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Abstract

This paper proposes a new method to estimate the (possibly nonlinear) dynamic effects

of structural shocks by using Gaussian basis functions to parametrize impulse response

functions. We apply our approach to the study of monetary policy and obtain two main

results. First, regardless of whether we identify monetary shocks from (i) a timing restric-

tion, (ii) sign restrictions, or (iii) a narrative approach, the effects of monetary policy are

highly asymmetric: A contractionary shock has a strong adverse effect on unemployment,

but an expansionary shock has little effect. Second, an expansionary shock may have some

expansionary effect, but only when the labor market has some slack. In a tight labor
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market, an expansionary shock generates a burst of inflation and no significant change in

unemployment. JEL classifications: C14, C32, C51, E32, E52
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1 Introduction

There now exists a relatively broad consensus on the average effect of monetary policy on

economic activity, and it is generally accepted that a monetary contraction (expansion) leads

to a decline (increase) in output.

However, there is still little agreement about possible asymmetric or nonlinear effects of

monetary policy, and two questions at the core of monetary policy making are largely unset-

tled.1 First, does monetary policy have asymmetric effects on economic activity? As captured

by the string metaphor, does contractionary monetary policy have a much stronger effect –

being akin to pulling on a string– than an expansionary shock –being akin to pushing on a

string–? Second, does the effect of monetary policy vary with the state of the business cycle?

For instance, does the central bank have more room to stimulate economic activity (without

raising inflation) during recessions?

Providing answers to these questions has been difficult in part for one important technical

reason: the standard approach to identify the dynamic effect of shocks relies on structural

Vector-Autoregressions (VARs),2 which are linear models. While VARs can accommodate

certain types of nonlinearities, some questions, such as the asymmetric effect of a monetary

shock, cannot be answered within a VAR framework.

This paper proposes a new method to estimate the (possibly nonlinear) dynamic effects of

structural shocks. Instead of assuming the existence of a VAR representation, our approach

consists in working directly with the structural moving-average representation of the economy.

Then, to make the estimation of the moving-average representation feasible, we parametrize

the impulse response functions with Gaussian basis functions.

Our approach builds on two premises: (i) any mean-reverting impulse response function can

be approximated by a mixture of Gaussian basis functions, and (ii) a small number (one or two)

1For instance, while Cover (1992) finds evidence of asymmetric effects, Ravn and Sola (1996, 2004) and
Weise (1999) instead find nearly symmetric effects. And while Lo and Piger (2005) and Santoro et al. (2014)
conclude that monetary policy has stronger effects during recessions, Tenreyro and Thwaites (2015) conclude
the opposite.

2See e.g., Christiano, Eichenbaum, and Evans (1999) and Uhlig (2005).
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of Gaussian functions can already capture a large variety of impulse response functions, and

notably the typical impulse responses found in empirical or theoretical studies. For instance,

the impulse response functions to monetary shocks are often found (or theoretically predicted)

to be monotonic or hump-shaped (e.g., Christiano, Eichenbaum and Evans 1999, Walsh 2010).

In such cases, a single Gaussian function can already provide an excellent approximation of

the impulse response function.

Thanks to the small number of free parameters allowed by a Gaussian Mixture Approxi-

mation (GMA), it is possible to directly estimate the structural moving average model from

the data, i.e., directly estimate the impulse response functions.3 In turn, the parsimony of the

approach allows us to estimate more general nonlinear models.

We conduct a number of Monte-Carlo simulations to illustrate the performance of our ap-

proach in finite sample, first for linear models, then for nonlinear models. In a linear model,

we show that a GMA model can generate more accurate impulse response estimates (in a

mean-squared error sense) than a well-specified VAR model. In a simulation with asymme-

try and state-dependence, we find that a GMA model can accurately detect the presence of

nonlinearities and deliver good estimates of the magnitudes of the nonlinearities.

We use our GMA approach to estimate the nonlinear effects of monetary shocks. Our

benchmark identification scheme is a recursive identification scheme, whereby monetary policy

shocks can only affect macro variables with a one period lag (Christiano, Eichenbaum and

Evans, 1999). However, to emphasize that GMAs can easily accommodate other structural

identification schemes, we also consider two alternative identification schemes: (i) a set identi-

fication scheme based on sign restrictions,4 and (ii) a narrative identification scheme where a

series of monetary shocks has been previously identified from narrative accounts (Romer and

Romer, 2002).

Consistent with the string metaphor, our findings point towards the existence of strong

3Another advantage of using Gaussian basis functions is that prior elicitation can be much easier than with
Bayesian estimation of standard VARs, because the coefficients to be estimated are directly interpretable as
features of impulse responses.

4See e.g., Faust (1998), Canova and De Nicolo (2002), Uhlig (2005), Amir Ahmadi and Uhlig (2015).
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asymmetries in the effects of monetary shocks, and Bayesian model comparison strongly favors

a GMA model with asymmetry over a linear VAR model. Regardless of whether we identify

monetary shocks from a recursive ordering, from sign restrictions or from a narrative approach,

we find that a contractionary shock has a strong adverse effect on unemployment, larger than

implied by linear estimates, while an expansionary shock has little effect on unemployment.5

Although our evidence for inflation is more uncertain, the behavior of inflation suggests that

the asymmetric response of unemployment could be due to the presence downward price/wage

rigidities, because inflation displays a more marked price puzzle following a contractionary

shock than following an expansionary shock.6

We also find that the effect of a monetary shock depends on the state of the business cycle

at the time of the intervention: an expansionary shock can have some expansionary effect, but

only when the labor market has some slack. In a tight labor market, an expansionary shock

generates no significant drop in unemployment but leads to a burst of inflation, consistent with

a standard Keynesian narrative.

Although our use of Gaussian basis functions to model and estimate impulse response

functions is new in the economics literature, our approach can be cast in the broader context

of the machine (supervised) learning literature in that we project the function to be estimated

on the space spanned by a dictionary of basis functions (see Hastie, Tibshirani and Friedman,

2009). In basis functions methods, the number of basis functions is often too large for empirical

purposes, and the complexity of the model is typically controlled through a combination of

restriction, selection and/or regularization methods. Our approach, which consists in using a

limited number of basis functions, uses both selection and restriction to control the complexity

of the model.7

5This finding is interesting in the context of the current debate on the appropriate timing of the lift-off
of the policy rate from its (close to) zero level in most developed economies. Our estimates suggest that an
inappropriate (i.e., too strong or too early) increase in the policy rate could be a lot more costly (in terms of
economic activity) than conventional (linear) estimates suggest.

6See e.g., Morgan (1993) for a discussion of the effect of downward price rigidity on asymmetric effects of
monetary policy.

7It uses selection in the sense that our algorithm scans the dictionary of possible basis functions to find
the Gaussian basis functions that best fit the data (in a maximum likelihood sense), and it uses restriction in
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In economics, our parametrization of impulse responses relates to an older literature on dis-

tributed lag models and in particular the Almon (1965) lag specification, in which the successive

weights, i.e., the impulse response function in our context, are given by a polynomial function.8

Our use of Gaussian basis functions relates to a large applied mathematics literature that relies

on radial basis functions (of which Gaussian functions are one example) to approximate arbi-

trary multivariate functions (e.g., Buhmann, 2003) or to approximate arbitrary distributions

using a mixture of Gaussian distributions (Alspach and Sorenson 1971, 1972, McLachlan and

Peel, 2000). Although Gaussian basis functions provide a more natural and more parsimo-

nious way than polynomials to approximate mean-reverting impulse response functions, our

approach is general and other basis functions are possible. For instance, the inverse quadratic

function, which is also a popular radial basis function, could be used to parametrize impulse

response functions.9 Finally, our approach shares with the non-parametric econometrics liter-

ature (e.g., Racine, 2008) the insight that mixtures of Gaussian kernels can approximate very

general shapes, although we use that insight in a very different manner.

