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Abstract

In this online appendix, we provide the detailed working for results in Section 4 of

our main paper, which considers the robustness of affine fee schedules to some of our key

assumptions.

1 Non-GPD demand functions

In this section, we conduct the following exercise. We assume that the true underlying demand

is not from a GPD, but instead comes from some alternative distribution. As an example, we

consider that b ≥ 0 follows a truncated normal distribution. We assume the platform does not

observe the true distribution, but rather continues to assume that demand takes the GPD form.

Figures 1 and 2 present our findings based on two informative cases. In each case, we

generate 10,000 random draws of b ≥ 0 from a truncated normal distribution. We then fit

the data with a GPD using maximum likelihood estimation to recover the GPD parameters

λ and σ that best fit the data. Denote Φ(x) as the cdf of an underlying mean-zero normal
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distribution. In case 1 and case 2, the draws b ≥ 0 are from a truncated normal distribution

which is a relocation of the 75% upper tail (defined as x ≥ x∗ for Φ(x∗) = 0.75) and 25% upper

tail (defined as x ≥ x∗ for Φ(x∗) = 0.25) of the underlying normal distribution. In each case,

we choose the variance of the underlying normal distribution and the value of d such that the

fitted GPD would imply an optimal affine fee schedule matching the observed affine fee schedule

used by Amazon (i.e., $1.35+15% as shown in Table 1 of the main paper).

The results are quite striking. In case 1, the GPD is shown to proxy the 75% upper tail of

the underlying normal distribution very well. As a result, the optimal fee schedule based on

the fitted GPD is very close to the optimal one based on the true underlying truncated normal

distribution, and so are the output and platform profit for each individual good. In fact, the

platform achieves more than 99.7% of the maximal profit for each individual good.

In case 2, in which we fit the 25% upper tail of the underlying normal distribution, the

GPD does not proxy the true truncated normal distribution as well. Figure 2 shows that the

optimal fee schedule based on the fitted GPD is somewhat lower than the optimal one based

on the true distribution, and the outputs are somewhat higher. However, in terms of profit, the

GPD approximation still performs well, which allows the platform to achieve 90-95% maximal

profits for goods below $10, and 95-99% for goods between $10 and $60, and more than 99%

for goods above $60.

We also conducted the exercise by using other alternative underlying distributions and the

results are very similar. Figures 3 and 4 report the results for the case of the truncated logistic

distribution.

2 Random variation in demand

We provide the full details here for several cases that were noted in the main paper.

2.1 Random multiplicative and additive shocks to demand

The first case noted in the main paper is straightforward. We show our results are not affected

at all by random multiplicative and additive shocks to demand.

2



Figure 1: Demand comes from truncated normal distribution
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Figure 2: Demand comes from truncated normal distribution
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Figure 3: Demand comes from truncated logistic distribution
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Figure 4: Demand comes from truncated logistic distribution
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Specifically, suppose demand can be written as ξcQ
(
1 + Tc

c

)
+εc, where ξc is randomly drawn

from the distribution Ξ with E (ξc) = 1 and εc is drawn (independently) from the distribution

ε with E (εc) = 0. Consider the setup used in Section 3 of the main paper on “proportional

taxes and fees”. In order to maximize revenue for good c, we choose Tc to maximize

∫
ξc

∫
εc

Tc

(
ξcQ

(
1 +

Tc
c

)
+ εc

)
dε (εc) dΞ (ξc) .

The first-order condition is

∫
ξc

∫
εc

(
ξcQ

(
1 +

Tc
c

)
+ εc + ξc

Tc
c
Q′
(

1 +
Tc
c

))
dε (εc) dΞ (ξc) = 0,

which given E (εc) = 0 can be rewritten as

∫
ξc

ξcdΞ (ξc)

(
Q

(
1 +

Tc
c

)
+
Tc
c
Q′
(

1 +
Tc
c

))
= 0.

