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Abstract

We analyze the problem of optimal public investment when government purchases of pro-
ductive capital assets are financed through income taxes. Virtually all previous work in this
literature has prescribed a share of public investment in GDP that is both constant and time
consistent. This paper shows that this straightforward prescription derives from specific assump-
tions relating to preferences and technology. In a more general framework, the optimal policy is
neither constant nor time consistent. With full commitment, a policymaker will typically choose
a tax rate, or alternatively a share of public investment, that increases over time. He does not
exploit the first-period non-distortionary tax on capital but instead delays taxation in order to
generate a “take-off” phase with higher consumption and higher private investment. We also
show that allowing for discretion in the design of optimal policy does not necessarily result in
higher long-run taxes relative to the commitment case. Therefore, the inability to commit to
future policy can imply lower taxes and too little public investment in the long run. Finally, in
contrast to previous work, the efficient share of public investment in GDP depends importantly
on the intertemporal elasticity of substitution, capital depreciation rates, and the growth rates
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1 Introduction

Over the post-war period, the U.S. share of public investment in GDP has hovered around 4
percent, a share that exceeds that of net exports. At its peak, public investment has represented
as much as 6 percent of GDP following increases in military spending associated with the Korean
war. The share of public investment was also substantially above average during the construction
of the interstate highway system in the 1960s (see Figure 1). Interestingly, Fernald (1999) argues
that this endeavor provided a significant one-time increase in productivity. Other forms of public
capital that are considered to contribute to economic activity include the provision of water and
sewer systems, hospitals, schools, airports, and even public sector R&D. It has been suggested that
a one percent increase in public capital contributes as much as 0.39 percent to GDP (Aschauer
[1989]). However, many have generally been skeptical of this large elasticity, and estimates ranging
from 0.03 (Hulten and Schwab [1991]) to 0.2 (Ai and Cassou [1993], Lynde and Richmond [1993])
are more often cited.

The idea that public capital contributes to private production immediately raises a number of
fundamental policy questions: What are the properties of the optimal public investment path? To
what level does it converge to in the long run, and how does this level vary with the underlying
economic environment? How does the economy inherited by a new government influence the optimal
sequence of public investment? In choosing policy, will this government have an incentive to cheat
on its promises? If so, what is the nature of the time inconsistency problem?

Barro (1990), Barro and Sala-i-Martin (1992), Glomm and Ravikumar (1994), Cassou and Lans-
ing (1998), Turnovsky (1999), Eicher and Turnovsky (2000), as well as Aschauer (2000), are among
the many articles that motivate a productive role for government. In these papers, government
expenditures are financed via income taxes and contribute to the economy’s productive capacity.
The authors find that the welfare-maximizing income tax rate depends on factors such as the out-
put elasticity of public capital, congestion externalities, and the degree of rivalry in public goods.
Remarkably, all these articles prescribe an optimal income tax rate that is constant over time.

The present paper reconsiders the problem of optimal public investment when the government
uses income taxes to finance its purchases of capital assets. In particular, we first explore the
allocations that emerge under the Ramsey optimal plan. Our analysis shows that the time invari-
ance of the optimal income tax rate found in the above articles derives from special assumptions
that also make it time consistent. These assumptions involve either specific parameterizations of
preferences and technology, or modeling public capital as a flow. Because optimal policy is always
time consistent in these papers, the need to study optimal discretionary policy never arises.

In fact, as indicated in the seminal work of Kydland and Prescott (1977), the presence of state
variables, namely the stocks of public and private capital, generally imply that optimal Ramsey tax
rates are not time consistent. The implementation of Ramsey allocations, therefore, assume that

the government is able to commit to future policy actions. Unlike previous literature, our analysis



highlights the differences between this scenario and the more pragmatic framework that does not
assume commitment. Following Quadrini, Krusell, and Rios-Rull (1997), we consider allocations
associated with Markov tax rates.

We find that with full commitment, a benevolent policymaker generally chooses a low first-
period tax rate relative to prevailing long-run tax rates. Unlike the model of Chamley (1986), the
policymaker does not necessarily take advantage of the initial non-distortionary tax on capital.
Instead, he may choose to delay taxation in order to generate higher consumption today as well as
higher private investment.! This result hinges on the fact that higher levels of consumption in any
period reduce the utility-denominated return to investment made in the preceding period through
its effect on marginal utility. However, since no history exists prior to period zero, the policymaker
can allow for high consumption in the initial period without concern for distortionary effects on
past investment decisions. Thus, under full commitment, optimal policy suggests a “take-off” phase
in which taxes and public investment are low, and both consumption and private investment are
encouraged.

Along a balanced growth path, the optimal tax rate falls short of the elasticity of GDP with re-
spect to public capital. In contrast, the existing literature on productive public spending frequently
recommends a tax rate that exactly equals the public capital elasticity of output. This prescription
appears in Barro (1990), Barro and Sala-i-Martin (1992), Turnovsky (1999) absent uncertainty,
as well as Aschauer (2000) among others, but only maximizes steady state welfare in our frame-
work. It is analogous, therefore, to a policy golden rule and emerges as the fully optimal solution
only in situations where the economy lacks transition dynamics to the balanced growth path.? In
general, the optimal steady state share of public investment in GDP depends importantly on the
intertemporal elasticity of substitution, capital depreciation rates, as well as the rates of technical
progress and population growth. Moreover, our model nests a special case where the equivalent of
a modified policy golden rule is optimal. This rule suggests discounting the public capital elasticity
of output by exactly the rate of time preference in the long run. While this solution does not hold
generally, we show that the optimal tax rate nevertheless always falls below Barro’s (1990) solution.
In essence, although the simple policy golden rule leads to more public infrastructure relative to
private capital, the impatience reflected in the rate of time preference means that it is not optimal
to reduce current consumption through higher taxes to reach this higher ratio.

Without a commitment technology, that is when governments set policy in a discretionary
fashion, optimal tax rates emerge to be surprisingly lower than those under full commitment in the

long run. Therefore, the inability to abide by past promises eventually leads to too little public

! Chamley (1986) considers the problem of the optimal distribution of taxes across factors given an exogenous path
for government expenditures. Our analysis instead focuses on the optimal choice of government investment given an

exogenous income tax structure.
% As Turnovsky (1997) points out, most of the existing literature models productive contributions from govern-

ment expenditures as a flow. To the degree that it is public infrastructure that increases productive capacity, this

formulation, while easily tractable, is questionable in that it is the stock rather than the flow that matters.



investment. Under discretion, successive policymakers take as given the decision rule adopted by
their successor. Each government then tends to “cheat” and to mimic the first period behavior
of a Ramsey policymaker, which is to set a low tax rate. Thus, steady state discretionary tax
rates may ultimately end up lower than those under the Ramsey plan. This type of long-run result
also appears in Klein, Krusell and Rios-Rull (2003) but for a partially different reason. In their
framework, “an uncommitted government does not take into account that today’s taxes increase
yesterday’s incentives to work”, and this effect helps induce a smaller government sector. We shut
down this mechanism by fixing labor supply exogenously, and instead focus on the implications of
taxation in a given period for consumption and investment in the previous period. In particular,
we emphasize the importance of the first period’s incentives under commitment in explaining time
consistent tax rates.

