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Abstract

These notes contain the derivations for results stated without proof in Hornstein

(2007). First, I derive the log-linear approximation of the inflation dynamics in the

Calvo-model with elements of backward-looking pricing when the approximation takes

place around a positive average inflation rate. I derive a version of the “hybrid” New

Keynesian Phillips Curve (NKPC) that can be estimated using standard GMM tech-

niques. Second, I characterize the inflation dynamics implied by the NKPC when

marginal cost follows an AR(1) process. For this purpose I derive the autocorrelation

and crosscorrelation structure of inflation.
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1. The NKPC at a steady state with positive inflation

We study a standard Calvo (1983)-type model with monopolistically competitive firms and

nominal rigidities. There is a continuum of firms that produce differentiated products, that is,

they face downward sloping demand curves. Firms set the nominal prices of their products,

but they are limited in their ability to adjust their prices. In particular, whether a firm can

optimally adjust its price is random, and the probability of price adjustment is constant over

time. There is exogenous price indexation for firms that do not reoptimize their price. If

a firm cannot readjust its price, the price increases in proportion to last period’s aggregate

inflation rate. This indexation scheme has been used by Christiano, Eichenbaum and Evans

(2005). We derive a log-linear approximation of the equilibrium around a positive steady

state inflation rate. The derivation follows Ascari (2004) and Cogley and Sbordone (2005,

2006). Finally, we show how the equilibrium conditions have to be modified when the price

indexation scheme is replaced with “rule-of-thumb” price adjusters; that is, some firms never

set their prices optimally. Rather they index their prices to the optimal price adjustment of

the previous period, Galí and Gertler (1999).

1.1. The environment

Aggregate output is a Dixit-Stiglitz (1977) aggregator of a continuum of differentiated prod-

ucts on the unit interval

yt =

∙Z 1

0

yt (i)
(θ−1)/θ di

¸θ/(θ−1)
, (1.1)

where the substitution elasticity is greater than one, θ > 1. Each differentiated good, yt (i),

is produced by a monopolistically competitive firm that sets the nominal price for its own

product, Pt (i). Assume that production of the final good is competitive, then the price

index of the final good, Pt, is simply its unit cost given the prices for differentiated goods,

Pt ≡
∙Z 1

0

Pt (j)
1−θ dj

¸ 1
1−θ
. (1.2)

The demand function for a firm’s differentiated product is declining in its relative price,

pt (i) ≡ Pt (i) /Pt,
yt (i) = ytpt (i)

−θ . (1.3)

Production of the firm’s differentiated product is assumed to be such that it yields a convex

cost function

ct [yt (i)] =
sty

−γ
t

1 + γ
· yt (i)1+γ , (1.4)
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with constant own output elasticity, 1 + γ. The firm’s own cost also depends on aggregate

demand, and st will denote the aggregate marginal cost index in terms of the final good.

1.2. The price index

The evolution of the aggregate price index is determined by the optimal price setting of

the monopolistically competitive firms and the limits on nominal price adjustment. In any

period a firm has the opportunity to optimally reset its nominal price with probability 1−α.

All firms that can adjust their price will choose the same price Xt since they are identical.

For a firm that cannot reoptimize the nominal price, which happens with probability α, its

nominal price is partially indexed to lagged general inflation, πt−1 = Pt−1/Pt−2, that is, its

price will increase in proportion to last period’s aggregate inflation rate

Pt (i) = πρ
t−1Pt−1 (i) , (1.5)

with ρ ∈ [0, 1] being the indexation factor.
Substituting for the firms that adjust their prices and the firms whose prices are indexed

to past inflation in the price index equation (1.2) we get

Pt =

½
(1− α)X1−θ

t + α

Z 1

0

£
πρ
t−1Pt−1 (j)

¤1−θ
dj

¾ 1
1−θ

=

∙
(1− α)X1−θ

t + απ
ρ(1−θ)
t−1

Z 1

0

Pt−1 (j)
1−θ dj

¸ 1
1−θ

=
h
(1− α)X1−θ

t + απ
ρ(1−θ)
t−1 P 1−θt−1

i 1
1−θ
.