Given E (ξc) = 1, the first-order condition for determining the optimal per-transaction fee for

good c becomes the same as in equation (2) in the main paper. Moreover, equilibrium prices

are not affected by the demand heterogeneity since prices are determined entirely by costs so

the optimal fee schedule still satisfies equation (4) in the main paper. The same logic applies to

profit maximization and the Ramsey regulation problem. Thus, we can easily allow for additive

and multiplicative random shocks in the demand function.

The more interesting case arises when different goods can have different shape of demand

(or different price elasticity of demand), which we turn to next.

2.2 Random variation in the GPD mean

We first consider random variation in the GPD mean. Suppose the platform faces the GPD

demand as previously defined, so that

Qc =

(
1 + λ(σ − 1)

Tc
c

) 1
1−σ

.
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Let the mean of the GPD, E [b] = 1
(2−σ)λ , be a random variable. To be specific, we assume that

λ =
1

1

λ̂
+ (2− σ) ε

,

where λ̂ and σ are fixed numbers but ε is an i.i.d. random variable with mean zero drawn for

each good. Then for any particular good with realization λ

E [b] =
1

λ (2− σ)
=

1

λ̂ (2− σ)
+ ε. (1)

The platform ignores the random variation but rather assumes that the GPD has a fixed

mean equal to 1

λ̂(2−σ)
. Also, we assume that d = 0 for simplicity, given that d is typically small.

Therefore, the platform solves for the profit-maximizing per-transaction fee Tc for goods of cost

c as follows:

max
Tc

Tc

(
1 + λ̂(σ − 1)

Tc
c

) 1
1−σ

.

The solution is

Tc =
c

λ̂ (2− σ)
.

Given Bertrand competition between sellers we have pc = Tc+c and this implies the proportional

fee schedule

Tc =
1

1 + λ̂ (2− σ)
pc. (2)

Because each good c indeed has a different realized value λ due to random variation, the

platform earns the average profit πc from all goods of cost c as

π0
c = E

 c

λ̂ (2− σ)

(
1 +

λ(σ − 1)

λ̂ (2− σ)

) 1
1−σ
 (3)

=
c

λ̂ (2− σ)
E


1 +

σ − 1

λ̂ (2− σ)
(

1

λ̂
− (σ − 2) ε

)
 1

1−σ
 ,

where E[·] is the expected value of the expression.

In contrast, if the platform knows the realization of λ for each good c, it would set the
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per-transaction fee

Tc =
c

λ (2− σ)
,

and the average platform profit earned from all goods c is

π1
c = E

[
c

λ (2− σ)

(
1 +

σ − 1

2− σ

) 1
1−σ
]

=
c

λ̂ (2− σ)

(
1

2− σ

) 1
1−σ

.

Now the question is how much platform profit is lost if the platform ignores the fact that there

is random variation in demand.

To simplify the comparison, we rewrite (3) by taking the second-order Taylor expansion

around E[ε] = 0 so that

π0
c '

c

(2− σ) λ̂

((
1

2− σ

) 1
1−σ

− 1

2
λ̂2
(

1

2− σ

) 1
1−σ−3

E
[
ε2
])

Therefore, we can compute the profit ratio as

π0
c

π1
c

= 1− 1

2
λ̂2(2− σ)3E[ε2]. (4)

We can verify that π0
c

π1
c
< 1 given that σ < 2 and π0

c

π1
c

= 1 when E[ε2] = 0. It is also shown that

π0
c

π1
c

decreases in E[ε2], the variance of the noise term, and increases in σ, the curvature of the

inverse demand function. Because the ratio of π0
c

π1
c

is independent of c, the same ratio holds for

comparing the platform’s total profits.

Based on some commonly used demand functions, we can further assess the magnitude

of the profit loss shown in (4), which tends to be small under a reasonable dispersion of the

random variation. Assuming that the observed percentage fee used by Amazon (i.e., 15%) is

determined by (2), (1) then pins down the mean of E [b]; that is, 1

λ̂(2−σ)
= 0.176. Now if we

consider the linear demand where σ = 0, (4) implies that as long as the standard deviation of

E [b] is smaller than 0.056, the platform earns more than 90% of the optimal profit. Moreover,

for the exponential demand where σ = 1, the platform earns more than 90% of the optimal

profit if the standard deviation of E [b] is smaller than 0.079. In fact, as suggested by (4), such a

threshold standard deviation of E [b] increases monotonically in σ, the curvature of the inverse
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demand function.