This paper is organized as follows. Section 2 sets the basic theoretical framework and derives
a policy golden rule for public capital. Section 3 addresses optimal policy from the standpoint of
a benevolent government that can credibly commit to future policy actions. In section 4, we relax
the assumption of full commitment and constrain optimal policy to be time consistent. Section 5

concludes and suggests some directions for future research.

2 Economic Environment

This section sets out the basic environment and derives the steady state welfare-maximizing policy
which we treat as a benchmark. We begin with a closed economy where a large number of firms
produce a single final good according to the technology,
0

vi= ey (B2) )
where 0 < @ < 1, and 0 < § < 1 — « is the public capital elasticity of output. The variables K;
and K, denote the stocks of private and public sector capital at date ¢ respectively. The size of
the population in the economy is given by N;. Thus, note that a larger population size reduces
the effectiveness of the public capital stock in production. Analogously to Barro and Sala-i-Martin
(1992), this feature captures congestion effects in the use of government infrastructure such as
highways, water systems, hospitals, etc... Aside from congestion, the technology in (1) is often used
to motivate a role for government. This is the case in Baxter and King (1993), for instance, which
focuses on the effects of shifts in exogenous policies.

Population grows at rate v, > 1 over time so that
Nt =ynNi-1, No=1. (2)

The expression zl; in (1) represents the quantity of skill-weighted labor input, where labor-

augmenting technical progress allows for increases in z; at rate v, > 1,

2 = Ygz2-1, 20 = L. (3)



We treat the per capita stock of public capital as being available to all firms. In other words,
we treat K, /Ny is interpreted as a public good that acts as a common externality with respect to
each firm’s production.

Public investment, Iy, is financed by a flat tax on income, 0 < 7¢ < 1, that can vary with time.

Hence, I = 7;Y; and we can express new outlays of public capital, K41, as

Kgp1 = TY; + (1= 6)Kg, (4)

Public Inves@ment

Ky > 0 given.

where 0 < § < 1. Observe that 7, also corresponds to the share of gross public investment in
GDP, I,/Y;. As in Klein et. al. (2003), we abstract from sovereign debt considerations. Given
the difficulty of imposing a no-Ponzi-game condition on successive governments in the analysis of
time consistent policies, the inclusion of debt would require introducing an alternative constraint.

While potentially interesting, we leave this consideration to future research.

2.1 Firms

We denote by r; and W; respectively the rental price of private capital and the wage at date t.
Taking as given the sequence, {7, W;}72,, each firm maximizes profits and solves
Ky

0
KItr,li}](Vt Ht = K?(ZtltNt)l_a <Tt> - Tth - thtNt‘ (5)

The corresponding first-order conditions help determine r; and W5.

2.2 Households

The economy is inhabited by a large number of identical households that comprise one or more
working members of the current generation. Family size is assumed to increase at the rate of pop-
ulation growth. In making plans, households take account of their descendants, and we summarize
this intergenerational linkage by envisioning that each generation maximizes utility subject to a
budget constraint over an infinite horizon.? If C; represents total consumption at ¢, then Cy/N; is
consumption per household member. Assuming that preferences are of the Constant Relative Risk

Aversion type, each household maximizes

U = > FNu(C/Ny), (6)
t=0

N, l1-o
where u(Cy/Ny) = % when o # 1,

u(Ct/Ny) = In(C¢/N;y) when o =1,

3See Barro (1974).



and 0 < [ < 1 is the subjective discount rate. At each date, households decide how much to
consume and save as well as how much capital to rent to firms.
Each household is assumed to be endowed with one unit of time, I; = 1, which they supply

inelastically. The representative household’s budget constraint is given by
Co+ I = (1 —7¢) [WeNely + 1 Ky (7)
where

Kiy1 = L+ (1-0)K,, (8)
Ko > 0 given.

Before proceeding with the design of optimal policy, we find it helpful to derive the economy’s
constant balanced growth rate in the steady state. As shown in King, Plosser, Rebelo (1988), this
will eventually allow us to express preferences and technology in terms of transformed variables

that are constant in the steady state.

2.3 Balanced Growth

In the following discussion, we denote the long-run growth rate of a given variable X; by ~vx.

Equation (4) and (8) imply v, = v, and 7x = 77 respectively. It follows from (7) that y¢o =

Y1 =71, =y Hence, all variables in the economy eventually grow at the common growth rate
1—«

1—a—6

vy - From the technology in (1), it immediately transpires that vy = v, Y, so that output

growth reflects both labor-augmenting technical progress and population growth. In per capita
terms, long-run growth is simply denoted by

1—a

v=77"". (9)

Given that GDP grows at rate vy, a sensible normalization for our economy is one which
expresses our model’s variables in detrended per capita form, which we write below as lower case
letters. Thus, we write the detrended per capita counterpart of any variable X; that grows at rate
vyn in the long-run as x; = X;/ Nﬂt)( Furthermore, note that this transformed variable will

then be constant in the steady state.

2.4 The Transformed Economy: Description of a Policy Golden Rule

We now derive the steady state welfare-maximizing policy for this economy and relate it to earlier
work on optimal fiscal policy. Taking the sequence of prices, {r¢,w:}7°,, and the sequence of tax

rates, {74+}52,, as given, the household’s problem may be expressed as

max U=3" (/@,Ym(lo))tci_" (P1)
t=0

)
{Cg, kt+1}1?io ]. — 0

C 70

6



subject to

ct + ")/N"}/kH_l — (]. — 6)]6,5 = (1 — Tt) [wtlt + Ttl{?t] (10)

ko > 0 given,

where r = a(y/kt), we = (1 — a)(y/lt), and y = k:,?‘ltl_ak;gt. The normalized discount rate,
G = By Ny(l_" ), reflects the engines of economic growth in the usual fashion. In order for (P1)
to be well defined, we assume v,y(177) < 1 /B. This imposes an upper bound on the extent of
technical progress and population growth.

The solution to the household’s dynamic optimization problem yields the familiar Euler equa-
tion,

Yvve ” =0 (1= Ter)repn +1-96], (11)
that describes decentralized allocations over time. In (11), taxes distort private incentives to con-
sume and save, but also induce higher future returns to private investment through the development
of public infrastructure. Specifically, the return to private investment, r41, depends on kgt 11 A
question then immediately arises as to where to set the tax rate, or equivalently, the share of public
investment in output.

Perhaps the simplest or most common answer to this question, that is the simplest notion of
optimal policy, is to set the tax rate so as to maximize steady state welfare. In our framework, this
concept of optimal policy replicates Barro’s (1990) optimal tax rate and, furthermore, is analogous
to a golden rule for public capital.