Dividing through by the aggregate price index we get an expression that relates current

inflation to the optimal current relative price, xt ≡ Xt/Pt, and current and past inflation,

1 = (1− α)x1−θt + α(πρ
t−1π

−1
t| {z }

≡ψt

)1−θ. (1.6)

1.3. Optimal price setting

A firm chooses its nominal price to maximize the expected present value of future profits in

terms of the final good for the duration that it cannot reoptimize its price:

Et

∞X
τ=0

ατqt,τ {pt+τ (i) yt+τ (i)− ct+τ [yt+τ (i)]} , (1.7)
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where qt,τ is the discount factor for period t+ τ relative to period t. Given price indexation

(1.5), the firm’s relative price evolves according to

pt+τ (i) = π−1t+τπ
ρ
t+τ−1pt+τ−1 (i) = ψt+τpt+τ−1 (i) (1.8)

during the time the firm cannot reoptimize its nominal price. Repeated substitution yields

the τ -period ahead relative price as a function of the optimally chosen relative price and

subsequent inflation

pt+τ (i) = Πτ
j=1ψτ+jxt (i) = Ψt,τxt (i) for τ > 0, (1.9)

and Ψt,0 ≡ 1. Thus for a firm that sets its relative price in period t and does not have the

opportunity to reset its price optimally in future periods, future demand can be written as

a function of the optimally chosen relative price and future inflation

yt+τ (i) = yt+τpt+τ (i)
−θ = yt+τ [Ψt,τxt (i)]

−θ . (1.10)

The FOC for the optimal relative price xt (i) is

0 = Et

" ∞X
τ=0

ατqt,τ {Ψt,τyt+τ (i)

−θ £Ψt,τxt (i)− c0t+τ [yt+τ (i)]
¤
yt+τΨ

−θ
t,τ xt (i)

−θ−1
oi

= Et

" ∞X
τ=0

ατqt,τyt+τΨ
1−θ
t,τ

½
xt (i)− θ

θ − 1st+τ · [Ψt,τxt (i)]
−θγ Ψ−1t,τ

¾#

= Et

" ∞X
τ=0

ατqt,τyt+τΨ
1−θ
t,τ

½
xt (i)

1+γθ − θ

θ − 1st+τΨ
−(1+θγ)
t,τ

¾#
. (1.11)

We can solve expression (1.11) for the optimal relative price

xt (i)
1+γθ =

θ

θ − 1
Ct
Dt

with (1.12)

Ct = Et

" ∞X
τ=0

ατqt,τgt,τΨ
−(1+γ)θ
t,τ st+τ

#
, (1.13)

Dt = Et

" ∞X
τ=0

ατqt,τgt,τΨ
1−θ
t,τ

#
, (1.14)

where gt,τ = yt+τ/yt denotes the growth rate of aggregate demand from period t to period

3



t+ τ . Recursive definitions of C and D are

Ct = st + αEt

h
qt,1gt,1ψ

−(1+γ)θ
t+1 Ct+1

i
(1.15)

Dt = 1 + αEt
£
qt,1gt,1ψ

1−θ
t+1Dt+1

¤
. (1.16)

1.4. Log-linear approximation

We now derive a log-linear approximation of the price index equation (1.6) and the FOC

for optimal price setting, (1.12), (1.15), and (1.16), at a steady state associated with some

inflation rate π̄, marginal cost s̄, discount factor q̄, and aggregate demand growth rate, ḡ.

The steady state expressions for equations (1.6), (1.12), (1.15), and (1.16) are

1 = (1− α) x̄1−θ + απ̄(ρ−1)(1−θ), (1.17)

x̄1+θγ =
θ

θ − 1
C̄

D̄
, (1.18)

C̄ =
s

1− αq̄ḡπ̄(1−ρ)(1+γ)θ
, (1.19)

D̄ =
1

1− αq̄ḡπ̄(1−ρ)(θ−1)
. (1.20)

Note that the steady state values depend on the inflation rate.

