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1 Introduction

The extent to which purchases made over the Internet should be subject to sales tax is currently the

subject of a lively debate in the United States (and elsewhere). The Internet Tax Freedom Act of 1998

was essentially an agreement to postpone any major decisions for at least three years, meaning that

the issue is still very much undecided. The arguments both for and against special tax treatment of

Internet transactions are numerous, but one of the arguments in favor of special treatment strikes us as

particularly interesting. This argument1 relies on the idea that there is a natural network externality:

as more people engage in e-commerce, the ef�ciency of e-commerce increases for all users. The

future size of the electronic market is currently unclear, and the cost advantages of e-commerce over

traditional retailing methods make a large electronic marketplace a better outcome (in terms of social

welfare). Lower e-commerce taxes are believed to substantially increase the number of people who

use this medium for commerce.2 Preferential tax treatment, therefore, is aimed at trying to generate

a large e-commerce market.

Putting this argument into the language of formal economic models, the claim is that there are

multiple equilibria with differing levels of e-commerce activity. To keep things simple, suppose

there are two equilibria. In one, the e-commerce market is small and engaging in e-commerce is

not very pro�table, leading few people to do so. In the other, the market is large and very ef�cient,

leading many people to engage in e-commerce. Because e-commerce is claimed to be more ef�-

cient than traditional distribution methods, the latter equilibrium socially dominates the former. In

this language, the argument is that by giving e-commerce transactions preferential tax treatment the

government can encourage the economy to settle into the better equilibrium. In other words, the

proposed policy is an attempt to affect the process by which an equilibrium is selected.

This argument raises a fundamental issue that reaches far beyond the speci�c example: whenever

there are multiple equilibria, actions taken by the government may affect which equilibrium is se-

lected. This means that, in such situations, simply formulating the optimal policy problem requires

a theory of how the policy choice affects the equilibrium selection process. In the present paper,

we provide such a theory for exactly the type of situation described above: coordination-problem

economies with multiple equilibria. Our approach is to assign a probability to each equilibrium in-

dicating how likely it is to obtain. These probabilities then generate a well-de�ned optimal policy

problem. Solving this problem requires taking into account the effect that the policy choice has on

the probabilities. We show how an adaptive learning process naturally generates such probabilities

4 See Zittrain and Nesson (2000) for one statement of this argument in the popular press.
5 Indeed, Goolsbee (2000) estimates that applying existing sales taxes to Internet commerce would reduce the number
of online buyers by about 24 percent.
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and that they are affected by policy in intuitive and interesting ways.

We apply our methods to both the Internet sales tax issue and to the general problem of the choice

between technologies in the presence of network externalities. In such situations, there are often two

(symmetric, pure-strategy) equilibria – one where the good technology is adopted and one where the

bad technology is used. These are typically both strict equilibria, neither of which is easily re�ned

away. There is ample evidence from the historical and experimental literatures that both Pareto-

dominant and Pareto-dominated equilibria can arise in such settings.3 Hence rules that select only

Pareto-optimal equilibria do not seem to describe such situations very well. On the other hand, it

is often intuitively clear that one equilibrium seems more likely to obtain than the other. As an

example, consider the problem of an agent deciding whether to engage in e-commerce or traditional

commerce. To simplify the story, suppose she believes the e-commerce market will be either “thick”

or “thin.”4 Suppose further that the gain from choosing e-commerce is large if the market is thick

and that the loss from choosing e-commerce is small (near zero) if the market is thin. If all agents are

identical to this one, then there are two strict equilibria. However, in a world with uncertainty and

imperfect information, it seems intuitively more likely that the economy would settle on the thick-

market equilibrium since the large payoff of the e-commerce equilibrium will lead expected-utility-

maximizing agents to choose e-commerce for a large range of beliefs about the market thickness. In

the words of Harsanyi and Selten (1988), the e-commerce equilibrium is risk dominant. Hence, it

seems intuitively plausible that a risk-dominant equilibrium might be expected to obtain more often

than a risk-dominated one. How much more often would seem to depend on the strength of its risk

dominance.

Experimental evidence lends strong support to the probabilistic view of equilibrium selection. Van

Huyck, Battalio, and Beil (1990, 1991) report that, in a series of coordination-game experiments,

the frequency with which the subjects converged to each equilibrium varied systematically with the

treatment variables. In other words, the ex ante probability distribution across equilibria was non-

degenerate and was affected by small changes in the structure of the game.5 We build on the model

of adaptive learning in Howitt and McAfee (1992) and show that it generates precisely this type of

behavior. Under this learning process, the economy can converge to either equilibrium. Where it

converges depends in part on the particular realizations of uncertainty along the learning path. In the

context of our leading example, suppose that the ef�ciency level of e-commerce is not known with

6 See Cooper (1999) for an excellent review of this literature.
7 Another type of model where expectations about market thickness can generate multiple equilibria is the market
game. See Peck, Shell, and Spear (1992).
8 See Crawford (1997) for an interesting discussion of these results and for an estimation of a general learning model
using the experimental data.
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certainty. If the �rst few observations make e-commerce seem attractive, agents will begin to coor-

dinate on the high e-commerce decision, making this equilibrium more likely. We demonstrate that

the probability of converging to a particular equilibrium is negatively related to the risk factor of the

equilibrium. (A low risk factor corresponds to a strongly risk-dominant equilibrium.) The risk fac-

tor, in turn, depends on the government’s policy choice. This is the mechanism through which policy

affects equilibrium selection – by making a particular choice less risky for agents in the stochastic

environment, the government can make that equilibrium more likely to obtain.

This mechanism assigns an objective probability to each equilibrium and thereby allows us to

address the question of optimal government policy. We take as the government’s objective the max-

imization of expected utility across equilibria. The optimal policy derived under our approach typi-

cally differs from that derived using any deterministic selection criterion. We show, for example, that

it is generally not optimal to choose the policy that maximizes the (utility) value of the good equilib-

rium. The reason is that, by deviating in some direction, there is a �rst-order gain in the likelihood

of attaining the equilibrium, but no �rst-order loss in the value of that equilibrium. We also show

that even when it is feasible to eliminate the bad equilibrium, it may not be optimal to do so. It may

be optimal to allow the bad outcome to occur with low probability in exchange for a higher (utility)

value if the good equilibrium occurs.

Our approach stands in contrast to the recent work of Morris and Shin (1998), which uses in-

formational imperfections to eliminate the multiplicity of equilibria in a related coordination game.

In that approach, economic fundamentals (and the information structure) determine how agents will

coordinate� there is no role for chance. In our approach, chance plays an important role, with the

economic fundamentals determining the probabilities. Our approach is therefore more in the spirit

of Cole and Kehoe (2000). That paper studies a coordination game embedded in a dynamic gen-

eral equilibrium model and calculates (for given fundamentals) the maximum probability of a bad

outcome that is consistent with equilibrium. Hence chance plays a role and economic fundamentals

determine the possible probabilities. However, our approach assigns a unique probability to each

outcome, eliminating the need to focus on the worst case scenario.

When there are multiple equilibria, policy choices can affect equilibrium selection by acting as a

sunspot variable and guiding the coordination of agents’ actions.6 For example, agents might expect

the high e-commerce equilibrium to obtain if and only if e-commerce is completely tax free. This

would then be a rational expectations equilibrium. It is extremely dif�cult, however, to formally

9 Manuelli and Peck (1992) show how intrinsically important economic variables can also act as sunspot variables
with respect to agents’ expectations.
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model agents’ expectations regarding such effects.7 A variety of papers have focused instead on the

“worst” equilibria and looked for policies that eliminate these as possible outcomes.8 Our approach

differs from these in that it assigns an objective probability to each equilibrium and hence generates

a unique probability distribution over the set of equilibria. This can be thought of as endogenizing

agents’ expectations, although doing so requires a departure from rational expectations in the learning

process. The distribution tells us how much weight the government should give to each of the possible

outcomes. This allows us to ask not only can the government eliminate a particular bad equilibrium,

but also should the government eliminate it.

The remainder of the paper is organized as follows. In the next section, we lay out our approach

to optimal policy analysis and equilibrium selection in a general setting. The focus is on illustrat-

ing the central ideas rather than proving speci�c results. In Section 3, we specialize to a class of

coordination-problem economies that contains the examples discussed above, and we provide a de-

tailed analysis of both the learning process and the optimal policy problem in that setting. In Section

4, we then apply our approach to simple models of technology choice. Finally, in Section 5 we offer

some concluding remarks.

2 The General Approach

In this section, we outline our approach in a general setting that allows us to highlight the important

features with minimal complications. We consider economies with a continuum of identical agents.

We focus on symmetric equilibria, where the fact that we have identical agents means that social

welfare is the same as individual welfare. Studying symmetric equilibria facilitates the analysis of

the optimal policy, as there is no need to impose a social welfare function.