From equation (11), and the accumulation equation for public capital in detrended form,

YNVEgt+1 = Teye + (1 — 8)kgy, (12)

the steady state ratio of public to private capital satisfies

- [(%V—ﬁ—(l—é)}(r
% T ah A (13)

More specifically, the higher the tax rate, the lower the after-tax return to private capital and the

more government investment takes place. Therefore, the ratio of public infrastructure to private
capital rises with 7. Given equation (13), one can easily show that steady state welfare increases
monotonically with k, and is otherwise independent of 7. It follows that maximizing steady-state
welfare with respect to 7 reduces to finding the tax rate that maximizes steady state private capital.
As in conventional wisdom, this maximization problem prescribes setting 7 = 6.

The starkness of this standard finding stems from the failure to take into account transition
dynamics. In much of the literature on productive government, the outcome 7 = 0 appears as the
full welfare maximizing solution precisely because these models lack any dynamics to the balanced
growth path. This is the case, for instance, in many of the endogenous growth models inspired by
Barro (1990). Given that « lies somewhere between 0.3 and 0.45 in U.S. data, and that a +60 = 1



is required to generate endogenous growth, those models place the optimal share of government
investment in GDP between 0.55 and 0.7, which appears excessively large when compared to ob-
served values. To make sense of the optimal solution in that context, one must then argue that
the concept of private capital is to be interpreted more broadly to include a human component.
This would effectively push « closer to unity and, therefore, reduce 6. However, in departing from
the National Income and Product Accounts (NIPA) definition of private capital, we are invariably
forced towards a concept that is less tangible and not easily measurable.

Of course, in our economy, long-run growth stems from exogenous advances in labor augmenting
technical progress and setting 7 = 6 does not have to be implausible. However, most estimates of
the output elasticity of public capital place 6 between 0.05 and 0.2 in the U.S., but we also saw
earlier in Figure 1 that 7 has moved only between 0.03 and 0.06 over the post war period. What
then is the nature of the relationship between 7 and 0 at the optimum? As we now show, the fully
optimal steady state share of public investment in GDP depends importantly on both preferences

and technology in ways that tend to lower it relative to the public capital elasticity of output.

3 The Ramsey Problem

This section discusses the full welfare-maximizing policy problem from the standpoint of a govern-
ment that can commit to a sequence of future tax rates and its implied path for public investment.
In addition, it also lays out the nature of the time inconsistency problem associated with the optimal
path for tax rates.

Consider a benevolent government that, at date zero, is concerned with choosing a sequence
of tax rates consistent with the development of public infrastructure that maximizes household
welfare. In choosing policy, this government takes as given the decentralized behavior of firms
and households. We further assume that at date zero, it can credibly commit to any sequence of
policy actions. The problem faced by this government would then be to maximize (P1) subject to

equations (10), (11), and (12). The corresponding Lagrangian can be written as

max Z@*t o (P2)

{Ct:Ttakt+1:kgt+1}t°io 1-0

- Z@*tﬂu {ﬁ*ct_fl (1= Tep1)rep1 +1— 6] — WNVCt_G}

o0
+> 6 oy {en + (1 — 8)kgr — YnVhgr41}
=0

oo
+ > B g {1 = T)ye + (1= 6k — Ynyheps — i}
t=0
The first constraint in (P2) implies that our benevolent planner takes households’ consumption-

savings behavior as given. He can, however, influence the intertemporal allocations they choose by



altering tax policy over time.

The optimal selection of 7 is governed by the following two equations,

fia0 — p3o = 0 at t =0, (14)

and

—Hag1C CTE Mztk?ltliakzt - ustk?lfakgt =0Vt >0. (15)

The fact that these first-order conditions differ at t = 0 and ¢ > 0 suggests an incentive to take
advantage of initial conditions in the first period with the promise never to do so in the future.
It is exactly in this sense that the optimal policy may not be time consistent; once date zero has
passed, a planner at date ¢ > 0 who re-optimizes would want to start with a tax rate, 74, that
differs from what was chosen for that date at time zero. For now, therefore, we imagine that the
optimization takes place only once, in period zero. Once our benevolent planner has decided on a
course of actions, his hands are tied and he is pre-committed to that course of actions.

As noted in early related work by Kydland and Prescott (1980), the choice of 7, introduces a
lagged predetermined variable, pq,_; > 0 in (15). At a purely mechanical level, we can think of
this variable as an artificial device that helps make the final system of difference equations that
characterizes the optimal solution stationary V¢ > 0. However, unlike fundamental state variables
such as the private or the public capital stock, the appropriate initial condition for gy, ; is not
arbitrary. Instead, since the optimal choice of 7¢ must satisfy equation (14), it must also be the
case that py;;_; = 0 in (15) at ¢t = 0. Alternatively, Dennis (2001) points out that the lagged
Lagrange multiplier, u;,_;, may be interpreted as the “current value of promises not to exploit the
initial state” and, in particular, to abide by past commitments. However, since no history exists
prior to period zero, there are no past commitments on which to assign any value at that date. It
is optimal, therefore, to set py _; = 0.

The fact that the optimal policy is chosen once and for all in period zero does not necessarily
imply that it is not flexible. On the contrary, the solution to the Ramsey problem provides a
description of where to set 7; in every state of the world. We shall see that this solution is also
explicit about how the implied share of public investment in output depends on the economic
environment. Therefore, as noted in Dennis (2001), “if a change to one or more parameters takes
place, the policy rule automatically reflects this change; (and) there is no need for re-optimization

to take place.”

3.1 The Ramsey Steady State: Optimal Public Investment and the Modified
Policy Golden Rule

The optimal stationary equilibrium is given by a vector {c,y,7,k, kg, i1, 1o, 13} that solves the
four first-order conditions associated with problem (P2), the resource constraint (10), the Euler

equation (11), the equation describing the evolution of public capital (12), and the definition of



0
gt

simply reduces to a system of eight equations in eight unknowns.

output, y: = k:,?‘ltl_ak; all without time subscripts. The optimal stationary equilibrium, therefore,

In the long run, households’ optimal consumption-savings decisions satisfy

Ny = B [(1 —a (%) 11— 6} o, (16)

from the Euler equation. Furthermore, it is also straightforward to show that the optimal ratio of

public capital to output must be such that
B [9 <ki> (1 - 5} Co. (17)
g

It follows from equations (16) and (17) that in the steady state, the Ramsey solution equates
the after tax return to private investment, (1 — 7)a(y/k), with the marginal return to public
investment, 6(y/ky). Consequently, we can immediately pin down the ratio of public to private
capital as kg/k = 0/a(l — 7). As expected, the higher the tax rate, the lower the after-tax return
to private capital and the less private capital is generated relative to public infrastructure.

