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Abstract
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insurance to depositors. The contractual arrangement that decentralizes this
allocation resembles a standard bank deposit in that it has a demandable
debt-like structure. When withdrawals are unusually high, however,
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1 Introduction

Banks and other financial intermediaries engage in maturity transformation by issuing short-

term liabilities while investing in assets whose full return is realized over a longer time horizon. In

fact, much of an intermediary’s liabilities are usually payable on demand, meaning that a holder

is entitled to request immediate repayment. These liabilities are also debt-like in the sense that

the value of a claim is typically not contingent on the precise timing of withdrawal; during nor-

mal times, all holders receive the “face value” of their claim. During episodes of high withdrawal

demand, however, claims that are repaid late in the process can be subjected to considerable dis-

counts. Such intermediation arrangements often appear to be fragile in the sense of being suscepti-

ble to runs – events in which liability holders rush en masse to redeem their claims and, as a result,

resources are allocated inefficiently. In this paper, we provide a model of financial intermediation

that accounts for all of these features simultaneously. We follow Green and Lin (2003), Peck and

Shell (2003), and others in that we place no restrictions on financial arrangements or the allocation

of resources other than those explicitly specified as part of the environment.

Arrangements based on maturity transformation and debt-like liabilities are not limited to re-

tail banking; they are widespread and integral parts of the modern financial system. A number of

such arrangements experienced events resembling a run during the recent financial crisis, including

wholesale deposits, brokerage accounts, repurchase agreements, and money market mutual funds,

to name a few.1 Regulatory reform efforts in the wake of the crisis have focused on limiting matu-

rity transformation by requiring financial institutions to more closely align the maturity structure of

their assets with that of their liabilities and to limit the debt-like features of some contracts. Evalu-

ating the desirability of such reforms requires having a theory of financial arrangements based on

maturity transformation that explains why these arrangements arise and what social benefits they

offer.

Diamond and Dybvig (1983) laid the foundations for such a theory by identifying important

elements of an economic environment in which financial intermediaries play a socially valuable

role while at the same time being susceptible to runs. In their model, high-return investment takes

time to mature and agents have random needs for immediate liquidity. A risk-sharing arrange-

ment resembling a bank can improve the allocation of resources in this setting. The fact that a

depositor’s liquidity needs are private information requires the bank to allow depositors to choose

1 For descriptions of some of these events, see Baba et al. (2009), Duffie (2010), McCabe (2010), Gorton and
Metrick (2012), and Yorulmazer (2014).
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when to withdraw their funds. This ability to choose, in turn, creates the potential for inefficient

withdrawals and fragility. However, private information alone is not enough to explain the fragility

of financial arrangements as an equilibrium outcome. Diamond and Dybvig hint at two other el-

ements that would be needed for this theory to successfully explain fragility: (i) some form of

first-come, first-served (or sequential service) constraint and (ii) a degree of aggregate uncertainty

about the total demand for liquidity. While the role of these additional elements was discussed

informally in Diamond and Dybvig’s seminal work, the precise details of the arguments were left

mostly unexplored.

Starting with Wallace (1988), a literature has developed that attempts to explicitly model these

elements of the theory and investigate the extent to which fragility is an inherent feature of banking

and other financial arrangements.2 The approach in this literature is to fully specify the physical

environment and to derive the predicted outcomes by solving an allocation problem with no further

restrictions on what can be attained. Two important lessons have emerged. First, fragility obtains

only if the payouts associated with some of an institution’s short-term liabilities are relatively

insensitive to the state of aggregate liquidity demand. In addition, the information available to

depositors when making withdrawal decisions interacts with the payout structure in subtle ways to

determine the fragility of an arrangement.

The relative insensitivity of payouts in these models is a direct consequence of sequential ser-

vice. A bank learns about the level of aggregate liquidity demand by observing individual de-

positors’ actions. In the absence of sequential service, the bank would fully observe this demand

before redeeming any liabilities and would set payouts accordingly. Under standard assumptions

on preferences, the resulting allocation would give depositors no incentive to run. However, when

withdrawals happen sequentially and depositors must be served as they arrive, the bank has less

information when payouts are made and, hence, these payouts are necessarily less responsive to

underlying conditions.

As more withdrawals occur, the bank will gradually learn the level of aggregate liquidity de-

mand and adjust payouts to withdrawing depositors accordingly. In such a setting, information

about a depositor’s position in the withdrawal order becomes critical to her decision. With no in-

formation, each depositor will consider it equally likely that she occupies each possible position

in this order. All depositors will then make the same comparison between the expected utilities of

2 See, for example, the survey in Ennis and Keister (2010b) and the papers cited therein.
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withdrawing early and of withdrawing late. If each depositor has some information about her own

position, on the other hand, each will face a different decision problem. The information structure

thus determines the nature of the strategic interaction between depositors and thereby influences

the scope for fragility.

Previous work has derived different results from different combinations of assumptions about

sequential service and the information structure. Green and Lin (2003) present one reasonable for-

mulation and show that, under certain conditions, the optimal banking arrangement is not fragile.

In their model, all depositors report to the bank sequentially and either withdraw their deposit or

communicate that they do not currently wish to withdraw. Depositors have some information about

their likely position in the withdrawal order when they make this decision. The bank conditions the

payout to a withdrawing depositor on all previous reports: Subsequent withdrawals are adjusted

downward if a depositor makes an early withdrawal and upward if she instead reports that she will

not withdraw early. In this way, the payouts to depositors may be highly sensitive to the pattern of

withdrawal decisions. Green and Lin (2003) show that this sensitivity can be sufficient to rule out

bank runs as an equilibrium outcome. Peck and Shell (2003) consider the case where depositors

have no information about their place in the withdrawal order and assume that only those deposi-

tors intending to withdraw report to the bank. Under this alternative specification, they show that

bank runs can arise in equilibrium.3

In this paper, we propose an alternative environment that shares many features of these earlier

specifications but modifies some that we regard as extreme and perhaps unrealistic. In contrast

to Green and Lin (2003), we assume that depositors only report to the bank when they wish to

withdraw. In this respect, we follow Peck and Shell (2003), who state that “[i]t is hard to imagine

people visiting their bank for the purpose of telling them that they are not interested in making any

transactions at the present time.” Additionally, we depart from the previous literature by assum-

ing that each depositor can observe how many withdrawals have already occurred when deciding

whether to withdraw. As a result, they can calculate exactly how much they will receive if they

choose to withdraw, instead of facing uncertainty that is only resolved after the withdrawal decision

has been made, as in both Green and Lin (2003) and Peck and Shell (2003).

3 Peck and Shell (2003) show that their result does not depend critically on whether depositors report to the bank
when they do not wish to withdraw; bank runs are possible in equilibrium under either specification. The key as-
sumption is that depositors have no information about their position in the withdrawal order. Peck and Shell (2003) also
use a different specification of preferences from Green and Lin (2003), but Ennis and Keister (2009) show that this dif-
ference is not essential for their results; see also Sultanum (2014) and Bertolai et al. (2014).
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We show that this new specification of the environment induces some properties in the banking

arrangement that resemble those observed in reality. In particular, the bank’s payout schedule is

initially almost completely insensitive to the pattern of withdrawal decisions and, in this sense,

displays the debt-like property that is common in demand deposit contracts. Furthermore, in sit-

uations where withdrawal demand becomes unusually high, depositors who are late to withdraw

suffer significant discounts relative to the face value of their deposits, a type of “partial suspension

of convertibility” that Wallace (1990) argues was a common feature of historical banking panics.4

We also show that the frictions in our environment restrict the flow of information sufficiently

to make a run on the bank consistent with equilibrium. The key ingredient for this result is that

when the bank only observes the actions of depositors who withdraw, it is relatively slow to react

to a situation in which aggregate withdrawal demand is high, as occurs when depositors run on

the bank. This slow reaction is anticipated by depositors and creates an incentive for those who

have the opportunity to be relatively early in the withdrawal order to withdraw regardless of their

liquidity needs. Based on these findings, we conclude that several common features of banking

– the face-value property of demand deposits, sharp discounts during crises, and fragility – may

have the same fundamental source: the gradual revelation of information inherent in a withdrawal

process that takes place sequentially.