The economic literature has so far tackled the estimation of nonlinear effects of shocks in

two main ways.10

A first approach estimates nonlinear effects by regressing a variable of interest on contempo-

raneous and lagged values of some independently identified shocks while allowing for possible

nonlinear effects. In the context of monetary policy, Cover (1992), DeLong and Summers

(1988) and Morgan (1993) identify monetary shocks from unanticipated money innovations

(obtained from a money supply process regression, following Barro, 1977) and test whether

the impulse response function depends on the sign of these innovations. While that approach

the sense that we restrict ourselves to the class of impulse response functions that can be generated by a few
Gaussian basis functions.

8Recently, Plagborg-Moller (2016) proposes a Bayesian method to directly estimate the structural moving-
average representation of the data by using prior information about the shape and the smoothness of the impulse
response.

9In fact, in a different context, Jorgenson (1966) suggested that ratios of polynomials, of which the inverse
quadratic function is one example, could be used to parametrize distributed lag functions.

10A third nonlinear approach was recently proposed by Angrist et al. (2013) who develop a semi-parametric
estimator to evaluate the (possibly asymmetric) effects of monetary policy interventions. They find asymmetric
effects of monetary shocks consistent with our findings.
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was later abandoned because money supply regressions were suspected to poorly identify mon-

etary shocks, the use of independently identified shocks has been recently revived thanks to

the use of narratively identified shocks (Romer and Romer, 2002) and thanks to the Local Pro-

jection method pioneered by Jorda (2005).11 The narrative approach was precisely developed

in order to identify exogenous monetary innovations, and Jorda’s method can easily accom-

modate nonlinearities in the response function.12 However, the Local Projection method is

limited by efficiency considerations. Indeed, while the Local Projection approach is intention-

ally model-free –not imposing any underlying dynamic system–, this can come at an efficiency

cost (Ramey, 2012), which makes inferences on a rich set of nonlinearities (e.g., sign- and

state-dependence) difficult. In contrast, by positing that the response function can be approxi-

mated by one (or a few) Gaussian functions, our approach imposes strong dynamic restrictions

between the parameters of the impulse response function, which in turn allow us to estimate

a rich set of nonlinearities.13 Another advantage of our approach is that it can be used for

model selection and model evaluation through marginal data density comparisons.

A second strand in the literature has relied on regime-switching VAR models –notably

threshold VARs (e.g., Hubrich and Terasvirta, 2013) and Markov-switching VARs (Hamilton,

1989)– to capture certain types of nonlinearities.14,15 However, while regime-switching VARs

can capture state dependence (whereby the value of some state variable affects the impulse

response functions), they cannot capture asymmetric effects of shocks (whereby the impulse

response to a structural shock depends on the sign of that shock). Indeed, with regime-

11The combination of Jorda’s method with narratively identified shocks was first introduced in the context
of fiscal policy by Auerbach and Gorodnichenko (2013) in order to test for the existence of state dependence in
the effects of fiscal policy.

12Santoro et al. (2014) and Tenreyro and Thwaites (2013) use the Jorda method to estimate the extent of
state dependence in the effect of monetary policy.

13Naturally, this statement also implies that our results are valid under the assumption that response func-
tions can be well approximated by a few Gaussian functions. In this respect, our approach is best seen as
complementing the model-free approach of Jorda (2005).

14For examples in the monetary policy literature, see Beaudry and Koop (1993), Thoma (1994), Potter (1995),
Kandil (1995), Koop, Pesaran and Potter (1996), Koop and Potter, (1998), Ravn and Sola (1996, 2004), Weise
(1999), Lo and Piger (2005).

15Another prominent class of nonlinear VARs includes models with time-varying coefficients and/or time-
varying volatilities (e.g., Primiceri, 2005).
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switching VAR models, it is assumed that the economy can be in a finite number of regimes,

and that each regime corresponds to a different set of VAR coefficients. However, if the true

data generating process features asymmetric impulse responses, a new set of VAR coefficients

would be necessary each period, because the (nonlinear) behavior of the economy at any point

in time depends on all structural shocks up to that point. As a result, such asymmetric data

generating process cannot generally be approximated by a small number of state variables such

as in threshold VARs or Markov-switching models. In contrast, by working directly with the

structural moving-average representation, GMA models can easily capture asymmetric impulse

response functions (as well as state dependence).

Section 2 describes how we approximate impulse responses using mixtures of Gaussians,

Section 3 discusses the key steps of the estimation methodology; Section 4 generalizes our

approach to nonlinear models; Section 5 presents Monte Carlo simulations to evaluate the

performance of our approach in finite sample, first for linear models, then for nonlinear models;

Section 6 applies GMA to the study of the nonlinear effects of monetary shocks using US data;

Section 7 concludes.

2 Gaussian Mixture Approximations

This section presents a new method to estimate impulse responses using Gaussian Mixture

Approximations (GMA) of the structural moving-average representation of the economy. Al-

though the use of GMAs was motivated in the introduction by the need to model and estimate

certain types of nonlinearities, the intuition and benefits of GMA models can be understood

in a linear context, and this section introduces GMAs in a linear context. We postpone the

modeling and estimation of nonlinearities to Section 4.

2.1 A structural moving average representation

Our starting point is a structural moving-average model of the economy, in which the behavior

of a system of macroeconomic variables is dictated by its response to past and present structural
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shocks. Specifically, denoting yt an L × 1 vector of stationary macroeconomic variables, the

economy is described by

yt =

K∑
k=0

Ψkεt−k (1)

where boldface letters indicate vectors or matrices, εt is the vector of structural innovations

with Eεt = 0 and Eεtε
′
t = I, and K is the number of lags, which can be finite or infinite.

Throughout the text, we omit the intercepts for ease of exposition, but all estimated models

include intercepts. The matrices {Ψk}Kk=0 capture the impulse responses to shocks, and as

a normalization, we posit that Ψ0 has positive entries on the diagonal, i.e., Ψ0,ℓℓ ≥ 0, ∀ℓ ∈

{1, .., L}. For now, the model is linear, and the Ψk matrices are fixed.

If (1) is invertible and admits a VAR representation, the model can be estimated from a

VAR on yt (provided some structural identifying assumption, such as the recursive ordering

of Ψ0). However, assuming the existence of a VAR representation can be restrictive. In

particular, in a nonlinear world where Ψk depends on the value of εt−k (for instance, when

the impulse response function varies with the sign of the shock), the existence of a VAR is

compromised. Thus, in this paper, we propose an alternative method that side-steps the need

to invert (1), i.e., we propose a method that side-steps the need for a VAR representation.

2.2 Gaussian Mixture Approximations of impulse response functions

Rather than looking for a VAR representation of the dynamic system (1), our aim is to directly

estimate (1), the moving-average representation of the economy. Because the number of free

parameters {Ψk}Kk=0 in (1) is very large or possibly infinite, our strategy consists in param-

eterizing the impulse response functions, and more precisely in using mixtures of Gaussian

functions to approximate each impulse response function.

2.2.1 Theoretical background

Our parametrization of the impulse response functions builds on the following theorem, which

states that any integrable function can approximated with a sum of Gaussian functions.
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Theorem 1 Let f be a bounded continuous function on R that satisfies
∫∞
−∞ f(x)2dx < ∞.

There exists a function fN defined by

fN (x) =

N∑
n=1

ane
−(x−bn

cn
)2

with an, bn, cn ∈ R for n ∈ N, such that the sequence {fN} converges pointwise to f on

every interval of R.

Proof. See Appendix.

Denote ψ(k) a representative element of matrix Ψk, so that ψ(k) is the value of the impulse

response function ψ at horizon k.

Motivated by Theorem 1, our approach will consist in approximating the impulse response

function ψ with a sum of Gaussian functions, that is

ψ(k) ≃
N∑

n=1

ane
−( k−bn

cn
)2 , ∀k ∈ (0,K] (2)

with an, bn, cn ∈ R.16

Since our strategy consists in approximating impulse response functions with mixtures of

Gaussians, we refer to this class of models as Gaussian Mixture Approximations (GMA), with

a GMA(N) denoting a GMA with N Gaussian basis functions.