The idea that, at the optimum, the after-tax return to private investment must equal the
marginal return to public investment also helps determine the optimal tax rate and implied share
of government investment in output. Note that in this setting, the opportunity cost of 1 unit of
resources invested in the public sector is the after tax return this unit would have otherwise earned
in the private sector, (1 — 7)a (y/k). Equation (16) then tells us that

Y _INY 4
(1—-7)a (E) (= -6, (18)
return Zo privaté invest(nent

The marginal benefit of investing 1 unit of resources in the public sector is 6(y/kg4) and, since public

capital accumulates according to the law of motion ky[yyy — (1 —6)] = Ty in the long run, we have

6 (%) :9< N —7(1—6>>( o)
g
return to aubli(-( in\(estment

Therefore, equating marginal cost and marginal benefit [i.e. the right-hand side of equations (18)
and (19)] directly yields the optimal long-run tax rate and share of public investment,
TNy — (1 =96) (
T=0 77— 7 <0. (20)
{ B2 (1-9)
Analogously to the modified golden rule for private capital in the one sector growth model,
the share of government investment in output given by (20) falls short of the policy golden rule

outlined in the previous section, #, by an amount that depends importantly on discounting. In

fact, observe that when § = 1 in equation (20), 7 is 5% < 6 which corresponds exactly to a
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modified policy golden rule.* In addition, from equation (13), it would then be the case that
kg/k =0/ [a(1 — 5*6)] which is less than the ratio of public to private capital implied by the policy
golden rule, ky/k = 6/[af*(1 —60)]. In other words, although the policy golden rule eventually
leads to more public infrastructure relative to private capital, the impatience reflected in the rate
of time preference means that it is not optimal to reduce current consumption through higher taxes
to reach this higher ratio.

Relative to most earlier work, equation (20) matters in at least two respects. First, it implies
that a high output elasticity of public capital, #, does not necessarily have to translate into a large
share of public investment in output, iy/y. Recall that in the U.S., estimates of ¢ generally range
up to 0.2 while i4/y has only hovered around 0.05 since World War II. Second, the optimal share
of public investment in GDP now depends on a variety of preference and technology considerations
including labor productivity growth, population growth, rates of depreciation, and the coefficient
of intertemporal substitution.

Figure 2), panel a), depicts the effects of a rise in labor productivity growth on the optimal
ratio of public investment to output. We can see that, at the optimum, an increase in the rate of
technical progress from v to 4/ raises both the marginal benefit of public investment, 0 (M) ,(
and its marginal cost, % —(1—0) from equation (18). Intuitively, the equilibrium return to private
capital rises because it is now more costly to increase future detrended capital; households then
save less which reduces the capital output ratio and, therefore, raises the rate of interest. Because
this increase depends on the size of ¢ in Figure 2a), it is not clear whether the initial optimal rate
of public investment, 7, should increase to 7/, or instead decrease to 7. For larger values of o,
however, we expect the optimal tax rate to fall with increases in per capita growth.’

On a less equivocal note, from equation (20), the impact of a rise in the population growth rate

on the steady-state Ramsey tax rate is unambiguously positive,

or ¥
A .

Observe in Figure 2b) that an increase in population growth from 7, to 7y leaves the return to

private investment unchanged. That is, an increase in v raises GDP growth, vy, but also raises
the adjusted discount rate, 3* = By, ~7, since households take account of the greater number of
individuals in the future. At the optimum, therefore, the return to public capital must also remain
unaffected. From equation (19), it is clear that a rise in v, can only leave the return to public

capital unaffected if the tax rate also rises. Intuitively, higher population growth erodes the ratio

4This nested case appears in Glomm and Ravikummar (1994). The additional assumption of logarithmic pref-
erences in that paper further implies that this solution holds optimally at every date. We explain below why this

constant policy turns out to be time consistent in their case.
°In the case where § = 1, 7 = 8% so that 87/0y = (1 — 0)ByyY 70 S 0 & 1/0 < 0. In other words, when

households are relatively less willing to substitute consumption across time, (i.e. 1/0 < 1), an increase in economic

growth makes them want to raise present consumption so that the share of public investment must fall.
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of public capital to output. Hence, more government investment relative to GDP is now necessary
to restore this ratio to its original level.

Figure 3, panel a) plots average per capita growth rates against the flow of government capital
expenditures relative to GDP across 106 countries over the period 1976-1997. The data is obtained
from the World Development Indicators published by the World Bank in 2000. Capital expenditures
in this case include spending on fixed capital assets, land, intangible assets, government stocks, as
well as non-military, non-financial assets. The data in Figure 3a) show that the share of capital
expenditures in GDP tends to fall with per capita economic growth. This decreasing relationship
becomes even more pronounced when the share of public investment is plotted against the level
of total factor productivity as in Figure 3, panel b).5 We shall see that in calibrated versions of
our model, the optimal policy indeed implies a declining relationship between the share of public
investment in GDP and per capita economic growth. Interestingly, as implied by Figure 2b), Figure
3, panel c), illustrates a positive link between public investment relative to GDP and population
growth across nations.

At this point, we find it useful to introduce a numerical example to better highlight the behavior
of key economic variables as the rate of technical progress and the population growth rate vary.
Furthermore, since the dynamics of optimal policy cannot be characterized analytically, we shall
also use this example below in analyzing the optimal sequence of tax rates given initial conditions

for the state variables.

3.2 Calibration to U.S. Benchmarks and Steady State Simulations

The U.S. economy has grown at an average annual rate of 2 percent in per capita real terms over
the post war period, and we choose 7 to match this value in the steady state. We set v, to 1.012
to reflect mean population growth since World War II. From the capital accumulation equation,
we have that yyy = i/k + 1 — §. Given that v = 1.02 and that vy = 1.012, we follow Cooley
and Prescott (1995) and choose 6 = 0.044 to match a value of 0.076 for the ratio of investment to
private capital. As in Baxter and King (1993), we set the share of private capital in GDP, «, to
0.42 and choose § to generate an equilibrium real rate of 6.50 percent. This implies § = 0.982. We
set 0 = 2 so as to make the coefficient of intertemporal substitution 1/2. Finally, given values of +,
YN, 0, B, and o, we use equation (20) to make our choice of 6 consistent with a public investment
share in GDP, 7, of 5 percent. This value of 7 = i4/y, which is taken as a benchmark in Baxter and
King (1993), also approximates the average share of public investment in Figure 1) and requires
that we set # = 0.068. Therefore, if the share of public investment is roughly optimal in the U.S.,
then the public capital elasticity of output implied by the theory lies in the lower range of most
empirical estimates.

In principle, the observed U.S. ratio of public investment to GDP does not have to be optimal in

a Ramsey sense. Among other considerations, whether government behavior can be approximately

% Cross-country data on total factor productivity levels is obtained from Hall and Jones (1998) for the year 1988.
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captured by household welfare maximization is still an open question. Alternative reasonable values
of 6, however, do not change the substance of our analysis. The parameter values that achieve our

calibration targets are summarized in Table 1.