The log-linear approximation of the price index equation (1.6) is

0 = (1− α) x̄1−θx̂t + απ̄(ρ−1)(1−θ)ψ̂t.

Using the steady state condition (1.17) this can be rewritten as

x̂t = − απ̄(ρ−1)(1−θ)

(1− α) x̄1−θ
ψ̂t = −

απ̄(ρ−1)(1−θ)

1− απ̄(ρ−1)(1−θ)| {z }
ϕ0

ψ̂t. (1.21)

The log-linear approximations of the equations characterizing optimal prices setting are

x̂t =
ĉt − d̂t
1 + γθ

, (1.22)

ĉt =
£
1− αq̄ḡπ̄(1−ρ)(1+γ)θ

¤| {z }
ϕ3

ŝt (1.23)

+
£
αq̄ḡπ̄(1−ρ)(1+γ)θ

¤| {z }
ϕ2

Et
h
ẑt+1 − (1 + γ) θψ̂t+1 + ĉt+1

i
,

d̂t =
£
αq̄ḡπ(1−ρ)(θ−1)

¤| {z }
ϕ1

Et
h
ẑt+1 − (θ − 1) ψ̂t+1 + d̂t+1

i
, (1.24)
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with ẑt+1 ≡ q̂t,1 + ĝt,1. Collecting terms, we can rewrite expressions (1.23) and (1.24) as

Et

h¡
1− ϕ2L

−1¢ ĉt + ϕ2 (1 + γ) θψ̂t+1 − ϕ2ẑt+1

i
= ϕ3ŝt, (1.25)

Et
h¡
1− ϕ1L

−1¢ d̂t + ϕ1 (θ − 1) ψ̂t+1 − ϕ1ẑt+1
i
= 0, (1.26)

where L denotes the lag operators, Ljxt = xt−j for all integers j.

Combining equations (1.21), (1.22), (1.25), and (1.26) defines the following difference

equation in the change of the relative price of a firm that cannot reoptimize its nominal

price

−ϕ0 (1 + θγ)Et

h¡
1− ϕ1L

−1¢ ¡1− ϕ2L
−1¢ ψ̂ti (1.27)

= Et
h¡
1− ϕ1L

−1¢nϕ3ŝt − θ (1 + γ)ϕ2ψ̂t+1

oi
+Et

h
(θ − 1)ϕ1

¡
1− ϕ2L

−1¢ ψ̂t+1 + (ϕ2 − ϕ1) ẑt+1
i
.

Collecting terms yields the following fourth-order difference equation in the inflation rate

Et
£¡
μ1 + μ2L

−1 + μ3L
−2¢ (1− ρL) π̂t

¤
= Et

£¡
μ4 + μ5L

−1¢ ŝt + μ6ẑt+1
¤
, (1.28)

with

μ1 = (1 + θγ)ϕ0,

μ2 = (θ − 1)ϕ1 − (1 + θγ)ϕ0 (ϕ1 + ϕ2)− θ (1 + γ)ϕ2,

μ3 = (1 + θγ) (1 + ϕ0)ϕ1ϕ2,

μ4 = ϕ3,

μ5 = −ϕ1ϕ3,
μ6 = ϕ2 − ϕ1.

We can factor the polynomial in the lead operators on the LHS of equation (1.28) as

¡
μ1 + μ2L

−1 + μ3L
−2¢ = μ3

µ
μ1
μ3
+

μ2
μ3
L−1 + L−2

¶
=

μ3
λ1λ2

¡
1− λ1L

−1¢ ¡1− λ2L
−1¢

where λi are the roots of the polynomial in the lead operator L−1. Using the polynomial
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factorization on the LHS of equation (1.28), we get the NKPC

Et
£¡
1− λ1L

−1¢ ¡1− λ2L
−1¢ (1− ρL) π̂t

¤
= κ1Et

∙µ
1 +

μ5
μ4
L−1

¶
ŝt +

μ6
μ4
L−1ẑt

¸
, (1.29)

with κ1 ≡ λ1λ2
μ4
μ3
. Equation (1.29) can be estimated using the same GMM methods as used

in Galí and Gertler (1999) for the standard hybrid NKPC (1.31) below.