2.2.2 Intuition and Motivation

Before describing the estimation of GMA models, it is instructive to first intuitively discuss

the benefits of our approach over traditional VARs.

The advantage of our approach, and its use for studying the (possibly nonlinear) effects

of policy, will rest on the fact that, in practice, only a very small number of Gaussian basis

16The GMA parametrization of ψ may or may not include the contemporaneous impact coefficient, that is
one may choose to use the approximation (2) for k > 0 or for k ≥ 0. In this paper, we treat ψ(0) as a free
parameter for additional flexibility.
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functions are needed to approximate a typical impulse response function, allowing for efficiency

gains and opening the door to estimating nonlinearities.

Intuitively, impulse response functions of stationary variables are often found (or theoret-

ically predicted) to be monotonic or hump-shaped (e.g., Christiano, Eichenbaum, and Evans,

1999).17 In such cases, a single Gaussian function can already provide a good approximate

description of the impulse response. To illustrate this observation, Figure 1 plots the impulse

response functions of unemployment, the price level and the fed funds rate to a monetary shock

estimated from a standard VAR specification,18 along with the corresponding GMA(1), the

Gaussian approximations with only one Gaussian function, i.e., using the approximation

ψ(k) ≃ ae−
(k−b)2

c2 . (3)

We can see that a GMA(1) already does a good job at capturing the impulse responses implied

by the VAR.19 With a GMA(2), the impulse responses are virtually on top on those of the

VAR (Figure 1). For illustration, Figure 2 plots the Gaussian basis functions used for each

impulse response in the GMA(2) case.

In both cases, the number of free parameters is manageable. For instance, in this 3 variables

example, a GMA(1) only has 27 parameters (9 impulse responses times 3 parameters per

impulse response, ignoring intercepts) to capture the whole set of impulse responses {Ψk}Kk=1,

while a GMA(2) has 48 free parameters (9 ∗ 3 ∗ 2 = 48).20

This relatively small number of free parameters in turn allows us to directly estimate the

impulse response functions from the vector moving-average representation (1). This point is at

the core of our GMA approach, because being able to directly work with the moving-average

17In New-Keynesian models, the impulse response functions are generally monotonic or hump-shaped (see
e.g., Walsh, 2010).

18See Section 6 for the exact specification of the SVAR behind Figure 1. The VAR is specified with unem-
ployment, PCE inflation and the fed funds rate. The impulse response for the price level is calculated from the
response of inflation.

19In Figure 1, the parameters of the GMA (the a, b and c coefficients) were set to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.

20For comparison, a corresponding quarterly VAR with 3 variables and 4 lags has 4∗32 = 36 free parameters,
and a monthly VAR with 12 lags has 12 ∗ 32 + 6 = 108 free parameters.
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representation will allow us to estimate models in which shocks can have nonlinear effects.

To conclude this intuition section, we comment on a particularly interesting case: the

GMA(1) model, which has two additional advantages: (i) ease of interpretation, and (ii) ease

of prior elicitation.

In a GMA(1) model like (3), the a, b and c coefficients can be easily interpreted, because

the impulse response function is summarized by three parameters –the peak effect, the time

to peak effect, and the persistence of the impulse response–, which are generally considered

the most relevant characteristics of an impulse response function.21 As illustrated in Figure 3,

parameter a is the height of the impulse-response, which corresponds to the maximum effect

of a unit shock, parameter b is the timing of this maximum effect, and parameter c captures

the persistence of the effect of the shock, as the amount of time τ required for the effect of a

shock to be 50% of its maximum value is given by τ = c
√
ln 2.

Then, the ease of interpretation of the a, b and c parameters in turn makes prior elicitation

easier than in standard VARs, in which the VAR coefficients have a less direct economic

interpretation.

3 Bayesian estimation

To estimate our model, we use a Bayesian approach, which is particularly well suited for models

that only approximate the true DGP (Fernandez-Villaverde and Rubio-Ramirez, 2004). In

particular, Bayes factors will allow us to evaluate GMA models against VAR models, even

though the two classes of models are non-nested.22 Bayesian model comparison will also offer

us a natural way to select the order of the GMA model, i.e., the number of Gaussian basis

functions used in the approximation.

In this section, we describe the implementation and estimation of GMA models. We first

21For instance, when comparing the effects of monetary shocks across different specifications, Coibion (2012)
focuses on the peak effect of the monetary shock, which in a GMA(1) model is simply parameter a.

22Bayes factors are functions of the marginal data densities for the two models that are being compared.
Since marginal data densities can be rewritten as products of one-step ahead forecast densities, Bayes factors
also offer insights about the relative forecasting abilities of the two models that are being compared.
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describe how we construct the likelihood function by exploiting the prediction-error decomposi-

tion, discuss structural identification, then present the estimation routine based on a multiple-

block Metropolis-Hasting algorithm, discuss prior elicitation, the determination of the order

of the GMA and identification issues related to fundamentalness. We conclude by discussing

how to deal with non-stationary data.

3.1 Constructing the likelihood function

We now describe how to construct the likelihood function p(yT |θ) of a sample of size T for the

moving-average model (1) with parameter vector θ and where a variable with a superscript

denotes the sample of that variable up to the date in the superscript.

To start, we use the prediction error decomposition to break up the density p(yT |θ) as

follows:23

p(yT |θ) =
T∏
t=1

p(yt|θ,yt−1). (4)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {εt} are Gaussian with mean zero and

variance one,24 and we note that the density p(yt|θ,yt−1) can be re-written as p(yt|θ,yt−1) =

p(Ψ0εt|θ,yt−1) since

yt = Ψ0εt +

K∑
k=1

Ψkεt−k. (5)

Since the contemporaneous impact matrix is a constant, p(Ψ0εt|θ,yt−1) is a straightforward

function of the density of εt.

To recursively construct εt as a function of θ and yt, we need to uniquely pin down the

values of the components of εt from equation (5), that is we need that Ψ0 is invertible. We

impose this restriction by assigning a minus infinity value to the likelihood whenever Ψ0 is not

invertible. It is also at this stage that we impose the identifying restriction that we describe

23To derive the conditional densities in decomposition (4), our parameter vector θ thus implicitly also includes
the K initial values of the shocks: {ε−K ...ε0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.

24The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
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next. Finally, to initialize the recursion, we set the first K innovations {εj}0j=−K to zero.25,26

3.2 Structural identifying assumptions

Model (1) is under-identified without additional restrictions. In our application of GMAs to

the study of monetary policy, we will use as our benchmark a recursive identification scheme

(Christiano, Eichenbaum and Evans, 1999). However, to emphasize that GMAs can easily

accommodate other structural identification schemes, we will also consider two popular schemes

to identify monetary shocks: (i) the narrative identification scheme where a series of monetary

shocks has been previously identified from narrative accounts (Romer and Romer, 2002), and

(ii) a set identification scheme based on sign restrictions (Uhlig, 2005).27 We describe the

implementation of these identification schemes next.

Short-run restrictions Short-run restrictions consist in restrictions onΨ0, which are straight-

forward to implement in a GMA model.

Short-run restrictions in a fully identified model consists in imposing L(L−1)
2 restrictions on

Ψ0 (of dimension L × L), and a common approach is to impose that Ψ0 is lower triangular,

so that the different shocks are identified from a timing restriction. This identifying scheme

is popular in the case of monetary policy, where monetary shocks are assumed to only affect

macro variables with a one period lag (Christiano, Eichenbaum and Evans, 1999).

In a partially identified model, one can impose a timing restriction for one shock only.

In the case of the monetary model considered in section 6, this will amount to ordering the

monetary policy variable last and imposing that Ψ0 has its last column filled with 0 except for

the diagonal coefficient. The submatrix Ψ̃0 made of the first (L−1) rows and (L−1) columns

of Ψ0 is then left unrestricted, apart from invertibility to ensure that equation (5) defines a

unique shock vector εt (as described in section 3.1).