2.1 The Model and Equilibrium

Each agent must choose an action � from a set � � �� . There is a (benevolent) government that

chooses a policy � from a set � � �. In addition, there is aggregate uncertainty represented by

the variable � � � � �� The distribution of � is given by �	 a probability measure on � ��� 	 the

Borel subsets of ��9 The utility of each agent depends on each of these variables and on the average

action in the economy �� this external effect is what will generate multiple equilibria. Since there is

a continuum of agents, we have a truly competitive economy and each agent correctly perceives his

: See Ghiglino and Shell (2000), section 7, for an interesting discussion of this issue.
; Contributions along these lines in the sunspots literature include Grandmont (1986), Woodford (1986), Smith (1994),
Goenka (1994), and Keister (1998). This approach is also common in the literature on �nancial fragility.
< We are assuming that both � and � are one-dimensional, but this does not seem to be important for the results.
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own action to have no effect on �� Each agent’s utility is given by the function


 � �� �� � � � � �	

where � is the convex hull of �� We assume that the set � is convex and that 
 is (jointly) strictly

concave and twice continuously differentiable in all of its arguments. These assumptions are made

so that we can use a simple �rst-order condition to characterize optimal government policy.

Each agent has a belief about the values of � and � that is represented by a joint probability

measure � on ���. The government policy is commonly known. Each agent therefore maximizes

expected utility by solving

���
@M�

�

 ��	 �	 � 	 �� �� ��	 �� � (1)

Rational expectations equilibrium is a natural solution concept in this environment� we focus on

symmetric outcomes.

De�nition: A symmetric rational-expectations equilibrium is an �W � � such that

�
� Agents have rational expectations, that is, we have

� ��	�� �

�
� ���
	

�
for �

�
�
��

�
�W for all � � � ��� , and

�

� Given these beliefs, agents are optimizing (that is, �W solves (1)).

We denote the set of equilibria for a given government policy by � ���. Our interest is in situations

where there is more than one such equilibrium for at least some values of � , so that equilibrium

selection is an issue.10 It is well known in the literature on coordination problems that some degree

of payoff complementarity is necessary for the existence of multiple equilibria (see Cooper and John

[1988]), so we are assuming that the 
 function has this property. In Section 4, we work through

explicit examples where this is the case.

2.2 Optimal Policy

We now turn our attention to the problem of determining the optimal policy. The traditional approach

is to focus on a particular equilibrium �W � � ���. This equilibrium might be selected by a formal rule,

or it might be the focus of attention solely because it has some desirable properties. The government

recognizes, of course, that the equilibrium action �W is a function of � � The benevolent government

chooses its policy to maximize the expected utility of each agent in this symmetric equilibrium. The

43 The multiplicity here opens the door to a richer set of possible rational expectations equilibria (related to the
correlated equilibria of the coordination game). We choose to restrict our de�nition exclusively for simplicity (see the
remarks in Section 3.1).
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traditional optimal policy problem is therefore

���
�MA

�

 ��W �� � 	 �W �� � 	 � 	 �� �� ��� �

The shortcoming of this approach is that the resulting optimal policy typically depends on which

equilibrium was selected. As we mentioned above, the evidence on coordination games indicates

that in many cases a unique equilibrium simply cannot be singled out as the prediction of the model.

As a result, this approach does not yield a clear policy prescription.

Suppose instead that we allowed for a probabilistic equilibrium selection mechanism. Such a

mechanism assigns, for each value of � , a probability distribution over the set of equilibria � ���.

We denote the probability of equilibrium �W by � ��W	 �� � As the notation indicates, this distribution

will typically depend on the government’s choice of policy. In the next subsection, we provide a

foundation for this type of mechanism by showing that it can be derived as the limiting outcome

of an adaptive learning process in the model. First, however, we discuss the implications of such a

mechanism for the optimal policy problem. Once a probability is assigned to each equilibrium, the

natural goal of the government is to maximize the expected utility of agents across equilibria.11 The

optimal policy problem is therefore

���
�MA

� ��

 ��W �� � 	 �W �� � 	 � 	 �� �� ���

�
�� ��W ��� 	 � � � (2)

Notice how � enters the objective function by �
� directly affecting the value 
	 �

� affecting the

equilibrium action �W	 and �


� affecting the equilibrium selection mechanism ��

Deriving the optimal policy this way leads to interesting and sometimes surprising results as we

demonstrate in Section 4. To gain some intuition here, suppose that there are two equilibria, one

“good” and the other “bad.” Let 
} �� � and 
K �� � represent the utility level of agents in each of these

equilibria. Also, let � �� � represent the probability of converging to the good equilibrium (that is,

� ��� � �). Then, the optimal policy problem can be written as

���
�MA

� ���
} �� � 
 ��� � ����
K �� � � (3)

Suppose (again for illustration) that � is differentiable in � �Then the �rst-order condition for this

problem is

� ���
 �} �� � 
 ��� � ����
 �K �� � 
 �� ��� �
} �� �� 
K ���� � 	�

This is in many ways the central equation of the paper� its solution is the optimal policy � W. It says

44 Agents now face a compound lottery – �rst an equilibrium is selected and then a state of nature is realized.
Maximizing expected utility across equilibria amounts to a reduction of this into a single lottery.
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that the optimal policy is the result of the balancing of three forces. One must consider not only the

effect of the policy on the utility of agents in each of the two equilibria, but also the effect of the

policy on the equilibrium selection mechanism.

One way to think about this approach is to contrast it with a situation where agents use a sunspot

variable to coordinate their actions. In that case, with probability � there is sunspot activity and

with probability ��� �� there is not, and � is independent of government policy (and everything

else in the economy). There is then an equilibrium where agents choose
�
�	 �W}

�
when sunspots are

present and ��	 �WK� when they are absent.12 If the government must choose � before the realization

of the sunspot variable, it faces exactly problem (3) except that � does not depend on � � One can

think of our approach, therefore, as endogenizing the properties of the extrinsic variable on which

agents coordinate their actions. This allows us to study the impact that the government has on this

coordination device and the resulting changes in the optimal policy problem.

The crucial question at this point is obviously where the function � comes from. In the next

subsection, we show how it can be obtained as the natural result of an adaptive learning process

within this environment.

2.3 A Probabilistic Equilibrium Selection Mechanism

In this subsection, we describe how a general learning process induces a probabilistic equilibrium

selection mechanism. In section 3, we provide a more detailed analysis of the approach in a speci�c

class of models. Studying learning within this model requires changing the information possessed by

agents so that there is something for them to learn about. In addition to the endogenous uncertainty

about each other’s actions, we introduce uncertainty about the distribution �� This means that agents

need to learn about the fundamentals of the economy while they learn about market conditions, and

the coevolution of their beliefs about the two objects determines where the economy converges.

Our interpretation of the learning process is similar to that in Lucas (1986), which advocates using

learning to investigate the plausibility of different equilibria. Using adaptive behavior to predict the

actual performance of the economy along the learning transition does not constitute, for Lucas, a

“serious hypothesis.” We also do not think of our learning process as an accurate description of the

short-run behavior of the economy. Rather, we view it as a mechanism that accurately re�ects the

likelihood with which the economy will end up in each equilibrium. Our primary interest is in how

these likelihoods are affected by the government’s actions.

We model the learning process as taking place over an in�nite sequence of discrete (arti�cial)

45 In general, however, sunspot equilibria need not be mere randomizations over equilibria of the non-sunspots
economy, as shown by Cass and Shell (1983).
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time periods � � 		 �	 �	 � � �. In period �	 each agent must choose an action �|	 and then observe a

state �|� The state �| is drawn from the true distribution � over � and is drawn independently across

periods. As a result, agents will asymptotically learn the true distribution �� The action �| is chosen

to maximize current-period expected utility, given the agent’s time � beliefs (the beliefs at � � 	 are

the initial priors). The agent then observes the average action �| and updates his beliefs, and the

process repeats itself.

Formally, let �| denote the random vector that describes the possible outcomes of the aggregate

economy in period � of the learning process. A realization of �| is denoted �| � ��|	 �|�	 and therefore

we have �| � � � ���. Let 
 represent the set of distributions over � that agents consider possible

for �|. We may choose to restrict this set to, say, distributions of a particular parametric form. Agents’

beliefs at time � are given by a probability measure over 
 that we denote by �|�

Agents begin the learning process with a common prior belief �f. We consider a recursive learning

process with the following structure

�|n� � �|��|	 �|�� (4)

Note that �| is, in general, an endogenous random variable. Given the current state of beliefs and the

structure of the economy, described by a mapping �	 we have

�| � ���|� � �� (5)

Together, equations (4) and (5) and the initial prior beliefs �f fully describe the learning system.

The fact that the laws of evolution of the endogenous variables are determined in part by the learning

process make this system self-referential. (Agents are learning about a system that is being in�uenced

by the learning processes of people like themselves.) This property of the system implies that agents

are not learning about a �xed data-generating process (see Marcet and Sargent [1989]). The limiting

behavior of beliefs is especially complicated due to this fact. We are interested in adaptive rules

� that satisfy certain “natural” requirements (see Woodford [1990]). For example, we would like

to consider learning algorithms that satisfy asymptotic consistency: beliefs converge almost surely

to the “true” distribution. In self-referential systems there is actually no “true” (�xed) distribution.