Furthermore, note that the profit ratio calculated above in (4) is a conservative estimate in

the sense that we assume the platform treats the GPD as having a fixed mean equal to 1

λ̂(2−σ)
.

Another scenario could be that the platform fully incorporates the random variation in E [b]

and maximizes the expected profit by figuring out the best affine fee schedule accordingly. In

that case, the platform could potentially earn an even higher ratio of the optimal profit.

2.3 Random variation in the demand elasticity

Aside from different GPD means, it is also interesting to consider random variation in the

demand elasticity. To do this we consider the GPD demand with σ = 1 + 1
λ

and λ > 1. In this

case, sellers on the platform face a constant-elasticity demand so that

Qc =

(
1 +

Tc
c

)−λ
.

The demand elasticity λ is a random variable,

λ = λ̂+ ε,

where λ̂ is the mean of λ and ε is i.i.d. noise with mean zero.

Similar to the proof above, we assume that d = 0 for simplicity. If the platform ignores the

random variation but rather assumes that the demand has a fixed elasticity λ equal to its mean

value λ̂, the platform would set the profit-maximizing per-transaction fee

Tc =
c

λ̂− 1

for each good. Given Bertrand competition between sellers we have pc = Tc+ c and this implies

the proportional fee schedule

Tc =
1

λ̂
pc. (5)
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The corresponding platform profit is

π0
c = E

[
c

λ̂− 1

(
1 +

1

λ̂− 1

)−λ]
. (6)

In contrast, if the platform knows the realized λ for each good c, it could set the per-

transaction fee

Tc =
c

λ− 1

for each good, and the average platform profit earned from good c would be

π1
c = E

[
c

λ− 1

(
1 +

1

λ− 1

)−λ]
. (7)

To simplify the comparison, we can rewrite (6) by taking the second-order Taylor expansion

around the mean λ̂ so that

π0
c ' cλ̂−λ̂(λ̂− 1)λ̂−1

1 +
1

2

(
ln

λ̂

λ̂− 1

)2

E
[
ε2
] .

We can do the same for (7), so that

π1
c ' cλ̂−λ̂(λ̂− 1)λ̂−1

1 +
1

2

(ln
λ̂

λ̂− 1

)2

+
1

λ̂− 1
− 1

λ̂

E
[
ε2
] .

Therefore, the profit ratio is

π0
c

π1
c

=
1 + 1

2

(
ln λ̂

λ̂−1

)2
E [ε2]

1 + 1
2

((
ln λ̂

λ̂−1

)2
+ 1

λ̂−1
− 1

λ̂

)
E [ε2]

. (8)

We can verify that π0
c

π1
c
< 1 and π0

c

π1
c

= 1 when E [ε2] = 0. It is also shown that π0
c

π1
c

decreases in

E [ε2] , the variance of the noise term.

Moreover, we can verify the profit loss shown in (8) tends to be small under a reasonable

dispersion of the random variation. Assuming that the observed percentage fee used by Amazon
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(i.e., 15%) is determined by (5), this implies λ̂ = 6.667. Equation (8) then implies that as long

as the standard deviation of λ is smaller than 3.073, the platform earns more than 90% of the

optimal profit.

3 Sellers’ market power

We suppose that for each good there are nc ≥ 1 identical quantity-setting sellers on the platform

(i.e., Cournot competitors). This includes the special case nc = 1, for which each good is sold

by a local monopolist. Each seller obtains the goods at a unit cost c and sells them at a retail

price pc. In Section 3.1 below we show that without information on each good’s cost, the

platform can continue to use the Bertrand fee schedule and earn a higher profit than if it knew

the cost of each good and set the optimal per-transaction fee for each good. In Section 3.2 we

derive analytical results for the case d = 0 and show that while the Bertrand fee schedule is

not necessarily the optimal affine fee schedule for all the GPD demands, it can be very close.