25Alternatively, we could use the first K values of the shocks recovered from a structural VAR.
26When K, the lag length of the moving average (1), is infinite, we truncate the model at some horizon

K, large enough to ensure that the lag matrix coefficients ΨK are “close” to zero. Such a K exists since the
variables are stationary.

27In Barnichon and Matthes (2016), we discuss how to impose other identification schemes.
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Narrative identification In a narrative identification scheme, a series of shocks has been

previously identified from narrative accounts. For that case, we can proceed as with the

recursive identification, because the use of narratively identified shocks can be cast as a partial

identification scheme. If one orders the narratively identified shocks series first in yt, we can

assume that Ψ0 has its first row filled with 0 except for the diagonal coefficient, which implies

that the narratively identified shock does not react contemporaneously to other shocks (as

should be the case if the narrative shocks were correctly identified).

Sign restrictions Set identification through sign restrictions consists in imposing sign-

restrictions on the sign of the Ψk matrices, i.e., the impulse response coefficients at different

horizons. Again, because a GMA model works directly with the moving average representa-

tion and the Ψk matrices, imposing sign-restrictions is straightforward to implement in a GMA

model. One can impose sign-restrictions on only the impact coefficients (captured byΨ0, which

could be left as a free parameter in this case) and/or sign restrictions on the impulse response

over a specific horizon (captured by the {an, bn, cn} GMA coefficients that model Ψk). To

implement parameter restrictions on Ψ0 and/or {an, bn, cn}, we assign a minus infinity value

to the likelihood whenever the restrictions are not met.

More generally, in line with the insights from Baumeister and Hamilton (2015), the imple-

mentation of sign-restrictions can take the form of priors on the coefficients of Ψ0 and on the

{an, bn, cn}Nn=1 coefficients.28

3.3 Estimation routine

To estimate our model, we use a Metropolis-within-Gibbs algorithm (Robert & Casella 2004,

Haario et al., 2001) with the blocks given by the different groups of parameters in our model

28More generally, because GMAs work directly with the structural moving-average representation, the pa-
rameters to be estimated can be interpreted as “features” of the impulse responses, and one could envision set
identification schemes through shape restrictions (see e.g., Lippi and Reichlin, 1994 for an early application of
this idea). For instance, one could posit priors on the location of the peak effect, posit priors on the persistence
of the effect of the shock, among other possibilities. See Plagborg-Moller (2016) for a related idea.
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(there is respectively one block for the a parameters, one block for the b parameters, one block

for the c parameters and one block for the constant and other parameters).

To initialize the Metropolis-Hastings algorithm in an area of the parameter space that has

substantial posterior probability, we follow a two-step procedure: first, we estimate a standard

VAR using OLS on our data set, calculate the moving-average representation, and we use

the impulse response functions implied by the VAR as our starting point. More specifically,

we calculate the parameters of our GMA model to best fit the VAR-based impulse response

functions.29 Second, we use these parameters as a starting point for a simplex maximization

routine that then gives us a starting value for the Metropolis-Hastings algorithm.

3.4 Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from

the benchmark (linear) VAR. Specifically, we put priors on the a, b and c coefficients that are

centered on the values for a, b and c obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph.

Specifically, denote a0ij,n, b
0
ij,n and c0ij,n, n ∈ {1, N} the values implied by fitting the

GMA(N) to the VAR-based impulse response of variable i to shock j. The priors for aij,n,

bij,n and cij,n are centered on a0ij,n, b
0
ij,n and c0ij,n, and the corresponding standard-deviations

are set as follows: σij,a = 10, σij,b = K and σij,c = K (recall that K is the length of the

moving-average).30 While there is clearly some arbitrariness in choosing the tightness of our

priors, it is important to note that they are sufficiently loose to let us explore a large class

of alternative specifications.31 More generally, the use of informative priors is not critical for

29Specifically, we set the parameters of our model (the a, b and c coefficients) to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.

30Going back to our intuitive interpretation of the three parameters of a Gaussian basis function in Section 2,
note that these priors are very loose. This is easy to see for a and b. For c, recall that c

√
ln 2 is the the half-life

of the effect of a shock. If c = K, this already corresponds to very persistent impulse response functions, since
K
√
ln 2 = 38 quarters.

31For our monetary policy application, we verified that the prior did not influence our conclusions by using
uninformative priors: We estimated both the asymmetric GMA model and the asymmetric and state dependent
GMA model with improper flat priors, and we obtained very similar results.
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our approach, and we could have used improper uniform priors, but the use of proper priors

allows us to compute posterior odds ratios, which are important to select the order of the

moving-average and to compare different GMA models.

3.5 Choosing N , the number of Gaussian basis functions

To choose N , the order of the GMA model, we use posterior odds ratios (assigning equal

probability to any two models) to compare models with increasing number of mixtures. We

select the model with the highest posterior odds ratio.32

3.6 Fundamentalness

In a linear moving average model, different representations (i.e., different sets of coefficients

and innovation variances) can exhibit the same first two moments, so that with Gaussian-

distributed innovations, the likelihood can display multiple peaks, and the moving average

model is inherently underidentified. Since a GMA model works off directly with the moving-

average representation, it cannot distinguish between invertible (also called “fundamental”)

and non-invertible representations. By using the VAR-based impulse responses as starting

values, we implicitly focus on the invertible part of the parameter space.33,34

32This approach can be seen as analogous to the choice of the parameter lag in VAR models. While the Wold
theorem shows that any covariance-stationary series can be written as a VAR(∞), one must select a finite lag
order p that reasonable approximate the VAR(∞) (e.g., Canova, 2007). The usual approach is to use information
criteria such as AIC and BIC, which is similar to our present approach. Just as in the case of lag length choice
in a VAR (where this is rarely, if ever, done), we could alternatively treat N as a discrete parameter. We choose
to use one value for N at a time to highlight how different choices for N affect estimated impulse responses.

33Since a VAR is obtained by inverting the fundamental moving-average representation, it automatically
selects the fundamental representation (e.g., Lippi and Reichlin, 1994).

34An alternative estimation procedure to handle both invertible and non-invertible representations would be
to use the Kalman filter with priors on the K initial values of the shocks {ε−K ...ε0}, as recently proposed by
Plagborg-Moller (2016). However, unlike our proposed approach, this procedure would be difficult to implement
in nonlinear models. Note also that the non-uniqueness of the moving average representation was proven for
linear models (under Gaussian shocks). When we consider nonlinearities, the non-uniqueness of the moving-
average representation is not guaranteed anymore, and identification may be easier. In practice (and in Monte-
Carlo simulations), the likelihood did not display multiple peaks when we allowed for asymmetry or state-
dependence.
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3.7 Dealing with non-stationary data

As can be seen from Theorem 1, GMA models can only capture impulse response functions

that are bounded and integrable, which restricts our approach to stationary series. If the

data are non-stationary, we can (i) allow for a deterministic trend in equation (1) and/or (ii)

first-difference the data, and then proceed exactly as described above.

If a deterministic trend is suspected, we allow for a polynomial trend in each series, and

we jointly estimate the parameters of the impulse responses (the Ψk coefficients) and the

polynomial parameters.

If a stochastic trend is suspected, we can transform the data into stationary series by

differencing the data. Importantly, the presence of co-integration does not imply that a GMA

model in first-difference is misspecified.35 After estimation, one can even test for co-integration

by testing whether the matrix sum of moving-average coefficients (
K∑
k=1

k∑
l=0

Ψl) is of reduced rank

(Engle and Yoo, 1987).

4 Gaussian Mixture Approximations of nonlinear models

We now generalize the moving average model (1) by allowing for asymmetry and state-

dependence, and we show how GMA models can easily accommodate such nonlinearities.