Although we could still check this requirement for the non-self-referential part of the system, we

will only consider adaptive rules that satisfy an even stronger requirement: convergence of beliefs

to the rational expectations equilibrium beliefs. Using the notation above, we can de�ne a rational

expectations equilibrium as a random vector �� such that, together with the belief �� that puts full

mass on �� , we have �� � ����� ��� (6)
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In other words, an equilibrium random vector is such that if agents’ beliefs put probability one on

that vector, then agents’ actions will generate that same vector. We are interested in economies with

multiple rational expectations equilibria, that is, with more than one random vector solving (6). Let�
�� � � 
 be the set of solutions to equation (6) and ����� the corresponding set of belief distributions

that put full mass on a particular element of �
���� To study the asymptotic behavior of system (4) it is

convenient to consider the set �" of in�nite sequences ��|	"|'� and the induced probability measure

� over that space (which depends on the prior distribution �f and, through (5), the government policy

� ). We then focus on adaptive rules that for all sequences � � �" satisfy

���
|<"

�| � �" � ������
Note that this implies two things. First, it implies that the sequence ��|	 converges and second, that

it converges to a distribution that puts full mass on only one element of the set �
� Finally, note that

if the adaptive learning process satis�es this condition, then it will induce a probability distribution

over the set �
��� that is given by

����� � � � �� � �" � �
"
� �� � ����� � ���

This is the foundation for our proposed equilibrium selection mechanism (ESM). The probability

that we assign to each equilibrium is the probability of the set of sequences ��|	 that converge to it.

It is important to note that both the endogenous variables �| and the exogenous random variables

�| are essential to our problem. If vector �| contained only endogenous variables, then given the prior

distribution �f	 the economy would always follow the same path during the learning process. Then,

there would be no chance of convergence with positive probability to more than one rational expec-

tations equilibrium. By the same token, if vector �| contained only exogenous (random) variables

then the set �
�� � would be a singleton (containing only the measure that puts full mass on the true

distribution of �|) and hence there would be no equilibrium selection problem.

It is implicit in the formulation of problem (2) is that the policy maker knows �	 the true distribu-

tion of random variable �� Recall that our interest is in determining the optimal policy in the static,

rational-expectations model of Section 2.1. In that context, the policy maker must make a single

choice � 	 knowing �� This may seem somewhat at odds with our learning story – the policy maker

chooses � while knowing �	 and then agents begin to learn about �� However, this is an unavoidable

aspect of using learning to generate an equilibrium selection mechanism. A rational expectations

equilibrium of the model in Section 2.1 – our model of interest – requires that everyone, including
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the government, know the true distribution � .13 However, if agents began the learning process know-

ing �	 their initial beliefs would uniquely determine the outcome and learning would not be selecting

the equilibrium. In other words, if an equilibrium could be selected using methods that are entirely

consistent with the original model, there would not have been multiple equilibria to begin with.

In a sense, this is the same type of point made by Morris and Shin (1998) in the context of a model

of self-ful�lling currency attacks. However, it is also where our approach differs fundamentally from

theirs. We perform equilibrium selection for a given economy, whereas they change the economy so

that the equilibrium is unique. In particular, they change the informational structure so that agents

receive different signals about economic fundamentals and must act on the basis of this (incomplete)

information. The result is, in general, not an equilibrium of the original economy. We keep the

original economy as our fundamental object of interest and study an adaptive learning process that

converges to an equilibrium of this economy. We think of our approach in the following way. The

model in section 2.1 abstracts from the uncertainty that is undoubtedly present in any economic

situation. This is a standard approach and, as long as the uncertainty is not too large, seems reasonable

in the context of the static model. We then add this uncertainty in for the learning process, where it

interacts with agents’ beliefs about each other’s actions in a crucial way.

Another implication of this approach is that the policy maker cannot change � during the learning

process or after the economy has converged to an equilibrium. This seems a natural requirement in

any event for two reasons. First, the policymaking process may be such that changing policies is

costly and/or involves time lags. Second, and more importantly, a policy change could easily cause a

“jump” in agents’ beliefs, which would reset the learning process to some new initial condition. The

strategic interplay between policy changes and changes in beliefs is a very dif�cult problem, and we

defer this to future work.

3 Coordination Problems

In order to simplify the analysis, we specialize the model to economies with a coordination prob-

lem and two symmetric, pure-strategy equilibria. This is most easily done by assuming that agents

face a binary choice, such as the choice between two competing technologies.

3.1 A Binary-Choice Model

We now restrict the choice of agents to include a binary decision, in addition to other payoff-relevant

choices (such as how much to produce with the chosen technology). Therefore, we model the agents’

46 Rewriting the model in Section 2.1 to include uncertainty about � would not resolve the issue� it would only move it
to the next level: beliefs about the distribution of the true distribution.
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choice set as

� � ��	 �	 ��	 where � � �
� �

(We will later interpret � as choosing the “good” technology and � as choosing the “bad” one.) The

analog of this binary choice in game-theoretic analysis is the � � � game that has received so much

attention in the literature on equilibrium selection.14

De�ne �W} as the solution to

�W} � ������
%

�


�
��	 �� 	

�
�	 �W}

�
	 � 	 �

�
�� ��� �

Then �W} will be the value taken by � in an equilibrium where all agents choose � (if such an equilib-

rium exists). We assume that this equation has a unique solution. The utility value to each agent of

being in this equilibrium would then be


}} 

�


��
�	 �W}

�
	
�
�	 �W}

�
	 � 	 �

�
�� ��� �

We similarly de�ne the utility that an agent would receive from choosing � (and then choosing �

optimally) when (almost) every other agent is choosing � by


K} 
 ���
%

�


�
��	 �� 	

�
�	 �W}

�
	 � 	 �

�
�� ��� �

We assume that 
}} � 
K} holds, meaning that there is indeed an equilibrium where all agents choose

�� We de�ne �WK 	 
KK	 and 
}K in an analogous way, and we assume that 
KK � 
}K holds. Then 
KK is

the utility agents receive in the equilibrium where all agents choose �	 and 
K} is the utility value of

deviating unilaterally from this equilibrium. Finally, we assume that 
}} � 
KK holds, so that � is the

“good” equilibrium and � the “bad” one.

There is an important point to be mention here. The de�nition of rational expectations equilib-

rium that we will be using (see Section 2.1) is somewhat restrictive, even for this speci�c kind of

coordination game. It is well known that coordination games often admit a large number of cor-

related equilibria. For example, we could have grouped agents within a �nite number of different

coordinated groups and then constructed correlated equilibria for which the equilibrium probabil-

ity distribution over the aggregate state � is non-degenerate. This is important because, during the

learning process, agents hold prior probabilities over a set of possible nondegenerate distributions

of the aggregate state � (as opposed to holding prior distributions directly over the possible states �

or equivalently only over degenerate distributions).15 Agents are trying to learn about equilibrium

47 See, for example, Harsanyi and Selten (1988), Kandori, Mailath, and Rob (1993), and Matsui and Matsuyama
(1995).
48 A subset of these correlated equilibria is the set of (symetric information) sunspot equilibria. Our de�nition rules out
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behavior and hence de�ne prior beliefs broadly enough to include all possible types of equilibrium.

As it turns out, without the existence of a generally accepted correlating device (see Fudenberg and

Tirole [1991]), the �nal equilibria are always of the type described by our restrictive de�nition. In

addition, much of the analysis in this paper can be extended to include such correlation with only

minor modi�cations.

3.2 Optimal Policy

The traditional optimal policy problem is to maximize 
�� ��� 	 where � is either � or � depending on

which of the two equilibria was selected. We denote the solution to this problem by � W� 	 where the �

subscript indicates that this is the optimal policy when the government knows that equilibrium � will

obtain.

In contrast, our approach uses a probability distribution � over the set of equilibria ��	 �	 � The

optimal policy problem is then given by (3). Without placing further structure on the vector of utilities


	 little can be said about the optimal policy � W� It is typically not equal to either � W} or � WK � It may fall

between these two values, or it may be higher than both. We now look at a speci�c learning model

and the properties of the � that it generates.

3.3 Bayesian Learning and Equilibrium Selection

In this section, we specialize to a particular learning process, that of Howitt and McAfee (1992). We

use this process primarily because it has a simple graphical representation that allows us to illustrate

how policy affects the equilibrium selection process. We should emphasize, however, that the details

of the learning process are not critical for our story. As Section 2.3 indicates, any of a broad class of

adaptive processes could be used. The only real requirement is that the process converges to each of

the two equilibria with positive probability.