The paper is organized as follows. Section 2 describes the environment, including our specifica-

tion of sequential service and the information structure. Section 3 derives the efficient allocation of

resources in the absence of private information, which serves as a useful benchmark in the rest of

the analysis. Section 4 returns to the case of private information and describes a banking arrange-

ment that aims to implement this allocation. Section 5 studies financial fragility and demonstrates

that a bank run can arise in our environment. Section 6 offers some concluding remarks.

2 The environment

There are two time periods, indexed by  ∈ {0 1}, and a finite number  of depositors. There is
a single good that can be consumed in each period. Let  = (0  

1
 ) ∈ R2+ denote the consumption

of depositor  in each period. A depositor’s preferences depend on her type  ∈ {0 1}  If  = 0

the depositor is impatient and only cares about consumption in period 0. If  = 1 the depositor is

4 For discussions of the specific features of historical suspension schemes, see Friedman and Schwartz (1963, pp.
160-8, 328-30), Selgin (1993), and Dwyer and Hasan (2003).
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patient and cares about the sum of her consumption in the two periods. Depositor ’s utility level

is given by


¡
0 + 

1


¢
=

1

1− 

¡
0 + 

1


¢1−
 (1)

As in Diamond and Dybvig (1983), we assume the coefficient of relative risk aversion  is greater

than unity. Each depositor’s type  is an independent draw from a Bernoulli distribution, where

 is the probability of being impatient, and is private information. Let  = (1     ) denote

the vector of types for all depositors, and let Ω denote the set {0 1}, so that we have  ∈ Ω and

 ∈ Ω 

We use  () to denote the total number of patient depositors in the profile  that is

 () =
X

=1



Let  () denote the probability of the set of profiles  in which there are exactly  patient de-

positors. Since types are independent across depositors,  is a binomial random variable and we

have
 () =  ( ) (1− ) − (2)

where  is the standard combinatorial function

 ( ) =
!

! ( − )!
 (3)

There is also a bank that has an endowment of  units of the good at the beginning of date 0

and aims to distribute these resources to maximize depositors’ expected utility.5 A depositor can

withdraw from the bank either in period 0 or in period 1 but not both. Depositors are isolated

from each other and goods must be consumed immediately after withdrawal. These assumptions

imply that no markets exist in which depositors could trade after withdrawing; a depositor simply

consumes what she receives from the bank (see Wallace, 1988, on this point). Each unit of the

good that is not consumed in period 0 is transformed into   1 units of the good in period 1

Depositors’ opportunities to withdraw in period 0 arrive sequentially in a randomly determined

fashion, with each depositor equally likely to occupy each position in the sequence. When her

opportunity arrives, a depositor is able to observe how many withdrawals have already been made.

5 It would be straightforward to add an earlier time period to the model in which individuals have private endowments
and choose whether to deposit in the bank, as in Peck and Shell (2003) and others. We bypass this step for simplicity.
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She does not, however, observe the decisions of any depositors who have already chosen not to

withdraw in period 0. Likewise, the bank only observes depositors’ actions when they withdraw.

In other words, the bank always knows how many withdrawals it has already processed, but it has

no information about depositors who may have already chosen not to withdraw in period 0, nor

about depositors who have not yet had an opportunity to withdraw.

When a depositor withdraws, the amount she receives can depend only on the information

currently available to the bank. This sequential service constraint limits the ability of the bank

to make payouts contingent on the demand for early withdrawals. Consider, for example, the

first depositor to withdraw in period 0 When she arrives, the bank only knows that at least one

depositor is withdrawing; it has no other information that can be used to make inferences about the

total number of early withdrawals that will take place. The consumption this depositor receives

must, therefore, be the same for all outcomes in which at least one withdrawal occurs; let 1 denote

this amount. Similarly, let  denote the amount of consumption received by the  depositor to

withdraw in period 0, which must be the same for all outcomes in which at least  early withdrawals

occur. The restrictions imposed by the sequential service constraint thus imply that the period-0

actions of the bank can be fully described using a payout schedule  = {}=1. This schedule
must satisfy the feasibility constraints

X
=1

 ≤  and  ≥ 0 for all  (4)

Notice that the sequence  is a contingent plan; it specifies the period-0 payouts the bank will

make in all possible scenarios, including the one where all  depositors withdraw early. If fewer

than  depositors withdraw in period 0 some of these payouts will not be made. After all depositors

have had an opportunity to withdraw in period 0 the bank observes that the period has ended and

the economy moves to period 1 At this point, the bank knows how many depositors have not yet

withdrawn. Since depositors are risk averse, efficiency requires that the bank divide the matured

assets in period 1 evenly among these depositors. As a result, the operation of the bank in our

environment is completely summarized by the period-0 payout schedule 

Our formulation of the sequential service constraint differs from that in Wallace (1988, 1990)

and Green and Lin (2003). In those papers, each depositor contacts the bank in period 0 and an-

nounces whether or not she wishes to withdraw. In such a setting, the period-0 payout received

by a depositor can depend on the entire sequence of withdrawal decisions made up to that point.
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We instead follow Peck and Shell (2003) in assuming that the bank only observes the decisions

of those depositors who have chosen to withdraw. This formulation slows down the flow of infor-

mation about the level of total withdrawal demand to the bank and, in so doing, places stronger

restrictions on the payout schedule as described above. In the sections that follow, we show how

this slower flow of information to the bank has important implications for the form of optimal

banking arrangements and for financial fragility.

We also depart from most of the existing literature by assuming that each depositor is able to

observe the number of withdrawals that have already taken place when her opportunity to withdraw

arises.6 In Green and Lin (2003), a depositor observes a signal correlated with her position in the

sequence of withdrawal opportunities before making her decision. However, because she does not

observe actions taken by the depositors before her in this sequence, she will typically be uncertain

about the number of withdrawals that have already been made and, hence, about the amount she

would receive from the bank if she chose to withdraw. In Peck and Shell (2003), a depositor re-

ceives no information about her position in the sequence or the actions of other depositors. Since

the bank necessarily observes the actions of those depositors with whom it interacts, both of these

approaches imply that a depositor has less information than the bank about the withdrawal history.

This asymmetry raises the question of whether the bank might choose to communicate its informa-

tion to a depositor before she makes her choice or whether a depositor could change her decision

after seeing the amount offered by the bank. (See Nosal and Wallace, 2009, for an analysis of

the former issue.) Under our approach, in contrast, depositors and the bank observe exactly the

same information about the withdrawal history; there is no scope for the bank to either provide or

withhold information about this history to depositors.

3 The efficient allocation
We begin our analysis by deriving the efficient allocation of resources in an environment that

is identical to the one just described, but where the preference type  can be observed by the

bank when depositor  has her opportunity to withdraw. This allocation will be a useful benchmark

in subsequent sections when we study the equilibria of a game played by depositors with private

information.

