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Abstract

We study discretionary equilibrium in the Calvo pricing model for a monetary au-

thority that chooses the money supply, producing three main contributions. First, the

model delivers a unique private-sector equilibrium for a broad range of parameteriza-

tions, in contrast to earlier results for the Taylor pricing model. Second, a generalized

Euler equation shows how the monetary authority affects future welfare through its

influence on the future state of the economy. Third, we provide exact solutions, includ-

ing welfare analysis, for the transitional dynamics that occur if the monetary authority

loses or gains the ability to commit.
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1 Introduction

Over the last two decades New Keynesian models have become the dominant framework for

applied monetary policy analysis. This framework is characterized by optimizing private-

sector behavior in the presence of nominal rigidities, typically Calvo (1983) pricing as de-

scribed by Yun (1996). The fact that some prices are predetermined in these models leads

to a time-inconsistency problem for monetary policy, and there is a vast literature study-

ing aspects of discretionary, i.e. time-consistent, policy in New Keynesian models with

Calvo pricing. While the typical practice, exemplified by Clarida, Gali and Gertler (1999)

and Woodford (2003), has been to work with models approximated around a zero-inflation

steady state, a growing literature studies the discretionary policy problem with global meth-

ods. This paper contributes to that literature in three ways. First, it shows that for a broad

range of parameterizations, the Calvo model delivers a unique private-sector equilibrium

when monetary policy is conducted without commitment, in contrast to earlier results for

the Taylor model. Second, it derives a generalized Euler equation (GEE), as in Krusell,

Kuruscu and Smith (2002) and Klein, Krusell and Rios-Rull (2008), and uses the GEE to

decompose the dynamic policy tradeoffs facing a discretionary policymaker. Third, it con-

ducts welfare analysis (without approximation) of the transitional dynamics that occur when

a policymaker loses or gains the ability to commit.

The first contribution relates to an existing literature which has identified discretionary

policy as a source of multiple equilibria. Private agents make decisions, such as saving or price

setting, based on expectations of future policy. Those decisions in turn are transmitted to the

future through state variables, creating the potential for a form of complementarity between

future policy and expected future policy when policy is chosen under discretion. Viewed from

another angle, the fact that policy will react to endogenous state variables can be a source

of complementarity among private agents’actions. The link between discretionary policy

and multiple equilibria has been especially prominent in the monetary policy literature. In

particular, Khan, King and Wolman (2001) and King and Wolman (2004) show that in

Taylor-style models with prices set for three and two periods respectively, multiple private-

sector equilibria are pervasive under discretion.1 Calvo and Taylor models are similar in many

1Albanesi, Chari and Christiano (2003) show that multiple equilibria arise under discretionary policy in a
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ways, yet we find no evidence that discretionary policy generates equilibrium multiplicity

in the Calvo model. Although we do not prove the uniqueness of discretionary equilibrium,

we show that a policy analogous to the optimal policy in the Taylor model guarantees a

unique equilibrium in the Calvo model, despite its greater potential for complementarity

than the optimal discretionary policy. We trace the contrasting behavior of the two models

to differences in how current pricing decisions affect the distribution of future predetermined

prices, and how the future policymaker responds to that distribution.

Uniqueness of private-sector equilibrium opens up the possibility of deriving a GEE, which

represents the dynamic tradeoff facing a discretionary policymaker in equilibrium. While

the GEE has been extensively studied in fiscal policy applications, and recently extended

to the Rotemberg sticky-price model by Leeper, Leith and Liu (2016), to the best of our

knowledge it has not previously been derived for the Calvo model.2 Under discretion, the

policy problem is dynamic only to the extent that endogenous state variables affect future

welfare, either directly or by shifting the future policymaker’s problem. With Calvo price

setting, an index of predetermined relative prices is an endogenous state variable. The

GEE reveals three distinct channels through which this state variable links current policy to

future welfare. First, the state variable affects welfare directly because it acts as an aggregate

productivity shifter. Second, the state variable influences the future stance of policy, which

affects consumption and leisure. Third, the state variable affects price setting in the future,

model in which a fraction of firms have predetermined prices. Siu (2008) extends King and Wolman’s (2004)

analysis and Barseghyan and DiCecio (2007) extend Albanesi, Chari and Christiano’s (2003) analysis, by

incorporating elements of state-dependent pricing and showing that Markov-perfect discretionary equilib-

rium is unique. Those papers assume that monetary policy is conducted with a money supply instrument.

Dotsey and Hornstein (2011) show that with an interest rate instrument there is a unique Markov-perfect

discretionary equilibrium in a Taylor model with two-period pricing.
2Our paper is closely related to Anderson, Kim and Yun (2010). They study optimal allocations without

commitment in the Calvo model. Their approach cannot be used to investigate the possibility of multiple

private-sector equilibria for a given policy action, or to derive a GEE. Their solution method, like ours, is

based on Chebyshev collocation. While they study a slightly different region of the parameter space, the

nature of their solutions is consistent with our findings. Ngo (2014) extends their analysis to a stochastic

environment with the zero bound on nominal interest rates, and Leith and Liu (2016) use their approach to

compare the Calvo and Rotemberg models.
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which has an independent effect on welfare.

When any aspect of public policy suffers from a time-consistency problem, it is important

to know the value of commitment. Thus, the third contribution of the paper is to provide

exact solutions to the transitional dynamics that occur (i) when an economy that had been

operating with optimal policy under commitment unexpectedly finds itself with a policy-

maker who cannot commit to future policy, and (ii) when an economy that had converged to

a discretionary steady state unexpectedly finds itself with a policymaker that can commit to

future policy. The first of these transitions is a straightforward analysis of the discretionary

equilibrium studied in the first part of the paper. The second transition is more involved, as

it requires also solving for the dynamics of optimal policy under commitment. In both cases,

we find that the welfare loss (or gain) from the transition is quite close to the steady-state

welfare difference between discretion and commitment.

The paper proceeds as follows. The next section contains a description of the Calvo model.

Section 3 defines a discretionary equilibrium. Section 4 contains the numerical results for

the discretionary equilibrium, emphasizing the issue of multiplicity or lack thereof. Section

5 describes the GEE approach. Section 6 presents the results on transitional dynamics and

welfare. Section 7 relates our analysis to the early literature on discretionary monetary policy

and concludes. Secondary material is contained in appendixes.

2 The Calvo model

The model is characterized by a representative household that values consumption and dis-

likes supplying labor, a money demand equation, a competitive labor market, a continuum of

monopolistically competitive firms producing differentiated goods, and a monetary authority

that chooses the money supply. Each firm faces a constant probability of price adjustment.

We assume that the model’s exogenous variables are constant, so there is no uncertainty

about fundamentals.

2.1 Households

There is a large number of identical, infinitely-lived households. They act as price-takers in

labor and product markets, and they own shares in the economy’s monopolistically compet-
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itive goods-producing firms. Households’preferences over consumption (ct) and labor input

(nt) are given by

∞∑
j=0

βj

[
ln(ct+j)− χ

n1+µ
t+j

1 + µ

]
, β ∈ (0, 1) , µ ≥ 0, χ > 0,

where consumption is taken to be the Dixit-Stiglitz aggregate of a continuum of differentiated

goods with elasticity of substitution ε > 1,

ct =

[∫ 1

0

ct(z)
ε−1
ε dz

] ε
ε−1

. (1)

The consumer’s flow budget constraint is

Ptwtnt +Rt−1Bt−1 +

∫ 1

0

dt (z) dz ≥ Ptct +Bt,

where wt is the real wage, Rt is the one-period gross nominal interest rate, Bt is the quantity

of one-period nominal bonds purchased in period t, dt (z) is the dividend paid by firm z, and

Pt is the nominal price of a unit of consumption. The aggregator (1) implies the demand

functions for each good,

ct (z) =

[
Pt (z)

Pt

]−ε
ct, (2)

where Pt (z) is the price of good z. The price index is given by

Pt =

[∫ 1

0

Pt(z)1−εdz

] 1
1−ε

. (3)

From the consumer’s intratemporal and intertemporal problems we have the effi ciency con-

ditions:

wt = χctn
µ
t (4)

ct+1

ct
= β

(
Rt

πt+1

)
,

where πt ≡ Pt/Pt−1 denotes the gross inflation rate between periods t− 1 and t. We assume

there is a money demand equation such that the quantity of money is equal to the nominal

value of consumption,

Mt = Ptct. (5)

This constant-velocity money demand equation simplifies the model by abstracting from

any distortions arising from money demand, and enables a straightforward comparison with
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the existing literature (e.g. King and Wolman, 2004). It will be convenient to write the

money demand equation normalizing by the lagged price level, which serves as an index of

the predetermined nominal prices in period t:

mt ≡
Mt

Pt−1

= πtct. (6)

We will refer to mt as the normalized money supply.