We assume that the exogenous random variable � takes on only two values, �M and �u� We will

later interpret � as a random �xed cost of operating technology �� In that case, �u will correspond to

a low cost and �M to a high cost. This assumption implies that � is a Bernoulli distribution� let � be

the (true) probability of �u. We use 
 u
}} (resp. 
 M

}} ) to denote the (ex post) utility value of equilibrium

� when � takes the value �u (resp. �M). Therefore we have


}} � �

u
}} 
 ��� ��
 M

}} �

Subscripts added to other variables are de�ned similarly. We use 
 to denote the vector whose

elements are 
 &
�� for 
 � �	 �� � � �	 �� � � �	��

those as well. For the relationship between sunspots and correlated equilibria, see Peck and Shell (1991).
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We also assume that each agent knows that � will be either
�
�	 �W}

�
or ��	 �WK� � This is a restriction

on the support 
 of the set of beliefs. The agent believes that which of these two events occurs is

the result of an i.i.d. Bernoulli random variable, with the probability that
�
�	 �W}

�
is chosen given by

�� Each agent is uncertain about the values of � and �. She has (independent) beliefs about � and �

which are given by beta distributions over �		 �� with means � and �	 respectively. The agent begins

at � � 	 with diffuse (uniform) priors for each variable and updates these beliefs using Bayes’ rule.16

Because all agents begin with the same priors and observe the same information, they hold identical

beliefs at every point in time.

We place the following restrictions on the utility values:


 u
}K � 


u
KK and 
 M

K} � 

M
}} � (7)

The �rst of these inequalities implies that if � were equal to one, then � would be the optimal choice

for the agent regardless of �� In other words, if the agent is optimistic enough about the variable �	 she

will choose � regardless of her beliefs about market conditions. The second inequality is the reverse�

it implies that if � were zero, then � would be the optimal choice regardless of �� This implies that

agents believe it is possible that either one of the equilibria exists or that both exist. We will see

below that these assumptions guarantee that the economy has positive probability of converging to

each equilibrium from any current set of beliefs. This prevents initial beliefs from having too strong

of an effect on the �nal outcome.

Intuitively, the learning process works as follows. The agent knows that either the good technology

will catch on or the bad one will. In other words, one of the two symmetric equilibria will occur.

What she does not know is what probability to assign to the good outcome. In the same way, she

knows that the cost of operating the good technology will be either low or high, but she does not know

what probability to assign to the low cost. She begins the learning process with beliefs about each

of these probabilities. In each period, after making a decision, she receives two signals that she uses

to update these beliefs for the next period. One signal is a random draw from the cost distribution,

either �u or �M � With this she updates her belief about the likelihood that �u will be the true state.

The other signal is about the market. She observes either
�
�	 �W}

�
or ��	 �WK� and uses this to update

her belief about the likelihood that the good technology will catch on. There is no “true” distribution

for this signal to be drawn from� instead, the signal is equal to the optimal response given the agents’

49 Diffuse priors are a standard way of representing “minimal” prior knowledge about a parameter. See, for example,
Zellner (1971).
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current (shared) beliefs. The expected utility given belief ��|	 �|� of each choice is given by

� � �|�|

u
}} 
 ��� �|� �|
 M

}} 
 �| ��� �|�
 u
}K 
 ��� �|� ��� �|�
 M

}K

� � �|�|

u
K} 
 ��� �|� �|
 M

K} 
 �| ��� �|�
 u
KK 
 ��� �|� ��� �|�
 M

KK �

Straightforward algebra shows that the agent chooses � if we have17

�| �

 M
KK � 
 M

}K � �

 u
}K � 
 M

}K � 
 u
KK 
 


M
KK

�
�|�


 M
}} � 
 M

}K � 
 M
K} 
 
 M

KK

�
��� �|� 


�

 u
}} � 
 u

}K � 
 u
K} 
 


u
KK

�
�|
� (8)

For a given level of �|	 the agent will prefer technology � if she thinks it is likely enough that other

agents will be choosing technology �� Following Howitt and McAfee (1992), we can represent this

graphically as in Figure 1.

Figure 1: The dynamics of beliefs

The box in Figure 1 represents the set of all possible ��	 �� pairs. We de�ne the set � to be the set

of points ��|	 �|� such that (8) holds. The set  is the complement of �. It is straightforward to show

that (7) implies that the curve separating these regions must begin to the right of �		 �� and end to

the left of ��	 	� � One can show that the curve is smooth, strictly decreasing, and that it can be either

convex or concave depending on the functional forms chosen (in Howitt and McAfee [1992] and in

the examples in Section 4, it is linear).

Let ��|	 �|� denote the expected value of ��	 �� according to the beliefs held by agents at date �. In

particular, diffuse priors imply that we have �f � �f � �
2
. In each iteration of the learning algorithm,

4: Here we are imposing the tie-breaking rule that agents choose � when they are indifferent. This is not important for
the results� the only real requirement is that all agents take the same action.
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the observation of ��|	 �|� provides useful information for updating ��|	 �|�. Bayesian updating of

beliefs allows us to write the expected value of the parameter of the distributions after � observations

as

�|n� �

�
!|�|
!|�| 
 ��� !|� if �| �

�M
�u

�
(9)

and

�|n� �

�
!|�|
!|�| 
 ��� !|� if ��|	 �|� �  

�

�
	 (10)

where !| � �� 
 ��"�� 
 ��	 for � � 		 �	 �	 � � �. Such Bayesian learning has a nice representation

in Figure 1. If the time � beliefs fall in �	 all agents will choose
�
�	 �W}

�
and hence the value of �

will increase. As Howitt and McAfee (1992) point out, the posterior beliefs always lie on the line

segment connecting the prior beliefs with one of the corners of the box. From point �	 for example,

we would move to � if �M is observed and to # if �u is observed. Similarly, if the original point is

�� (in  ), � � ��	 �WK� will be observed, and � will decrease. We move to point �� if �M is observed

and to #� if �u is observed.

Suppose that in period �	 agent’s beliefs are represented by the point �� To which equilibrium

will the economy converge? The answer depends crucially on the sequence of realizations ��|	 	
especially the next few observations. Because � falls in �	 we know that agents will be choosing �

and hence �| will be rising. Suppose, however, that the economy is “unlucky” and receives a string

of realizations of �M � Then �| will be falling and eventually beliefs will cross into region  � At this

point, agents will begin to choose � and �| will start to fall.

Bayesian updating consistently estimates the value of �	 that is, we have �| � � almost surely as

�� �. Whether �| converges to zero or one depends (very roughly speaking) on whether beliefs are

in � or  when �| settles down. A suf�ciently unlucky sequence of realizations of �| will lead the

economy into region  and therefore make convergence to the bad equilibrium likely. Conversely, a

suf�ciently lucky economy will be driven into�	making convergence to the good equilibrium likely.

Howitt and McAfee (1992) formalize this argument showing that the probability of converging to

each equilibrium is positive. We now show that the learning process must converge.18 We then use

monte carlo simulation to con�rm that the system only converges (with positive probability) to the

two rational expectations equilibria. These two results combine to show that the learning process

generates a valid equilibrium selection mechanism. The proof of the �rst result and the description

of the computations for the second are contained in the appendix.

4; Convergence is guaranteed in purely Bayesian models because beliefs form a martingale. This result does not apply
to our setting, however, because agents learn using a misspeci�ed model. It is well known that in such an environment,
learning need not converge (hence the importance of this �rst proposition). See Blume and Easley (1998) and Nyarko
(1991).
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Proposition 1 The learning process ��|	 �|	 converges with probability one.

Proposition 2 Let � be the empirical probability of the set of sequences ��|	 such that ��|	 �|	 �
��	 �� � Then the empirical probability of the set of sequences ��|	 such that ��|	 �|	 � ��	 	� is equal
to ��� �� � In other words, the simulation of the learning process always converges to a symmetric
rational expectations equilibrium.

The value of � clearly depends on the position of the curve in Figure 1 and will change when this

curve is shifted by, say, a policy change. The curve can be interpreted in a way that relates it to the

risk factor of each equilibrium. Following Young (1998), we de�ne the risk factor of equilibrium

� � ��	 �	 to be the smallest probability $ such that if an agent believes � will be
�
�	 �W�

�
with

probability strictly greater than $	 then
�
�	 �W�

�
is her unique optimal action. In Figure 1, de�ne �

to be the level of � where the curve separating the two regions crosses the � line. Then the risk

factor of equilibrium � is given by �	 while that of equilibrium � is given by ��� �� � It is clear from

the diagram that this alone is not enough to determine � – the position of the entire curve matters.

Because agents do not know � during the learning process, it matters how risky each strategy seems

for each possible belief �� This leads us to give the following de�nition.

De�nition: The risk factor of action � given belief � is the smallest probability $ such that if an

agent’s beliefs about � have mean � and the agent believes � will be
�
�	 �W�

�
with probability strictly

greater than $	 then
�
�	 �W�

�
is her unique optimal action.

The risk factor of action � given belief � is equal to the height of the line at � in Figure 1. (Note

that this is equal to one for low enough values of � and zero for high enough values). In the next

proposition, we show that enlarging the region � (by shifting the curve down in some way) strictly

increases the probability of attaining the good equilibrium. Hence, a change in the economy that

uniformly lowers the risk factor of an equilibrium will increase the probability that the economy

reaches that equilibrium.

Proposition 3 If the risk factor of action � � ��	 �	 given belief � decreases for some � and does
not increase for any �	 then the probability of equilibrium � strictly increases.

Even though the statement of this proposition is rather intuitive, the proof is fairly complex. It

involves establishing that when the curve shifts, �
� the area between the new and old curves is

visited with positive probability and �

� the asymptotic behavior of a trajectory that visits this area

is changed with positive probability. The proof is contained in the appendix.

