following relationship:

V(iryt, At) = U(i-yt-rkt, i-nt) + Et[ S Tu(-ys-rks, rns)]

= r7 V(yt, At)

Thus the value function is homogeneous of degree 7 in Yt for a given realization of At.

Hypothetically, the value function takes the following form:

(6) V(yt, At) = A(At)y7I, 0 < Y < 1
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where A(At) is an unknown function, presumably nondecreasing in At. Notice that the

value function is strictly concave in the state variable yt. Economically, this means that

the househould is risk averse toward output fluctuations. The relative risk aversion

coefficient of Arrow and Pratt is 1-7, the reciprocal of which is just the intertemporal

substitution elasticity of consumption. The slope of the value function evaluated at yt is

the equilibrium spot price of the current output.

The homogeneity of the value function is a building block in our solution

procedure. Specifically, it allows simplification of the Euler equations. Using (6), the

Euler equation (3) can be rewritten as follows:

ul(yt-k*, nt) = 7y E[ A7±A(At+ )]F(k*, nt)7 1 F1 (kt, nt)

***

where use has been made of yt+1 = At+iF(kt, nt). Also, we have replaced the

conditional expectation operator by an unconditional one because the process {At} is

serially uncorrelated. By assumption, ul(.,.) and F(.,.) are homogeneous of degree 7-1 and

1, respectively. We can divide both sides by (nt)7- 1 to obtain

(7) u1 [(yt-kt)/nt, 1] = y# E [A7 1 A(At+ )]F(kt/nt, 1)7 -Fl(kt/nt, 1)

This equation involves only the consumption-labor ratio and capital-labor ratio. Now,

because the rate of contemporaneous substitution in preferences and production can also be

expressed in terms of a ratio, the tangency condition (5) can be written as

g[(yt-kt)/nt] = f(kt/nt)

where f = F2/F1 and g = -u2 /u1 . This equation defines a one-to-one correspondence
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between the equilibrium capital-labor ratio and the consumption-labor ratio. The

determination of either one will automatically determine the other. Assume that the

function g is invertible, then the equilibrium consumption-labor ratio can be expressed in

terms of the capital-labor ratio:

(8) (yt-kt)/nt = g f(kt/nt)

Substituting (8) into the left side of (7), we have

(9) ul[glf(kI/n*),1l = y PE [A'±A(At 1 )] F(kt/nt*,l)7 1 Fl(kt/nt,)

Equation (9) summarizes the theoretical restrictions that must be placed on the

equilibrium capital-labor ratio.6 Given the expectations of the random shocks and the

unknown function A(At+i), the only possible solution for the equilibrium capital-labor

ratio is a constant.7 Thus, let

* *

(10) kt/nt = a

where a is a constant dictated by the parameters of preferences, technology, and most

importantly, the stochastic properties of the random shocks. From (8), the equilibrium

consumption-labor ratio is also a constant:

(yt-k)/n = g 1 f(a)

Rearranging and using (10), we obtain
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* ~~a _]y t 
(11) kt= L a + g-1 f(a) t O<q5<1

By definition,

* * r~~~~ g1 1 f(a)
(12) ct = yrkt = [ a ± 1 f(a) ] t (1-0) Yt

Also,

(13) nt = kt/a = E a + g-1f(a) Yt a Yt

Substituting (11)-(13) into the optimality equation (2'), one can determine the unknown

function A(At+i), which is a constant and equals 8

u[g 1f(a),1]/[a g 1 f(a)]J
A =

1 - E(At+ 71) A7

F(a, 1)
, where IE -1

a + g 1f(a)

The constant A is a meaningful quantity if and only if [I E(A7 1 )pO7] < 1. This is also a

necessary and sufficient condition for the transversality condition to hold. Later we will

show that the quantity A dictates the growth rate of this economy.

Equations (11)-(13) are the equilibrium decision rules for investment,

consumption and labor supply. The linearity of the decision rules implies that unexpected

productivity shocks at each point of time will be distributed proportionately between

consumption and savings (i.e., capital stock). The labor supply will also change

proportionally in order to satisfy the efficiency conditions. Therefore, the equilibrium
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quantities will move together in response to random disturbances. In principle, such

changes are governed by the substitution and wealth effects, but because of the general

equilibrium nature of the model prices and wealth (or permanent income) cannot be held

exogenous to uncover these effects. Some general observations, however, can be made.

The relationship between employment and output fluctuations is particularly

interesting. Consider the situation of higher than expected current income. First, the

individual tends to reduce his labor supply because he is wealthier. Secondly, because both

current and future consumption are normal goods, the individual has an incentive to spread

some portion of current income into the future. This is done by increasing the

accumulation of capital stock. Given the initial labor supply, the future marginal products

of capital and labor will then decrease and increase, respectively. Of course, this cannot be

an equilibrium because it creates potential profits that can be exploited by increasing the

labor supply. As long as the exploitable gains outweigh the wealth effect, the labor supply

will continue to rise. In other words, the individual is always willing to substitute labor

into periods where the net expected returns are higher. This mechanism differs from

traditional growth models, in which the smoothing of consumption relies entirely on the

adjustment of capital stock.