4.1 A nonlinear moving-average model

In this section, we generalize model (1) by allowing the economy to respond nonlinearly to

shocks, and we consider the model

yt =

K∑
k=0

Ψk(εt−k, zt−k)εt−k (6)

35The reason is that a GMA model directly works with the moving-average representation and does not
require inversion of the moving-average, unlike VAR models.
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where εt is again the vector of structural innovations with Eεt = 0 and Eεtε
′
t =I, and zt is

a vector of stationary macroeconomic variables that can be a function of past variables of yt

or a function of variables exogenous to yt. As a normalization, we posit that Ψ0 has positive

entries on the diagonal, i.e., Ψ0,ℓℓ(εt, zt) ≥ 0, ∀ℓ ∈ {1, .., L}, ∀t ∈ {1, .., T}.

Model (6) is a nonlinear vector moving average representation of the economy, because in

contrast to (1), the matrix of lag coefficients Ψk(εt−k, zt−k) is no longer constant. Instead,

the coefficients of matrix Ψk can depend on the values of the structural innovations εt−k and

on the values of the macroeconomic variables in zt−k.

With Ψk a function of εt−k, the impulse response functions to a given structural shock

depend on the value of the shock at the time of shock. For instance, a positive shock may

trigger a different impulse response than a negative shock.

With Ψk a function of zt−k, the impulse response functions to a structural shock depend

on the value of the macroeconomic variables in z at the time of that shock. For instance, the

response function may be different depending on the state of the business cycle (recession or

expansion) at the time of the shock.

Because of its nonlinear nature (6) does not admit a VAR representation, and the model

cannot be recovered from a VAR.36 Instead, our GMA approach directly works with the

moving-average representation and can easily accommodate nonlinearities. Moreover, the

parametrization offered by Gaussian mixture approximations can ensure that the dimensional-

ity of the problem remains reasonable. We now discuss in more details two cases of nonlinear

behavior that a GMA model can easily handle: (i) asymmetry and (ii) state-dependence.

36Regime-switching VAR models can capture certain types of nonlinearities such as state dependence (whereby
the value of some state variable affects the impulse response functions), but they cannot capture asymmetric
effects of shocks (whereby the impulse response to a structural shock depends on the sign of that shock). With
regime-switching VAR models, it is assumed that the economy can be in a finite number of regimes, and that
each regime corresponds to a different set of VAR coefficients. However, if the true data generating process
features asymmetric impulse responses, a new set of VAR coefficients would be necessary each period, because
the (nonlinear) behavior of the economy at any point in time depends on all structural shocks up to that point.
As a result, such asymmetric data generating process cannot generally be approximated by a small number of
state variables such as in threshold VARs or Markov-switching models.
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4.1.1 Asymmetric effects of shocks

To allow for asymmetries, we let Ψk depend on the sign of the structural shock, i.e., we let Ψk

take two possible values: Ψ+
k or Ψ−

k . Specifically, a model that allows for asymmetric effects

of shocks would be

yt =

K∑
k=0

[
Ψ+

k (εt−k ⊙ 1εt−k>0) +Ψ−
k (εt−k ⊙ 1εt−k<0)

]
(7)

with Ψ+
k and Ψ−

k the lag matrices of coefficients for, respectively, positive and negative shocks

and ⊙ denoting element-wise multiplication.

Denoting ψ+
ij(k), the i-row j-column coefficient of Ψ+

k (that is, the impulse response of

variable j to a positive shock i), a GMA(N) model would then be

ψ+
ij(k) =

N∑
n=1

a+ij,ne
−
(

k−b+
ij,n

c+
ij,n

)2

, ∀k ∈ (0,K] (8)

with a+ij,n, b
+
ij,n, c

+
ij,n some constants to be estimated. A similar expression would hold for

ψ−
ij(k).

4.1.2 Asymmetric and state-dependent effects of shocks

With asymmetry and state dependence, Ψ+
k becomes Ψ+

k (zt−k), i.e., the impulse response to

a positive shock depends on the indicator vector zt (and similarly for Ψ−
k ).

For simplicity, let us consider the case where the vector of indicator variables z is a scalar

z. Using a GMA(N) model, the impulse response function following a positive innovation (ψ+
ij)

can be parametrized as

ψ+
ij(k) = (1 + γ+ijzt−k)

N∑
n=1

a+ij,ne
−
(

k−b+
ij,n

c+
ij,n

)2

, ∀k ∈ (0,K] (9)

with γ+ij , a
+
ij,n, b

+
ij,n and c+ij,n parameters to be estimated. An identical functional form holds
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for ψ−
ij .

In this model, the amplitude of the impulse response depends on the state of the business

cycle at the time of the shock. In (9), the amplitude of the impulse response is a function

of the indicator variable zt. Such a specification allows us to test whether, for instance, an

expansionary policy has a stronger effect on output in a recession than in an expansion.

Note that in specification (9), the state of the cycle is allowed to stretch/contract the

impulse response, but the shape of the impulse response is fixed (because a, b and c are all

independent of zt). While one could allow for a more general model in which all variables a, b

and c depend on the indicator variable, specification (9) has two advantages. First, with limited

sample size, it will typically be necessary to impose some structure on the data, and imposing a

constant shape for the impulse response is a natural starting point.37 Second, specification (9)

generalizes trivially to GMAs of any order. The order of the GMA only determines the shape

of the impulse response with higher order allowing for increasingly complex shapes. Then, for

a given shape, the γ coefficient can stretch or expand the impulse response depending on the

state of the cycle.38

4.2 Bayesian estimation of nonlinear GMA models

The Bayesian estimation of nonlinear GMA models proceeds similarly to linear GMA models,

but the construction of the likelihood involves one additional complication that we briefly

mention here and describe in detail in the Appendix.

The additional complication comes from the fact that one must make sure that the system

Ψ0(εt, zt)εt = ut has a unique solution vector εt given a set of model parameters and given

some vector ut. With the contemporaneous impact matrix Ψ0 a function of εt, a unique so-

37Importantly, this assumption is easy to relax or to evaluate by model comparison using posterior odds ratios.
38Note the parallel and difference between (9) and a varying coefficient model. A varying coefficient model

(e.g., Hastie and Tibshirani, 1993) is a (locally) linear model, whose coefficients are allowed to vary smoothly
with some third variable zt. In (9), the use of a finite sum of Gaussian basis functions (independent of zt) plays
a similar role to smoothness in varying coefficient models by restricting the shape of the impulse response and
disciplining the estimates. Then, the effect of the third variable zt is captured by letting the scale of the impulse
response be a linear function of zt.
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lution is a priori not guaranteed. However, we show in the Appendix that there is a unique

solution when we allow the identified shocks to have with asymmetric and/or state dependent

effects in (i) the (full or partial) recursive identification scheme, (ii) the narrative identifi-

cation scheme, and (iii) the sign-restriction identification scheme under the restriction that

sgn(detΨ+
0 ) = sgn(detΨ−

0 ).

Compared to the linear case, the nonlinear models require some initial values and prior

distribution for the parameters controlling the nonlinearities. As initial guesses, we set the

parameters capturing asymmetry and state dependence to zero (i.e., no nonlinearity).39 This

approach is consistent with the starting point of this paper: structural shocks have linear

effects on the economy, and we are testing this hypothesis against the alternative that shocks

have some nonlinear effects. We then center the priors for these parameters at zero with flat

(but proper) priors.

5 Monte Carlo simulations

In this section, we conduct a number of Monte-Carlo simulations to illustrate the working of

GMA models as well as to evaluate their performances in finite sample. We first evaluate the

performances of GMA models in the linear case, and we then evaluate the ability of GMA

models to detect (i) asymmetry alone and (ii) asymmetry and state-dependence.

Importantly, in all our Monte Carlo exercises, the estimated GMA models will be misspec-

ified and only approximate the true Data Generating Process (DGP). We follow this strategy

for two reasons. First, we want to be conservative and stack the odds against our proposed

method. Second, this strategy is consistent with the idea that a GMA is meant to approxi-

mate the true DGP. By focusing on the approximate shape of the impulse response and thereby

economizing on degrees of freedom, a GMA may (i) provide better estimates of the impulse

responses in short sample, –a classical example of the bias-variance trade-off–, and (ii) be able

39An alternative would be to obtain initial estimates about possible nonlinear effects. One option could be
to combine Jorda’s (2005) local projection method (which can accommodate nonlinearities) with the structural
shocks recovered from the VAR in order to get first estimates of the nonlinear impulse responses.
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to detect nonlinearities. One goal of these simulation exercises is to evaluate whether this can

indeed be the case.