6 Andolfatto et. al (2007) extend the main result of Green and Lin (2003) in a setting where depositors observe
withdrawal decisions as they are made. Gu (2011a) studies informational cascades and herding in a banking model
in which depositors can observe the withdrawals of others as they occur, but does not study self-fulfilling runs as
we do here.
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Given the form of preferences (1) and the return  1 on investment, efficiency clearly requires

that a depositor consume in period 0 if and only if she is impatient. When the bank can observe

types  therefore, it will only permit impatient depositors to withdraw in the early period. Let 

denote the amount of resources that the bank has remaining after serving depositors in period 0

under the payout schedule  so that 0 =  and

 =  −
X
=1

 for = 1     − 1 (5)

The bank’s objective function can then be written as

X
=1

 ()

Ã
−X
=1

 () + 
³

−


´!
+  (0)

Ã
−1X
=1

 () +  (−1)

!
 (6)

The efficient payout schedule is the sequence {∗} that maximizes (6) subject to the feasibility
constraints in (4) and the definition in (5). To solve for the efficient schedule, we reformulate (6)

as a dynamic programming problem. Define the following conditional probabilities:

 = Prob [ −  () ≥  |  −  () ≥ − 1] 

After the bank has encountered − 1 impatient depositors in period 0  is the probability that it
will meet at least one more. Using the binomial density in (2), this conditional probability can be

written as

 =

−P
=0

 ()

−+1P
=0

 ()



We can then derive the efficient payout schedule  as a function of these probabilities 

Proposition 1 The efficient payout schedule sets

∗ =
∗−1

()
1
 + 1

for  = 1     

where the sequence {∗} is defined by using {∗} in (5) and {} is defined recursively by  = 0
and

 = +1

³
+1

1
 + 1

´
+ (1− +1) ( − ) 1−

for  = 1      − 1.
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The proposition shows how the fraction of the remaining resources −1 that the  impatient

depositor will receive depends on the remaining conditional probabilities +1 +2 etc., as well

as on the parameters  and  A proof of the proposition is given in the appendix .

Example. Figure 1 plots the efficient payout schedule for the parameter values  = 11  = 6

and  = 05 when there are 20 depositors (in panel a) and 200 depositors (in panel b). The lower

curve in each panel represents, for each value of , the consumption ∗ that the 
 impatient

depositor will receive in period 0 The upper curve represents the level of consumption that all

patient depositors will receive in period 1 if there is a total of − 1 impatient depositors. The fact
that this latter curve lies everywhere above the former has the following interpretation. Consider

the last depositor in the sequence of period-0 withdrawal opportunities, and let the number of

impatient depositors before her be given by  − 1 If she is impatient, she will receive ∗, from
the lower curve in the figure; if she is patient, she will receive the consumption allocated to patient

depositors when there are a total of −1 impatient depositors, which is the corresponding point on
the upper curve. The figure shows that the last depositor in the sequence always consumes more

when she is patient than when she is impatient, regardless of the types of the other depositors.

Notice that this feature does not necessarily hold for other depositors. The first depositor in the

sequence, for example, consumes 1 if she is impatient and can end up receiving any point on

the upper curve if she is patient, depending on the total number of impatient depositors. In panel

(a), for example, she will consume more than 1 when she is patient if the number of impatient

depositors turns out to be less than 12 but otherwise she will consume less.

Using the solution given in Proposition 1, we can derive some properties of the efficient payout

schedule. First, we establish that this schedule offers depositors liquidity insurance in the sense

that the benefit of the return  on investment is shared by all depositors, even those who consume

before this return is realized. In a model with no aggregate uncertainty, Diamond and Dybvig

(1983) showed how   1 implies that the efficient level of consumption for all impatient depos-

itors is greater than the per-capita value of the bank’s assets in period 0When there is aggregate

uncertainty, as in our model here, the definition of liquidity insurance must be adjusted because

different impatient depositors consume under different circumstances. In this case, we say that a

payout schedule  offers liquidity insurance to the  impatient depositor if

 
−1

 − + 1
 (7)
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Figure 1: The efficient payout schedule

that is, if the amount given to this depositor is larger than the value of the bank’s remaining re-

sources divided by the number of depositors who have not yet withdrawn. The following result

shows that ∗ satisfies this expression for all values of  up to  − 1. A proof is given in the
appendix.7

Proposition 2 The efficient payout schedule ∗ offers liquidity insurance in the sense of (7) for
 = 1      − 1

This result has important implications for the shape of the efficient payout schedule as depicted

in the lower lines of Figure 1. When more depositors consume in the early period, before the

return  is realized, providing liquidity insurance for this group becomes more costly in terms of

lowering the consumption of patient depositors as a group. The bank’s efficient response to an

increase in the likely number of impatient depositors is, therefore, to decrease the consumption of

all remaining depositors. As additional withdrawals take place in period 0 the bank becomes more

pessimistic about the total number of impatient depositors. As shown in the figure, the bank adjusts

to this new information by setting the payout ∗+1 lower than 
∗
 The following proposition shows

that this monotonicity is a general feature of the efficient payout schedule.

7 Note that Proposition 2 only applies for  ≤ −1 because the feasbility constraint (4) implies that the payout made
to the last depositor if everyone is impatient,   cannot be greater than the bank’s remaining resources. In other words,
it is infeasible for condition (7) to hold for  = 
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Proposition 3 The efficient payout schedule is strictly decreasing, with ∗+1  ∗ for  =
1      − 1

Proof: From Proposition 1, we know that the efficient payout schedule satisfies

∗ =
∗−1


1
 + 1

and ∗+1 =
∗

+1
1
 + 1



where

∗ = ∗−1 − ∗

Combining these expressions yields

∗+1 = ∗


1


+1
1
 + 1



Using the second inequality in Lemma 1 (in the appendix), it follows immediately that ∗+1  ∗

for  = 1      − 1 ¥

Figure 1 also indicates that the schedule ∗ is initially quite flat, with ∗1 very close in value to

∗2 
∗
3 and several more payouts. Only as the number of early withdrawals becomes larger do the

downward adjustments in ∗ become visible. In other words, depositors withdrawing in period 0

are initially treated similarly, each receiving close to what might be considered the “face value”

of their deposit. This property emerges from the fact that, initially, withdrawals provide relatively

little information to the bank about the total number of impatient depositors and, hence, have little

impact on the efficient payout.

To understand this property better, consider the example in panel (a) of the figure. The total

number of impatient depositors in this example is likely to be close to 10 since each of the 20

depositors has a 12 probability of being impatient. When the first early withdrawal takes place,

the bank learns that at least one depositor is impatient, which rules out the (extremely unlikely)

event that all 20 depositors are patient. The bank’s belief about the distribution of  is only slightly

changed by this information, which leads it to set the payout for the next impatient depositor, ∗2

only slightly different from ∗1 More generally, the continuation probability +1 is very close to

1 for small values of  which implies that the bank is almost certain that additional withdrawals

will be made. Since depositors are risk averse, the efficient plan will approximately equalize the

values of all payments that are nearly certain to be made. As the number of depositors  increases,
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the information content of an additional withdrawal when  is small decreases because the fraction

of depositors who are patient is less likely to deviate significantly from its mean. As a result, the

payout schedule is initially flatter when  is larger, as illustrated in panel (b) of the figure.8

As the proportion of the population that has withdrawn in period 0 increases, additional with-

drawals become more informative about the value of  After 10 withdrawals have taken place in

panel (a), for example, the continuation probability 11 has fallen to 07. At this point, there is sig-

nificant uncertainty about whether or not an additional early withdrawal will be made. If another

depositor arrives to withdraw, the bank’s belief about  changes significantly and, as a result, the

payout ∗11 is noticeably lower than 
∗
10. As illustrated in the figure, these changes become larger

and larger as  increases toward the total number of depositors  This part of the curves resem-

bles what Wallace (1990) calls a “partial suspension of convertibility,” in which some depositors

receive significantly less than the face value of their deposits when the realized demand for early

withdrawal is high.