Conditional on the process for marginal cost, ŝt, and the effective discount factor, ẑt,

and assuming that the roots of the polynomial in the lead operator are less than one in

absolute value, one can solve the NKPC (1.29) forward and get inflation as a function of

lagged inflation and of current and future marginal cost and the discount factor1

(1− ρL) π̂t = κ1Et

∙¡
1− λ1L

−1¢−1 ¡1− λ2L
−1¢−1½µ1 + μ5

μ4
L−1

¶
ŝt +

μ6
μ4
L−1ẑt

¾¸
. (1.30)

This expression allows us to interpret the two sources of inflation persistence. First, there

is “extrinsic” persistence that inflation inherits through its dependence on the two driving

forces, marginal cost and the discount factor. Since inflation is the expected present value of

future marginal cost and discount rates, inflation will be more persistent the more persistent

are its driving forces. Second, there is “intrinsic” persistence that is inherent to inflation

through the backward-looking indexation scheme.

1.4.1. Approximation at a zero inflation rate

For an approximation around a steady state with zero inflation, π̄ = 1, the coefficients on

the lead terms in equation (1.27) are the same, ϕ1 = ϕ2. Thus equation (1.27) simplifies to

−ϕ0 (1 + θγ)
¡
1− ϕ1L

−1¢ ψ̂t = ϕ3ŝt − ϕ1 [θ (1 + γ)− (θ − 1)] ψ̂t+1
−ϕ0 (1 + θγ)

∙
1− ϕ1

µ
1 +

1

ϕ0

¶
L−1

¸
ψ̂t = ϕ3ŝt.

Substituting for the coefficients ϕ0, ϕ1, and ϕ3 yields then the standard “hybrid” NKPC.

¡
1− βL−1

¢
(1− ρL) π̂t =

∙
1− α

α

1− αβ

1 + γθ

¸
| {z }

≡κ0

ŝt. (1.31)

1A bounded solution for the inflation process may exist even if the roots λi are not all less than one in
absolute value. In this case the roots characterizing the process for marginal cost and the discount factor
have to be small enough, such that their product with the roots λi is less than one in absolute value.
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1.5. Modifications with “rule-of-thumb” price adjusters

Gali and Gertler (1999) also assume that only a fraction 1− α of all firms can adjust their

price in any period. They do not allow for price indexation when firms cannot optimally

reset their prices, ρ = 0. Instead Gali and Gertler (1999) introduce “rule-of-thumb” price

adjusters that never set their nominal price optimally: rather they set their price, X0,t,

relative to an “average” price set in the last period, Xa,t−1, taking into account past inflation

X0,t = Xa,t−1
Pt−1
Pt−2

= Xa,t−1πt−1. (1.32)

Let ω denote the fraction of these “rule-of-thumb” price setters. Then among all the firms

that can adjust their nominal price, a fraction 1 − ω of producers will adjust their price

optimally and a fraction ω will index their price to the last period’s “average” new price.

The “average” price set in the current period is then defined as

X1−θ
a,t = (1− ω)X1−θ

t + ωX1−θ
0,t (1.33)

and the current period overall price index is

P 1−θt = α

Z 1

0

P 1−θt−1 (i) di+ (1− α)
£
(1− ω)X1−θ

t + ωX1−θ
0,t

¤
= αP 1−θt−1 + (1− α)X1−θ

a,t . (1.34)

Dividing through equations (1.33) and (1.34) by the price level and using (1.32), we get

x1−θa,t = (1− ω)x1−θt + ω

µ
πt−1
πt
xa,t−1

¶1−θ
, (1.35)

1 = απθ−1
t + (1− α)x1−θa,t , (1.36)

for the normalized average price adjustment xa,t ≡ Xa,t/Pt and the normalized optimal price
adjustment xt.