Table 1.
Calibrated Benchmark Parameters Value
Preferences
1/o Intertemporal Elasticity of Substitution — 1/2
I} Time Discount Rate 0.982
Technology
1) Capital Depreciation Rate 0.044
vy Growth Rate of Output per Capita 1.02
YN Population Growth 1.012
Private Capital Elasticity of Output 0.42
0 Public Capital Elasticity of Output 0.068

Figure 4), panel a), shows that for these parameter values, the optimal share of public in-
vestment in GDP falls with increases in per capita output growth. At the same time, note that
the consumption-output ratio rises in panel c). In this calibrated example, increases in the rate
of technical progress allows households to consume more relative to output and both private and
public investment as a fraction of GDP must conversely fall. In Figure 4a), a 1 percent increase in
per capita growth is associated with a 0.37 percent fall in capital expenditures relative to output.
While this relationship is also negative in the data, a 1 percent rise in economic growth in Figure
3a) corresponds to a smaller 0.1 percent decrease in the share of government investment. Figure 4,
panel b) shows an increasing relationship between public capital expenditures as a fraction of GDP
and population growth. As we saw earlier, a higher rate of population growth erodes the public
capital-output ratio so that greater government investment must be undertaken to keep the returns
to public and private capital equalized. In this case, the model suggests that a 1 percent increase
in population growth raises public investment relative to GDP by 0.68 percent. In the data (Figure
3c]), this elasticity is actually larger in that a 1 percent rise in population growth is associated with

a 1.29 percent increase in the share of capital expenditures.

13



3.3 Dynamics of Optimal Public Policy with Commitment: First Period Cheat-

ing

A standard result in the literature on optimal fiscal policy with commitment stipulates aggressively
raising capital taxes in the initial period relative to later dates. Since the capital stock is prede-
termined in period zero, increases in capital taxation are not distortionary on that date. Taxes on
capital are distortionary thereafter, however, and it is optimal for a policymaker to commit to low
future capital taxes while levying high taxes initially.

It should be clear that these incentives exist in our model economy as well. Recall the difference
between equations (14) and (15) that govern the optimal choice of 7 at dates t = 0 and ¢ > 0. The
additional term in (15),

—H1e-16 Tt (22)

originates from the Euler constraint in problem (P2), 8%¢; 7 [(1 — 7¢)r: + 1 — 6] = vnvyc,5, and
corresponds to the reduction in the after-tax real return to investment made at date ¢t — 1 created
by an increase in the tax rate at time ¢. Consequently, in committing to a tax rate in a given period
t > 0, the government takes into account the implied substitution effect on investment decisions
undertaken in the preceding period. Of course, at date t = 0, no such distortion exists since history
commences on that date with a predetermined capital stock, kg. In choosing 7¢, therefore, the
government is free to ignore its effects on previous investment decisions that can be thought of as
“sunk”. Thus, it would seem that the optimal sequence of tax rates should indeed begin with a high
tax in period zero relative to those at all other dates. However, in our framework, this reasoning
is only partially complete and misses an important piece of the analysis that can overturn the
standard intuition.

Consider the optimal choice of consumption from the standpoint of our benevolent planner.
The first-order conditions associated with 9L/0¢; in (P2) are

co” + oVNTH0G T — pgo = 0 at £ =0, (23)

and

¢, 7 = o T g [re(L—76) + 1= 8] + oy nypec; O — g = 0 VE > 0. (24)

The obvious difference between dates t = 0 and ¢ > 0 relates to the term —oc; " pugy_q[re(1—7¢) +
1 — ¢]. This expression describes the impact of a change in consumption on the Euler constraint
in problem (P2). Specifically, in considering an increase in consumption at any date ¢ > 0, the
government recognizes the implied wealth effect that reduces marginal utility and, therefore, the
utility-denominated return to investment made in the preceding period, —oc; T (=) +
1—46]. Put another way, the policymaker understands that u'(¢;)[r¢(1—7¢)+1—§] falls when present
consumption increases. That said, this effect is once again irrelevant at time zero when the capital
stock is predetermined. Consequently, equations (23) and (24) suggest that our policymaker is free

to allow for high consumption in period zero without concern for prior investment decisions. But
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achieving high consumption in the first period requires a low initial tax rate, precisely the opposite

prescription suggested by (22).
Income vs. Substitution Effects and the Initial Tax Rate

Since the effects we have just described rely crucially on the shape of marginal utility, whether
or not the tax rate initially exceeds its long-run value depends importantly on the elasticity of
intertemporal substitution, 1/0. That is, individuals’ willingness to smooth consumption across
time. Figure 5 illustrates this notion for the case with full depreciation, 6 = 1. The initial state
of the economy in Figure 5 is given by the private and public capital stocks that prevail in the
stationary Ramsey equilibrium. As explained earlier, we set y; _; = 0. Thus, starting from this
steady state, the figure depicts the optimal sequence of tax rates adopted by a government when
it is allowed to abandon, or cheat on, past commitments and to implement a new Ramsey policy.’

With § = 1, next period’s private capital is determined only by current investment, vy7vkir1 =
i¢. Furthermore, in the logarithmic case where o = 1, it is well known that in the type of model
presented here, investment is itself unrelated to future after-tax returns and depends only on the
current tax rate through disposable income. In other words, future taxes have no impact on current
investment. Consequently, in implementing a tax rate at any date, the policymaker realizes that
this rate never has an effect on past investment decisions. In this sense, period zero is no different
than any other period and the government has no incentive to cheat. Starting from the long-
run Ramsey tax rate, Figure 5 shows that our policymaker simply stays with this policy at every
date. Furthermore, because cheating is not an issue, this Ramsey plan is, in fact, time consistent.
Appendix A proves this result formally.

When ¢ # 1, private investment does depend on the whole stream of current and future taxes.
An increase in the tax rate at time ¢ > 0 reduces the return to past investments. On the one
hand, this creates a negative wealth effect that leads households to want to reduce both present
and past consumption. Past investments then tend to rise. On the other hand, the lower return is
also associated with a substitution effect that makes past consumption more attractive relative to
current consumption. Investments made in prior periods then tend to fall.

When the elasticity of intertemporal substitution is large, 1/ > 1, the substitution effect dom-
inates as households are easily enticed to reallocate current consumption to previous periods. In
this case, a rise in taxes in period ¢ > 0 raises past consumption and, more importantly, depresses
past investments. Relative to date zero, where this effect is absent, taxes at every date are dis-
tortionary and it is optimal for a government to set a high initial tax rate. This argument can

simply be reversed for the case where the elasticity of intertemporal substitution is small, 1/0 < 1.

"To obtain the transition paths from initial conditions, we linearize the dynamics of our transformed system around
its stationary equillibrium. The resulting set of linearized equations possesses a continuum of solutions, but only one
of these is consistent with the transversality condition. For transparency, we further set vy = v = 1 so that the

optimal long-run tax rate is simply (86 or 6.67 percent.
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Here, an increase in the current tax rate lowers past consumption as households are unwilling to
shift current consumption to previous periods. That is, the wealth effect dominates and raises past
investments. Recognizing this feature, the policymaker then optimally chooses to set higher future
tax rates relative to that in the initial period. These cases are shown in Figure 5 for elasticities of
intertemporal substitution of 2 and 1/2 respectively.

For our benchmark calibration where 6 = 0.044, the same reasoning applies although next
period’s private capital is no longer just determined by current investment. With undepreciated
capital available, the strength of the substitution effect implied by a change in taxes is reduced.®
The wealth effect, however, remains unchanged. This means that for the case 0 = 1, where the
substitution and wealth effect exactly canceled each other with full depreciation, the wealth effect
now dominates and the optimal path for taxes starts with a relatively low tax rate at date zero.