2.2 Firms

Each firm z ∈ [0, 1] produces output yt (z) using a technology that is linear in labor nt (z),

the only input, with a constant level of productivity that is normalized to unity:

yt (z) = nt (z) .

A firm adjusts its price with constant probability 1−α each period, as in Calvo (1983).3 As

firms are owned by households, the value of a firm upon adjustment is given by

max
Xt

{ ∞∑
j=0

(αβ)j
(

Pt
Pt+j

)(
ct
ct+j

)[
Xt

(
Xt

Pt+j

)−ε
ct+j − Pt+jwt+j

(
Xt

Pt+j

)−ε
ct+j

]}
.

The factor αj is the probability that a price set in period t will remain in effect in period

t+ j. The optimal price is determined by differentiating with respect to Xt. We will denote

the profit-maximizing value of Xt by P0,t and we will denote by p0,t the nominal price P0,t

normalized again by the previous period’s price level, p0,t ≡ P0,t/Pt−1. Thus, we write the

first-order condition as

P0,t

Pt
=
p0,t

πt
=

(
ε

ε− 1

)∑∞
j=0 (αβ)j (Pt+j/Pt)

εwt+j∑∞
j=0 (αβ)j (Pt+j/Pt)

ε−1 . (7)

The real wage is equal to real marginal cost because firm-level productivity is assumed

constant and equal to one. With the constant elasticity aggregator (1) a firm’s desired

markup of price over marginal cost is constant and equal to ε/(ε − 1). Because the firm

cannot adjust its price each period, if the real wage or the inflation rate are not constant

then the firm’s markup will vary over time. The optimal pricing equation (7) indicates

3In Yun’s (1996) version of the Calvo model there is price indexation, whereas the version in King and

Wolman (1996) has no indexation. We analyze the Calvo model without indexation.
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that the firm chooses a constant markup over an appropriately defined weighted average of

current and future marginal costs. Note that the economy-wide average markup is simply

the inverse of the real wage.

The optimal pricing condition can be written recursively by defining two new variables,

St and Ft, that are related to the numerator and denominator of (7), respectively:

St = πεt (wt + αβSt+1) , (8)

Ft = πε−1
t (1 + αβFt+1) , (9)

then,

p0,t =

(
ε

ε− 1

)
St
Ft
. (10)

Because of Calvo pricing, the price index (3) is an infinite sum,

Pt =

[ ∞∑
j=0

(1− α)αjP 1−ε
0,t−j

] 1
1−ε

, (11)

but it can be simplified, first writing it recursively and then dividing by the lagged price

level:

πt =
[
(1− α) p1−ε

0,t + α
] 1
1−ε . (12)

Without loss of generality, we have normalized all period-t nominal variables by the period

t− 1 price level.

2.3 Market clearing

Goods market clearing requires that the consumption demand for each individual good is

equal to the output of that good:

ct (z) = yt (z) , (13)

and labor market clearing requires that the labor input into the production of all goods equal

the supply of labor by households: ∫ 1

0

nt(z)dz = nt. (14)

The labor market clearing condition is

nt =
∞∑
j=0

(1− α)αjnj,t, (15)
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where nj,t is the labor input employed in period t by a firm that set its price in period t− j.

Combining this expression with the goods market clearing condition (13), then using the

demand curves (2) for each good, and dividing the expression by the consumption aggregator

yields
nt
ct

=

∞∑
j=0

(1− α)αj
(
P0,t−j

Pt

)−ε
, (16)

which can be written recursively as

∆t = πεt
[
(1− α) p−ε0,t + α∆t−1

]
, (17)

where

∆t ≡ nt/ct, (18)

and we call ∆t−1 the inherited relative price distortion.

2.4 Monetary authority and timing

The monetary authority chooses the money supply, Mt. In a discretionary equilibrium the

money supply will be chosen each period to maximize present-value welfare. We assume the

sequence of actions within a period is as follows:

1. Predetermined prices (P0,t−j, j > 0) are known at the beginning of the period.

2. The monetary authority chooses the money supply.

3. Firms that adjust in the current period set their prices, and simultaneously all other

period-t variables are determined.

Timing assumptions are important in models with staggered price setting. Transposing

items 2 and 3 or assuming that firms and the monetary authority act simultaneously would

change the nature of the policy problem and the properties of equilibrium.

3 Discretionary equilibrium in the Calvo model

We are interested in studying Markov-perfect equilibrium (MPE) with discretionary mon-

etary policy. In an MPE, outcomes depend only on payoff-relevant state variables; trigger

strategies and any role for reputation are ruled out. Hence, it is important to establish what
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the relevant state variables are. Although there are an infinite number of predetermined

nominal prices (P0,t−j, j = 1, 2, ...), for an MPE a state variable is relevant only if it af-

fects the monetary authority’s set of feasible real outcomes. It follows that in an MPE the

normalized money supply and all other equilibrium objects are functions of the single state

variable ∆t−1. A discretionary policymaker chooses the money supply as a function of the

state, taking as given the behavior of future policymakers. In equilibrium, the future policy

that is taken as given is also the policy chosen by the current policymaker.

3.1 Equilibrium for arbitrary monetary policy

As a preliminary to studying discretionary equilibrium, it is useful to consider stationary

equilibria for arbitrary monetary policy– that is, for arbitrary functions m = Γ (∆). To de-

scribe equilibrium for arbitrary policy we use recursive notation, eliminating time subscripts

and using a prime to denote a variable in the next period. The nine variables that need to

be determined in equilibrium are S, F , p0, π, ∆′, c, n, w, and m, and the nine equations

are the laws of motion for S (8) and for F (9); the optimal pricing condition (10); the price

index (12); the law of motion for the relative price distortion (17); the labor supply equation

(4); money demand (6); the definition of the relative price distortion (18); and the monetary

policy rule m = Γ (∆).

A stationary equilibrium can be expressed as two functions of the endogenous state

variable. The two functions S (∆) and F (∆) must satisfy the two functional equations

S (∆) = πε [w + αβS (∆′)] , (19)

F (∆) = πε−1 [1 + αβF (∆′)] , (20)

where the other variables are given recursively by the following functions of ∆:

p0 =

(
ε

ε− 1

)
S (∆)

F (∆)
, (21)

π =
[
(1− α) p1−ε

0 + α
]1/(1−ε)

, (22)

∆′ = πε
[
(1− α) p−ε0 + α∆

]
, (23)

c =
m

π
(24)

n = ∆′c, (25)

w = χcnµ. (26)
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Given an arbitrary policy of the form m = Γ (∆), functions S () and F () that satisfy

(19)−(26) represent a stationary equilibrium.

3.2 Discretionary equilibrium defined

A discretionary equilibrium is a particular stationary equilibrium with policy given by a

mapping from the state to the money supply, m = Γ∗ (∆), in which the following property

holds: If the current-period policymaker and current-period private agents take as given that

all future periods will be described by a stationary equilibrium associated with Γ∗ (∆), then

the current-period monetary authority maximizes welfare by choosing m = Γ∗ (∆) for every

∆.

More formally, a discretionary equilibrium is a policy function Γ∗ (∆) and a value function

v∗ (∆) that satisfy

v∗ (∆) = max
m

{
ln (c)− χ n

1+µ

1 + µ
+ βv (∆′)

}
(27)

Γ∗ (∆) = arg max
m

{
ln (c)− χ n

1+µ

1 + µ
+ βv (∆′)

}
when v () = v∗ (). The maximand in (27) can be seen to be a function of m by combining

(22)−(26) with optimal pricing by adjusting firms,

p0 =

(
ε

ε− 1

)
πε [w + αβS (∆′)]

πε−1 [1 + αβF (∆′)]
, (28)

where the functions S () and F () satisfy (19) and (20) in the stationary equilibrium asso-

ciated with Γ∗ (∆). Note the subtle difference between (28) and (19)−(21): in (28), which

applies in the current period, we have not imposed a stationary equilibrium. The monetary

authority takes as given that the future will be described by a stationary equilibrium. It

is an equilibrium outcome, not a constraint, that current-period policy is identical to that

which generates the stationary equilibrium in the future.