The condition that the risk factor not increase for any belief �may seem strong, but changes in the

individual elements of vector 
 have exactly this effect. This can be seen by working with equation

(8). For every value of �| such that the curve is in the interior of the box, �| is either strictly increasing
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or strictly decreasing in each element of 
 . Using Proposition 3, this implies that � is monotone in

each of the elements of vector 
� This is important because it is through these elements that the policy

parameter � affects �� We state this result as a corollary.

Corollary 1 The value of � is strictly increasing in 
 M
}} 	 


u
}}	 


M
}K 	 and 
 u

}K� It is strictly decreasing
in 
 M

KK 	 

u
KK 	 


M
K} 	 and 
 u

K} �

We now apply this approach to two simple examples and show how it generates interesting insights

into the corresponding optimal policy problems.

4 Applications

In this section, we apply our approach to the type of technology-choice problems that we discussed

in the introduction. We give two examples, one that captures the central features of the debate over

the Internet sales tax and another that applies to problems of technology choice more generally. Each

example puts a different structure on the utility functions 
 and how they are affected by government

policy� this allows us to highlight different features of the optimal policy that may emerge under our

approach.

4.1 Taxing Internet Transactions

We �rst present a simple model that captures some of the crucial features of the Internet sales tax

debate. In line with the analysis above, there is a continuum of identical agents. Each agent gains

utility from “transacting” with other agents. These transactions occur through one of two technolo-

gies, which we label � and �. Technology � (the “good” one) represents Internet transactions and

technology � (the “bad” one) traditional store-based methods. Transacting requires effort and we

denote the agent’s choice of effort level by �� � �		�� � The utility cost of this effort is quadratic.

The utility derived from this effort depends on the productivity of the transactions technology, which

is characterized by a network externality. The agent’s utility level is given by

%� �

�
��� ��}�� @

2
�2� � �

�� � @
2
�2�

�
if technology

�
�
�

�
is used.

The term �} is the total amount of effort employed by agents using technology �	 that is, �} �
	
K
���
	

where � is the set of agents using technology �� The function � is increasing and strictly concave�

higher levels of total effort in technology � make each agent using the technology more productive

(this is the external effect that will generate multiple equilibria). In other words, Internet-based

transacting becomes more ef�cient as more people use it. We assume that � �	� � 	 holds, as does
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the Inada-type condition

���
%<"

� � ��� � 	� (11)

In addition, the �xed utility cost � of operating technology � is stochastic. Keeping with the analysis

above, we assume � � ��u	 �M	 	 with �u & �M and the probability of �u given by �� We denote the

expected value of � by �� Everything is measured in terms of utility, so the agent’s objective function

will be linear in probabilities and only the expected cost � will matter in a rational expectations

equilibrium.

This is obviously a very stylized model of exchange. A detailed analysis of government policy

and equilibrium selection in an economy with explicit search frictions and decentralized exchange

can be found in Ennis and Keister (2000).

Because of the externalities, it seems natural for the government to consider intervening to en-

courage effort in technology �� We assume that the government does this by subsidizing such effort.

Let � � �		 �� be the rate of ad valorem subsidy and let � be the lump-sum tax (on all agents) that

�nances this subsidy. This subsidy can be thought of as the discount from the standard sales tax that

Internet transactions receive. A passive government would charge the same tax rate on both types

of transactions. An active government would lower the rate on Internet commerce, effectively sub-

sidizing electronic transactions. This subsidy would be paid for by all agents through either higher

tax rates on other activities or reduced government expenditures. For simplicity, we assume that this

policy does not affect the ef�ciency or the cost of effort for agents using technology � (that is, that the

government does not raise the tax rate on traditional commerce to pay for the e-commerce subsidy).

4.1.1 Equilibrium

We �rst examine the set of rational expectations equilibria for a given government policy. If the agent

chooses technology �	 he will choose his effort level to solve

���
%�

�� � �

�
�2� � ��

The solution to this problem is given by �� � �
@
� If instead the agent chooses technology �	 his

problem is

���
%�

��� ��}�� ��� � � �
�
�2� � �� �	 (12)

which is solved by

�� �
� ��}�

��� � � �� (13)
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The agent then compares the expected utility given by each technology

� �
� ��}�

2

� ��� �� � � �� �

� �
�

��
� �

and chooses the more promising one. This choice clearly depends on the agent’s beliefs about �}. In

our rational expectations equilibria, this number is known with certainty. We only look at symmetric

equilibria, where all agents act identically. We look �rst for the good equilibrium, where �} is

positive. From (13), the equilibrium effort level is given by the unique solution to

�W} �
�
�
�W}
�

��� � � �� (14)

This generates utility level


}} ��� �
�
�
�W}
�2

� ��� � � � � �� �	
where the value of � is given by the government’s budget constraint

� �
��

�

�
�W}
�2
�

This is an equilibrium as long as no individual agent is made better off by choosing technology ��

That is, we need


}} �� � � 
K} �� � �
�

��
� �

to hold. We assume that the parameter values are such that we have 
}} �	� � 
K} �	� � 
KK,

so that the good equilibrium exists when the government is passive and Pareto dominates the bad

equilibrium. It is straightforward to show that the difference �
}} � 
K}� is strictly increasing in � ,

and therefore the good equilibrium exists for all subsidy levels.

We also assume that the parameter values are such that the bad equilibrium exists when the gov-

ernment is passive (otherwise the problem of equilibrium selection does not arise). For this, we

require


KK � 
}K �	�

or
�

��
�
� �	�2

��
� ��

This does not, however, mean that the bad equilibrium exists for all values of � � By setting

� � � � �� � �	�2

� 
 ���
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the government can eliminate the bad equilibrium (and thus be sure that the good equilibrium will

obtain). Finally, we assume that the conditions in (7) hold for all � & �� Notice that, while all of the

previous assumptions depend on �	 these two depend on �u and �M 	 respectively. As a result, they

can be satis�ed for any � by making the spread between �u and �M large enough.

4.1.2 Learning and Optimal Policy

Learning in this example proceeds exactly as described in Section 3.3. From Proposition 1, we know

that the equilibrium selection mechanism � is well-de�ned for this example. We can use Proposition

3 to determine how the policy variable � affects ��

Proposition 4 In this example, � is strictly increasing in � for � & � �

Proving this proposition entails showing that increasing the subsidy rate strictly expands the region�

in Figure 1. The details are contained in the appendix, but the intuition is straightforward. Increasing

the subsidy to technology � always makes it more attractive relative to � (since the lump-sum tax is

paid by the agent regardless of her choice). This leads agents to choose � for a wider range of beliefs,

which makes convergence to the good equilibrium more likely. This does not, however, imply that a

higher level of subsidy is always better from a welfare standpoint, as we show below.

The simplifying assumptions of this example allow us to gain a fair amount of insight into the

nature of the optimal policy problem. The utility value of the bad equilibrium is independent of the

policy chosen (if no one engages in Internet transactions, the sales tax rate on such transactions is

irrelevant). Hence the only relevant factors for determining the expected utility of agents are the

utility value of the good equilibrium 
}} and the probability of reaching that equilibrium �� The

optimal policy problem can be written as

���
�

� ��� �
}} �� �� 
KK� � (15)

There are two cases to consider. If we have

� W} � �	

then the policy that maximizes the value of the good equilibrium also eliminates the bad equilibrium,

ensuring that the good equilibrium will obtain. In this case, correcting the externality present in the

good technology is suf�cient to make that technology a dominant choice and therefore to eliminate

the coordination problem. When this happens, � W} is clearly the optimal policy.

The more interesting case is where the coordination problem remains even when the externality is
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being corrected, or when we have

� W} & ��

In this case, the government faces a tradeoff. By increasing the subsidy level above � W}	 the good

equilibrium becomes less attractive. However, deviating from the good equilibrium also becomes

less attractive and thereby makes the good equilibrium more likely. This tradeoff is illustrated in the

two panels of Figure 2. For each value of � 	 we plot the pair �
}} � 
KK	 �� generated by the policy.

Figure 2: Optimal policy

The point generated by � � 	, for example, has a value of � strictly between zero and one, since we

assumed that both equilibria (strictly) exist when the government is passive. As we increase � 	 we

trace out a curve of feasible points. The arrows in the �gure indicate the direction of movement along

the curve as � increases. Initially, both 
}} and � are increasing in � � When we reach the policy � W}	

we know that 
}} is at its maximum level. For higher subsidies, 
}} starts to fall, but � continues to

increase until it reaches unity at subsidy level � � Increasing � beyond this is clearly inef�cient as �

cannot increase further and 
}} continues to decrease.

The level curves of the objective function in (15) are hyperbolas. If eliminating the bad equilib-

rium is not very costly, as in part ��� of the �gure, then � is the optimal policy. If, however, the

situation is as in part ��� of the �gure, the optimal policy will fall somewhere in between � W} and

� � In this case, the optimal policy under our approach is different than that which would be derived

under any deterministic selection criterion. In particular, it should be clear from the diagram that the
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optimal policy will never be � W}� This is because increasing � a little past this point causes a small

(second-order) loss in the value of the good equilibrium and brings a larger (�rst-order) increase in

the probability of reaching that equilibrium.