Figure 6 shows the transition paths associated with the Ramsey policy for our benchmark
economy. The initial state is again given by the private and public capital stocks associated with
the Ramsey stationary equilibrium. Therefore, the initial tax rate and corresponding share of public
investment, 7¢, reflects only the government’s first period incentive to disregard past commitments.

Recall that under our benchmark calibration, the share of public investment in GDP and the
corresponding tax rate are calibrated to 5 percent in the long run. In Figure 6, panel a), we can see
that the incentive to take advantage of period zero motivates the government to set a significantly
lower tax rate initially, at approximately 3 percent. Government investment falls (not plotted) and
so does the following period’s public capital stock in panel e). Thus, with households relatively
unwilling to reallocate future consumption to the present (1/0 = 1/2), a policymaker optimally
chooses to generate increases in consumption and private investment in the short run as shown in
Figures 6¢) and 6d). Observe in panel f) that the increase in investment allows for a build up in
private capital which then converges to the steady state from above.

In contrast to what has become standard intuition, we have shown that a policymaker able to
commit to future policies may choose a low tax rate in the first period. He does not necessarily take
advantage of the initial non-distortionary tax on capital, but may choose instead to delay taxation

in order to generate a “take off” phase with higher short-run consumption and private investment.

3.4 Accounting for the Initial State in the Design of Optimal Policy

With both the private and public capital stocks at their Ramsey stationary equilibrium levels, we
have seen that a government allowed to disregard past commitments chooses to lower the tax rate
in period zero, thus generating a short-run boom in consumption and investment. It is worth noting
that this feature of optimal policy does not hold irrespective of the state the policymaker inherits
at date zero. In some sense, of course, the concept of date zero seems artificial since, from our

current standpoint, this date occurred at some time far in the past. At a deeper level, however,

8The substitution effect is governed by changes in the price of past relative to current consumption, p, = r¢(1 —

7¢) + 1 — 6. In particular, observe that the elasticity of p, with respect to 7, falls as § increases.
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this concept exactly captures the idea of a new government feeling unbound to commitments made
by its predecessors. In formulating policy, we naturally expect that this government would take
account of the state of the economy at the time it took office.

Consider the case where a policymaker inherits a public capital stock that is initially below its
optimal long-run level. If private capital is at its steady state in period zero, then the return to
public investment originally exceeds the after-tax return to private investment. The policymaker
might then wish to moderate his desire to lower initial taxes in order to finance greater public
investment and bring the two rates of return in line. In other words, inadequate public infrastructure
at date zero increases the benefits of postponing consumption and adds to the gains from raising
the initial non-distortionary tax on capital. Figure 7 describes precisely this situation. The public
capital stock initially lies 4 percent below its steady state level [see Figure 7e)]. Under this scenario,
panel a) shows that the optimal tax rate exceeds its long-run equilibrium level at time zero by
roughly 0.4 percentage points (see solid line). In fact, its path is virtually opposite to that depicted
in Figure 6a). Here, the low stock of initial public capital more than outweighs the government’s
first period incentives to abandon past commitments.” Note in Figures 7c) and 7d) that both
consumption and investment are below their steady state values during the transition. Furthermore,
aggregate consumption decreases in the short run. This bleak adjustment stems from two reasons.
First, with government infrastructure initially falling short of its steady state, and private capital
originally at steady state, GDP must necessarily start below its long-run equilibrium [see panel b)].
Second, even with GDP below steady state, the planner nevertheless finds it optimal to raise 7¢ in
order to build up the stock of public infrastructure. Put simply, starting with an inadequate stock
of public capital makes the transition to the steady state arduous, even under the optimal policy.

In fact, the path for tax rates described in Figure 7a) will be optimal whenever the ratio of
private to public capital initially lies significantly above its Ramsey stationary equilibrium value. In
Figure 8, the return to public investment once again initially exceeds the after-tax return to private
investment, but this time because there is a surplus of private capital. This is shown in panel f)
where private capital originally lies 4 percent above its long-run value. Note in Figure 8, panel a),
that the optimal path for tax rates is almost identical to that in Figure 7a) we have just discussed.
The main difference with Figure 7, of course, is that GDP, consumption, and investment now all
lie above their long-run value during the transition. Under this scenario, the inherited surplus of
private capital makes it possible for the government to build up its stock of infrastructure while,

at the same time, allowing for a comfortable adjustment to the Ramsey stationary equilibrium.

3.5 Modeling Public Contributions to Output as a Flow

We have shown that income and substitution effects, as well as the initial state of the economy,

are all relevant in shaping optimal policy. This finding, however, has typically been overlooked in

9Under our benchmark calibration, these two effects offset each other when kg is approximately 3.2 percent below

steady state.
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earlier literature because of a key assumption on the nature of productive government expenditures.
Specifically, public contributions to private output have often been treated as a flow variable.
While this modeling strategy has proved tractable, Turnovsky (1997) argues then if it is public
infrastructure that expands the production frontier, then the stock of public capital rather than
the flow of government spending matters in production. We now show that modeling government
input as a flow removes the time consistency problem emphasized above, and the Ramsey solution
is then constant through time.

In Barro (1990), Barro and Sala-i-Martin (1992), Turnovsky (1999), and many others, tax
revenues are converted into infrastructure within the period. In the context of our model, this
implies that

kgt = Tty (25)
Under this assumption, and in contrast to our earlier set-up, the initial level of public capital is not
given but endogenous. The planner, therefore, has an additional instrument that effectively allows
him to circumvent the distorting effects of income taxes.

Consider problem (P2) but replace the second constraint in the Lagrangian by

e}
Z@*tﬂzt {Teye — kgt -
t=0

The first-order conditions corresponding to the optimal choice of 7 are still given by (14) and(15),

but we now have new first-order conditions with respect to kg,

1190 (T002% — 1) + 1 (1 — 70)02> =0 at t = 0 (26)
kg0 kg0
and
-0 eayt
pyg—1c; © (1 —T¢)7—— + M2t(7't9 1) + puge(1 — Tt)e— =0Vi>0. (27)
ktkgt kgt kgt

Substituting (15) into the first term of (27), with 7, = a(y:/k:), immediately yields kg¢/yr = 74 = 6
Vt > 0. Moreover, substituting pey = 3o from equation (14) into equation (26) further yields
kg0/yo = To = 6. In this case, therefore, the optimal policy with commitment recommends setting

a constant tax rate,

T =0 Vt, (28)

irrespective of the state of the economy, preferences, or other technology parameters. The Ramsey
planner behaves at time zero as in any other period, and the optimal policy is time consistent.

As in our benchmark economy, the intuition underlying this result relies on assessing the impact
of a change in the tax rate at date ¢t on the utility-denominated return to savings made at date
t—1>0,

=07 [(1—1)re +1 -], (29)

where ¢; = (1 — Tt)ktakgt + (1 — 6)kt — YnYEt41, kgt = Tk kgt, and 1 = akto‘_lkgt. Using these
expressions to solve for kg, and substituting the results into (29), allows us to write the utility-

denominated return, ¢, as a function of 74. It is then straightforward to show that dq;/07¢ |+,—¢ = 0.
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Hence, distorting public “transfers” offset the distorting nature of income taxes within the period.
Put simply, for the choice of 7; that solves the Ramsey problem, wealth and substitution effects
are exactly zero at every date.'’ Every period is then no different than period zero, where past
savings decisions are unaffected by current tax decisions. Thus, a Ramsey policymaker never has

an incentive to cheat.