Finally, in Section 3.3, we consider the general case in which d > 0 and the platform is allowed

to use a non-linear fee schedule. Calibrating the model to Amazon’s DVD sales ranks and fees,

we show that the platform does not lose much by using the Bertrand fee schedule rather than

the optimal fee schedule.

3.1 Bertrand fee schedule versus optimal per-transaction fees

We first consider the problem of a platform with full information on c and nc, setting an optimal

per-transaction fee for each good.

� Optimal per-transaction fees

Suppose the platform charges a per-transaction fee Tc for good c. Let qc,i denote the output

sold by seller i for good c. Each seller i sets qc,i taking the output by competing sellers qc,−i =

Qc − qc,i as given, and maximizes its profit (pc − c− Tc) qc,i. Assuming F follows the GPD

F (x) = 1− (1 + λ (σ − 1) (x− 1))
1

1−σ ,
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where λ > 0 and σ < 2, the total demand for good c is

Qc = 1− F
(pc
c

)
=
(

1 + λ (σ − 1)
(pc
c
− 1
)) 1

1−σ
,

which implies that the inverse demand is

pc = c

(
1 +

Q1−σ
c − 1

λ(σ − 1)

)
.

Therefore, an individual seller’s profit maximization problem is

max
qc,i

c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
qc,i − (c+ Tc)qc,i.

The first-order condition for good c is

c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
= qc,i

(
c(qc,−i + qc,i)

−σ

λ

)
+ c+ Tc.

In a symmetric Cournot equilibrium, qc,i = qc for every seller, so the total sellers’ output

Qc = ncqc. We can then rewrite the first-order condition as

c(ncqc)
1−σ − c

λ(σ − 1)
=
c(ncqc)

1−σ

ncλ
+ Tc,

and derive

Qc = ncqc =

(
cnc + λ(σ − 1)Tcnc
cnc − (σ − 1)c

) 1
1−σ

. (9)

Accordingly, the price of good c is

pc = c

(
1 +

λTcnc + c

λc(nc + 1− σ)

)
=

Tcnc
(nc + 1− σ)

+
1 + (nc + 1− σ)λ

(nc + 1− σ)λ
c, (10)

or
pc
c

=
nc

(nc + 1− σ)

Tc
c

+
1 + (nc + 1− σ)λ

(nc + 1− σ)λ
.

The platform takes (9) as given and maximizes its profit by setting a per-transaction fee for
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good c as follows

max
Tc

(Tc − d)

(
cnc + λ(σ − 1)Tcnc
cnc − (σ − 1)c

) 1
1−σ

.

The first-order condition implies the optimal per-transaction fee T fc :

T fc =
λd+ c

λ (2− σ)
, (11)

which yields the same profit-maximizing platform fees as implied by the Bertrand fee schedule

(see equation (9) in the main paper). The optimal per-transaction fee does not depend on the

number of sellers, and so also holds for a monopoly seller. Note that to ensure a meaningful

solution (i.e., T fc > d) , it is required that

d (σ − 1) +
c

λ
> 0. (12)

This is satisfied for the GPD demand specification as stated in our main paper. Note that when

demand is log-linear or log-convex, the GPD specification requires that σ ≥ 1 so the condition

in (12) holds. When demand is log-concave, the GPD specification requires that σ < 1 and

d < c
λ(1−σ) , so the condition in (12) again holds.

Substituting (11) into (9) and (10), we get

pc =
ncd

(2− σ)(nc + 1− σ)
+
nc + (2− σ) + (2− σ)(nc + 1− σ)λ

(2− σ)(nc + 1− σ)λ
c, (13)

and

Qc =

(
λ(σ − 1)ncd+ cnc

(2− σ)(cnc − (σ − 1)c)

) 1
1−σ

. (14)

As a result, the platform profit from good c is

πc =

(
(σ − 1)d

2− σ
+

c

(2− σ)λ

)(
λ(σ − 1)ncd+ cnc

(2− σ)(cnc − (σ − 1)c)

) 1
1−σ

.