To simulate data, we proceed as follows. We first estimate a structural VAR on US data (us-

ing a recursive identification scheme), invert it to obtain a set of impulse responses
{
Ψ̂k

}∞

k=0
,

and we modify these baseline impulse responses to introduce nonlinearities, in particular asym-

metry or state dependence. From these impulse responses, we generate simulated data from

yt =

∞∑
k=0

Ψ̂k(εt−k, zt−k)εt−k (10)

with εt Normally distributed, Eεt = 0 and Eεtε
′
t = I.

In each scenario, we use 50 Monte-Carlo replications with a sample size T = 200, which

roughly corresponds to the sample size available for the US.

5.1 Linear model

Our first simulation is meant to illustrate the workings of Gaussian mixture approximations

in the linear case. Our goal is not to claim that GMAs are superior to VARs but instead to

convey that GMAs can provide a useful alternative approach, especially in short samples.

The DGP is obtained from estimating the quarterly VAR(4) considered previously with

the unemployment rate, the PCE inflation rate and the federal funds rate over 1959-2007. The

impulse response functions to a monetary shock can be seen in Figure 1.

For each simulated dataset, we estimate (i) a GMA(2), and (ii) a VAR(4), and we evaluate

the Mean-Square Error (MSE) of the estimated impulse response function over the horizons

k = 1...25.40 Importantly, we stack the odds in favor of the VAR and against the GMA model,

because the estimated VAR is a correctly specified model.

The first row of Table 1 presents the average MSEs over the simulations. For unemployment

and inflation, the GMA(2) is respectively 25 percent and 50 percent more accurate on average

40Specifically, we report MSE =
∑25

k=1(ψ̂(k) − ψ(k))2 where ψ̂ is the estimated impulse response function
and ψ is the true function.

23



than the VAR. For the fed funds rate, the MSE is small in both cases, but again with a

slight advantage for the GMA.41 Table 1 also presents the average length and coverage rate of

the confidence bands capturing the 95 percent posterior probability and compares it with the

confidence bands implied by a Bayesian VAR with loose, but proper, Normal-Wishart priors.

We report the average length and coverage rate at the time of the peak effect of the shock of

the variable of interest. We can see that the average lengths are smaller for the GMA than for

the VAR, while the coverage rate of the GMA remains good.

5.2 Nonlinear models

We now evaluate the performances of GMA models in detecting nonlinearities. For the DGP,

we start from a VAR with (log) GDP, inflation and the fed funds rate, where we detrend

GDP with a quadratic trend. Although we could have used the same VAR as previously, we

preferred this one, because the price puzzle is more substantial in this specification (Figure

4), so that the Monte-Carlo exercise will be a more stringent test on a GMA(1) model that

cannot capture the oscillating pattern in inflation. Again, the goal of the exercise is to assess

whether a GMA model that only approximates the main feature of the impulse responses can

still recover nonlinearities.

Asymmetry

We first consider a DGP where the impulse response functions to monetary shocks depend on

the sign of the shock. To introduce asymmetry, we modify the impulse responses
{
Ψ̂k

}∞

k=0

to make them depend on the sign of the monetary shock, and Figure 4 plots the asymmetric

impulse response functions. For realism, the level of asymmetry that we simulate is chosen to

roughly match the magnitude of the asymmetry we later find in US data. Note that we do

not impose asymmetry for the response of the fed funds rate. This is done to test whether our

procedure incorrectly reports the existence of asymmetry when there is none.

41Intuitively, the reason for the superior performances of GMA is the fact that the VAR often shows counter-
factual oscillation patterns. In contrast, the GMA(2) is disciplined by its stricter parametrization.
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We estimate a GMA(1) with asymmetry on each set of simulated data, and Table 2 presents

summary statistics for a+ − a−, which captures the amount of peak asymmetry for each one

of the three variables in the model.

A number of results emerge. First, as shown by the frequency of rejection of zero coefficient

for a+ − a−, the algorithm can detect asymmetry when it exists (case of output and inflation,

first row of Table 2), even when the impulse response is not generated by one Gaussian, and

even when, as with inflation, there is a strong oscillating pattern that cannot not captured

by a one Gaussian approximation.42 This is encouraging, because it supports our motivating

idea that by approximating the most important feature of an impulse response, one can detect

important nonlinearities. Moreover, the algorithm does not detect asymmetry when there is

none (case of the fed funds rate). Second, looking at the mean and standard-deviation of

the estimates across Monte-Carlo replications (second row of Table 2), we can see that the

algorithm under-estimates the amount of asymmetry (both for output and inflation). This

indicates that in our empirical application on US data, our algorithm may under-estimate

the magnitude of asymmetry present in the data. Third, the dispersion (third row) in the

estimates across the Monte-Carlo replications is reasonably small, while the coverage rate of

the posterior distribution – the frequency with which the true value lies within 90 percent of

the posterior distribution–, is also good (fourth row).

Asymmetry and state dependence

We now consider a DGP where the impulse response functions to monetary shocks depend

on the sign of the shock as well as the state of the business cycle. We introduce asymmetry

exactly as in the previous exercise, but in addition, we posit that there is state dependence

for output in response to a positive shock, i.e., γ+gdp ̸= 0 in (9), where the indicator variable zt

is the US unemployment rate.43 Again, the value of γ+gdp is chosen to be of the same order of

42Specifically, the 90 percent posterior probability of a+−a− excludes zero for output and inflation respectively
94 and 90 percent of the time.

43We could have used any indicator, but we wanted an indicator that has the same time series properties as
the one we use on US data. We thus chose to use the US unemployment rate, which is the indicator we used in
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magnitude as our later empirical findings with US data, and we set γ+gdp = 1.

We estimate a GMA(1) with asymmetry and state dependence on each set of simulated

data, and Table 3 summarizes the results. A number of results emerge. First, the algorithm

is very successful at detecting state dependence in output and the fact that γ+gdp ̸= γ−gdp (first

set of columns in Table 3). In the 50 Monte-Carlo replications, we detect γ+gdp ̸= γ−gdp in all

samples but one (first row). The algorithm also estimates the values of γ+gdp − γ−gdp without

bias (second row), with reasonable dispersion (third row) and with good coverage (fourth row).

Importantly, the algorithm detects no state dependence when there is none (case of inflation),

as can be seen from the close to zero frequency of rejection of zero coefficient. Second, the

algorithm can still pick up the existence of asymmetry for output and inflation (α+ −α− ̸= 0,

second set of columns). With a larger number of free parameters, estimation is more uncertain,

but we can still detect the existence of asymmetry in more than 80 percent of cases. Finally,

looking at the estimates for γ+gdp and γ−gdp separately, the algorithm estimates the value of γ+gdp

–the magnitude of the nonlinearity– with a downward bias, which seems to translate into an

upward bias for γ−gdp, although that bias is not significant over the 50 Monte-Carlo replications

(last four columns of Table 3).

6 The nonlinear effects of monetary shocks

In this section, we apply our proposed GMA approach and study the nonlinear effects of

monetary shocks. We consider a model of the US economy in the spirit of Primiceri (2005),

where yt includes the unemployment rate, the PCE inflation rate and the federal funds rate.

As in Primiceri (2005), monetary policy affects the economy with a lag, and the matrix Ψ0

has its last column filled with 0 except for the diagonal coefficient. The data cover 1959Q1 to

2007Q4, and we exclude the latest recession where the fed funds rate was constrained at zero

and no longer captured variations in the stance of monetary policy.44 When constructing the

the application section.
44While we use quarterly data as in Primiceri (2005), we also conducted our estimation using monthly data.