What does this tell us about the debate over taxing Internet transactions? The model tells us that

Internet commerce should be subsidized for two reasons. The �rst is straightforward – we assumed

that there is a network externality that should be corrected. However, the optimal subsidy level

is necessarily higher than the level that would just correct the externality because higher subsidies

make the good equilibrium more likely to obtain. This second reason for the subsidy is new to our

approach and can only be seen in a model where the subsidy can affect the equilibrium selection

process. In addition, as part ��� of Figure 2 shows, it may not be optimal to subsidize e-commerce so

much that the good equilibrium is certain to obtain. Instead, it may be optimal to face some risk over

which equilibrium is selected because eliminating the bad equilibrium is too costly.19

4.2 The Choice of Technology

We can modify the above example to study situations where there are two available technologies, both

of which are subject to network externalities.20 There is again a continuum of identical agents whom

we now think of as producing a single commodity and consuming their own output. Each agent has

available two production technologies, � and �, and can operate only one of them. Both technologies

again require (costly) effort as an input, and the agent chooses an effort level �� � �		�� � Utility is

linear in output and is given by

%� �

�
���� ��}�� @

2
�2� � �

���� ��K�� @
2
�2�

�
if technology

�
�
�

�
is used.

As before, the function � represents the network externality which now applies to both technologies.

We maintain all of our assumptions about � from the previous section, including � �	� � 	. (This

last condition will help guarantee that there are no zero-effort equilibria in this setting.) We assume

� � �, so that technology � has a higher marginal product than technology � for a given amount of

total effort. As before, there is a stochastic �xed utility cost � of operating technology �.

We again assume that the government subsidizes effort. Let � be the rate of ad valorem subsidy

and let � be the lump-sum tax that �nances this subsidy. We now assume that the same subsidy level

must apply to all effort (the government cannot distinguish effort devoted to technology � from effort

devoted to technology �) and likewise, the same tax is paid by all agents. Hence, we are not allowing

4< Indeed, we have abstracted from the distortions caused by increasing other tax rates, which would increase the cost
of eliminating the bad equilibrium further.
53 A well-known example of such a situation was the adoption of video cassette recorders with the competing Beta and
VHS technologies. See Katz and Shapiro (1986) and the references therein for a discussion of this and other examples.
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the government to pick the “winning” technology by subsidizing it and taxing the other. Instead, the

government can only encourage (or discourage) the entire industry. Because the two technologies

differ, the chosen level of encouragement will affect the equilibrium selection process.

4.2.1 Equilibrium

Regardless of the technology � � ��	 �	 chosen by the agent, his optimization problem will resemble

(12) above. The solution is therefore of the same form as (13), or

�� �
�� ����

��� � � �� (16)

The agent compares the expected utility generated by each technology

� �
��� ��}��

2

� ��� �� � � �� �

� �
��� ��K��

2

� ��� �� � � �

and chooses the more promising one. We again look at symmetric equilibria, where one of the two

numbers �� will be positive and the other zero. We look �rst for the good equilibrium, where �} is

positive. As above, the equilibrium effort level is given by the unique solution to (14). We then have


}} �� � �

�
��

�
�W}
��2

� ��� �� � � �� �}

and


K} ��� �
��� �	��2

� ��� � � � � �}	
where, from the government’s budget constraint we have

�} �
��

�

�
�W}
�2
�

We assume that the parameter values are such that we have 
}} �	� � 
K} �	� and hence the good

equilibrium exists when the government is completely passive. It is straightforward to show that this

implies that the good equilibrium exists for all values of � �

Next, we look at an equilibrium where �K is positive. Such an equilibrium is a solution to

�WK �
�� ��WK�

��� � � ��

This leads to


KK �� � �
��� ��WK��

2

� ��� �� � � �K
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and


}K ��� �
��� �	��2

� ��� � � � � �� �Kc
where �K is de�ned similarly to �} above. We also assume that we have 
KK �	� � 
}K �	�, so that

the bad equilibrium exists when there is no government intervention. In this example, the difference

�
KK � 
}K� is strictly increasing in � 	which implies that the bad equilibrium exists for all values of � �

Hence, unlike in the previous example, policy cannot be used here to eliminate the bad equilibrium.

We also assume that (7) holds and that we have 
}} �	� � 
KK �	� 	 so that � is indeed the good

equilibrium.

4.2.2 Learning and Optimal Policy

Appealing to Proposition 1 again gives us an equilibrium selection mechanism �� Because of the

additional complexity of this example (all of the elements of the vector 
 now depend directly on

� ), drawing diagrams such as those in Figure 2 is not possible. For this reason, we move directly to

numerical analysis. We use the following functional form and parameter values

� ��� � ��
 ��
�

2 	 � � � 	 � � � 	 � � ��� 	 � � 	��

Furthermore, we take �M � �	 �u � ��	 and � � �
2
�

We use a grid of values for � � �		 	��� 	 with a step size of 	�		�� For each value of � , we simulate

the learning process �		,			 times and set � �� � equal to the fraction of times the process converges

to the good equilibrium.21 The results of this exercise are presented in a series of graphs in Figure 3.

The �rst four graphs plot the elements of 
 as functions of the policy � . (These are just the graphs of

the expressions given in the previous section.) The last two graphs are the results of the simulations�

they give � and expected utility as functions of � � The former shows � to be increasing, as expected.22

The latter shows that the optimal policy is � W � 	���, larger than both � WK � 	���� and � W} � 	����.

This last result clearly demonstrates the importance of considering equilibrium-selection effects in

determining the optimal policy. In this example, � WK and � W} are the obvious candidates for the optimal

policy. A policy maker who faces uncertainty about which equilibrium will obtain might be tempted

to choose something in between these two values. This would be the correct approach if � did not

depend on � . Our analysis shows, however, that such a choice is not correct for the chosen parameter

values. As the subsidy level is increased beyond � W}	 the utility value is decreasing for both equilibria.

54 The computations are done in FORTRAN, using the RAN2 algorithm for generating random numbers. The source
code is available from the authors upon request.
55 The discontinuities in � come from the discrete nature of the learning process. Some of the points in the box in
Figure � are visited much more often than others. The value of � that �rst makes such an “important” point fall in region
� is accompanied by a discrete jump in ��
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Figure 3: Computational results
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The good technology suffers less from this increase, though, and hence becomes a relatively more

attractive option. As a result, the probability of the good equilibrium is still increasing. As long as

this effect is large enough (relative to the decreases in the utility values), expected utility continues

to increase.

Notice that the government in this example does not need to know which technology is good and

which is bad since the same subsidy level is applied to both. The point is that increasing the subsidy

to the entire industry will have a positive effect of equilibrium selection, simply because the good

technology always bene�ts more (or suffers less) from such an increase. This example shows that

policies designed to correct for network externalities can be more powerful (and therefore important)

than is currently recognized. As a result, calculations that ignore the process by which an equilibrium

is selected can substantially underestimate the optimal subsidy level.

5 Concluding Remarks

The main point of this paper is that using a probabilistic equilibrium selection mechanism can

bring models of multiple equilibria to bear on policy questions in interesting and informative ways.

We believe that the probabilistic view of equilibrium selection is both appealing and plausible, and

we have shown how adaptive learning naturally generates such a mechanism. We have also shown

through examples that taking the equilibrium-selection effect into account can reveal that policy

may be more potent than is commonly recognized. We have illustrated our approach using a very

simple model: a static model with identical agents making a binary choice and a focus on symmetric

equilibria. This allowed us to present the issues involved and to discuss the workings of the learning

process as transparently as possible, but it certainly does not mean that the general approach applies

only in such models. In other work (Ennis and Keister [2000]), we use this approach in a model with

explicit search frictions and decentralized exchange. In that context we discuss optimal aggregate

demand management policies, taking into account the effect that policy can have on the equilibrium

selection process. This is only one of many possible applications. We conclude by mentioning two

other areas that we �nd promising.

Financial Crises: Models of �nancial crises are often of the coordination-problem type that we

have studied here. We discussed above the relationship between our approach and that of Morris

and Shin (1998), who deal with currency crises. Our approach could easily be applied to their

model and would allow one to answer questions such as: under what conditions is it optimal for

the government to allow currency crises to occur with positive probability? Both Cole and Kehoe

(2000) and Chari and Kehoe (2000) consider similar issues, and our approach could be brought to
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bear on their questions. Cooper and Corbae (2000) study �nancial collapses (such as occurred in the

Great Depression) as a form of coordination problem. Again, our approach could be used to study

the question of optimal policy and whether or not that entails completely eliminating the possibility

of a collapse.