� Affine fee schedule

Now consider Cournot sellers facing an affine fee schedule T (pc) = t0 + t1pc for each trans-
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action. With GPD demand, the sellers’ problem is to choose qc,i to maximize

((1− t1)pc − c− t0)qc,i,

where

pc = c

(
1 +

(qc,−i + qc,i)
1−σ − 1

λ(σ − 1)

)
.

In a symmetric Cournot equilibrium, qc,i = qc for every seller, so the total sellers’ output

Qc = ncqc. The first-order condition then requires

(1− t1)c
(

1

λ(σ − 1)
− 1

)
+ c+ t0 =

(1− t1)cQ1−σ
c

λ

(
1

σ − 1
− 1

nc

)
. (15)

� Comparing Bertrand fee schedule and optimal per-transaction fees

Substituting the Bertrand fee schedule from equation (6) in the main paper into (15) gives

the same price and output for a given c as we found above in (13) and (14) for the full information

case. That is, the price and output for each good are identical to that implied by the optimal

per-transaction fee (11). However, the per-transaction fee for good c implied by the Bertrand

fee schedule is now

T ∗ (pc) = t0 + t1pc =

(
λ

1 + (2− σ)λ
+

nc
(1 + (2− σ)λ)(2− σ)(nc + 1− σ)

)
d

+

(
1

1 + (2− σ)λ

)(
nc + (2− σ) + (2− σ)(nc + 1− σ)λ

(2− σ)(nc + 1− σ)λ

)
c,

which is strictly higher than the fee in (11) if and only if the condition (12) holds. This implies

the platform earns a higher profit using the Bertrand fee schedule than if it used the optimal

per-transaction fee for each different good assuming full information. This result holds for any

nc ≥ 1, and so also holds for monopoly sellers.

This result shows that the Bertrand fee schedule can be used in this setting to solve the price

discrimination problem. It delivers the same price and output for each good without using any

information on each good’s cost. At the same time, the Bertrand fee schedule generates a higher

profit for the platform because it mitigates the double marginalization problem associated with

using the optimal per-transaction fee for each good, allowing the platform to set a higher fee
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for each good while achieving the same level of final price and output.

3.2 Bertrand fee schedule versus the optimal affine fee schedule

In this section, assuming d = 0, we show that the Bertrand fee schedule (6) from the main

paper is very close to the optimal affine fee schedule in the presence of double marginalization.1

In this case, the Bertrand fee schedule (6) in the main paper implies the following proportional

fee schedule

T ∗ (pc) =

(
1

1 + (2− σ)λ

)
pc. (16)

We can then check whether this is the optimal affine fee schedule in general.

Consider a platform maximizing its profit by using an affine fee schedule t0 + t1pc. We

assume that the platform cannot subsidize sellers to operate by setting t0 < 0. Doing so is

likely to create an adverse selection problem, in which some sellers sign up just to collect t0 and

then do not sell anything. This imposes the requirement that t0 ≥ 0.

Subject to this requirement, the platform then solves the following problem:

π = max
t0,t1

∑
c

gc (t0 + t1pc)
(

1− F
(pc
c

))
subject to two additional conditions

pc = c

(
1 +

Q1−σ
c − 1

λ(σ − 1)

)
(17)

and

(1− t1)c
(

1

λ (σ − 1)
− 1

)
+ c+ t0 =

(1− t1)cQ1−σ
c

λ

(
1

σ − 1
− 1

nc

)
, (18)

where (17) is given by the GPD demand and (18) is from the first-order condition derived

above. We can verify that the constraint t0 ≥ 0 is binding at the maximum (that is, ∂π
∂t0

< 0

when evaluated at the optimal t1 and t0 = 0), so the optimal affine fee schedule is also just

a proportional fee schedule. Moreover, given that t0 = 0, pc/c does not depend on c, so the

platform can solve for the optimal t1 without knowing the distribution of c. The first-order

1If d > 0, the results will depend on the distribution of c. We explore this case in Section 3.3 below.
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condition on t1 requires

(1 + λ (1− σ)) (1− t1 − t1λ (1− σ)) (1− t1)− t1λ (1 + λ (1− σ))

= nc

(
t1

1− t1
λ2 (2− σ)− λ

)
. (19)

The optimal proportional fee implied by (19) is in general not equal to the proportional fee

implied by (16), but based on an examination of some common demand functions, it is very

close and so are the profits.