4 Properties of discretionary equilibrium

We use a projection method to compute numerical solutions for discretionary equilibrium,

restricting attention to equilibria that are limits of finite-horizon equilibria. This restriction

may further reduce the number of discretionary equilibria (Krusell, Kuruscu and Smith,
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2002), and allows us to derive a useful analytical result for the case of a (suboptimal) mone-

tary policy that holds m constant. Computational details are provided in Appendix A. The

quarterly baseline calibration is common in the applied monetary policy literature: ε = 10,

β = 0.99, α = 0.5, µ = 0, χ = 4.5. Prices remain fixed with probability α = 0.5, which

means that the expected duration of a price is two quarters. The demand elasticity ε = 10

implies a desired markup of approximately 11 percent. With µ = 0 labor supply is perfectly

elastic. Given the values for ε and µ, χ = 4.5 is chosen to target a steady-state level of

labor in the flexible-price economy of n = 0.2. The baseline calibration is chosen to facilitate

comparison with King and Wolman (2004), but many other examples were computed that

cover a wide range of structural parameter values.

There are two levels to a complete description of a discretionary equilibrium. First, the

equilibrium is characterized by the value function, v∗ (∆) and the associated monetary policy

function, m = Γ∗ (∆), along with the transition function for the state variable and policy

functions for the other endogenous variables. Second, for given values of the state variable

and the normalized money supply, private-sector equilibrium involves the fixed point of a

pricing best-response function. We use the best-response function to study uniqueness.

4.1 Equilibrium functions

Figure 1, Panel A plots the transition function for the state variable as well as the function

mapping from the state to the inflation rate in a discretionary equilibrium.4 The first thing to

note is that there is a unique steady-state inflation rate of 5.5 percent annually.5 Two natural

benchmarks against which to compare the steady state of the discretionary equilibrium are

the inflation rate with highest steady-state welfare and the inflation rate in the long run

4Note that in the model π is a gross quarterly inflation rate, but the figures and the text refer to annualized

net inflation rates obtained as 100(π4 − 1) percent.
5The steady-state inflation rate reaches the range of 9-10 percent in the Calvo model when ε is lower

than the baseline value, or when α is larger but not too large. For instance, reducing the demand elasticity

to ε = 8, which implies a desired markup of 14 percent, raises the steady-state inflation rate to 9.6 percent.

Increasing the probability of no price adjustment to α = 0.71 raises the steady-state inflation rate to 9.8

percent, and it declines for even larger values of α. Anderson, Kim and Yun (2010) point out similar

relationships between the model’s structural parameters and the steady-state inflation rate.
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under optimal policy with commitment. Following King and Wolman (1999), we refer to

these benchmarks as the golden rule and the modified golden rule respectively. For our

baseline parameterization, the golden-rule inflation rate is just barely positive (less than one

tenth of a percent) and the modified golden-rule inflation rate is zero. The latter result is

parameter-independent; we return to it in Section 6.1.

In addition to showing the steady state, Panel A illustrates the dynamics of the state

variable, which exhibit monotonic convergence to the steady state. This means that a pol-

icymaker inheriting a relative price distortion that is large relative to steady state finds it

optimal to bequeath a smaller relative price distortion to her successor. Together with the

monotone downward-sloping equilibrium function for inflation, it follows that the inflation

dynamics in the transition from a large relative price distortion (as would be implied by

a high inflation rate) involve an initial discrete fall in inflation and a subsequent gradual

increase to the steady state.6

Panel B of Figure 1 displays the policy variable (m) and welfare (v) as functions of the

state variable in the discretionary equilibrium (m is plotted on the left scale and welfare on

the right scale).7 Both functions are downward sloping. Intuition for the welfare function’s

downward slope is straightforward. By definition, the current relative price distortion rep-

resents the inverse of average productivity. But the current relative price distortion is also

a summary statistic for the dispersion in relative prices. The higher is the inherited relative

price distortion, the higher is the inherited dispersion in relative prices, and through (23)

this contributes to a higher dispersion in current relative prices. Higher dispersion in current

relative prices in turn reduces current productivity, reducing welfare.

It is less straightforward to understand the downward sloping policy function, m =

Γ∗ (∆). At first glance, it seems consistent with the state transition function for m to

be decreasing in ∆: if equilibrium involves the relative price distortion declining from a

high level, then a large inherited relative price distortion ought to be met with a relatively

6Yun’s (2005) analysis of the Calvo model with a subsidy to offset the markup distortion displays similar

transition dynamics of inflation. But in his model, the steady-state inflation rate under optimal policy is

zero, so the transition from a steady state with positive inflation inevitably involves a period of deflation.
7In Panel B of Figure 1 we have not converted welfare into more meaningful consumption-equivalent

units. We defer a quantitative discussion of welfare to Section 6.
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low normalized money supply, so that newly adjusting firms do not exacerbate the relative

price distortion. Looking in more detail, the essential short-run policy trade-off is that

the policymaker has an incentive to raise the money supply in order to bring down the

markup, but this incentive is checked by the cost of increasing the relative price distortion.

It appears that the short-run trade-off shifts in favor of the relative price distortion as the

state variable increases. That is, in equilibrium the policymaker chooses lower m at larger

values of ∆ because the value of the decrease in the markup that would come from holding

m fixed at higher ∆ is more than offset by welfare costs of a higher relative price distortion.8

4.2 Private-sector equilibrium

Our computational approach has led to finding a single discretionary equilibrium. The

preceding discussion highlighted some of the properties of the equilibrium for the baseline

calibration. Although we have not proved that the equilibrium is unique, in the many other

examples described in Appendix A we have found no evidence of multiple equilibria. This

is in stark contrast to the Taylor model with two-period price setting, in which King and

Wolman (2004) proved the existence of multiple discretionary equilibria, which they traced

to multiple private-sector equilibria.

To help explain why multiplicity of private-sector equilibrium does not appear in any

of our numerical solutions for the Calvo model, we turn to the best-response function for

price-setting firms. The best-response function describes an individual firm’s optimal price

as a function of the price set by other adjusting firms. Figure 2 plots a typical best-response

function in a discretionary equilibrium of the Calvo model, using the baseline calibration. It

has a unique fixed point, and is concave in a neighborhood of the fixed point. In contrast,

the best-response function in the two-period Taylor pricing model is upward sloping, strictly

convex and generically has either two fixed points or no fixed points (see King and Wolman,

2004, Figure I).9

8In the two-period Taylor model, the policymaker also faces a short-run trade-off between reducing the

markup and increasing the relative price distortion, but does not face a cost of leaving a higher inherited price

distortion to future policymakers. Appendix B provides a description of the Taylor model and a quantitative

comparison with the Calvo model.
9Our computations have not revealed multiple fixed points in equilibrium. However, we have encountered
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The starkly different best-response functions in the two models reflect differences in how

future monetary policy reacts to the price firms set in the current period. This relationship

is linear in the Taylor model: the price set in the current period (P0) is precisely the index

of predetermined nominal prices that normalizes the future money supply, and the normal-

ized money supply is constant in discretionary equilibrium. The relationship is nonlinear

in the Calvo model, for two reasons. First, the relationship between P0 and the future in-

dex of predetermined prices (P ) is nonlinear. Second, P0 affects the real state variable to

which future policy responds (∆′). We consider in turn how both these factors weaken the

complementarity in price setting.

First, suppose the future policymaker were to set a constant m, raising the nominal

money supply in proportion to the index of predetermined prices. In the Taylor model,

where such a policy is optimal, the price set by adjusting firms is the index of predetermined

prices, so the future nominal money supply rises linearly with the price set by adjusting

firms. Understanding that this future policy response will occur, and that the price it sets

today will also be in effect in the future, an individual firm’s best response is to choose a

higher price when all other adjusting firms choose a higher price.

In the Calvo model, in contrast, next period’s index of predetermined prices comprises

an infinite number of lagged prices, of which the price set by adjusting firms today is just

one element. Under a constant-m policy, the effect of an increase in prices set today on next

period’s nominal money supply depends on the effect of such an increase on next period’s

index of preset prices. That index of preset prices– today’s price index– is highly sensitive

to low levels of the price set by firms today and relatively insensitive to high levels of the

price set by firms today, because goods with higher prices have a lower expenditure share

and thus receive a smaller weight in the price index. As the price set by firms goes to infinity,

it has no effect on the index of preset prices and no effect on tomorrow’s nominal money

supply.