Monetary Economics: It is well known that monetary models typically exhibit multiplicity of

equilibrium, with at least one equilibrium where money has no value. This is true in overlapping-

generations as well as search-theoretic environments. Suppose an economy is in a monetary steady

state and the government is considering a substantial change in policy. Extensions of our approach to

these settings would allow one to address questions such as: What is the probability that the policy

change will cause the economy to switch to another (possibly hyperin�ationary) equilibrium? Taking

this into account, what is the optimal policy? Although extending our analysis to these dynamic

settings is far from trivial, the potential payoff seems very high.
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Appendix A. Proofs

Proposition 1: The learning process ��|	 �|	 converges with probability one.

Proof: The dynamics of �| are independent of �| and represent a standard statistical learning process.

Let � be the set of all possible sequences ��|	"|'� and ' be an element of this set. Let � � � be the

set of ' such that �| �'� � �� by the strong law of large numbers we know that the probability of the

set � is one. We will show that for each ' in �	 the learning process converges.

Figure 4: Convergence of beliefs

Let the function � � � ��� represent the curve separating the two regions in Figure 4. Consider a

sequence of small numbers �(?	 converging to zero. For each )	 de�ne

��? � � ��
 (?�

�2? � � ��� (?� �

Notice that we have ��? & � & �
2
? for all ). Fix a particular ' in �, so that we know �| �'� converges

to �. Then for each (? � 		 there exists a �? such that � � �? implies


�| �'�� �
 & (?�

That is, for any small band around �	 the sequence �| �'� will eventually enter the band and never

leave. If �| �'� is ever suf�ciently low after this happens, that is, if we have

�| �'� & �
�
? for any � � �?	 (A-1)
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then the trajectory will never switch regions again (because doing so would require leaving the (-

band). Hence all future observations will involve all agents choosing �	 and therefore �| will converge

to zero. Similarly, if we have

�| �'� � �
2
? for any � � �?	 (A-2)

all future observations will involve all agents choosing �	 and �| �'� will converge to one. Therefore

if, for any ), either (A-1) or (A-2) is satis�ed, the learning process converges to one of the two

equilibria. The conclusion of the proposition is therefore established unless we have

�| �'� �


��?	 �

2
?

�
for all � � �?	 for all )�

The continuity of � implies that ��? and �2? both converge to � as ) goes to in�nity, so in this case

�| �'� must converge to �� This establishes our claim. �

Proposition 2: Let � be the empirical probability of the set of sequences ��|	 such that ��|	 �|	 �
��	 �� � Then the empirical probability of the set of sequences ��|	 such that ��|	 �|	 � ��	 	� is equal

to ��� �� � In other words, the simulation of the learning process always converges to a symmetric

rational expectations equilibrium.

Proof: Note that, because of proposition 1, we only need to verify that the system does not converge

to the point ��	 �� � The law of motion for �| has a discontinuity along the curve in Figure 4, which

passes through ��	 �� � This makes the asymptotic behavior around that point very dif�cult to study

analytically. For this reason, we turn to a numerical methodology. From (8), we have that the curve

separating the two regions is of the form

� �
*� �

+ ��� �� 
 ,�	

where *	 +	 , satisfy

	�� � * � �	

+ & *	

and

+ 
 , � �*� � � 	�

We �x � � 	�� and construct a grid over the three-dimensional parameter space containing a total

of �	 points in each dimension. Points in this grid that satisfy the previous inequalities correspond

to different shapes of the curve in Figure 4.23 For each such point, we simulate �	 			 runs of the

56 To cover uniformly all possible shapes of the curve we construct the grid using an auxiliary variable, � � 	 � 
� The
restrictions over parameters imply that � � ��� When � � � the curve is concave and when � � � the curve is convex.
Hence, we consider a grid that concentrates half of the points in the negative range of � and half in the positive range.
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learning process.

We set convergence bounds for �| in the following manner. First we compute �. Then we de�ne

the variables �-%)�C � ������ � ��"�	 	��	 and �-%)�� � �����"�	 	��	� When �| goes beyond

�-%)�C and the system has not switched zones for the last �	 			 iterations, we say the economy

has converged to the good equilibrium. For the bad equilibrium we use a similar procedure when �|

goes below �-%)��. If neither of these events has occurred after �			 			 iterations, we say that the

economy did not converge to one of the two equilibria. (This would be the case, for example, if �|

were to converge to �.)

The convergence bounds may seem somewhat large, but it should be kept in mind that the step

size of a Bayesian learning process decreases fairly rapidly. As an example, a process that reaches

�| � 	�� after �	 			 steps and that continues monotonically approaching the bad equilibrium will

take over ��	 			 more steps to reach �| � 	�	�.24 As a result, tightening the convergence bounds is

computationally very expensive. However, this small step size also means that the probability of a

sequence switching regions after not having switched in the previous �			 iterations is likely to be

minuscule.

In every case, the system converged to one of the two rational expectation equilibria. In fact, the

process never switches regions after the �rst quarter of the total number of possible iterations. Based

on this, we claim that the empirical support of the limit of the learning process is the two rational

expectations equilibria. The Fortran code is available from the authors upon request. �

Proposition 3: If the risk factor of action � � ��	 �	 given belief � decreases for some � and does

not increase for any �	 then the probability of equilibrium � strictly increases.

The proof of this proposition is fairly long so we �rst offer a brief discussion. It is fairly straightfor-

ward to see that the probability of equilibrium � cannot decrease. Suppose the curve in Figure 4 shifts

in such a way that the new region � strictly contains the old one. Pick any ' in � and let ��|	 �|� be

the sequence generated by ' before the shift, and ���|	 ��|� the sequence afterwards. Then we have

��| � �| and ��| � �| for all ��

This implies that if ��|	 �|� converged to ��	 �� before the change, it will still do so after the change

and therefore � cannot decrease.

Showing that the probability actually increases is much more dif�cult because it requires estab-

lishing speci�c properties of the (probabilistic) behavior of trajectories in the box. We break this task

57 Using the equation 
w.4 � �
w

w� it can be shown that 
w.q � ��� � ����� � � � ��	
w and hence that

� � ��� ����
w�
w.q�� �	 holds. For the numbers above, this gives us � � �� ������� �� � �
� ��
�
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into parts. We present and prove three lemmas and then use these results to prove the proposition.

Our �rst lemma applies for a �xed curve � and shows that any open set near enough to the center of

the box is visited with positive probability. Let �� and �2 denote the values of � at which � intersects

the top and the bottom of the box, respectively (see Figure 5). We then have the following.

Lemma 1: Fix any �f � 		 any starting point ��|f	 �|f�, any target point ���	 ��� with �� & �� & �2, and

any ( � 	. Then there exists a �nite number � � �f and a sequence ��|	A|'|f such that the trajectory

from ��|f	 �|f� is within ( of ���	 ��� at time � .

Proof of lemma 1: Suppose ���	 ��� is below the curve � , as depicted in Figure 5. (The reverse case

is completely symmetric.) Draw the line segment starting at the origin, running through ���	 ��� and

ending on �� Let ���	 ��� denote the endpoint of this segment on �	 and let � denote the entire segment.

Consider a band around this segment with width . �
�
�( (so that a .-square around ���	 ��� falls both

inside this band and inside the (-ball). Notice that if a trajectory enters this band between ���	 ��� and

���	 ��� when the maximum step size is less than ., a long enough sequence of consecutive �| � �

realizations will lead the trajectory to land in the (-ball, as desired.

Figure 5: Visiting a neighborhood of ���	 ���
Next, draw the line from �		 �� passing through ���	 ���� denote this line �� Also draw the parallel

line segment that intersects � at the same point as the lower bound of the .-band and continues to

the right. Denote this segment by ��� Suppose that a trajectory lands in the strip between � and ��

when the maximum step size is less than .� Then, a suf�ciently long sequence of �| � � realizations
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will lead the trajectory to �rst cross � into the .-band around �	 and to then land in the (-ball around

���	 ���, as desired. All that remains, therefore, is to show that for an arbitrary starting point and time,

there exists a �nite sequence of realizations that will lead the trajectory to land in this strip at a time

when the maximum step size is less than ..

To do this, we use the line � and the curve � to divide the box into three regions as labelled

in Figure 5. First, suppose ��|f	 �|f� is in region �. Then a long enough sequence of consecutive

�| � � realizations will bring the trajectory into region �. From any point in region �, a long enough

sequence of �| � � realizations will make �| & ��	 and then a long enough sequence of �| � �

realizations will take the trajectory into region �.25

From any point in region �, a long enough sequence of �| � � realizations will lead the trajectory

to either �
� land in the strip between � and �� or �

� step across this strip and land in region �� Notice

that if � is large enough (so that the step size is small enough), the former will necessarily occur. If

�

� occurs, the above process can be repeated to construct a (long but �nite) sequence of realizations

that leads the trajectory to cycle until �
� occurs. Because the maximum step size is converging to

zero, �
� must occur with a maximum step size of less than . in �nite time. �

Note that all the arguments in the proof of Lemma 1 involve �nite sequences of speci�c realiza-

tions of �| and hence involve events that would occur with (perhaps very low but) positive probability.

In other words, starting from any point, the probability of entering any open set containing values of

� between �� and �2 is positive. The next lemma shows that once a target neighborhood is reached,

�| can stay in that neighborhood for arbitrarily long periods of time.