4 Optimal Discretionary Policy

We now study the problem of optimal public investment when a commitment technology is no
longer available. In such an environment, the solution to the Ramsey problem is generally time
inconsistent. A new government coming into office would typically disregard the promises made
by its predecessors. Rational households realize that the public sector has an incentive to deviate
from the sequence of Ramsey taxes. Hence, setting taxes once and for all at time zero results in
policy announcements that are not credible.

Because time consistency can be seen as a minimal requirement for credibility, the objective
of this section is to define a maximization problem that yields a policy with this property in
equilibrium. The literature on this subject generally follows two approaches.

One approach finds the set of all possible sustainable equilibria, and characterizes the problem
using reputational mechanisms relying on trigger strategies that typically involve reversions to the
worst possible equilibrium (Chari and Kehoe [1993]). Reputational mechanisms, however, have
been criticized for not being renegotiation proof.

A second approach, one that is renegotiation proof, relies on the definition of subgame-perfect
Markov equilibria. In this case, the optimal policy rule is a function of the current state of the
economy. This function is independent of history and reputation plays no role. While the Ramsey
solution captures the best possible equilibrium subject to income taxation, the Markov equilibrium
solution delivers the worst equilibrium associated with optimal policies. In adopting the Markov
approach in this paper, we compare optimal policy and its implications under these two extremes.

Define the Markov policy rule,

™ =T(k,k,), (30)

that determines the optimal tax rate based on the state of the economy. A Markov-perfect equilib-
rium can essentially be thought of as a sequence of successive governments, each choosing a single
tax rate based on the state it inherits when taking office. In making this choice, each government
correctly anticipates the optimal decision rule adopted by its successors. In equilibrium, future
policymakers’ choices are time consistent if and only if they coincide with the rule that the current
policymaker anticipated them to optimally choose. Moreover, the current planner’s policy choice

of 7 must also follow this rule, 7 = I'(k, k).t

'0bserve that this property does not necessarily hold with technologies other than Cobb-Douglas.
1See Klein et. al. (2002) for a detailed discussion of this notion of optimal discretionary policy.
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Since a Markov planner can influence the state inherited by future governments through the
interaction of his policy, firm behavior, and households’ decisions, he does not take future policy-
makers’ actions as given. In particular, by affecting future states with current policy decisions, a
Markov planner possesses some leverage over future governments through (30).

Let 2’ denote next period’s value of any variable x. Unlike the Ramsey problem, where date
zero plays a pivotal role, the problem faced by our benevolent government can now be formulated

in recursive form,

V(k,kg;T') = max {KCI;U + BV (K k‘"T)}( (P3)

b )
ek k) |1 —0 g

subject to the resource constraint,
ct+i=(1—-71)rk+ wl,

the accumulation equations,

YK = i+ (1-98)k

INVRy = Ty + (1= 0)kg
and the Euler relation,

ynye = AL =T kg)r' + 1= 6],

where the prices r and w reflect firms’ profit-maximizing behavior, r = a(y/k) and w = (1—«)(y/1)
with y = k' k0.

Markov-perfect Equilibrium:
Let s denote the state variables {k, ks} in (P3), and let f denote the flow variables {c,i}. A
Markov-perfect equilibrium is a set of functions s = II(s), f = G(s), 7 = I'(s), and V (s) that solve

the dynamic program above.

Observe that the steady state and dynamics associated with (P3) have to be determined simul-
taneously in a Markov-perfect equilibrium. Since steady state allocations depend on the tax rate,

the stationary equilibrium cannot be found without knowledge of the policy rule I'(s).!2

4.1 The Markov Steady State

Because each policymaker treats as given the state of the economy he comes into, the policy rule
I'(s) should partly reflect the first period incentives faced by a Ramsey planner. Put differently,
in much the same way as a Ramsey planner ignores history at date zero, each government in a

Markov-perfect equilibrium considers the past as “sunk”.

'2A companion technical appendix that describes the solution to (P3) using a Linear Quadratic approximation

approach is available upon request. This approach allows for a straightforward computation of transition paths.
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We have already seen that in the Ramsey problem, the date zero incentives to abandon past
commitments were such that the government’s choice of initial policy depended on households’
willingness to reallocate consumption across time. For small elasticities of intertemporal substitu-
tion, the Ramsey government chose to set a low tax rate initially. Since this tendency is reflected
by every government in a Markov-perfect equilibrium (i.e. at every date), we might then expect
Markov tax rates to settle below full commitment tax rates in the long run. The reverse would
be true for large intertemporal elasticities of substitution. In fact, Table 2 captures exactly this
intuition for the special case, 6 =y =~y = 1.

When 1/0 = 2, the optimal path for tax rates under commitment starts at roughly 6.77 percent,
or 0.1 percent above its stationary equilibrium value. In this case, the stationary Markov-perfect
tax rate also settles above its Ramsey counterpart at 6.78 percent. Conversely, when 1/0 = 1/2, the
date zero Ramsey tax rate falls short of its steady state value. Table 2 indicates that the stationary
Markov tax rate now correspondingly lies below the long-run Ramsey tax rate. Finally, when
household preferences are logarithmic, Figure 5 indicated that the optimal path for Ramsey tax
rates was constant at every date, 79 = ... = To, = 860 = 0.0667. Specifically, despite the presence of
state variables, we argued that this parameterization makes optimal policy under commitment time

consistent. Table 2 confirms that the stationary Markov tax rate is indeed also 50 when o = 1.

Table 2.
Relation Between Initial Ramsey Policy and Stationary Markov-Perfect Policy, 6 = v =vyy =1
Initial Ramsey Stationary Ramsey Stationary Markov-
IES Parameter Policy, 19, (percent) Policy, (percent) perfect policy, (percent)
1/o=2 6.77 > 6.67 < 6.78
1/o=1 6.67 = 6.67 = 6.67
1o =1/2 6.58 < 6.67 > 6.58

The recent macroeconomics literature has seen a number of papers addressing problems of
optimal discretionary policy. These include papers by Krusell and Rios-Rull (1999), and Klein
et. al. (2003), among others in the context of fiscal policy, as well as Albanesi (2002), Dotsey
and Hornstein (2003), and Khan, King and Wolman (2003), in the context of monetary policy.
In fact, Table 2 suggests that the nature of the Ramsey problem at date zero plays an important
quantitative role in explaining long-run Markov-perfect policy.

Consider the comparison between stationary outcomes under the Markov-perfect equilibrium
and the Ramsey equilibrium in Figure 4. As the economic environment changes, we can see that
the Markov-perfect solution retains the basic intuition obtained under the Ramsey program. The
optimal time-consistent share of public investment in output falls with increases in the rate of tech-
nical progress and rises with population growth. In addition, as we have just argued, discretionary

government capital expenditures are always lower than those under full commitment in the long
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run (our benchmark economy adopts the standard assumption, 1/0 < 1). Thus, the inability to
commit to future policy eventually implies too little public investment.