4 Banking

We now return to the environment in which preference types  are private information. In this

setting, the only way for the bank to make a depositor’s consumption contingent on  is to allow

her to choose the period in which she withdraws. We consider the following banking arrangement:

Each depositor chooses whether to withdraw early or late based on her own preference type and on

the number of withdrawals that have already been made when her opportunity arrives, and the bank

makes payouts according to the schedule ∗ derived in Proposition 1. This arrangement creates a

withdrawal game for depositors; the remainder of the paper is devoted to studying the equilibria

of this game.9

4.1 The withdrawal game

A depositor chooses a withdrawal strategy, which assigns a withdrawal period (either 0 or 1) to

each combination of her preference type  and the number  representing the opportunity to

8 Sultanum (2014) derives the efficient payout schedule in an environment with aggregate uncertainty and a con-
tinuum of depositors. Under some specifications, this schedule is initially very flat (see his Figure 2 on p. 99)
for the same reason ours is here.
9 In general, a withdrawal game can be defined based on any payout schedule  Our focus here, however, is ex-
clusively on the properties of the withdrawal game generated by the efficient payment schedule ∗
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make the  withdrawal in period 0,

 = Ω× {1     }→ {0 1} 

We use  to denote a profile of strategies, one for each depositor, and − to denote the strategies

of all depositors except 

Our interest is in the Bayesian Nash equilibria of the withdrawal game, where each depositor

chooses the strategy  that maximizes her expected utility while correctly anticipating the strate-

gies − of other depositors.10 We study symmetric equilibria, in which all depositors follow the

same strategy. Different depositors may still take different actions, of course, as their preference

types and withdrawal opportunities will differ.

As described above, impatient depositors only care about consumption in period 0 and, hence,

the individual best response to any strategy profile − will satisfy  (0 ) = 0 for all  In other

words, we only need to check what a depositor will choose to do when she is patient.

Consider the decision faced by a patient depositor who has an opportunity to make the  with-

drawal in period 0. If she chooses to withdraw, she will receive ∗. If she waits, the amount she

receives at  = 1 will depend on the total number of withdrawals that take place in period 0 which

is not yet known. Let b denote the number of depositors who wait until  = 1 to withdraw in this
case, including herself. Then  − b will be the total number of early withdrawals. Note that b
is a random variable that depends on both the number of patient depositors  and the profile of

withdrawal strategies followed by the other depositors, − Let 
³b; −´ denote the posterior

probability this depositor, using Bayes’ rule, assigns to the event that exactly b depositors (includ-
ing herself) wait until  = 1 to withdraw. Given this belief, she computes the expected utility of

waiting to withdraw, denoted  (; −)  as

 (; −) ≡
X
=1


³b; −´µ−b

¶
 (8)

An equilibrium of the withdrawal game is a strategy profile ∗ satisfying

∗ ( ) =

½
0 if  = 0 or  (∗)  

¡
; ∗−

¢
1 if  = 1 and  (∗)  

¡
; ∗−

¢ ¾ for all  for all 
10 While the structure of the game implies that there are sequential moves by the players, it is not hard to see that
the extensive form representation of the game has no proper subgames.

13



In other words, each depositor is optimally choosing when to withdraw given her beliefs about the

total number of early withdrawals, and those beliefs are consistent with the actions prescribed in the

equilibrium strategy profile ∗ Impatient depositors always withdraw early, and patient depositors

withdraw early when the value of the available payout,  (∗)  exceeds the expected value of

waiting, 
¡
; ∗−

¢
 Note that when a patient agent is indifferent, because  (∗) = 

¡
; ∗−

¢


either action ( = 0 or  = 1) is consistent with equilibrium.

4.2 Incentive compatibility

One strategy of particular interest is the no-run strategy, in which a depositor withdraws early if

and only if she is impatient

0 ( ) =  for all  (9)

Let 0 denote the no-run strategy profile. If 0 is an equilibrium of the withdrawal game, this

equilibrium achieves the efficient allocation of resources derived in Section 3.

In this case, the number of depositors who wait to withdraw, b is the same as the number
of patient depositors  A depositor’s initial belief about  is given by (2). To illustrate how the

posterior beliefs 
¡
; 0−

¢
are formed, suppose that  = 1 meaning that no withdrawals have

occurred yet. This situation could arise because the depositor is first in the sequence of withdrawal

opportunities, in which case it would convey no information about . However, it also could arise

because the depositor is later in the sequence but all of the depositors before her were patient, in

which case  is likely to be high. The depositor weighs the relative likelihood of these different

situations in updating her belief about  according to Bayes’ rule.

More generally, suppose a patient depositor observes that − 1 withdrawals have already been
made when her opportunity to withdraw arrives. Define −1

 to be the set of all type profiles  in

which there is a patient depositor in the  position with exactly − 1 impatient depositors in the
first  − 1 positions, that is,

−1
 =

(
 :  = 1 ∧

−1P
=1

(1− ) = − 1
)


The depositor knows that the realized profile  must lie in this set for some value of . The

following proposition derives her posterior belief about the number of patient depositors ; a proof

of the result is given in the appendix.
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Proposition 4 A patient depositor who anticipates that all other depositors are following (9) and
who has the opportunity to make the  withdrawal in period 0 will assign probability


¡
; 0−

¢
=  (; ) ≡

P
∈{:()=}

µ
 ()

P
=

I{∈−1 }
¶

P
∈Ω

µ
 ()

P
=

I{∈−1 }
¶

to the event that exactly  of the  depositors are patient, where I{} is the indicator function for
the set 

Using the distribution 
¡
; 0−

¢
 we can obtain the value of 

¡
; 0−

¢
from equation (8). The

no-run strategy profile is an equilibrium of the withdrawal game if and only if:

 (∗) ≤ 
¡
; 0−

¢
for  = 1      (10)

The left-hand side of these inequalities represents the value of withdrawing early and receiving

the payout ∗ for sure. The right-hand side is the expected utility of waiting to withdraw when all

other depositors are following (9). When these inequalities are satisfied for all values of  a patient

depositor will find it optimal to withdraw in period 1 regardless of the number of withdrawals that

have taken place when her opportunity arrives in period 0. As a result, there is an equilibrium of

the withdrawal game in which all depositors follow the strategy (9) and the efficient allocation of

resources obtains. In this case, we say that the efficient allocation is incentive compatible.