Consider first the case of constant elasticity demand, where σ = 1 + 1
λ

and λ > 1. In this

case, both (16) and (19) yield t1 = 1/λ, and so identical profits. Thus, in this case the Bertrand

fee schedule coincides with the optimal affine fee schedule.

Next consider the case of exponential demand where σ = 1. Then (19) implies the optimal

proportional fee satisfies

(1− t1)3 + λ(1− t1)(nc − t1) = nct1λ
2,

which has a unique solution. In contrast, (16) implies the proportional fee

t1 =
1

1 + λ
.

The two fees are not exactly equal, but they are very close. For the empirically meaningful range

where the proportional term t1 of the Bertrand fee schedule satisfies t1 ≤ 50% (or equivalently,

λ ≥ 1), the Bertrand fee schedule can recover more than 98.5% of the profit under the optimal

affine fee schedule when all sellers are monopolists (so nc = 1 for all c). Moreover, the profit

gap between using the Bertrand fee schedule and using the optimal affine fee schedule decreases

monotonically in nc, and the two converge as the number of Cournot sellers gets large.

Finally, consider the case of linear demand where σ = 0. Then (19) implies the optimal
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proportional fee satisfies

(1− t1)2 (1 + λ) (1− t1 − t1λ)− t1(1− t1)λ (1 + λ)

= nc
(
2t1λ

2 − λ(1− t1)
)
,

which has a unique solution. In contrast, (16) implies the proportional fee

t1 =
1

1 + 2λ
.

For the empirically meaningful range where the proportional term t1 of the Bertrand fee schedule

satisfies t1 ≤ 50% (or equivalently, λ ≥ 0.5), the Bertrand fee schedule can recover more than

97.5% of the profit under the optimal affine fee schedule when all sellers are monopolists (so

nc = 1 for all c). Again, the profit gap between using the Bertrand affine fee schedule and using

the optimal affine fee decreases monotonically in nc, and the two converge as the number of

Cournot sellers gets large.

3.3 Bertrand fee schedule versus the optimal fee schedule

Finally, we compare the platform’s profit from the Bertrand fee schedule with its profit from

the optimal (non-linear) fee schedule. Once we allow for a non-linear fee schedule, the optimal

fee schedule will depend on the distribution of goods G(c). This is also true for the optimal

affine fee schedule once we allow d > 0. Therefore, to proceed, we need to assume some realistic

distribution for c and calculate the profitability of different fee schedules numerically. We use

the distribution based on fitting a log-normal distribution to the actual distribution of sales

obtained from sales ranks of DVDs sold on Amazon (as explained below). We assume sellers face

constant elasticity demand—recall, when d = 0, this is the benchmark for which the Bertrand

fee schedule coincides with the optimal affine fee schedule regardless of the number of sellers

that are competing. We use the parameter values d = 1.35 and σ = 1.15 so that the Bertrand

fee schedule matches the fee schedule used by Amazon for DVDs (i.e., $1.35+15% shown in

Table 1 in the main paper). We assume each seller is a monopolist (i.e., nc = 1).

With these assumptions, we compare the profit the platform obtains for different types
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of fees and fee schedules. Note we continue to restrict our attention to fee schedules and do

not consider other more complicated mechanisms. Thus, our focus is on how much better

a platform can do by allowing the ad-valorem component of the transaction fee to be any

non-linear function of price.2

As noted above, the optimal fee schedule will in general depend on the distribution of c we

assume. Rather than using an arbitrary and possibly unrealistic distribution, we proceed by

calibrating our model to a realistic distribution of goods being sold. The platform we study is