It is not surprising that the incentive for smoothing consumption over time also

tends to smooth the equilibrium price ratios, such as the expected real interest rate. In

fact, in the case of random walk consumption, the equilibrium rate of interest (i.e., r4e)

remains constant over time. It should be mentioned, however, that the ex post interest

rate, which has nothing to do with the savings decision, will fluctuate over time in response

to random shocks.
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5. DYNAMICS

The dynamic properties of the system can be studied in terms of the reduced forms

of the decision rules. For convenience, we will omit the superscript "*" hereafter. Using

the production technology and the decision rule for labor supply (13), equilibrium output

can be derived as follows:

r F(a, 1)1
yt=A~F~a,1)n~ tA1 t[ a + g 1 f(a) ] t 1 t t t

Similarly, from (11)-(13), the equilibrium capital stock, consumption and employment are

F(a, 1) 1
kt ytt= At I a + g-1 f(a) ant-1 =AtI kt-1

ct = - kt = At p (yt~l - kti) = At ct_,

n =kt/ r FAa,1) 1
nt kt/a At [ a g-1 f(a) nt-1 At p nt-1

Taking natural logarithms, we have

(14) log yt = log A + log yt_l + log At

(15) log kt = log y + log kt-1 + log At

(16) log ct = log 4 + log ct_1 + log At

(17) log nt = log a + log nt-i + log At

Equations (14)-(17) are the reduced forms of the dynamic system. Since the random shock

log At is i.i.d., the equilibrium quantities, in logs, will all evolve as random walks with a

constant drift log IO.9
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One of the most important implications of random walks is that temporary real

disturbances will be propagated permanently into the future and shift the equilibrium time

path once and for all. The time series generated by such processes will be unpredictably

fluctuating along a constant mean path, a feature that appears to agree with a casual

observation of the real economy and is consistent with the findings of Nelson and Plosser

(1982) that many U.S. economic aggregates, including real GNP, consumption, capital, and

employment may be generated by autoregressive processes with an unit root.t 0

The drifted random walks (14)-(17) imply that the economy is characterized by

balanced growth in which all endogenous variables grow at the same rate. In fact, with an

i.i.d. random shock, the equilibrium growth rate is a white noise. Rewrite (14) as follows:

Alog yt = log p + log At

where A is the first difference operator. Clearly, the growth rate of this economy, Alog yt,

consists of two components: (1) the expected or "natural" growth rate, log jA, governed by

the deep parameters of preferences and technology and the probability distribution of the

random shock, and (2) the stochastic part, log At, driven by exogenous disturbances. The

equilibrium growth rate, therefore, is determined endogenously by economic agents, which

is different from conventional growth models where balanced growth is exogenously given

by population growth. Further, the endogenous growth is not related to an exogenous

technology for producing human capital, which is essential for the models of King and

Robelo (1986) and Hercowitz and Sampson (1986)."1

The random walk as a data generating process contrasts with other real business

cycles models. In Long and Plosser (1983), for example, the output process can be

characterized as a stationary autoregression of first order, for which the propagation of
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shocks decays with the share of physical capital in output (see King and Plosser (1986)).

Since the share is empirically small (about one third in U.S.), the internal mechanisms of

the Long and Plosser model - consumption smoothing and capital accumulation - do

not produce quantitatively important serial correlation in economic time series. In this

regard, the random walk with a constant drift may be interpreted as an extreme form of

serial correlation in the levels of economic aggregates. However, it is questionable to

measure serial correlation for time series generated by nonstationary processes because they

do not possess a stable autocorrelation function. In our case, however, stationarity can be

achieved simply by first differencing the time series and considering the growth rate, which

is a white noise.

For the last century, capitalistic economies have been growing at a somewhat

constant pace. In the case of the U.S. economy, for example, the annual growth rates of

real GNP have been 3 percent on average, which is consistent with the prediction of our

model. However, the growth of many aggregate time series (notably, output, employment,

and consumption) also displays a strong cyclical pattern over the course of economic

fluctuations, which our model fails to capture. The reason for this is due to the nature of

technological shocks assumed in the model. It is not difficult to see that, if random shocks

follow a Markov process, then equilibrium quantities may be characterized as an integrated

process, in which case the variation in growth rates will be serially correlated. The

economic reason for this is because a particular realization of technological shocks that are

serially correlated will alter the curvature of the future production schedules, and hence the

intertemporal efficiency condition. Despite its ad hoc nature, this device have been widely

used in real business cycles models to enhance persistence in economic time series (e.g.,

Kydland and Prescott (1982)). The above discussion suggests that the presence of utility

impulses may also introduce additional persistence into the system through its effect on the

intertemporal substitution of consumption. This factor is often ignored in the literature.

Whether or not it is quantitatively important is left for further research.
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6. CONCLUSION

The main objective of this paper has been to provide a theoretical ground on which

economic time series should be interpreted. We start by asking whether the observed

macroeconomic data can be modeled as a nonstationary process, a hypothesis that has

important implications for the study of business cycles. To empirical economists, this view

has been accepted implicitly for a long time, but rarely justified on a theoretical basis.