Thus, in the Calvo model a constant-m policy would lead to a nominal money supply

instances of multiple fixed points for sub-optimal values of m. In Figure 2 there is a convex region of the

best-response function to the left of the fixed point. In the case of multiple fixed points, the convex region of

the best-response function intersects the 45-degree line twice, with a third fixed point located on the concave

portion.
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that is increasing and concave in the price set by adjusting firms. Because a higher future

money supply leads firms to set a higher price today, concavity of the future money supply

corresponds to decreasing complementarity of the prices set by adjusters. This intuition is

confirmed by the following result, which applies to our baseline calibration.

Proposition 1 Suppose the money supply is always set according to a constant-m policy,

regardless of the state, and let µ = 0. Then the Calvo model has a unique private-sector

equilibrium.

Proof. See Appendix C.

The second reason for weaker complementarity in the Calvo model is that the relationship

between the price set by adjusting firms and the future nominal money supply depends on the

future state variable. Indeed, the policy maker does not hold m constant, instead lowering

it with the state (see Figure 1.B). The response of next period’s normalized money supply

to the price set by adjusting firms today therefore depends on the relationship between p0

and ∆′. Combining the market clearing condition (23) with the transformed price index (22)

yields

∆′ =
(1− α)p−ε0 + α∆[

α + (1− α)p1−ε
0

]ε/(ε−1)
,

which implies that for high (low) values of p0 the future state is increasing (decreasing) in

p0, holding fixed the current state:

∂∆′

∂p0

=
εα (1− α) p−ε−1

0[
α + (1− α) p1−ε

0

]1+[ε/(ε−1)]
(∆p0 − 1) . (29)

Given that equilibrium m is decreasing in ∆, future m is decreasing in p0 for high values of

p0 and increasing in p0 for low values of p0. That is, a higher price set by adjusting firms– if

it is greater than 1/∆– translates into a higher value of the future state, and thus a lower

value of the future normalized money supply.10

10This relationship is reversed at low values of p0: increases in p0 reduce the future state, and the poli-

cymaker would respond by raising future m. Such low values of p0 are not relevant for understanding the

properties of equilibrium however, because they are associated with suboptimally low values of m. Indeed,

if m were low enough that raising m would reduce both the markup and the relative price distortion, there

would be no policy trade-off and the policymaker would choose a higher m.
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Summarizing the argument: in the Taylor model the normalized money supply is constant

in equilibrium, and this results in an increasing convex best-response function with multiple

fixed points. In the Calvo model, if policy kept the normalized money supply constant there

would be a unique equilibrium: complementarity would be weaker at high p0 than in the

Taylor model, because next period’s index of predetermined prices responds only weakly

to p0 at high levels of p0. Because the normalized money supply is not constant in the

Calvo model, the complementarity is weakened even further; m is decreasing in the state,

and future m is decreasing in p0 for high p0. As both parts of this argument rely on the

fact that there are many cohorts of firms with predetermined prices, this feature appears

key to explaining why the Calvo model does not have the same tendency toward multiple

discretionary equilibria as the Taylor model with two-period pricing.11

Although we have not proved uniqueness of equilibrium, our computations have found

only one equilibrium in every case, and Proposition 1 gives us confidence that the numerical

results do generalize: the constant-m policy, which is key to proving that there are multiple

private sector equilibria in the Taylor model, implies a unique private sector equilibrium in

the Calvo model. If, as we suppose, MPE is unique, the nature of the equilibrium ought to

be invariant to (i) the policy instrument and (ii) whether we use an alternative approach

to solving the policy problem, either by solving the GEE or solving the planner’s problem

as in Anderson, Kim and Yun (2010). For our baseline parameterization we have confirmed

that the same steady-state inflation rate obtains whether the policy instrument is the money

supply or the nominal interest rate. In addition, we have replicated the steady-state inflation

rate of 2.2 percent for Anderson, Kim and Yun’s baseline case with α = 0.75, ε = 11, and

µ = 1, for both interest rate and money supply instruments. Finally, we have computed

equilibrium for our benchmark example using the GEE approach, which we discuss in the

next section.

11This reasoning suggests, however, that a Taylor model with longer duration pricing might not have

multiplicity, because the same opportunities to substitute would be present. Khan, King and Wolman (2001)

find multiplicity is still present with three-period pricing. Unfortunately, it is computationally infeasible to

study discretionary equilibrium in a Taylor model with long-duration pricing.

18



5 Generalized Euler equation approach

Until this point, we have been careful to allow for the possibility of multiple private-sector

equilibria. This has meant eschewing a first-order approach to the policy problem, as we

needed to check for uniqueness of private-sector equilibria for all feasible values ofm. For the

broad range of parameter values that we have studied, however, we have found that private-

sector equilibrium is always unique at the optimal choice of m. Therefore, the first-order

approach described by Krusell, Kuruscu and Smith (2002) and Klein, Krusell and Rios-Rull

(2008, henceforth KKR) is appropriate for our problem, ought to yield equivalent results to

those described above, and may provide additional insight into the nature of equilibrium. In

this section we follow the approach of KKR for deriving the policymaker’s GEE.

5.1 Discretionary equilibrium restated

To derive the GEE, we continue to view the policymaker as choosing the normalized money

supply as a function of the state, taking as given the private sector’s equilibrium response.

We now assume the monetary policy function is differentiable and private-sector equilibrium

is unique.

We reformulate the definition of discretionary equilibrium to make it more convenient

for deriving the GEE. Some of the functions used in the derivation are known functions of

p0, m and ∆. In particular, the functional forms for consumption, labor input, and the

relative price distortion are readily obtained from combining Eqs. (22)−(25), so we use the

shorthand notation c = C (p0,m), n = N (∆, p0,m), and ∆′ = D (∆, p0) for these functions.

Current utility is given by u(c, n) = ln (c)− χn1+µ/(1 + µ).

Discretionary equilibrium consists of a value function v, a monetary policy function Γ,

and a pricing function h such that for all ∆, m = Γ (∆) solves12

max
m
{u (C (p0,m) , N (∆, p0,m)) + βv (D (∆, p0))} ,

p0 = h (∆) satisfies the optimality condition for the price chosen by adjusting firms

p0 [1 + αβF (D (∆, p0))] =

(
ε

ε− 1

)[
(1− α) p1−ε

0 + α
] 1
1−ε

[
−un
uc

+ αβS (D (∆, p0))

]
, (30)

12We denote the value function and policy function in discretionary equilibrium by v and Γ, dropping for

simplicity the asterisk notation used in Section 3.
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and v () is given by

v (∆) ≡ u (C (h (∆) ,Γ (∆)) , N (∆, h (∆) ,Γ (∆))) + βv (D (∆, h (∆))) . (31)

In (30), S () and F () are the same functions that were defined in (19) and (20). Under our

assumptions of differentiability and uniqueness, this description of equilibrium is equivalent

to that in Section 3.

5.2 The GEE

We derive a simplified representation of the policymaker’s first-order condition by using the

envelope condition to eliminate the derivative of the value function, as in KKR. To that

end, we first define the firm’s “pricing wedge”η (∆,m, p0), which is the (out-of-equilibrium)

deviation from the optimal price-setting condition:

η (∆,m, p0) = p0 [1 + αβF (D (∆, p0))]

−
(

ε

ε− 1

)[
(1− α) p1−ε

0 + α
]1/(1−ε) [−un

uc
+ αβS (D (∆, p0))

]
.

Following KKR, given an equilibrium (v,Γ, h) and under some regularity conditions, the

implicit function theorem guarantees that there exists a unique function H (∆,m), defined

on some neighborhood of the steady state, satisfying η (∆,m,H (∆,m)) ≡ 0 in that neigh-

borhood. The function H gives the price if the current state is ∆, current money is m, and

price-setting firms expect that future money will be determined by the equilibrium policy

function Γ. Thus, H describes the private sector’s response to a one-time deviation of mon-

etary policy from the equilibrium policy. Continuing as in KKR, using this definition, which

implies that Hm = −ηm/ηp0 and H∆ = −η∆/ηp0 , the first-order condition for the monetary

authority is

uc [Cp0Hm + Cm] + un [Np0Hm +Nm] + βv′∆Dp0Hm = 0. (32)

Note that prime always denotes the next period, never derivative.

The next step is to get an expression for v′∆. Begin by differentiating (31) with respect to

∆, replacing h (∆) with H (∆,m), using the fact that in equilibrium h (∆) = H (∆,Γ (∆)):

v∆ = uc (Cp0 (H∆ +HmΓ∆) + CmΓ∆)

+ un (N∆ +Np0 (H∆ +HmΓ∆) +NmΓ∆) + βv′∆ (D∆ +Dp0 (H∆ +HmΓ∆)) .
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From the first-order condition (32) we have

βv′∆ =
−uc [Cp0Hm + Cm]− un [Np0Hm +Nm]

Dp0Hm

.