Amazon’s marketplace for DVDs. Using a web robot, we collected data on every DVD that was

listed under “Movies & TV” on Amazon’s marketplace in January 2014. Given shipping fees

are often not included in the listed price, we focus on the items where the listed price included

free shipping, resulting in a sample with 191,280 distinct items. The data collected include the

title, unique ASIN number identifying the DVD, the price, and sales rank of each DVD. Since

some DVDs are listed with extreme prices, we restrict our sample to DVDs selling for no more

than $300.3

Given we do not directly observe the sales of each DVD, we use a power law to infer it from

the sales rank data, so Qi,c = aR−φi,c , where Qi,c is the estimated sales of an item and Ri,c is the

corresponding sales rank.4 The parameter a does not affect our results, so we normalize it by

setting a = 1. We assume φ = 1.7, which is the number suggested by Smith and Telang in an

experimental study on DVD sales on Amazon.5 With the value of d and λ as noted above (i.e.,

calibrated to Amazon’s fee schedule for DVD sales), we derive the distribution of DVDs being

2Note that such fee schedules (indeed affine fee schedules) are optimal mechanisms when sellers are perfectly
competitive but will not be in general once sellers have market power. For instance, such fee schedules rule out
the possibility that the platform can charge sellers joining fees. In practice, sellers are rarely charged joining fees.
A formal analysis of why joining fees are not commonly used is outside the scope of our paper, but presumably
there are practical difficulties for platforms to use such fees given that they face tremendous heterogeneity across
different goods, for example, in the cost of sellers, the market size for each good, and the competition facing
each seller. Without detailed information on each of these, it could be difficult for a platform to set appropriate
joining fees in order to earn a higher profit than simply using the Bertrand affine fee schedule.

3A concern with extreme DVD prices is that the prices listed are unlikely to reflect the prices at which
transactions actually take place. For instance, some sellers post extreme prices as placeholders to avoid a
temporary delisting when they are out of stock or away for vacation. Others may be errors in the seller’s entry
of its prices.

4Power law distributions are widely used to describe rank data. See Judith Chevalier and Austan Goolsbee
(2003). “Measuring prices and price competition online: Amazon.com and Barnesandnoble.com.” Quantitative
Marketing and Economics, 1(2), 203–222 for detailed discussions as well as an application to online sales data.

5See Michael Smith and Rahul Telang (2009). “Competing with free: The impact of movie broadcasts on
DVD sales and internet piracy,” MIS Quarterly, 33, 321–338.
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sold on Amazon by extending our theory to allow for the possibility that for each good there

can be a different number of potential buyers. The number of transactions for a distinct good i

with cost c is Qi,c = mi,cQc and the platform makes a profit Πi,c = mi,cΠc, where Qc and Πc are

the quantity and profit expressions from our theory based on a unit mass of potential buyers,

and mi,c is the number of potential buyers for good i with cost c. We denote the number of

distinct goods with cost c as mc. A platform’s total profit is therefore

Π =
∑
c∈C

mc∑
i=1

mi,cΠc. (20)

Given (20), all our previous analysis holds except that we need to change the mass gc to∑mc
i=1mi,c. Given the value of λ, and the observed price pc and quantity Qi,c for each good

traded on the platform, we can then identify the number of potential buyers mi,c for each good.

Substituting T (pc) = a0 + a1pc into

Qi,c = mi,c

(
1 +

λ (σ − 1)Tc
c

) 1
1−σ

= mi,c

(
1 +

Tc
c

)−λ
,

we derive

mi,c =
Qi,c(
pc

(1−a1)pc−a0

)−λ .
The resulting weight

∑mc
i=1mi,c is the empirical measure of mass gc. Finally, we use a log-normal

distribution to fit the empirical distribution of gc, which is evaluated at each of the 300 one-

dollar bins of costs c up to $300. The fitted log-normal distribution has two parameters (log

mean =3.0347 and log standard deviation =0.8048). It is shown in Figure 5.