Results were very similar.
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likelihood, we consider a moving-average model with K = 45, chosen to be large enough such

that the lag matrix coefficients Ψk are close enough to zero for k > K.45 For GMA models, we

leave the non-zero coefficients of the contemporaneous impact matrix Ψ0 as free parameters.

As a preliminary test, we start by checking that a linear GMAmodel performs well against a

standard VARmodel. Then, we present the nonlinear impulse response functions obtained from

a nonlinear GMA with asymmetry alone first, and then with asymmetry and state dependence.

6.1 The linear case: VAR versus GMA

First, we evaluate our GMA approach by doing a simple model comparison between a linear

GMA(1) and a regular VAR with 4 lags.

Table 4 reports the (log) marginal data densities for the GMA and the VAR, so that a

model comparison can be readily obtained by computing the Bayes factor (obtained by taking

the exponential of the difference in (log) marginal data densities) after positing equal priors

for the two competing models. Encouragingly for our approach, Bayesian model comparison

favors the more parsimonious GMA(1) with a Bayes factor of about 400.

6.2 The asymmetric effects of monetary shocks

We now estimate an asymmetric GMA model in which the impulse responses to monetary

shocks depend on the sign of the shock. As detailed in the methodology section, to choose

the appropriate order of the GMA model, we consider models with an increasing number

of Gaussian basis functions. As shown in columns (3) to (5) of Table 4, Bayesian model

comparison favors a GMA(2) , and from now on we will report and discuss the results obtained

using a GMA(2).

We can see that Bayesian model comparison strongly favors a model with asymmetry in

the impulse responses to monetary shocks: the (log) marginal data density of an asymmetric

GMA(2) is respectively 20 log-points larger than the linear (symmetric) GMA model and 25

45As a robustness check, we consider a higher moving-average lag-length with K = 55. Results were identical.
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log-points larger than the VAR model, which imply Bayes factors of respectively about 108

and 1011.

Figure 5 plots the impulse responses (in percentage points) of unemployment, the price

level and the federal funds rate to a one standard-deviation monetary shock. The thick lines

denote the impulse response functions implied by the posterior mode, and the error bands are

the 5th and 95th posterior percentiles.46 When comparing impulse responses to positive and

negative shocks, it is important to keep in mind that the impulse responses to expansionary

monetary shocks (a decrease in the fed funds rate) were multiplied by -1 in order to ease

comparison across impulse responses. With this convention, when there is no asymmetry, the

impulse responses are identical in the upper panels (responses to a contractionary monetary

shock) and in the bottom panels (responses to an expansionary monetary shock).

The evidence for asymmetry is striking: following a contractionary monetary shock, which

represents a 70 basis points increase in the fed funds rate, unemployment increases by about

0.15 percentage points (ppt), whereas a (linear) VAR implies only a 0.10 ppt increase. In

contrast, following an expansionary monetary shock (a 70 basis points decrease in the fed

funds rate), the response of unemployment is small (a decline of 0.04 percentage points) and

non-significantly different from zero. Figure 6 plots the posterior distribution of the difference

in impulse responses between positive and negative shocks. This figure can be seen as a point-

wise test of difference in impulse responses at different horizons. The 90 percent posterior

interval of the difference in impulse responses of unemployment is substantially above zero for

horizons 3 to 10, in line with the conclusion from the Bayes factors that the data support a

model with asymmetric impulse responses to monetary shocks.47

Although the error bands are too large to be conclusive, the response of the price level also

displays an interesting asymmetric pattern: the price level appears more sticky following a

contractionary shock –displaying a larger price puzzle– than following an expansionary shock

46To be specific, this figure and subsequent figures show paths of the moving average coefficients ψk.
47In the case of the GMA(1) model, an alternative test for asymmetry is a Wald-type test on a+ − a−. This

test (not shown) gives a similar conclusion: for unemployment, the 90 percent posterior interval of a+ − a−

excludes zero.
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for which the price level drops on impact and displays no price puzzle. This is exactly the pat-

tern one would expect if downward price (or wage) rigidity was responsible for the asymmetric

response of unemployment.48

We also find asymmetry in the response of the fed funds rate to a monetary shock, but

it is relatively mild. A monetary shock generates a slightly more persistent increase in the

fed funds rate than its expansionary counterpart. This can be seen in the bottom right panel

of Figure 5 where the response of the fed funds rate is slightly more short-lived following an

expansionary shock.49

Robustness to identification assumptions

To show the robustness of our findings as well as to highlight how GMAs can accommodate

other identification schemes, we now present asymmetric impulse response functions obtained

with two alternative identification schemes: (i) a narrative approach, and (ii) sign restrictions.

Narrative approach We first evaluate the presence of asymmetry using monetary shocks

identified through the narrative approach by Romer and Romer (2004) and extended until 2007

by Coibion et al. (2012). As pointed out by Coibion (2012), the advantage of the narrative

procedure is that one should be able to more precisely identify the effects of monetary shocks

than with a relatively small model like the one considered above, since the Romer and Romer

measure controls for much of the endogenous fluctuations in the interest rate as well as the

Fed’s information set.

We estimate an asymmetric GMA(2) model with 4 variables included in the following order:

48The existence of downward wage rigidity is supported empirically by the scarcity of nominal wage cuts
relative to nominal wage increases (e.g., Card and Hyslop, 1997).

49One way to gauge how much of the asymmetric response of unemployment can be explained by the asym-
metric response of the fed funds rate is to proceed as in the government spending multiplier literature (e.g.,
Ramey and Zubairy, 2014) and to compute the total change in unemployment relative to the total change in

the fed funds rate, that is to compute the multiplier m =
K∑

k=0

ψU
k /

K∑
k=0

ψffr
k for respectively positive and nega-

tive shocks. After “controlling” for the total change in the fed funds rate, the asymmetry is still present with
m+ = .24 > m− = .12 with m+ the multiplier associated with a contractionary shock (an increase in the fed
funds rate) and m− the multiplier associated with an expansionary shock.
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the Romer and Romer shocks, unemployment, inflation and the fed funds rate, and we posit

that the contemporaneous matrix Ψ0 has its first row filled with 0 except for the diagonal co-

efficient, which implies that the narratively identified shock does not react contemporaneously

to other shocks. This restriction is innocuous if the narrative shocks were correctly identified.

Figure 7 plots the asymmetric impulse responses to an innovation to the Romer and Romer

shocks. Confirming our previous results, unemployment displays a very asymmetric response:

there is no significant movement in unemployment following an expansionary shock, but there

is a large increase following a contractionary shock.

Sign restrictions We also evaluate the presence of asymmetry using monetary shocks identi-

fied through sign restrictions. We posit that monetary shocks are the only shocks that raise the

fed funds rate and lower inflation. We use a GMA(1) specification, so that the sign restrictions

for inflation and the fed funds rate are imposed over the whole horizon.50 As initial guess in our

optimization routine, we use the structural impulse responses implied by a Cholesky ordering,

and we use flat priors with a ∈ [−10, 10] (as well as for the intercepts and the coefficients of

Ψ0), b ∈ [0,K] and c ∈ [0,K].51

Figure 8 plots the asymmetric impulse responses to a monetary shock. Again, the evidence

for asymmetry is very strong: while a contractionary shock raises unemployment significantly,

an expansionary shock generates a much smaller (and non-significant) change in unemploy-

ment. Interestingly, the response of the price level is also strongly asymmetric with a strong

price response following an expansionary shock, but only a weak response following a con-

tractionary shock.52 In other words, following a contractionary shock, quantities react, while

following an expansionary shock, prices react. This asymmetry is consistent with downward

price (or wage) rigidity playing a role in the asymmetric response of unemployment.

50Other identification schemes are possible, and a GMA(2) would allow us to impose the sign restriction
over a specific horizon. We also experimented with imposing the additional restriction that the unemployment
increases following a contractionary monetary shock. The estimated impulse responses were similar.