So the derivative of the value function can be written as

v∆ = unN∆ −
η∆

ηm
(ucCm + unNm)− D∆

Dp0

[
ucCp0 + unNp0 −

ηp0
ηm

(ucCm + unNm)

]
. (33)

This derivative, the change in equilibrium welfare with respect to a change in the inherited

relative price dispersion, consists of three terms. The first term represents the direct effect

of a change in the state on current utility. The second term, in parentheses, reflects the

fact that even if current pricing behavior does not change, a change in the state variable

requires a change in the current money supply in order for the firm’s optimality condition

to hold. The factor (−η∆/ηm) represents the change in the money supply with respect to

a change in the state along the first-order condition for pricing. Of course, in equilibrium

pricing decisions do respond to the state variable; the third term, in brackets, takes care of

this effect. When p0 changes there is a direct effect on utility. There is also an indirect effect

because the change in pricing must correspond to a change in the money supply in order for

the firms’optimality condition to hold, which explains the factor −ηp0/ηm.

Pushing (33) one period forward, we use it to eliminate the value function derivative

from the monetary authority’s first-order condition (32), therefore writing that first-order

condition as a GEE:

Θ + βHmDp0

[
u′nN

′
∆ −

η′∆
η′m

(u′cC
′
m + u′nN

′
m) +

D′∆
D′p0

η′p0
η′m

Θ′
]

= 0, (34)

where

Θ ≡ ucCm + unNm +Hm (ucCp0 + unNp0) .

The GEE states that in equilibrium, a marginal change in the current money supply leaves

welfare unchanged. The variable Θ represents the change in current utility with respect to

a change in the current money supply. The term in brackets, v′∆ from (33), consists of the

three effects on future welfare discussed above: the direct effect from a change in the future

state variable, the effect of a change in the future money supply associated with the future

state, and the effect of a change in the optimal price associated with the future state. The
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coeffi cient on future marginal value, βHmDp0 represents discounting and the mapping from

a change in current m to a change in the future state.

The GEE highlights the lack of commitment. The optimality condition (34) for the cur-

rent policymaker incorporates the response of future policy to the endogenous state variable,

captured by the terms in C ′m, N
′
m, and H

′
m of which some are contained in Θ′. This contrasts

with the case of commitment, where future policy would not respond to the state variable.

The effect of current policy on future welfare directly through the state variable would also

be present with commitment, although it would be quantitatively different because the state

variable embeds expectations about future policy.

In addition to its analytical value, the GEE can be used as the basis for an alternative

approach to computing equilibrium. In a reassuring check on our work above, using the

GEE approach we computed an identical steady-state inflation rate of 5.5 percent to that

reported in Section 4, although away from steady state the equilibrium differed slightly.13

6 Transitions to and from discretion

The relatively high steady-state inflation rate under discretion raises the questions of the cost

and benefit, respectively, of losing and gaining the ability to commit. One way to measure

these objects is by comparing the steady-state levels of welfare under commitment and

discretion. However, both empirical and theoretical considerations suggest that the steady

state comparison is inappropriate. Empirically, large changes in the inflation rate rarely occur

instantaneously. For example, the famous Volcker disinflation played out over a period of at

least three years. Theoretically, we have emphasized the presence of a state variable in the

discretionary equilibrium, and commitment induces additional policy inertia, as emphasized

by Woodford (2003). Answering these questions, then, means studying the transitional

dynamics. Loss of ability to commit involves the transitional dynamics under discretion,

starting from the steady state under commitment. Acquisition of ability to commit involves

the transitional dynamics under commitment, starting from the steady state under discretion.

13In an application to fiscal policy, Azzimonti, Sarte and Soares (2009) also find that different com-

putational approaches produce identical steady states under discretionary policy, but somewhat different

dynamics.
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Thus, we need to know the steady states and transitional dynamics under both commitment

and discretion.

6.1 Optimal allocations with commitment

In considering optimal policy under commitment, we set aside the issue of implementation

and solve a social planner’s problem. That is, we consider the problem of a planner who can

choose current and future prices and quantities, subject to the conditions that characterize

optimal behavior by households and firms, and subject to markets clearing. The planner’s

problem can be written as

max
{ct,nt,wt,πt,S̃t,F̃t,p0,t,∆t}∞

t=0

∞∑
t=0

βt
[
ln (ct)− χ

n1+µ
t

1 + µ

]
,

subject to the following constraints, for t = 0, 1, ...:

p0,t =

(
ε

ε− 1

)
πt
S̃t

F̃t
(35)

S̃t = wt + αβπεt+1S̃t+1 (36)

F̃t = 1 + αβπε−1
t+1 F̃t+1. (37)

πt =
[
(1− α) p1−ε

0,t + α
] 1
1−ε (38)

∆t = πεt
[
(1− α) p−ε0,t + α∆t−1

]
(39)

nt = ∆tct (40)

wt = χctn
µ
t (41)

These constraints are each familiar from the description of private-sector equilibrium above.

However, the optimal pricing condition is transformed slightly, with S̃t ≡ St/π
ε
t and F̃t ≡

Ft/π
ε−1
t , to reduce the number of state variables in the planning problem. Recall that without

commitment, there was a single state variable, ∆t−1. With commitment, the presence of

future realizations of variables in the constraints means that there are two additional state

variables, the lagged multipliers on the constraints (36) and (37). The first-order conditions

for this problem can be simplified to a system of nine nonlinear difference equations in

the nine variables
{
ct, S̃t, F̃t, πt,∆t, φt, ψt, ξt, γt

}
, where φt, ψt, ξt, and γt are the Lagrange

multipliers on (36), (37), (38), and (39). The nine-equation system is derived in Appendix D.
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Solving for the steady state under discretion required us to solve for the functions describ-

ing equilibrium dynamics. Under commitment the steady state is simply the time-invariant

solution to the nine-equation system implied by the planner’s first-order conditions. As

shown in Appendix D, the steady-state inflation rate is zero; that is, π = ∆ = p0 = 1.14

Comparing the steady states under commitment and discretion gives a rough estimate

of the cost (benefit) of losing (gaining) the ability to commit to future policies. Using the

baseline calibration, both consumption and leisure are slightly higher in the commitment

steady state, with zero inflation, than in the discretionary steady state, with 5.5 percent in-

flation. The welfare difference between the two steady states is equivalent to 0.228 percent of

consumption every quarter.15 In present value terms, the consumption increment represents

5.70 percent of annual consumption. Of course, this calculation is artificial in the sense that

the economy cannot simply jump from one steady state to the other. Next we analyze the

transitions between steady states.

6.2 Losing the ability to commit

If an optimizing policymaker loses the ability to commit, then the economy behaves accord-

ing to the transitional dynamics under discretion with an initial condition of ∆ = 1, the

steady state under commitment. These dynamics can be inferred from Figure 1, but we plot

them explicitly in Figure 3. The solid lines display the paths of inflation, the relative price

distortion, the markup, and the money growth rate along the transition to the discretionary

steady state. Whereas the relative price distortion monotonically increases along the transi-

tion, the inflation rate jumps in the initial period (labeled zero) and then smoothly declines

to the discretionary steady state. Panel D shows that the money growth rate essentially

14We use the term “steady state” informally in the case of a policymaker with commitment. It is more

accurate to refer to this allocation as the limit point in the long run under commitment. A planner who

inherited only the state variable ∆ = 1 would choose some initial inflation before converging in the long run

to zero inflation and ∆ = 1; this is the nature of the time-consistency problem.
15The welfare calculation involves comparing the discretionary steady state to an allocation on the same

indifference curve as the commitment steady state, but with the same wage as the discretionary steady state.

The number 0.228 percent represents the parallel rightward shift in the budget constraint (consumption on

the horizontal axis).
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Figure 3: Transitions to and from discretion
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mimics the inflation rate. In present value terms, the welfare decline associated with loss of

commitment is well-approximated by the steady-state welfare comparison: the representa-

tive household would be willing to forego 0.225 percent of consumption each quarter in order

to avoid this transition (5.62 percent in present-value terms).