With this distribution of c given over the integer values of c from 1 to 300, we first work out

the platform’s profit when it can only choose a fixed per-transaction fee (i.e., without any price

discrimination). The optimal fixed per-transaction fee turns out to be $8.556, which results in

the platform obtaining a total profit of 0.383 when integrating over all goods for which there are

sales. Obviously, if the platform can observe each different good sold by the sellers, it can do

better setting the per-transaction fee that is optimal for each good c. This increases its profit to

0.457. This 17.7% increase in platform profits is the gain attributable to price discrimination.
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Figure 5: Fitted distribution of DVD sales
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Consistent with our results in Section 3.1 above, we find that the benefits of this price

discrimination can be obtained by using the Bertrand fee schedule, which has the added benefit

of mitigating double marginalization. Indeed, the platform can increase its profit to 0.537, a

further 16.3% increase in profits by using the Bertrand fee schedule. Taking account of the

fact sellers are monopolists and the particular distribution of c, the platform can only increase

its profit by a further 1.5% moving to the optimal affine fee schedule from the Bertrand fee

schedule which is also affine.

The final and most challenging step is to work out the optimal (non-linear) fee schedule

T (p). We start from the optimal affine fee schedule, which is a degree one polynomial. We

then increase the degree of the polynomial by one (to a quadratic) and find again the optimal

polynomial fee schedule. In this case, the platform’s profit increases by 1.2%. We repeat this

procedure until the platform’s profit no longer increases by more than 0.01% with the increase in

the degree of the polynomial. Since a polynomial can approximate any continuous fee schedule,

this approach is a practical way to search for the optimal function from the infinite possibilities

for the optimal function.6 Even this polynomial approach is computationally demanding, given

6It seems reasonable to expect the optimal transaction fee schedule should not only be continuous but smooth
given there are 300 different values of c, the empirical distribution of which we have approximated with the
smooth log-normal distribution. Any sudden change in fees, which could be desirable for extracting more from
one monopolist with a particular value of c will likely reduce the amount that can be extracted from other
monopolists with somewhat higher or lower values of c.
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that we need to find k + 1 parameters for a k-degree polynomial, where for every feasible

combination of the k + 1 parameters, we need to solve the monopolist’s pricing problem for

each of the 300 values of c, to obtain the platform’s corresponding profit.7

The optimal fee schedule based on this approach turns out to be a 5th-degree polynomial,

which increases the platform’s profit by less than 0.0005% compared to the 4th-degree polyno-

mial. The resulting fee schedule is convex for high prices. The overall effect on profits, however,

is small. Compared to the optimal affine fee schedule, moving to the optimal fee schedule only

increases the platform’s profit by a further 1.3%.

We have repeated this exercise with linear demand. We use the same distribution of c and

the same value of d, but assume σ = 0 and λ = 0.85
0.3

, which implies the Bertrand fee schedule

has the same 15% proportional fee consistent with Table 1 in the main paper. The results are

similar to those with constant elasticity demand; indeed, the Bertrand fee schedule does even

better in this case.

The improvements in the platform’s profit from moving from one fee schedule to another

are summarized in Table 2 in the main paper. These, together with the different fee schedules,

are shown graphically in Figure 6 below. The top panel in Figure 6 shows the fee schedules

(fees as a function of the seller’s monopoly price) for constant-elasticity demand (on the left)

and linear demand (on the right). The green horizontal line in these plots represents the fixed

per-transaction fee. The red dotted line represents the fee schedule implied by allowing the

per-transaction fee to differ for each good in the hypothetical case in which each good’s c is

observed by the platform. The three remaining fee schedules are the Bertrand fee schedule,

optimal affine fee schedule, and optimal non-linear fee schedule respectively. As can be seen,

they are not very different, especially in the case of linear demand. The bottom panel of Figure

6 shows the platform’s profit from each different good (c = 1, c = 2, ... c = 300). As can be

seen the platform obtains higher profit on every good when it switches from a per-transaction

fee for each good to the Bertrand fee schedule. However, there is almost no difference in profit

between the Bertrand fee schedule, the optimal affine fee schedule, and the optimal non-linear

fee schedule.

7We used the particle swarm algorithm in Matlab to speed up the optimization.
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Figure 6: Fees and associated platform profits
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