Part of the problems may be attributed to the difficulty of identifying different sources of

the nonstationarity embedded in the economic data. This paper provides an explicit

example in which the economic system itself is capable of generating nonstationary

aggregate data even in the absence of nonstationary shocks. In this economy, the

nonstationarity cannot be removed by detrending the time series as it is usually done in

empirical studies. Instead, first differencing is a proper way of achieving stationarity.

The model analyzed in this paper may be used as a benchmark to study the

implications of fiscal policy. For example, the model may incorporate the government as

the third agent who claims a certain amount of resources (i.e., lump-sum taxes) to meet its

expenditure needs. In this case, the variation of production shocks may be interpreted as a

change in the expenditure or tax policy. Since shocks have permanent effects in our model,

we expect that a change in the tax or expenditure policy will shift the time path of the

equilibrium quantities. In the long run, however, this should not affect the "natural"

growth rate at the steady state unless the government also changes the stochastic

properties of its policy such as the mean and variance of its expenditure.
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FOOTNOTES

1. This formulation is different from the dynastic utility function used by Barro and

Becker (1986), in which the production of children generates a positive service to the

household's utility because parents care about the welfare of their offsprings.

2. This relationship can be argued intuitively. Let us suppose that the output increases

marginally at time t due to unexpected random shocks. This extra income can be either

consumed at time t or used as production input for future consumption. But either way

should leave the total returns intact at optimum, and poses no differences to the economic

agent. Therefore, the value of such extra income, which is the price of the current output,

should be equal to the marginal utility of consumption. Note that this quantity should be

adjusted accordingly if capital is not fully depreciated.

3. In this sense, the classical model does not really explain the phenomenon of growth

because it relies on exogenous mechanisms.

4. Recently, Boyd (1986) has shown that this principle can be applied to dynamic and

stochastic settings as well. In fact, according to Boyd, the transformation need not be

linear as long as it preserves the preference ordering. Technically speaking, any such

transformation is "isomorphic" and preserves the geometrical structure of the equilibrium.

Using this property, a complicated stochastic model might be converted to a easy-to-solve

form. See Boyd (1986) for details.

5. Another way of looking at this is to check the Euler conditions. Since V1 (.,.) equals

marginal utility of consumption in equilibrium, equation (3) can be written as follows:

*** * * * * *

u1 (yt-kt, nt) = IEt [u[At+iF(kt, nt)-kt+i, nt+1] At+, Fl(kt, nt)

Since both u and F are homogeneous, this equation still holds under the scale

transformation {rys, rk5 }l. The same argument applies to equation (4) as well.
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6. Note that equation (9) can be viewed as an algebraic equation rather than a functional

equation. In the latter case, the solution is in general more difficult to obtain because

expectations of the future endogenous variable have to be taken into consideration. In the

present case, however, only the current endogenous variables are involved.

7. Like Mao (1986), one can imagine that the equilibrium capital-labor ratio as a function

of yt and At, or more generally, a function of the current and past random shocks {At,

At-1...}. Then, equation (9) can be rearranged as follows:

H(At, At 1 '....) E 7[At+A(At~i)]

where H(.) is the implicit equilibrium function implied by the equilibrium capital labor

ratio. Since the right hand side is constant over time, H(.) must be a constant function.

That is, the implicit coefficients of the random shocks must be identically equal to zero,

which implies a constant capital-labor ratio.

8. The quantity A(At) can be derived in a different way. Using the homogeneity of the

utility and production function, the optimality equation (2) becomes

A(At)yt u(yt-kt, nt) +± E[It +±A(tt+1)]F(kt nd)

- [ul(yt-kt, nt)(yt-kt) + U2 (yt-kt, nt)nt] +

FJ 3E[A t±A(At+l)][7Fl(kt, n*)k* + 7F2 (k*, n*)nt]

From the Euler equations (3) and (4), the above reduces to

A(At)yt7 - [ul(yt-kt, nt)yt]

E1 * [g-1 1Y+g-*f(a) 1]- 1 u[ ~a, 1(* 7-lyt J[- u1 gfa,1
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Therefore,

A(At)E [ u[g-lf(a), 1]

It can be shown that this expression is equivalent to that in the text.

9. The wealth (or permanent income), measured in log, will also evolve as a drifted

random walk. Define the wealth wt as the expected present value of current and future

income, discounted by the equilibrium real rate of interest, i.e.,

wt=Et [ sE t [1 I+re Ys

where re is constant in equilibrium. Use (14) and complete the summation, we obtaint

t [ 1 - / E(At..71 ) J ] Yt

Therefore, the wealth is also linear in yt, which implies that it will also evolve as a drifted

random walk. Note that, in this case, the current income and permanent income amount

to the same thing.

10. It should be mentioned that the test conducted by Nelson and Plosser (1982) has a low

power against the alternative processes.

11. A common feature of the models of King and Robelo (1986) and Hercowitz and

Sampson (1986) is that both impose some kind of fixed factor dynamics. Although the

growth in these models is endogenously generated, it can be shown that it may not be

sustainable in the absence of technical progress. In fact, the data generating process in this

case will be stationary. This is most apparent in the model of Hercowitz and Sampson.
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