Our focus in the rest of the paper is on situations in which the efficient allocation is incentive

compatible. We follow an approach that is common in the literature by first solving for the efficient

payout schedule ∗ without imposing the incentive compatibility conditions, using Proposition 1,

and then verifying that the solution satisfies (10). Note that the constraints imposed by private in-

formation are not binding on the efficient allocation of resources in these cases. This fact illustrates

the benefits of banking arrangements that resemble demand deposit contracts, in which depositors

are allowed to choose when to withdraw their funds from the bank. As in Diamond and Dybvig

(1983) and others, such an arrangement allows the bank to potentially achieve the same allocation

of resources it would choose if it could directly observe each individual depositor’s consumption

preferences when she arrives. However, such arrangements may also open the door to financial

fragility in the sense of admitting other equilibria in which some patient depositors “run” on the

bank and withdraw in period 0 leading to an inferior allocation. In the next section, we investigate

whether such fragility can arise in our model and what forms it may take.
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5 Fragility

In this section, we investigate whether the withdrawal game defined above can have other

Bayesian Nash equilibria, in which some depositors choose to withdraw in period 0 even when

they are patient. If such equilibria exist, the bank is fragile in the sense that attempting to im-

plement the efficient allocation of resources using the arrangement described above could lead to

an inefficient outcome that resembles a run on the bank. We first show that there cannot be an

equilibrium in which all depositors attempt to withdraw early. We then construct an example of a

partial run equilibrium, in which some patient depositors withdraw early but others do not.

5.1 No full-run equilibrium

The type of bank run studied in most of the literature has all depositors attempting to withdraw

their funds in the early period.11 We refer to this strategy profile,

 ( ) = 0 for all   for all  (11)

as a full run. It is fairly easy to see that a full run cannot be part of an equilibrium in our model.

Consider a depositor with  =  meaning that all of the other  − 1 depositors have already
withdrawn when her opportunity to withdraw in period 0 arises. If she chooses to withdraw in

period 0, she will receive all of the bank’s remaining resources, ∗−1 If she waits until period 1 to

withdraw, however, she will receive the matured value of these resources ∗−1 Because  1 a

patient depositor in this situation would always strictly prefer to wait to withdraw. In other words,

the full-run strategy (11) is strictly dominated by a strategy with  (1 ) = 1 and, hence, cannot

be part of an equilibrium. The following proposition records this result.

Proposition 5 There is no equilibrium in which depositors play the strategy profile (11).

This aspect of our model is similar in spirit to one of the key features of Green and Lin (2003).

In their setting, depositors receive a signal about their position in the sequence of withdrawal

opportunities. If a depositor’s signal indicates that she is very likely to be last in this sequence, she

faces a decision that is similar to the one described above and will strictly prefer to wait until period

11 See, for example, Diamond and Dybvig (1983), Cooper and Ross (1998), and Peck and Shell (2003). Some
recent exceptions are Ennis and Keister (2009, 2010a), Gu (2011b), Azrieli and Peck (2011), Keister (2014), and
Keister and Narasiman (2015).
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1 if she is patient. Depositors in our model do not observe their place in the sequence; however,

a depositor who observes that everyone else has already withdrawn can readily infer she is in the

last position. For this reason, the Green-Lin logic for this last depositor applies in our setting as

well and a full-run equilibrium cannot exist. Green and Lin (2003) then use a backward-induction

argument to show that the no-run strategy profile is the unique equilibrium in their setting; no type

of run equilibrium can exist. In the next subsection, we show this stronger result does not hold in

our environment.

5.2 Partial-run equilibria

Proposition 5 shows that if a run equilibrium exists in our environment, it must be partial, with

only some depositors participating. One possibility is for depositors to run until the total number

of withdrawals reaches some critical level and then for the run to stop. Consider the following

class of strategy profiles

̄ ( ) =

½
0


for
 ≤ ̄
  ̄

for some 1 ≤ ̄ ≤  − 1 for all  (12)

Note that setting ̄ = 0 would correspond to a no-run strategy profile in (9), while setting ̄ = 

would correspond to a full-run strategy profile in (11). For values of ̄ between 1 and  − 1 this
profile represents a partial run.

Recall that b denotes the total number of depositors who wait until period 1 to withdraw. Under
a partial-run strategy profile, b is bounded above by min[  − ̄] The realized value of b will be
less than the number of patient depositors  if one or more of the first ̄ depositors in the decision

order is patient and, following (12), withdraws in period 0

To determine if (12) is consistent with equilibrium for some positive value of ̄, we need to

compare the expected utility a depositor receives from following this strategy to the expected utility

associated with deviating. In particular, for  ≤ ̄we need to consider whether a patient depositor

would be better off waiting until period 1 to withdraw, while for   ̄we need to consider whether

a patient depositor would be better off withdrawing in period 0We address these two cases in turn.

(i)  ≤ ̄ : If the depositor follows the strategy in (12), she will withdraw early and receive ∗. If

she deviates, she will receive the period-2 payout associated with b depositors waiting to withdraw.
Comparing the expected utility of these two outcomes requires deriving the depositor’s belief aboutb under the assumption that () she is patient, () all other depositors follow the strategy profile
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in (12), and () she deviates from (12) and waits until period 1 In this case, the value of  fully

reveals the depositor’s position in the sequence of withdrawal opportunities: She must be the 

depositor to decide. It does not, however, give her any information about the profile of types .

The depositor knows that at least ̄ depositors will withdraw early, and that the remaining − ̄−1
depositors will each withdraw early if and only if they are impatient.12 Her posterior belief aboutb is then given by


³b; ̄−´ = 0 for b = 0 or b   − ̄ and  ≤ ̄ (13)

and


³b; ̄−´ = 

³
 − ̄− 1b − 1´−̄− (1− )

−1 (14)

for b = {1      − ̄} and  ≤ ̄

where  is the combinatorial function (3). In other words, the depositor knows that b will be at
least 1 (herself) and can be up to −̄ if all of the other depositors who do not participate in the run
are patient. The types of these other depositors are i.i.d. Bernoulli trials. Notice that 

³b; ̄−´
is independent of  for all   ̄; the depositor’s precise position in the sequence of withdrawals

does not affect her posterior belief about b in this case.
The expected utility of deviating from (12) and withdrawing in period 1 is given by 

¡
; ̄−

¢
as defined in (8), using the distribution 

³b; ̄−´ presented in (13) – (14). A necessary condition
for (12) to be consistent with equilibrium is that

 (∗) ≥ 
¡
; ̄−

¢
for  ≤ ̄

Notice that 
¡
; ̄−

¢
is independent of  for  ≤ ̄ while Proposition 3 establishes that  (∗) is

strictly decreasing in . Therefore, the condition above will be satisfied for all  ≤ ̄ if and only

if it is satisfied for ̄, that is,

 (∗̄) ≥ 
¡
̄; ̄−

¢
 (15)

When this condition holds, a depositor who expects all other depositors to follow the strategy in

(12) and observes a value of  less than or equal to ̄ will also be willing to follow (12). In other
12 Notice that the ̄ withdrawals that constitute the partial run will take place regardless of whether this individual
depositor chooses to participate in the run. If she deviates from (12), other depositors will continue the run until
̄ is reached.
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words, (15) is a necessary condition for the strategy profile ̄ to be an equilibrium. We record this

result, which is useful for constructing the examples below, as a proposition.