The steady state relations for the average price adjustment x̄a, optimal price adjustment,

x̄, and inflation, π̄, are

x̄a = x̄, (1.37)

1 = απ̄θ−1 + (1− α) x̄1−θa . (1.38)
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The log-linear approximations of (1.35) and (1.36) at the steady state are

x̂a,t = (1− ω) x̂t + ω (π̂t−1 − π̂t + x̂a,t−1) (1.39)

0 = (1− α) x̄1−θa x̂a,t − απ̄θ−1π̂t. (1.40)

Using the steady state relations (1.37) and (1.38), we can combine equations (1.39) and

(1.40), eliminate the average price adjustment, and get an expression in the inflation rate

and the optimal price adjustment alone

£
(1− ω)

¡
π̄1−θ − α

¢¤
x̂t =

£
ωπ̄1−θ + (1− ω)α

¤
π̂t −

£
ωπ̄1−θ

¤
π̂t−1 (1.41)

Equation (1.41) now replaces equation (1.21) in the case of inflation indexation, and we

proceed with equations (1.22), (1.25), and (1.26) with no price indexation, ρ = 0.

2. Inflation dynamics of the NKPC

We now characterize persistence of inflation and its comovement with marginal cost when

marginal cost follows a simple AR(1) process

ŝt = δŝt−1 + εt (2.1)

with 0 < δ < 1 and εt is an iid shock with mean zero and variance σ2ε. For such an AR(1)

process the second moments are

E [ŝtŝt] =
σ2ε

1− δ2
= σ2s (2.2)

E [ŝtŝt−j] = δjσ2s

and the conditional expectations of marginal cost j periods ahead are

Et [ŝt+j] = Et [δŝt+j−1 + εt+j] = δEt [ŝt+j−1] = . . . = δj ŝt. (2.3)

2.1. Inflation dynamics of the simple NKPC

The basic NKPC approximates the inflation dynamics without indexation around a zero

steady state inflation rate

Et
£¡
1− βL−1

¢
πt
¤
= κ0ŝt + ut. (2.4)
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We obtain the basic NKPC from equation (1.31) with ρ = 0. The shock, ut, is simply

added to the NKPC, and it is assumed to be iid with mean zero and variance σ2u, and

uncorrelated with marginal cost.2 We can solve (2.4) forward by repeatedly substituting for

future inflation, and thereby obtain the current inflation rate as a discounted present value

of future marginal cost

π̂t = κ0

∞X
j=0

βjEtŝt+j + ut. (2.5)

Substituting for the expected future marginal cost from (2.3) we get

π̂t = κ0

∞X
j=0

βjδj ŝt + ut =
κ0

1− βδ
ŝt + ut = a0ŝt + ut. (2.6)

Equation (2.6) is a reduced form relationship between current inflation and marginal cost.

The relationship is reduced form since it incorporates the presumed equilibrium law of motion

for marginal cost. If the law of motion for marginal cost changes, then the relation between

inflation and marginal cost will change.

The second moments of the inflation rate process are given by

E [π̂tπ̂t−k] = a20E [ŝtŝt−k] + I[k=0]σ
2
u = δk (a0σs)

2 + I[k=0]σ
2
u (2.7)

where I[.] denotes the indicator function, I[k=0] = 1 for k = 0 and zero otherwise. The

expected cross-product of inflation and marginal cost is

E [π̂tŝt+k] = a0E [ŝtŝt+k] = δka0σ
2
s. (2.8)

From the second moments we obtain the autocorrelation coefficients for inflation and the

crosscorrelation coefficients of inflation and marginal cost as

Corr (π̂t, π̂t−k) = δk
a20

a20 + (σu/σs)
2 , (2.9)

Corr (π̂t, ŝt+k) = δk
a0£

a20 + (σu/σs)
2¤1/2 . (2.10)

In the simple NKPC the only source of inflation persistence is “extrinsic.” Given the assumed

law of motion for marginal cost, the inflation rate is positively correlated with marginal cost

and inherits some of the persistence properties of marginal cost. In particular, the autocorre-

lation coefficients of inflation are simply scaled versions of the autocorrelation coefficients of

2When the inflation dynamics are approximated around a zero steady state inflation rate, one can interpret
the shock ut as a random disturbance to the demand elasticity parameter θ.
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marginal cost. The scale factor depends on the importance of marginal cost for inflation, a0,

and the relative volatility of marginal cost shocks, σu/σs. The more important is marginal

cost and the bigger is the relative volatility of marginal cost, the closer is the autocorrelation

structure of inflation to that of marginal cost.