It is notable that the transition to the discretionary steady state does not involve any

transitory benefits: along the entire transition both the markup and the relative price distor-

tion are increasing. One might have expected that in the initial period of the transition, the

policymaker could effectively exploit preset prices and reduce the markup. It is indeed the

case that the markup for non-adjusting firms falls substantially in the initial period. However,

this decline is more than offset by an increase in the inflation rate that results from the behav-

ior of adjusting firms. This reasoning uses the identity Pt/MCt = (Pt/Pt−1)× (Pt−1/MCt).

Although the equilibrium path involves the markup rising, it is nonetheless the case that at

each point in time the policymaker perceives a tradeoff between reducing the markup and

increasing the relative price distortion.

6.3 Gaining the ability to commit

If a policymaker previously operating with discretion gains the ability to commit, the econ-

omy behaves according to the dynamics under commitment, beginning in the discretionary

steady state and– presumably– ending in the commitment steady state. The dynamics un-

der commitment are represented by the aforementioned nine-variable system of nonlinear

difference equations, shown in Appendix D.

To compute the transition path, we conjecture that convergence to the zero-inflation

steady state is complete after T = 40 quarters. We then have a system of 9×T equations in

the 9× T + 5 variables
{
ct, S̃t, F̃t, πt,∆t, φt, ψt, ξt, γt

}T−1

t=0
and

{
∆−1, S̃T , F̃T , πT , γT

}
. If we

assume there is a unique transition path, then to solve the system of 9×T equations we need

to specify values for the initial condition ∆−1 and the terminal conditions
{
S̃T , F̃T , πT , γT

}
.

Under the conjecture, the terminal conditions are given by the steady state under commit-

ment (zero inflation). The initial condition is given by the steady-state value of ∆ under

discretion. From the properties of the Jacobian matrix at the steady state, we know that

locally there is a unique stable solution that converges to the steady state. Indeed, we are
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able to compute a global solution satisfying the conjecture.

The dashed lines in Figure 3 represent the resulting transition path from the steady state

with discretion to the steady state with commitment. The transition contains an element

of discretionary behavior: in the initial period, since the policy change is unexpected, the

policymaker has an incentive to exploit the fixed prices of non-adjusters by increasing the

money supply. This was also the case in the transition to discretion, but here the long-run

policy involves lower inflation, so the temporary stimulus is not offset by frontloading of larger

price increases. Instead, adjusting firms frontload smaller future price increases, more than

offsetting any inflationary effects of the temporary monetary stimulus. The welfare benefit of

the transition from discretion to commitment is again well approximated by the steady-state

welfare comparison: the representative household would require a 0.222 percent increase in

consumption each quarter in order to willingly choose the transition from commitment to

discretion (5.54 percent in present-value terms).

Initial-period policy under commitment and discretion illustrates the diffi culty of ex-

ploiting initial conditions. The discretionary monetary authority would like to exploit initial

conditions, but in equilibrium even in the short run it is unable to do so because of firms’

forward-looking behavior. Conversely, that same forward-looking behavior means that a pol-

icymaker who can commit is able to exploit initial conditions (once!) by combining short-run

expansionary policy with lower money growth and inflation in the long run.

7 Concluding remarks

The vast literature on time-consistency problems for monetary policy is comprised of two

seemingly disparate branches. Much of the profession’s intuition is derived from the seminal

work by Barro and Gordon (1983), hereafter BG, which in turn built on Kydland and Prescott

(1977). They studied reduced-form macroeconomic models in which the frictions giving

leverage to monetary policy were not precisely spelled out. In contrast, the staggered pricing

models popularized in the last two decades are precise about those frictions. We conclude

here by summarizing the paper’s three main contributions and then explaining how the

analysis relates to BG’s early work on time-consistency problems for monetary policy.

The direct motivation for this paper comes from King and Wolman (2004), who showed
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that in a model with Taylor-style staggered price setting, discretionary policy induces com-

plementarity among firms suffi cient to generate multiple private-sector equilibrium. In the

Calvo model, which shares many features with the Taylor model but has been much more

influential for applied monetary policy analysis (often in its linearized form), we find that

the presence of many predetermined variables and a real state variable works against com-

plementarity, and multiple private-sector equilibria do not arise. The state variable measures

the dispersion in predetermined relative prices; in contrast, the Taylor model has only one

predetermined nominal price and thus no predetermined relative prices.

The Calvo model’s combination of a real state variable and unique private-sector equi-

librium leads us to an analysis of discretionary equilibrium using the GEE approach. The

GEE is a simplified representation of the policymaker’s first-order condition, which high-

lights the various channels through which current policy can affect future welfare. Without

commitment, each of these channels works through the state variable; the state variable

affects future outcomes directly and it shifts the future policymaker’s problem. While the

GEE approach has been applied extensively to study fiscal policy, the Calvo application is

new to this paper.

Finally, we use the steady-state and dynamic properties of the discretionary equilibrium

together with the solution under commitment to study the processes of gaining and losing

the ability to commit. The present-value welfare gain or loss is approximately equivalent

to 0.2 percent of consumption each period, or a one-time gain or loss of 5.5−5.6 percent

of annual consumption. While we compute these welfare numbers using the full transition

paths, they differ little from the steady-state welfare comparisons.

At the heart of the time-consistency problem for monetary policy is the notion that a

discretionary policymaker takes as given private agents’ expectations, but in equilibrium

those expectations accurately incorporate the policymaker’s optimal behavior. This prop-

erty holds in modern staggered pricing models such as the Calvo model and in the BG

model. In BG, however, the expectations just referred to are current expectations about

current policy; dynamics only arise through serial correlation of exogenous shocks. Without

other intertemporal links, the policy problem is a static one in BG: treating expectations

as fixed, higher inflation is costly in its own right but brings about a beneficial reduction

in unemployment. In equilibrium, private expectations are validated, and the policymaker

28



balances the static marginal cost and marginal benefit of additional inflation. In contrast,

in staggered pricing models prices set in the past incorporate expectations about current

policy. Whereas in BG equilibrium requires that current policy actions be consistent with

current-period expectations, in staggered pricing models equilibrium requires that current

policy actions be consistent with expectations formed in the past.16

The intertemporal nature of price setting also means that unlike BG, staggered pricing

models generally contain one or more state variables that can be affected by a policymaker,

even under discretion. Thus, the discretionary policymaker does not face a purely static

tradeoff between inflation and real activity. That tradeoff is present, but it is complicated

by the fact that the current policy action affects tomorrow’s state, and thus tomorrow’s

value function. One of the main points of this paper is that the details of this intertemporal

element differ across staggered pricing models, leading to different implications for the nature

of equilibrium under discretionary monetary policy.

While staggered pricing models generate a static output-inflation tradeoff superficially

similar to the one in BG, these models are explicit about the source of that tradeoff. Because

of the forward-looking elements in these models, the details of the policy tradeoff– and

whether it even appears in equilibrium– depend critically on the entire path of expected

future policy. For example, Section 6 has shown that an unexpected reduction in inflation

can be stimulative, if it signals the transition to a permanently lower inflation rate (gaining

commitment). Likewise, an unexpected increase in inflation can be contractionary if it

signals the transition to a permanently higher inflation rate (losing commitment). Although

these transitions may suggest that no output-inflation tradeoff is present, in the discretionary

equilibrium the policymaker perceives such a tradeoff: a one-period deviation toward more

expansionary policy would raise output and inflation, as it reduced the markup and raised the

relative price distortion. The effects on welfare would be offsetting, and thus the policymaker

does not deviate.

Of course, the properties of discretionary equilibrium are determined by the specifics

of the model. The defining feature of the Calvo model is the assumption that a fraction

16With different timing assumptions in staggered pricing models the BG version of expectational consis-

tency would also be required to hold.
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of firms are prohibited from adjusting their price. This assumption makes for a relatively

tractable framework, undoubtedly the main reason the Calvo model has come to serve as

the basis for so much applied work on monetary policy. It has recently become feasible to

conduct some forms of policy analysis in models which relax this assumption, allowing firms

to adjust their price by incurring a cost. Those models typically have a large number of state

variables, currently rendering it infeasible to perform the kind of analysis conducted here

(see for example Nakov and Thomas, 2014).17 Nonetheless, we hope that our work can serve

as a useful input for future research on discretionary policy in quantitative state-dependent

pricing models.

17While Barseghyan and DiCecio (2007) and Siu (2008) study discretionary policy in models with state-

dependent pricing, both papers limit the state space by allowing firms to adjust costlessly after one and two

periods, respectively.
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A Computational details

This appendix describes how numerical solutions for the discretionary equilibrium are com-

puted and how uniqueness of the equilibrium is verified in a large number of examples.