Proposition 6 If the strategy profile ̄ is an equilibrium, then  (∗̄) ≥ 
¡
̄; ̄−

¢


(ii)   ̄ :When the depositor’s opportunity to withdraw arrives later, after the run has ended, she

can no longer be certain about her position in the sequence of withdrawal opportunities. Instead,

she must form beliefs about how many of the  − ̄ no-run depositors are impatient and what her

position within the sequence of these depositors might be. This inference problem is similar in

structure to the one discussed in the context of incentive compatibility in Section 3. In this case,

the depositor’s posterior belief about b is given by

³b; ̄−´ = −̄

³b;  − ̄
´

for b = {1      − ̄} and   ̄ (16)

The expression −̄
³b;   − ̄

´
is the probability distribution presented in Proposition 4 applied

to the subset of  − ̄ depositors who do not participate in the run. Note that the index on this

distribution is adjusted from  to  − ̄ , since the depositor in question observes  − 1 − ̄

withdrawals from the  − ̄ no-run depositors.

A patient depositor following the strategy in (12) would wait until period 1 to withdraw and

would have expected utility given by 
¡
; ̄−

¢
from (8), with the distribution 

³b; ̄−´ now
given by (16). If she instead deviates and withdraws early, she will receive ∗ for sure. The

strategy profile ̄ is consistent with a best response for these depositors if

 (∗) ≤ 
¡
; ̄−

¢
for  = ̄+ 1      (17)

If conditions (15) and (17) both hold for some ̄ with 1 ≤ ̄ ≤  − 1, the partial-run strategy
profile (12) based on that value of ̄ is a Bayesian Nash equilibrium of the withdrawal game. Our

main result in this section is that, for some parameter values, such a partial run equilibrium exists.

Proposition 7 There exist parameter values such that the efficient payout schedule ∗ both ()
generates an incentive compatible allocation and () admits a partial run equilibrium with 1 ≤
̄ ≤  − 1

The proof is by example. We present the example in the next subsection, followed by a detailed

discussion of the intuition behind it.
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5.3 An Example

Our example is based on the same parameter values that were used to illustrate the efficient allo-

cation in panel (a) of Figure 1:  = 20,  = 11  = 6 and  = 05.13 Figure 2 plots three

curves, two of which are simply the utility associated with the consumption levels plotted in the

earlier figure. The third curve is an auxiliary function 
¡
; −

¢
 This curve gives the expected

utility from waiting to withdraw for a patient depositor who has the opportunity to make the 

withdrawal in period 0 under the assumption that all of the depositors before her are running but

all of the depositors after her are not. In other words, this curve measures the value of deviating

from the strategy profile  for the last depositor who participates in this partial run.

Figure 2: A partial run equilibrium

Note that the necessary condition identified in Proposition 6 – that  (∗̄) ≥ 
¡
̄; ̄−

¢
hold

– is satisfied for any potential cutoff value ̄ between 7 and 16. Let us concentrate attention on

the partial run strategy with the largest possible threshold, in this case ̄ = 16. The fact that the

necessary condition holds implies that depositors with  ≤ 16 will all chose to play according

to the partial run strategy profile 16 Hence, to show that 16 is an equilibrium strategy profile,

we only need to show that depositors with   16 will also prefer to follow this strategy, which

specifies that they wait until period 1 if patient. This is done in Figure 3, where the upper curve

plots the incentive to run

 (∗)− 
¡
; 16−

¢
13 We focus on panel (a) rather than panel (b) because the computational burden of calculating the probabilities
 ( −) defined in Proposition 4 increases rapidly with the number of depositors.
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for all  between 1 and 20.14 The discussion above demonstrated that this value must be positive

for  between 1 and 16; this fact is also reflected in Figure 3. The new information in the figure is

that the expression is negative for  = 17 through 20 which verifies that a patient depositor who

has any one of these opportunities to withdraw in period 0 would choose to wait, in accordance

with the candidate equilibrium strategy profile. Hence, the figure establishes that strategy profile

(12) with ̄ = 16 comprises an equilibrium of the withdrawal game.

Figure 3: Individual incentive to run

Figure 3 also verifies that the efficient allocation is incentive compatible in this example. The

lower curve in the figure plots

 (∗)− 
¡
; 0−

¢
;

that is, the gain in expected utility from running for each value of  under the assumption that all

other depositors follow the no-run strategy. The fact that this line is negative everywhere demon-

strates that the no-run strategy profile is also an equilibrium of the withdrawal game. Together, the

two curves in Figure 3 thus establish the result in Proposition 7. It is worth emphasizing that there

is nothing special about the parameter values used in this example; it is easy to construct similar

examples using a wide range of parameter values.

14 Notice that the  term in this curve is different from that plotted in Figure 2 Here, the strategies of other depositors
are being held fixed at 16− as  varies from 1 to 20
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5.4 Intuition

To gain intuition for why the partial-run strategy profile in (12) is an equilibrium, it is useful to

examine the behavior of the “critical” depositor whose opportunity to withdraw in period 0 is ̄.

This depositor follows the run strategy even though she believes that no one after her will run.

This type of behavior is inconsistent with equilibrium under Green and Lin’s (2003) formulation

of the sequential service constraint, a fact that is crucial for their backward-induction argument.

Understanding why it can arise here thus illustrates a key difference between our environment and

theirs.

Suppose we compare this depositor’s equilibrium belief about the number of early withdrawals

with the beliefs used by the bank in designing the payout schedule ∗. The efficient payout ∗16

depends on the probability that there will be a 17 early withdrawal (and an 18, and so on).

Given that the bank expects only impatient agents to withdraw early, and each depositor has an

independent, one-half probability of being impatient, the bank considers a 17 early withdrawal

fairly unlikely. When faced with a 16 early withdrawal, the bank believes that the four depositors

it has not yet seen are likely to have already had their opportunities to withdraw and decided to

wait because they are patient. In this sense, the bank is “optimistic” that the 16 early withdrawal

will be the last one and the payout ∗16 is chosen based on this optimism.

In the partial run equilibrium, however, the depositor making the 16 withdrawal recognizes

that a run is underway and the number of early withdrawals is thus likely to be much larger than the

number of impatient depositors. Importantly, she knows that four depositors have not yet had the

opportunity to contact the bank in period 0. She expects that, on average, two of these depositors

will be impatient and, hence, she realizes that the early withdrawals are unlikely to end with her.

Any additional withdrawals will further deplete the bank’s resources, lowering the consumption

she would receive if she were to wait and withdraw in period 1. Her more pessimistic belief about

the number of early withdrawals thus makes running – and accepting the payout based on the

bank’s optimistic belief – an attractive strategy.15

Notice how the limited flow of information implied by our formulation of the sequential service

15 It is easy to see why the incentive to run for depositors making withdrawals before the 16 are even stronger,
as indicated in Figure 3. The payment that the depositor making the first withdrawal receives, for example, is based on
the expectation that the number of early withdrawals will be, on average, around 10. In equilibrium, however, this
depositor anticipates that there will be at least 16 and on average 18 early withdrawals. This large gap in beliefs
makes running attractive.
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constraint makes this divergence in beliefs possible. When a depositor makes the 16 withdrawal,

the bank does not know that she is the 16 depositor to have an opportunity to withdraw. In fact,

the payout schedule ∗ is based on the belief that if a 16 impatient depositor withdraws, she is

likely to be the last depositor to decide. In Green and Lin (2003), in contrast, patient depositors are

expected to announce to the bank that they will not withdraw when their turn in the order comes.

Under this specification, both the bank and the depositor will know that there are four depositors

who still have an opportunity to contact the bank in period 0. Since types are independent, if these

depositors will report truthfully, then the bank and the depositor must have the same belief about

the number of additional early withdrawals regardless of what strategies the earlier depositors

have followed.16 Because of this agreement in beliefs, the payout offered to each depositor in the

Green-Lin setup appears “appropriate” given her beliefs and, as a result, she will choose to report

truthfully. This reasoning is central to the unique implementation result in Green and Lin (2003).