2.2. Inflation dynamics of the “hybrid” NKPC model

Consider now the “hybrid” NKPC with partial price indexation ρ

Et
£¡
1− βL−1

¢
(1− ρL) π̂t

¤
= κ0ŝt + ut. (2.11)

Given the marginal cost process (2.1), the properties we have just derived for the inflation

process of the simple NKPC now apply to the transformation of the inflation process,

π̃t = (1− ρL) π̂t = a0ŝt + ut. (2.12)

The inflation rate itself is now an infinite sum of past transformed inflation rates π̃

π̂t = (1− ρL)−1 π̃t =
∞X
j=0

ρjπ̃t−j

The second moments of the inflation rate are now defined as follows:

E [π̂tπ̂t−k]

=
X
i≥0

X
j≥0

ρiρjE [π̃t−iπ̃t−k−j]

= σ2u
X
i≥0

X
j≥0

ρiρjI[i=k+j]| {z }
A(k;ρ)

+ (a0σs)
2
X
i≥0

X
j≥0

ρiρjδ|k+j−i|| {z }
B(k;ρ,δ)

.

For k ≥ 0, we can write the two terms A and B as

A (k; ρ) = ρ0
X
j≥0

ρjI[0=k+j] + ρ1
X
j≥0

ρjI[1=k+j] + ρ2
X
j≥0

ρjI[2=k+j] + . . .

= ρk + ρk+1ρ+ ρk+2ρ2 + . . .

= ρk
¡
1 + ρ2 + ρ4 + ρ6 + . . .

¢
= ρk

X
j≥0

ρ2j =
ρk

1− ρ2

and
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B (k; ρ, δ) =
X
i≥0

X
j≥0

ρiρjδ|k+j−i|

=
X
i≥0

ρi

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
i−k−1X
j=0

ρjδi−k−j| {z }
B1i(k)

+
∞X

j=max{0,i−k}
ρjδk+j−i| {z }

B2i(k)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
B1i (k; ρ, δ) = I[i>k]δ

i−k
i−k−1X
j=0

(ρ/δ)j = I[i>k]δ
i−k 1− (ρ/δ)i−k

1− ρ/δ

B2i (k; ρ, δ) = I[i≤k]
∞X
j=0

ρjδk+j−i + I[i>k]
∞X

j=i−k
ρjδj−(i−k)

= I[i≤k]δk−i
∞X
j=0

(ρδ)j + I[i>k]ρ
i−k

∞X
j=i−k

(ρδ)j−(i−k)

= I[i≤k]δ
k−i 1

1− ρδ
+ I[i>k]ρ

i−k 1

1− ρδ
∞X
i=0

ρiB1i (k; ρ, δ) =
∞X

i=k+1

ρiδi−k
1− (ρ/δ)i−k
1− ρ/δ

=
1

1− ρ/δ

∞X
i=k+1

h
ρk (ρδ)i−k − ρkρ2(i−k)

i
=

1

1− ρ/δ
ρk
∙

ρδ

1− ρδ
− ρ2

1− ρ2

¸
∞X
i=0

ρiB2i (k; ρ, δ) =

"
kX
i=0

ρiδk−i +
∞X

i=k+1

ρ2i−k
#

1

1− ρδ

=

"
δk
1− (ρ/δ)k+1
1− ρ/δ

+ ρk
ρ2

1− ρ2

#
1

1− ρδ

B (k; ρ, δ) = ρk
∙
ρδ (1− ρ2)− ρ2 (1− ρδ) + ρ2 (1− ρ/δ)− (ρ/δ) (1− ρ2)