While the focus of our analysis has been theoretical in nature, Figure 9 depicts a positive
cross-country correlation between the Average Tenure of Executive and Government Capital Ex-
penditures as a percent of GDP. The data on Average Tenure of Executive is obtained from the
World Bank’s governance database. It answers the question: “How many years has the Chief Ex-
ecutive been in Office?”!3 Thus, to the degree that shorter tenure hinders the executive’s ability
to abide by past promises, Figure 9 indeed indicates, as in our model, that the share of public

investment rises with the ability to commit to future policies.

4.2 Dynamics of Optimal Discretionary Policy

Because the Markov-perfect policy is time consistent, “re-starting” problem (P3) at any date has
no effect on the time path of optimal policy. Thus, in contrast to the preceding section, the Markov-
perfect policy rule implies that a government that comes into an economy in its stationary equi-
librium would simply choose to continue with the corresponding steady state tax rate. However,
because policy cannot be changed arbitrarily in the future, the initial state continues to be a key
consideration.

Consider the situation in Figure 7 where the government at date zero inherits a public capital
stock 4 percent below its long-run level. The private capital stock is initially at it stationary equi-
librium value. When policy is discretionary, Figure 7a) shows that the optimal tax rate converges
to a level lower than that under full commitment. As we have seen, this result captures the fact
that in a Markov-perfect equilibrium, every government ignores the effects of its decisions on the
past — (this behavior is itself reflected in a lower period-zero tax rate in the commitment case in
Figure 6a]). More importantly, since the government cannot commit to financing the higher steady
state Ramsey ratio of public investment to GDP, the Markov-perfect policy suggests considerably
increasing the initial tax rate in order to start expanding the stock of infrastructure early. In par-
ticular, the date zero tax rate implied by the Markov-perfect policy is roughly 7.2 percent compared
to just 5.4 percent for the policy with full commitment. This noticeable increase in initial taxes
means larger falls in consumption and investment in the short run relative to the commitment case
[see Figure 7, panels ¢) and d)].

As seen in the preceding section, the time path for Ramsey tax rates depicted in Figure 7a)
also emerges when the policymaker inherits a state where the private capital stock originally lies
above its long-run value. In this case, if public capital is initially at its steady state level, the
rate of return to government capital exceeds the after-tax return to private capital, and a Ramsey
policymaker optimally expands the stock of public infrastructure to bring the two rates of return
in line. In the Markov-perfect equilibrium, the time path for tax rates follows a similar pattern.

As in the previous example, the main difference is that Markov tax rates start above Ramsey tax

3See Beck, Clarke, Groff, Keefer, and Walsh (2001) for a detailed discussion of the data series.
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rates. Knowing that it cannot commit to the future optimal level of capital expenditures relative
to GDP, a Markov government raises taxes more stringently in period zero to make up for the
commitment problem. In contrast to Figure 7, Figure 8c) shows that the original surplus of private
capital allows for a relatively easy transition to the steady state. In this case, households are able

to increase consumption in the short-run under either the Ramsey or Markov policy.

5 Final Comments and Directions for Future Research

We have shown that in models with productive capital financed via income taxes, the optimal
policy is generally neither constant through time nor time consistent. This result stands in sharp
contrast to most of the existing literature on productive government. Furthermore, contrary to
what has become standard intuition, we find that a benevolent policymaker may well choose a low
first-period tax rate under full commitment. We also found that allowing for discretion in the design
of optimal policy does not necessarily result in higher long-run taxes relative to the commitment
case. In our benchmark economy, the inability to abide by past promises eventually leads to lower
tax rates and too little public investment.

While this paper extends our understanding of optimal public investment, the present framework
abstracts from several features that are worth studying. First, having endogenized the choice of
government expenditures, it is then natural to also endogenize the tax structure across factors of
production when leisure is valued. Second, we expect that sovereign debt may significantly help
the government reallocate resources across time and, therefore, reinforce our results. Specifically, a
government seeking to set a low first-period tax rate would nevertheless be able to invest in public
infrastructure by borrowing. Finally, the investigation in this paper focuses on two extremes, namely
full commitment over the infinite future and no commitment. In practice, different institutional
arrangements make it partially costly for governments to simply break past promises. Developing
a framework that more closely captures political environments that limit the feasibility of policy

change would represent a significant step towards practical policy analysis.
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Appendix A.

Consider the case with logarithmic utility and full depreciation (i.e. ¢ =1 and 6§ = 1).
Taking the sequence of prices, {r:,w:}$2,, and the sequence of tax rates, {7:}5°, as given, the

household’s problem may be expressed as

o0

max Z (3" 1n(cy) (Pla)

{ets k1320 15

subject to
ce = (1—7¢) [wily + reke] — ynvkesa,
ko > 0 given,
where ;= a(y;/ke), we = (1 — @) (ye/le), and y; = Kl k.
The Euler equation then reads as,

*
Ct(]. — Tt—i—l)rt—i-l‘

Ct+1 =
YN

Guessing a savings rule of the form kp 1 = ;’T’@:yt(l — T¢), it is straightforward to verify that

the individual’s Euler equation condition holds under this guess.
Thus, the Ramsey Problem now reads as

max Y B In((1— o)y — ynrken) (P2a)

{reker1.kge 413720 15

subject to
af*
ki1 = y(1 —7¢),
YN
1
kgpy1 = ——Tes
YN

The government’s optimality conditions V¢ > 0 are,

At = (,ut + m) (1 (31)

Ct aﬁ*’
af* af* 1 1— -

A= Iy a0 |:)\t+1 ’ (1= Te1) + fy 1 Te1 - ( Hl)} =0, (32)

et kt+1 TNY TNY Cit1

and

eﬁ*yt_{_l |:(1 - Tt+1) aﬁ* 1 :|
+ - A 1—7 _ - —0 33
. kgt+1 Cti1 t+17N7( t+1) — Mt t+1_7N'Y (33)
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Some algebra helps us get rid of the multipliers,

B (L—70) af(ar 00 —70)) (O —ro)(arers 00 —7e01) 0. (34)

It is then easy to see that 74 = 7441 = (%0 satisfies the above equation.

Since the government faces the same first order conditions at ¢ = 0 and ¢ > 0, this Ramsey

solution is time consistent.
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Figure 3.

Government Capital Expenditures (% of GDP)

Note: GDP at market prices, constant local currency units
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ure 4.

(—) Ramsey Policy, (- - -) Markov-perfect Policy

a) Efficient Government Capital
Expenditures, 7, (percent of GDP)

b) Efficient Government Capital
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Figure 7.

(—) Ramsey Policy, (- - -) Markov-perfect Policy

b) GDP

a) Efficient Government Capital
Expenditures, T, (percent of GDP)
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Figure 8.
(—) Ramsey Policy, (- - -) Markov-perfect Policy
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Figure 9.
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