Computing a discretionary equilibrium

The value function and the expressions for S () and F () are approximated with Chebyshev

polynomials. This computational method involves selecting a degree of approximation I,

and then searching for values of v∗i and Γ∗i , for i = 1 . . . I, that solve (27) at the grid points

for the state variable ∆i defined by the Chebyshev nodes. The optimization problem (27) is

solved using the following algorithm.

1. Grids and initial values. The example of the baseline calibration (i.e., α = 0.5, β =

0.99, ε = 10, µ = 0, and χ = 4.5) uses a degree of approximation I = 12 on the

interval [1, 1.1] for the state variable. As an initial guess for v (), S () and F () the

discretionary equilibrium for the static model is used, which is the final period of a

finite horizon model. To compute the private-sector response to an arbitrary policy,

grids {m1, . . . ,mIm} and {p0,1, . . . , p0,Ip} are specified for the money supply and the

optimal price. In the case of the baseline calibration, the grid form consists of Im = 600

evenly spaced points between 0.01 and 0.25 and the grid for p0 consists of Ip = 600

evenly spaced points between 0 and 2.

2. Private-sector responses. For each possible value of ∆ and m, compute the private-

sector responses by solving (28) as a fixed-point problem. Specifically, compute the

right hand side of (28) and call it p̂0, then use linear interpolation to find the fixed

points p0 = p̂0.

3. Policy function and value function. On each grid point ∆i, select the value of m that

maximizes the value function. If the value function and policy function that solve the

optimization problem are identical to the guess, then they form a discretionary equi-

librium. Specifically, iteration j is the final iteration if ||vj+1−vj||∞ and ||Γj+1−Γj||∞
are smaller than the tolerance level 1.49 · 10−8 (the square-root of machine precision).

If not, the starting values are updated by pushing out the initial guess one period into
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the future, and assuming the one-period-ahead policy and value functions are the ones

that solved the optimization problem.

To assess the accuracy of a solution, the difference between the left hand side and the

right hand side of (27) is calculated using that solution on a grid of 100,000 points that do

not include the Chebyshev nodes. With the baseline calibration, this residual function has

a maximum absolute approximation error of order 10−6.

Many other examples were computed that cover a wide range of values for α, ε and µ.

These include the values for α = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.55, 0.6, 0.61, 0.62,

0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79,

0.8, 0.85, 0.9, and 0.95, values for ε = 6, 7, 8, 9, and 11, and values for µ = 0.25, 0.5, 0.75,

1, 1.25, 1.5, 1.75, and 2. In addition to these 46 solutions, which consider alternative values

of one parameter at a time, solutions were computed for eight combinations of extreme pa-

rameter values: (α, ε, µ) = (0.1, 4, 0), (0.1, 4, 2), (0.1, 11, 0), (0.1, 11, 2), (0.9, 4, 0), (0.9, 4, 2),

(0.9, 11, 0), (0.9, 11, 2).

Uniqueness of the solutions

All the examples described above yield a unique solution. Step 2 in the model solution

algorithm allows for the possibility of multiple fixed points at an arbitrary monetary policy

at each value of the state. Suppose the money supply that maximizes the value function in

iteration j − 1 induces multiple private-sector responses. Then the inherited relative price

dispersion in iteration j is not uniquely determined and neither is the money supply in

iteration j. Therefore, if j is the final iteration there are multiple discretionary equilibria.

However, this hypothetical sequence of outcomes does not arise in any of our examples, where

discretionary equilibrium is always unique. Multiple fixed points were only encountered for

sub-optimal values of m, in which case the largest fixed point was arbitrarily selected (the

same solutions were found when selecting the smallest fixed point). Specifically, for the

alternative calibrations with values of α between 0.63 and 0.69, or with the value ε = 6, the

final iteration of the solution algorithm exhibited multiple fixed points for values of m in a

range that is positive but smaller than the optimal value of m.
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B Comparison with the Taylor model

This appendix describes the two-period Taylor model and provides a quantitative comparison

with the Calvo model.

B.1 Model

In the Taylor model each firm sets its price for two periods. The description of the repre-

sentative household remains unchanged, but the value of a firm upon adjustment is given

by

max
Xt

{
1∑
j=0

βj
(

Pt
Pt+1

)j (
ct
ct+1

)j [
Xt

(
Xt

Pt+j

)−ε
ct+j − Pt+jwt+j

(
Xt

Pt+j

)−ε
ct+j

]}
,

and the optimal price satisfies the first-order condition,

P0,t

Pt
=

(
ε

ε− 1

)
· wt + β (Pt+1/Pt)

εwt+1

1 + β (Pt+1/Pt)
ε−1 .

This condition indicates the firm chooses a constant markup over a weighted average of

current and future marginal costs. Whereas in the Calvo model the index of predetermined

prices was given by Pt−1, in the Taylor model there is just one predetermined price, P0,t−1.

Normalizing the optimal price and the price index by P0,t−1 and using the definitions p̃0,t ≡

P0,t/P0,t−1 and pt ≡ Pt/P0,t−1, we have

p̃0,t

pt
=

(
ε

ε− 1

)
· wt + β (p̃0,tpt+1/pt)

εwt+1

1 + β (p̃0,tpt+1/pt)
ε−1 . (42)

Money demand (5) is normalized by the lagged optimal price instead of the lagged price level

m̃t ≡
Mt

P0,t−1

= ptct. (43)

We eliminate the predetermined variable from the price index,

Pt =

(
1

2
P 1−ε

0,t +
1

2
P 1−ε

0,t−1

) 1
1−ε

,

by dividing by the lagged optimal price:

pt =

(
1

2
p̃1−ε

0,t +
1

2

) 1
1−ε

. (44)
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The labor market clearing condition yields

nt =
1

2

1∑
j=0

nj,t

nt
ct

=
1

2
pεt
[
(p̃0,t)

−ε + 1
]
. (45)

There is one predetermined nominal price (P0,t−1), but there are no state variables in the

labor market clearing condition. The equations (42)−(45) and the labor supply equation

(4), together with the behavior of future policymakers, implicitly define the set of feasible

values for wt, ct, nt, pt and p̃0,t attainable by the current monetary policymaker in the Taylor

model. The current policymaker chooses the money supply, or equivalently m̃t, the money

supply normalized by the predetermined price. Unlike the Calvo model, no state variables

constrain the monetary authority in an MPE. The lagged optimal price P0,t−1 matters for

the levels of nominal variables, but is irrelevant for the determination of real allocations.

B.2 Results

Do the seemingly small differences between the Taylor and Calvo models generate similar

predictions for inflation under discretion? The remainder of this appendix provides a quanti-

tative comparison of the steady-state inflation rates in the two models. For this comparison,

we solve the social planner’s problem associated with the Taylor model to circumvent the

issue of equilibrium multiplicity. That is, instead of the policymaker choosing the money

supply, we assume a planner chooses consumption allocations. The calibration is the same

as for the Calvo model: ε = 10, β = 0.99, µ = 0, χ = 4.5. Since α = 0.5 in the Calvo model,

the average frequency of price adjustment is two quarters in both models.

Under this calibration, the steady-state inflation rate in the Taylor model is 9.1 percent,

exceeding the steady-state inflation rate of 5.5 percent in the Calvo model. In the Taylor

model, the policymaker faces only the short-run trade-off between the markup and the rel-

ative price distortion. In the Calvo model, when weighing the benefit of a lower markup

against the cost of a higher relative price distortion, the policymaker also takes into account

the cost to future policymakers of inheriting a higher relative price distortion. By choosing a

higher inflation rate today, the policymaker would pass on a higher relative price distortion

to the next policymaker, which is an additional cost of high inflation relative to the Taylor
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model. Therefore, the steady-state inflation rate is lower in the Calvo model.