(1− ρ/δ) (1− ρδ) (1− ρ2)

¸
+δk

1

(1− ρ/δ) (1− ρδ)

=

∙
ρk+1

δ − 1/δ
1− ρ2

+ δk
¸

1

(1− ρ/δ) (1− ρδ)

=

∙
ρk+1

1

δ

δ2 − 1
1− ρ2

+ δk
¸

1

(1− ρ/δ) (1− ρδ)

=

∙
δk − ρ

δ

1− δ2

1− ρ2
ρk
¸

1

(1− ρ/δ) (1− ρδ)
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The crossproducts of inflation and marginal cost are

E [π̂tŝt+k] = E [(1− ρL) (a0ŝt + ut) ŝt+k]

=
∞X
j=0

ρja0E [ŝt−j ŝt+k]

= a0σ
2
s

∞X
j=0

ρjδ|k+j| = a0σ2sC (k; ρ, δ) .

If k ≥ 0 then
C (k; ρ, δ) = δk

∞X
j=0

ρjδj =
δk

1− ρδ
, (2.13)

and if k < 0 then

C (k; ρ, δ) =
−k−1X
j=0

ρjδ−(k+j) +
∞X

j=−k
ρjδ(k+j)

= δ−k
1− (ρ/δ)−k
1− ρ/δ

+ ρ−k
1

1− ρδ

=
1

1− ρ/δ

½
δ−k − ρ−k

ρ

δ

1− δ2

1− ρδ

¾
. (2.14)

We can now calculate the autocorrelation coefficients for the inflation rate and the cross-

correlations of inflation and marginal cost as

Corr (π̂t, π̂t−k) =
(σu/σs)

2A (k; ρ) + a20B (k; ρ, δ)

(σu/σs)
2A (0; ρ) + a20B (0; ρ, δ)

(2.15)

Corr (π̂t, ŝt+k) =
a0C (k; ρ, δ)£

(σu/σs)
2A (0; ρ) + a20B (0; ρ, δ)

¤1/2 . (2.16)

In the “hybrid” NKPC there are two sources of inflation persistence, “intrinsic” and

“extrinsic” persistence. Equations (2.15) and (2.16) illustrate how the two sources of inflation

persistence ultimately affect overall inflation persistence. We can see that persistence of

marginal cost, a high δ, is relatively more important for the dynamics of inflation if marginal

cost is quantitatively important in the reduced form NKPC, that is, the coefficient a0 is

larger, and if the shocks to the NKPC are small relative to the volatility of marginal cost.

Alternatively, if marginal cost is not important or if shocks to the NKPC are relatively large,

the inflation persistence can only arise through the inherent persistence of inflation, that is,

a high ρ.
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2.3. Inflation dynamics at positive steady state inflation

In the case of an AR(1) process for marginal cost, it is straightforward to derive the persis-

tence properties of inflation around a positive steady state inflation rate. Adding a shock ut
to the modified NKPC and assuming that Et [ẑt+1] = 0 equation (1.29) simplifies to

Et
£¡
1− λ1L

−1¢ ¡1− λ2L
−1¢ (1− ρL) π̂t

¤
= κ1

µ
1 +

μ5
μ4

δ

¶
ŝt + ut. (2.17)

Assuming that the roots of the polynomial and the persistence of marginal cost are such

that |δλi| < 1, we can divide through by the inverse lead polynomials and get

Et [(1− ρL) π̂t] = κ1

µ
1 + δ

μ5
μ4

¶
Et
h¡
1− λ1L

−1¢−1 ¡1− λ2L
−1¢−1 ŝti+ ut

= κ1
1 + δμ5/μ4

(1− λ1δ) (1− λ2δ)| {z }
≡a1

ŝt + ut, (2.18)

which is formally equivalent to equation (2.12) for the “hybrid” NKPC, but now the coeffi-

cient a1 is a function of the average inflation rate and the demand elasticity θ.
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