In contrast, the divergence in beliefs in our model arises naturally whenever one or more depositors

follow a non-truthful strategy. The example presented here shows how this divergence in beliefs

can be strong enough to generate a run equilibrium in the withdrawal game.

5.5 Discussion

In earlier work (Ennis and Keister, 2009), we showed that partial run equilibria can arise in the

model with Green and Lin’s (2003) formulation of the sequential service constraint when depos-

itors’ preference types are correlated. The intuition behind this earlier result is similar to that

described for our example above. In particular, in both cases there is a critical depositor who

chooses to run even though she expects everyone after her to report truthfully. The payout to this

depositor is designed based on the expectation that her withdrawal will likely be the last one in

period 0, while the critical depositor believes that additional early withdrawals are very likely.

As described above, this divergence in beliefs makes withdrawing early, and receiving the payout

based on the more optimistic belief, an attractive choice. The difference in beliefs was generated

by the correlation structure of types in our earlier work, while in the present paper it is generated

by the fact that the bank does not observe the actions of depositors who choose not to withdraw.

This insight about the importance of divergent beliefs is likely to prove useful for studying

fragility in other environments. Suppose for example, that both the bank and depositors observe

16 On this point, see also Andolfatto et al. (2007) and Nosal and Wallace (2009).
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some measure of the “time” that elapses between two withdrawals and use this information to make

inferences about the number of depositors who have already chosen not to withdraw. Depending

on the distribution of depositors’ arrival times at the bank, agents may or may not have significantly

more information on which to base their decisions in such a setting. The efficient allocation would

be much more complex: A depositor’s consumption would in general depend not only on her

position in the withdrawal order, but also on the precise time she arrives at the bank and the times

at which all previous withdrawals were made. A banking arrangement that implements this type of

allocation might bear less resemblance to a standard demand-deposit contract than the arrangement

we study here. Nevertheless, it seems likely that the degree to which depositors’ beliefs about

the number of additional early withdrawals during a run diverge from those used by the bank in

designing payouts will be critical for determining whether a run equilibrium exists. Extending our

analysis to such alternative environments is an interesting avenue for future research.

One feature our model shares with much of the existing literature is the fact that a run is ob-

servationally equivalent to an event that occurs with positive probability under the no-run strategy

profile (that is, an event in which many depositors are impatient). In other words, the bank can

never actually be sure that a run is taking place, even ex post.17 There is, however, a difference in

how quickly the bank is able to infer that something unusual is happening. In our setting, a run

is initially equivalent to almost all events under the no-run strategy profile. Suppose depositors

follow the partial-run strategy profile in (12). As the first few depositors arrive to withdraw, the

bank is only able to infer that at least a few depositors are withdrawing, an event that is very likely

to happen under the no-run strategy profile as well. In the Green and Lin (2003) specification of

the sequential service constraint, in contrast, the bank will observe the fact that no depositors are

choosing to wait to withdraw, which is unlikely to occur if depositors are following the no-run

strategy profile. Relative to the Green-Lin approach, our specification slows down the flow of in-

formation about depositors’ strategies to the bank. This slower flow of information makes the bank

slower to react to a surge in early withdrawals, which in turn tends to increase the incentive for

individual depositors to participate in a run.

Our approach of allowing a depositor to observe the number of withdrawals that have already

been made when her opportunity to withdraw arrives gives the withdrawal game a more dynamic

17 Ennis and Keister (2010a) present a model based on limited commitment in which a partial run may occur and
the bank is eventually able to infer that a run is underway and react to this information.
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flavor than much of the existing literature. It also potentially opens the door to issues of signaling,

in which a depositor takes into account the effect her action will have on the actions of subsequent

depositors (see Andolfatto et al., 2007). Such effects play a minimal role in our setting, however,

because depositors only observe withdrawals and receive no information when another depositor

chooses not to withdraw. Under the strategy profile ̄, for example, there is no way for the

depositor with the first opportunity to withdraw to “signal” that she is deviating from this profile. If

she chooses not to participate in the run, this action is unobserved and the next depositor, observing

that no withdrawals have taken place yet, will incorrectly infer that she has the first opportunity to

withdraw. Similarly, if a patient depositor deviates from the no-run strategy profile by withdrawing

early, other depositors will infer that she was impatient rather than suspecting a deviation. For these

reasons, many of the complications typically associated with dynamic games do not arise in our

setting.

We have followed a common approach in the literature by assuming the bank makes payouts

according to the efficient schedule ∗ and asking whether the resulting withdrawal game admits

a run equilibrium. If the bank placed positive probability on the event of a run, it might follow a

different plan. For example, it might choose a payout schedule  that is less efficient than ∗ when

depositors follow the no-run strategy profile 0 but mitigates the effects of a run if one occurs. If

the probability of a run is large enough, the bank may further alter the payout schedule to make

it “run proof” in the sense that the only equilibrium strategy profile is 0 (see Cooper and Ross,

1998, and Ennis and Keister, 2006). Alternatively, the bank might consider other, more complex

contractual arrangements that attempt to solicit additional information from depositors about play

in the withdrawal game (see, for example, Andolfatto et al., 2014, and Cavalcanti and Monteiro,

2011). In this sense, our result that the withdrawal game based on the efficient payout schedule

∗ has a (partial) run equilibrium can serve as a starting point for further investigation of financial

fragility and its implications in the environment we have introduced here.

6 Concluding Remarks

We study a model of financial intermediation in the tradition of Diamond and Dybvig (1983)

with some novel features. In our environment, a depositor’s actions are observed by both the bank

and other depositors, but only when she withdraws. We show this specification of sequential ser-
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vice is tractable and generates results that are intuitive and perhaps more realistic than those in the

existing literature. Depositors, for example, are able to learn before making a decision what payout

they would receive by withdrawing. Moreover, even though our approach allows for very complex

patterns of payouts, the optimal arrangement resembles in many ways a traditional banking con-

tract. Under this arrangement, depositors who withdraw early in the course of events all receive

approximately the face value of their deposits. If the number of withdrawals becomes unexpect-

edly large, however, depositors begin experiencing significant discounts in what they receive from

the bank.

In addition to highlighting the debt-like features of the optimal contract, we show that this

arrangement is fragile in the sense of being susceptible to a self-fulfilling run by depositors. A run

in our setting is necessarily partial, with only some depositors participating. The previous literature

has shown that in environments similar to ours, fragility may not arise if contractual arrangements

are sufficiently flexible. Our specification of the environment suggests that the debt-like features

of banking contracts and financial fragility may have a common origin in the gradual revelation of

information that is inherent in banking arrangements.

Appendix A. Proofs

Proposition 1: The efficient payout schedule sets

∗ =
∗−1

()
1
 + 1

for  = 1     

where the sequence {∗} is defined by using {∗} in (5) and {} is defined recursively by  = 0
and

 = +1
³
+1

1
 + 1

´
+ (1− +1) ( − ) 1−

for  = 1      − 1.