Lemma 2: Pick any �A � �		 ��, any ( � 	, and any/ � �� Let � be large enough that the maximum

step size of �| is less than (. Then there exists a sequence of realizations ��|	An�|'A such that �| remains

in the interval ��A � (	 �A 
 (� for all � satisfying � � � � � 
/�

Proof of Lemma 2: If �| � �A 	 then a realization of �| � � will ensure that �|n� is in the desired

interval. If �| � �A 	 then a realization of �| � � will do the same. This allows one to construct a

sequence of realizations of arbitrary length that keeps �| within ( of �A . �

Lemma � shows that the behavior of �| can be “controlled” for �nite periods of time using events

of positive probability. The next lemma provides an in�nite-period counterpart, showing that the

probability of staying in any neighborhood of � is positive in the long run.

Lemma 3: Fix any ( � 	 and any � large enough that the maximum step size of � at � is less than (�

58 It is also possible that the trajectory will enter the �-band between ���� �
� and ���� �
� before getting to region �, at
which point switching to �w � � will lead to the desired result if the maximum step size is less than �.
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Suppose we have a partial history of realizations 'A � ��|	A|'� such that �A � ��� (	 �
 (� � Then

we have

��


�| � ��� (	 �
 (� for all � � � 
 'A � � 	�

Proof of Lemma 3: Suppose this is not true. Then there exists an ( � 	, a � � � (where the

maximum step size of � is less than (), and a partial history 'A with �A � ��� (	 �
 (� such that

��


�| "� ��� (	 �
 (� for some � � � 
 'A � � �� (A-3)

Pick an arbitrary partial history ' eA such that the generated partial trajectory ���|	eA

|'� (which does

not necessarily pass through the point �A above) has ��
eA � ��� (	 �
 (� �

Returning to our original partial history 'A 	 we can construct a �nite sequence of / realizations

that will lead the trajectory ��|	An�|'A to �
� stay in the interval ��� (	 �
 (� and �

� land on the point��
eA

at time � 
/� To show this, we de�ne

�| �

�
�
	

�
if �| �

�
�
�

�
�

We can then write the period � belief as

�| �
� 



|

�'� ��

� 
 ��
|

�'� ��
�

Notice that ��
eA

must be a rational number and can therefore be written as the ratio of two integers 0

and 1� For the partial history 'A 	 de�ne

/u � 0 �
�
� 


A�
�'�

��

�

and

/M � 1 �
�
� 
 � �

A�
�'�

��

�
�

The integers 0 and 1 can be chosen large enough that /u and /M are both non-negative and that

� 
/ � �� 	 where / � /M 
/u� Then appending a sequence of / realizations, /u of which are

�| � �, to the partial history 'A will lead the trajectory to land on ��
eA at time � 
/ , satisfying �

�.

These realizations can be ordered as in Lemma � to keep �| in the (-band around � so that �
� is also

satis�ed. (As long as positive numbers of both types of realizations remain, move in the direction of

�. Then the last string of (identical) realizations will lead monotonically to ��
eA
.)
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Because it is of �nite length, this string of / realizations follows 'A with positive probability. By

�
�, the trajectory has not exited the (-band around � between periods � and � 
 / . Therefore, by

(A-3) it must do so after time � 
/ with probability one. In other words, we have

��


�| "� ��� (	 �
 (� for some � � � 
/ 
 'An�� � ��

However, any continuation history that, when appended to 'An� , causes �| to exit the (-band for

some � will also cause ��| to exit the (-band when appended to ' eA . This is because the step size at

� 
/ is smaller than at �� , so that �| will be closer to their common starting point
���

eA
� �An�

�
than

is ��| for every �. Recall that (by independence) the set of continuation histories and their probabilities

is the same after every partial history. Therefore the probability of exiting the (-band following ' eA

is at least as great as that following 'An� 	 which is unity. Therefore we have

��
�
�| "� ��� (	 �
 (� for some � � �� 
 ' eA

�
� ��

This is true for any partial history ' eA at any time that it enters the (-band – it must exit the band with

probability one. This implies that if we look at complete histories '	 we must have

�� ��| "� ��� (	 �
 (� in�nitely often� � �	

which contradicts the strong law of large numbers. �

In other words, this lemma shows that if the trajectories following some partial history were driven

away from � with probability one, the same would be true for the trajectories following every partial

history. This would imply that convergence to � is a zero-probability event, which we know is false.

We now use these lemmas to prove Proposition 3.

Proof of Proposition 3: We will focus on the case where the curve shifts in such a way that the

risk factor of action � decreases for some � & �, as depicted in Figure 6. The other cases are

completely symmetric and therefore omitted. Let �� denote the curve before the change and �2 the

curve afterwards.26 Let � denote the set of points lying between the two curves and between the

vertical lines at �� and �2 (where the original curve intersects the top and the bottom of the box).

Note that the continuity of the curves implies that � has a non-empty interior.

Pick an arbitrary open ball in the set �	 and let �( be the radius of this ball. Consider the (-ball

centered at the same point. Pick �f large enough so that the maximum step size for �| is less than

59 The continuity and decreasing nature of the curves are the only properties that we use here. Equation (8) actually
puts much more structure on the nature of the possible changes. However, this structure does not seem to simplify the
proofs in any way, and we therefore do not use it.
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Figure 6: Asymptotic behavior depends on �

( for all � � �f. Then Lemma � tells us that there is a �nite number � � �f and a sequence of

realizations ��|	A|'f such that, under the dynamics generated by curve ��, ��A 	 �A � falls in the (-ball.

Let 'A denote this partial history. The dynamics generated by curve �2 under 'A will lead to the

same �A (since the behavior of �| is independent of the curve) and to some ��A � �A �

Notice that the (-ball around ��A 	 �A � is also contained in the set � (this was the reason for the �(

radius of the original ball). Compute the number of steps / that would be required to move � from

�A to below �� Then from Lemma � we know that there is a sequence of / realizations such that �|

stays in the interval ��A � (	 �A 
 (� 	 and therefore the trajectory does not switch regions between

periods � and � 
 / (using either curve). Let 'An� denote the partial history in which these /

realizations are appended to 'A � This partial history leads the trajectory to a point like � in Figure 6

at time � 
/ when the curve is �� and to a point like � when the curve is �2�

Next, draw a line from ��A 
 (	 �� to �		 ��. Let �� be the value of � where this line crosses the

curve ��� Note that �� � � must hold. Also note that if �| stays in the interval ��A � (	 ��� for all

future �, the trajectory from point � will never change regions and will therefore converge to � � 	�

Likewise, under the same restriction, the trajectory from point � will converge to � � �� Lemma �

tells us that we have27

��


�| � ��A � (	 ��� for all � � � 
/ 
 'An�� � 	�

5: The asymmetry of the bounds around � is not important here. We could impose symmetric bounds as in Lemma
� and then use a �nite sequence of realizations to lead the trajectory into these bounds. We skip this simply to avoid
introducing further notation.
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Let 2 be the set of ' � � that begin with the partial history 'An� and then remain in the interval

��A � (	 ��� for all � � � 
 /� By construction, the trajectory generated by any ' � 2 would have

converged to ��	 	� with the curve ��	 but converges to ��	 �� with the curve �2� The probability of the

set 2 is given by

�� �2� � ��


'An�

� � �� 
�| � ��A � (	 ��� for all � � � 
/ 
 'An�� 	
which is positive because both terms on the right-hand side are positive. In addition, as discussed

above, any ' that led the economy to converge to ��	 �� under the curve �� will do the same under

the curve �2� Therefore the probability of the set of sequences that lead the economy to converge to

��	 �� has strictly increased. �

Proposition 4: In this example, � is strictly increasing in � for � & � �

Proof: In this example, using (14) allows us to write the curve dividing the regions � and  in

Figure 1 as

�| �
��� �� � �

2@

 �M

�� 3
@
2
��� � �2 ��W}�2 � 3 � ��� �� ��M � �u�

@
2
��� ��2 ��W}�2 � 3 �|	

where the constant

3 
 � �	�2

��
has been introduced to simplify the notation. The curve is a straight line in this case because of the

linearity of utility in the cost �� Solving this equation for �| yields
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We �rst look at the value of �| when �| is equal to unity (that is, the value of �| such that agents would

need to be certain that �} � �W} in order to be willing to choose technology �). This is given by
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From (14), we see that �W} is strictly increasing in � and also that @
2
��� �� ��W}�2 can be replaced by

�
2
�W}�

�
�W}
�
� This latter term is strictly increasing in �W} hence in � � This demonstrates that �� is strictly

decreasing in � � In Figure 1, this means that as � increases, the intersection of the curve with the top

of the box moves to the left.

We next examine the change in the intersection of the curve with the bottom of the box. This is
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the value of �| when �| is equal to zero, which is given by

�2 �

�
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E�3��
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This is clearly also decreasing in � 	 and hence this intersection moves to the left as well. Since in this

example the curve is a straight line for all values of � 	 this implies that a small increase in � decreases

the risk factor of action � given belief � for all � in ���	 �2� � The risk factor for all other values is

unchanged. Therefore, by Proposition 3, � strictly increases. �
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