C Proof of Proposition 1

This appendix presents the proof of Proposition 1. Recall from equation (12) that inflation

is the following function of the optimal reset price

π(p0,t) =
[
(1− α)p1−ε

0,t + α
] 1
1−ε ,

which is increasing and strictly concave:

π′(p0,t) = (1− α)
[
(1− α) + αpε−1

0,t

]− ε
ε−1 = (1− α)

[
π(p0,t)

p0,t

]ε
> 0 (46)

π′′(p0,t) = −α(1− α)επ(p0,t)
2ε−1p

3(ε−1)
0,t < 0, (47)

and has a finite limit

lim
p0,t→∞

π(p0,t) = α
1

1−ε . (48)

Consistent with the computation of discretionary equilibrium as the stationary limit of the

finite-horizon economy, we compute equilibrium with a constant-m policy as the limit of the

finite-horizon economy. Let T denote the final period, so ST+1 = FT+1 = 0. Then:

ST =

(
ε

ε− 1

)
π(p0,T )ε−1 [χmT + αβST+1π(p0,T )] =

(
εχ

ε− 1

)
π(p0,T )ε−1mT , (49)

FT = π(p0,T )ε−1 [1 + αβFT+1] = π(p0,T )ε−1, (50)

and the pricing best-response function is

p̂0,T =
ST
FT

=

(
εχ

ε− 1

)
mT . (51)

The outcomes p0,T , ST , and FT do not depend on the state because monetary policy does

not depend on the state. Moreover, there can be no complementarity in price setting in

period T , because the pricing best-response function (51) of any given firm does not depend

on other firms’price decisions.

Note from (49) that ST = ST (mT , p0,T ) and from (50) that FT = FT (p0,T ). We can now

analyze the period T − 1 pricing best-response function to determine whether there is a

unique fixed point. We have:

ST−1 =

(
ε

ε− 1

)
π(p0,T−1)ε−1 [χmT−1 + αβST (mT , p0,T )π(p0,T−1)]

FT−1 = π(p0,T−1)ε−1 [1 + αβFT (p0,T )] ,
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so the period T − 1 best-response function is

p̂0,T−1 =

(
ε

ε− 1

)[
χmT−1 + αβST (mT , p0,T )π(p0,T−1)

1 + αβFT (p0,T )

]
(52)

The optimal price does not depend on the state because the monetary policy function and

the functions ST and FT do not depend on the state. To see that the best-response function

has a unique fixed point, first write (52) as

p̂0,T−1 = AT−1(p0,T )mT−1 +BT−1(mT , p0,T )π(p0,T−1),

where AT−1(p0,T ) > 0 and BT−1(mT , p0,T ) > 0 because mT , p0,T > 0. It follows from

(46)−(48) that

∂p̂0,T−1

∂p0,T−1

= BT−1π
′(p0,T−1) > 0

∂2p̂0,T−1

∂p2
0,T−1

= BT−1π
′′(p0,T−1) < 0

lim
p0,T−1→∞

p̂0,T−1 =

(
ε

ε− 1

)[
χmT−1 + α

2−ε
1−εβST (mT , p0,T )

1 + αβFT (p0,T )

]
.

Because the best-response function is always positive and concave and has a finite limit,

it has a unique fixed point. Therefore, there exists a unique private-sector equilibrium in

period T − 1.

Write ST−1 = ST−1(mT−1,mT , p0,T−1, p0,T ) and FT−1 = FT−1(p0,T−1, p0,T ). In period T−2

we obtain

ST−2 =

(
ε

ε− 1

)
π(p0,T−2)ε−1 [χmT−2 + αβST−1(mT−1,mT , p0,T−1, p0,T )π(p0,T−2)]

FT−2 = π(p0,T−2)ε−1 [1 + αβFT−1(p0,T−1, p0,T )] .

Hence the period T − 2 best-response function can be written as

p̂0,T−2 = AT−2(p0,T−1, p0,T )mT−2 +BT−2(mT−1,mT , p0,T−1, p0,T )π(p0,T−2),

where AT−2 > 0 and BT−2 > 0 because mT ,mT−1, p0,T , p0,T−1 > 0. By the same arguments

as above there is a unique fixed point in period T − 2.

Repeating the same steps, we can show that for period t,

St =

(
ε

ε− 1

)
π(p0,t)

ε−1 [χmt + αβS(mt+1,mt+2, . . . , p0,t+1, p0,t+2, . . .)π(p0,t)]

Ft = π(p0,t)
ε−1 [1 + αβF (p0,t+1, p0,t+2, . . .)] .
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The period-t best-response function can therefore be written as

p̂0,t = At(p0,t+1, p0,t+2, . . .)mt +Bt(mt+1,mt+2, . . . , p0,t+1, p0,t+2, . . .)π(p0,t),

where At > 0 and Bt > 0 because mt+j, p0,t+j > 0 for j = 1, 2, . . .. Therefore, by backward

induction, there is a unique private-sector equilibrium associated with the arbitrary constant-

m policy.

D Derivation of commitment solution

Here we derive the equations characterizing optimal policy with commitment using the fol-

lowing Lagrangian:

L =
∞∑
t=0

βt
[
ln (ct)− χ

n1+µ
t

1 + µ

]
+
∞∑
t=0

βtζt

[
p0,t −

(
ε

ε− 1

)
πt
S̃t

F̃t

]

+
∞∑
t=0

βtφt

[
S̃t −

(
wt + αβπεt+1S̃t+1

)]
+
∞∑
t=0

βtψt

[
F̃t −

(
1 + αβπε−1

t+1 F̃t+1

)]
+

∞∑
t=0

βtξt

{
πt −

[
(1− α) p1−ε

0,t + α
] 1
1−ε
}

+
∞∑
t=0

βtγt
{

∆t − πεt
[
(1− α) p−ε0,t + α∆t−1

]}
+

∞∑
t=0

βtΩt (nt −∆tct) +
∞∑
t=0

βtθt [wt − χctnµt ] .

The first order conditions are as follows:

p0 : ζt − ξt
[
(1− α) p1−ε

0,t + α
] ε
1−ε (1− α) p−ε0,t + γtε (1− α)πεtp

−ε−1
0,t = 0 (53)

S̃ : φt − φt−1απ
ε
t − ζt

(
ε

ε− 1

)
πt

1

F̃t
= 0 (54)

F̃ : ψt − ψt−1απ
ε−1
t + ζt

(
ε

ε− 1

)
πt
S̃t

F̃ 2
t

= 0 (55)

π : −φt−1επ
ε−1
t αS̃t − ψt−1 (ε− 1) πε−2

t αF̃t − ζt
(

ε

ε− 1

)
S̃t

F̃t
+ξt − γtεπε−1

t

[
(1− α) p−ε0,t + α∆t−1

]
= 0 (56)

∆ : −Ωt + γt − βγt+1απ
ε
t+1 = 0 (57)

c :
1

ct
+ θtχn

µ
t − Ωt

nt
c2
t

= 0 (58)

n : θtµχctn
µ−1
t − χnµt +

Ωt

ct
= 0 (59)

w : −θt − φt = 0, (60)
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as well as the constraints (35)−(41) in the body of the text. This is a system of 15 equations,

which can be reduced to nine equations as follows. First, eliminate p0,t directly using (35).

Second, eliminate θt directly using (60). Third, eliminate nt as nt = ct∆t using (40). Fourth,

eliminate wt as wt = χ∆µ
t c

1+µ
t using (41). Fifth, eliminate Ωt using (58) and (40), as

Ωt =

(
1

∆t

+ θtχc
1+µ
t ∆µ−1

t

)
.

Finally, eliminate ζt using (53), noting that we would also substitute out for p0,t using (35):

ζt = ξt
[
(1− α) p1−ε

0,t + α
] ε
1−ε (1− α) p−ε0,t − γtε (1− α) πεtp

−ε−1
0,t .

The nine remaining equations are as follows, where the variables (nt, wt, p0,t, θt,Ωt, ζt) should

be understood to be substituted out as described above:

S̃t = wt + αβπεt+1S̃t+1

F̃t = 1 + αβπε−1
t+1 F̃t+1

πt =
[
(1− α) p1−ε

0,t + α
] 1
1−ε

∆t = πεt
[
(1− α) p−ε0,t + α∆t−1

]
0 = θtµχctn

µ−1
t − χnµt +

Ωt

ct

0 = φt − φt−1απ
ε
t − ζt

(
ε

ε− 1

)
πt

1

F̃t

0 = ψt − ψt−1απ
ε−1
t + ζt

(
ε

ε− 1

)
πt
S̃t

F̃ 2
t

0 = −φt−1επ
ε−1
t αS̃t − ψt−1 (ε− 1) πε−2

t αF̃t − ζt
(

ε

ε− 1

)
S̃t

F̃t
+ξt − γtεπε−1

t

[
(1− α) p−ε0,t + α∆t−1

]
0 = −Ωt + γt − βγt+1απ

ε
t+1

This is the system of nonlinear difference equations that we must solve to compute the

transition path in Section 6.3. It is straightforward to show that zero inflation (π = 1) solves

the steady-state system of equations.
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