Proof: Let  denote the sum of the expected utilities of all depositors who have not yet consumed

when the bank encounters the  impatient depositor, conditional on the bank dividing the avail-

able resources −1 efficiently among these depositors. These values must satisfy the following
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recursive equation:

 (−1) = max{}

⎧⎪⎪⎨⎪⎪⎩
()

1−

1− + +1+1 (−1 − )+

(1− +1) ( − ) 1
1−

³
(−1−)

−
´1−

⎫⎪⎪⎬⎪⎪⎭  (18)

for  = 1    

If all  depositors are impatient, the bank will give all of the remaining resources to the last

depositor when she reports. We therefore have the following terminal condition

 (−1) =
1

1− 
(−1)

1− 

The combination of this equation, the initial condition 0 =  and equation (18) constitutes the

dynamic programming problem whose solution gives the efficient payout schedule.

Consider the decision problem faced by the bank if it faces an ( − 1) impatient depositor.
Given −2 the maximization problem in (18) reduces to

max
{−1}

(−1)
1−

1− 
+ 

(−2 − −1)
1−

1− 
+ (1− )

( (−2 − −1))
1− 

1−


The solution to this problem sets

−1 =
−2¡

−1
¢ 1
 + 1



where

−1 ≡  + (1− )
1− (19)

Substituting the solution back into the objective function and doing some straightforward algebra

yields the value function

−1 (−2) =
(−2)

1−

1− 

³¡
−1

¢ 1
 + 1

´


The function −1 captures the utility of the last two depositors to report to the bank in the event that

at least  − 1 depositors are impatient. In this case, the ( − 1) depositor to report is necessarily
impatient. The  may also be impatient, reporting in period 0 or patient, in which case she will

report in period 1 The probabilities of these events (given by ) are contained in the constant

−1

27



It is straightforward to use this same procedure to show that, for any    the solution to the

maximization problem in (18) sets

 =
−1


1
 + 1



where

 = +1
³
+1

1
 + 1

´
+ (1− +1) ( − ) 1− (20)

Note that condition (19) emerges naturally from (20) using the “terminal” value  = 0. ¥

Proposition 2: The efficient payout schedule ∗ offers liquidity insurance in the sense of (7) for

 = 1      − 1

Proving this proposition requires showing that

∗ =
∗−1

()
1
 + 1


∗−1

 − + 1

or, equivalently,


1
   − 

holds for  = 1      − 1 These inequalities are established as part of the following lemma:

Lemma 1: The inequalities

( − )
1−
  

1
  +1

1
 + 1 ≤  −  (21)

hold for  = 1     − 1.

Proof of the lemma: The proof is by backward induction. First, consider the case of  =  − 1
Proposition 1 defines  = 0 and

−1 =  + (1− )
1−

Note that   1 and   1 implies 1−  1 Together with the fact that 0    1 these

definitions thus imply


1−
  −1

1
  

1
 + 1 = 1

which shows that (21) holds for  =  − 1
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Next, suppose (21) holds for some  ≤  − 1; we need to show that the set of inequalities then
also holds for − 1 Together with  1−

  1 the first inequality in (21) implies

( − + 1)
1−
  

1
 + 1

From the definition of  in Proposition 1, we have

−1 = 
³


1
 + 1

´
+ (1− ) ( − + 1) 1−

Since 0    1 these last two expressions imply

( − + 1) 1−  −1 
³


1
 + 1

´
or

( − + 1)
1−
  −1

1
  

1
 + 1

which establishes that the first two inequalities in (21) hold for − 1 as well. Turning to the third
inequality in (21), the assumption that this inequality holds for 

+1
1
 + 1 ≤  − 

combined with the definition of  in Proposition 1 implies

 ≤ +1 ( − ) + (1− ) ( − ) 1−

 +1 ( − ) + (1− ) ( − )

= ( − ) 

The inequality   ( − ) can be rewritten as


1
 + 1   − (− 1) 

which establishes that the third inequality in (21) also holds for − 1 as desired.18 ¥

18 Notice that this argument also establishes that the third inequality in (21) is strict for any  ≤  − 2
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Proposition 4: A patient depositor who anticipates that all other depositors are following (9) and

who has the opportunity to make the  withdrawal in period 0 will assign probability


¡
; 0

¢
=  (; ) ≡

P
∈{:()=}

µ
 ()

P
=

I{∈−1 }
¶

P
∈Ω

µ
 ()

P
=

I{∈−1 }
¶

to the event that exactly  of the  depositors are patient, where I{} is the indicator function for
the set 

Proof: Let  denote the depositor’s position in the sequence of withdrawal opportunities in period

0; recall that this position is not observed by the depositor. The depositor is concerned with two

independent random events: the ordered sequence of preference types  and her position  in the

order, which is drawn from the uniform distribution on {1    }  The probability of a pair ( )
is given by

 ( ) =
 ()




where

 () = (1− )() −()

Recall that we have defined −1
 as the set of all type profiles  in which there is a patient

depositor in the  position with exactly −1 impatient depositors ahead of her in the order. Now
define the events

−1
 =

©
( ) :  ∈ −1



ª


 = {( ) :  = } 

and

−1
 = −1



T


The event −1
 is the set of pairs ( ) in which the depositor in question is in the  position

with exactly − 1 impatient depositors ahead of her in the order. Note that since the events −1

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and  are independent and  () = 1 for all values of  we have


¡
−1


¢
=


¡
−1


¢


=
P
∈Ω

 ()I{∈−1 }




The union

−1 =
S

=

−1


contains all of the profiles  that the depositor in question considers to be possible together with the

positions  that she could conceivably occupy in each profile. Because the sets −1
 are disjoint

for different values of  we have


¡
−1¢ =

P
=


¡
−1


¢
=

P
=

P
∈Ω

 ()I{∈−1 }


=
P
∈Ω

 ()
P

=

I{∈−1 }


 (22)

In other words, the probability of the set −1 can be obtained by summing the probabilities of all

profiles  each weighted by the fraction of the  positions in the order that match the observed

criteria (that is, have a patient depositor with exactly  − 1 impatient depositors ahead of her in
the order). Notice that any profile  that is not in the set −1

 for some value of  receives zero

weight in this sum.

Next, define

 = {(b ) : b = } 

The set contains all of the pairs ( ) that correspond to a particular profile of preference types

 It is straightforward to see that the prior probability of this set is given by  () The posterior

probability we want to calculate is


¡
 | −1¢ 

that is, the probability of a particular profile  conditional on the depositor observing that there are

− 1 impatient depositors ahead of her in the order. Applying Bayes’ rule yields


¡
 | −1¢ =  (−1 | ) ()

 (−1)
 (23)
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By definition


¡
−1 | 

¢
 () = 

¡
−1T

¢
= 

µ
S

=

¡¡
−1


T

¢T



¢¶
 (24)

For a given profile  we have

−1


T
 =

⎧⎨⎩ ∅ −1
 = ∅

∅ if  ∈ −1


  ∈ −1


⎫⎬⎭ 

Again using the fact that  is independent of  and that  () = 1 for all , this implies


¡
−1T

¢
=  ()

P
=

I{∈−1 }


 (25)

In other words, the probability of the intersection of the sets−1 and is equal to the probability

of multiplied by the fraction of the  positions in the order that the depositor could conceivably

occupy when the realized profile is 

Substituting (22), (24), and (25) into expression (23) yields the posterior belief over profiles 


¡
 | −1¢ =  ()

P
=

I{∈−1 }P
∈Ω

µ
 ()

P
=

I{∈−1 }
¶ 

This expression shows that the posterior probability of a profile  is proportional to its prior prob-

ability multiplied by the fraction of positions in the order the depositor could conceivably occupy

if  were the true profile.

Finally, the posterior probability distribution over  the number of patient depositors, is given

by

 (; ) =
P

{:()=}

¡
 | −1¢ 

¥
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