51The latter prior variance imposes that the effect of a shock can have a half-life as large as K
√
ln 2 = 38

quarters (recallK = 45 in our monetary application), which represents an extremely persistent impulse response.
52A similar pattern could be seen with the two previous identification schemes, but the asymmetry in the

price response is most striking (and highly significant) with sign restrictions.
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6.3 The asymmetric and state-dependent effects of monetary shocks

In this section, we enrich our model by allowing the effects of monetary policy to depend

on both the sign of the shock and the state of the business cycle. Intuitively, we would like

to test whether monetary policy is more powerful at stimulating the economy in a period of

economic slack, and whether an expansionary shock is more likely to generate inflation in a

tight labor market. We thus estimate model (9) with a GMA(2), and we use last period’s

unemployment rate as cyclical indicator (zt).
53 To put results into perspective, Figure 9 plots

the unemployment rate (i.e., the indicator variable zt) along with the identified monetary

shocks.

Table 4 shows that Bayes model comparison strongly favors the model with asymmetry

and state dependence over all the other models.

To visualize the effects of the state of the cycle on the impulse responses, Figure 10 shows

how the peak effect of a monetary shock on unemployment or inflation depends on the state

of the business cycle at the time of the shock.54 The first two rows plot the peak responses of

unemployment and inflation to contractionary and expansionary shocks. The left quadrants

depict how the peak effect of a contractionary shock varies as we move from a tight labor

market (unemployment at 4 percent) to a slack labor market (unemployment at 8 percent),

and the right quadrants plot the same thing for an expansionary shock. The blues line depict

estimates from our nonlinear GMA model, and the thick dashed line represents the VAR

estimate. Since the VAR is linear, that latter estimate is a horizontal line as the peak effect

of monetary policy is independent of the state of the business cycle. Finally, the last row

of Figure 10 plots histograms of the distributions of respectively contractionary shocks and

expansionary shocks over the business cycle. This information is meant to get a sense of the

53As an alternative, we also experienced with the unemployment rate detrended with an HP-filter (λ = 105).
The latter specification was used to make sure that our results were not driven by slow moving trends (e.g., due
to demographics) in the unemployment rate, which could make the unemployment rate a poor indicator of the
amount of economic slack (see e.g. Barnichon and Mesters, 2015). We obtained similar results.

54To be specific, denote ψ(k, z) the value of an impulse response function to a shock ε at horizon k when
the indicator variable takes the value z at the time of the shock. Figure 10 plots the function f defined by
f(z) = sgn(ε) max

k∈[0,K]
|ψ(k, z)|.

31



range of unemployment over which we identify the coefficients capturing state dependence.

We first discuss the response of unemployment. The real effect of a contractionary shock

(top left quadrant) increases with the unemployment rate: in a tight labor market, a (one

standard-deviation) contractionary shock increases unemployment by about 0.13 percentage

point (at the peak effect), but in a slack labor market, the same contractionary shock increases

unemployment by about 0.18 percentage point (at the peak effect). Regarding the real ef-

fect of an expansionary shock (top right quadrant), the evidence is not very strong, but our

estimates suggest some mild state dependence going in the same direction: the higher the

unemployment rate, the larger the real effect of an expansionary policy. For instance, the 90th

posterior probability bands start including the VAR point estimate, when the unemployment

rate rises above 7 percent. The asymmetry in the real effects of expansionary and contrac-

tionary shocks remains however, and an expansionary shock is always considerably less potent

than its contractionary counterpart.

We now turn to the response of inflation, depicted in the second row of Figure 10. While

there is no evidence of state dependence for contractionary shocks, we find strong evidence

that expansionary shocks generate a substantial rise in inflation when the unemployment rate

is low: with an unemployment rate at 4 percent, an expansionary shock generates a peak

increase in inflation of about 4 basis points (roughly twice as large as implied by the VAR

point estimates). In contrast, with an unemployment rate at 8 percent, an expansionary shock

has no effect on inflation. Interestingly, this finding is consistent with a standard Keynesian

narrative, according to which a monetary authority trying to expand an economy already above

potential would only achieve higher inflation through increased price/wage pressures.

7 Conclusion

This paper proposes a new method to estimate the (possibly nonlinear) dynamic effects of

structural shocks by using Gaussian basis functions to approximate impulse response functions.

We apply our approach to the study of monetary policy and find that the effect of a monetary
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intervention depends strongly on the sign of the intervention. A contractionary shock has a

strong adverse effect on output, larger than implied by linear estimates, but an expansionary

shock has, on average, no significant effect on output. Interestingly, and while the evidence for

inflation is more uncertain, the behavior of inflation is consistent with asymmetry emerging (at

least in part) out of downward price/wage rigidities, because inflation displays a more marked

price puzzle following a contractionary shock than following an expansionary shock. Finally,

the effect of a monetary shock also depends on the state of the business cycle at the time of

the intervention: An expansionary shock during a time a low unemployment generates not

significant drop in unemployment but leads to a burst of inflation, consistent with a standard

Keynesian narrative.

Although this paper studies nonlinearities in the effect of monetary policy, Gaussian Mix-

ture Approximations of the impulse responses may be useful in many other contexts, and we

showed how our approach can be used with other identification schemes. Looking forward, our

method could be used to estimate the nonlinear effects of other important shocks where the

existence of asymmetry or state-dependence remains an important and unresolved question;

notably fiscal policy shocks (Auerbach and Gorodnichenko, 2012, Ramey and Zubairy, 2014)

or credit supply shocks (Gilchrist and Zakrajsek, 2012). Moreover, the parametrization offered

by GMA models and the associated efficiency gains may be useful even for linear models, where

the sample size is small and/or the data are particularly noisy.
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Appendix A1: Proof of Theorem 1

Following Alspach and Sorenson (1971, 1972) in the context of approximating distributions, the

problem of approximating a function f can be considered within the context of delta families

of positive types.

Delta families are families of functions which converge to a delta function as a parameter

characterizing the family converges to a limit value.

Let {δλ} be a family of functions on the interval ]−∞,+∞[ which are integrable over every

interval. {δλ} forms a delta family of positive type if the following conditions are satisfied:

1. For every constant γ > 0, δλ tends to zero uniformly for γ ≤ |x| ≤ ∞ as λ→ λ0

2. There exist s in R so that
∫ s
−s δλ(x)dx −→ 1 as λ tends to some limit value λ0

3. δλ(x) ≥ 0 for all x and λ

Defining

δλ(x) ≡ Gλ(x) =
1√
2πλ2

e−
x2

λ2 , (11)

it is easy to see that the Gaussian functions {Gλ} form a delta family of positive type as λ→ 0

(i.e., λ0 = 0). That is, the Gaussian function tends to the delta function as the variance tends

to zero.55

We can then make use of the following theorem.

Theorem: The sequence {fλ} which is formed by the convolution of δλ and f

fλ(x) =

∫ +∞

−∞
δλ(x− u)f(u)du (12)

converges uniformly to f as λ→ λ0 for x on every interval [x0, x1] of R.

Proof. See Korevaar (1968).

55Note that this proof can be easily applied to other functions (such as the inverse quadratic function x →
1

1+( x
λ )

2 ) that form a delta family of a positive type, so that our approach is not restricted to Gaussian functions.
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Using (11) in (12), the function fλ given by

fλ(x) =

∫ +∞

−∞
Gλ(x− u)f(u)du (13)

converges uniformly to f as λ→ 0 for x in some arbitrary interval [x0, x1] of R.

Next, we want to approximate (13) with a Riemann sum. To do so, first rewrite fλ as

fλ(x) =

∫ −s

−∞
Gλ(x− u)f(u)du︸ ︷︷ ︸

=A(λ,x)

+

∫ +s

−s
Gλ(x− u)f(u)du+

∫ +∞

s
Gλ(x− u)f(u)du︸ ︷︷ ︸

=B(λ,x)

(14)

for s > 1.

Note that for any s > 1, we have

0 ≤
∫ +∞

s
Gλ(u)du

≤ 1√
2πλ2

∫ +∞

s
e−

u
λ2 du since u2 > u for any u in [s,+∞[, s > 1

≤
[

−λ2√
2πλ2

e−
u
λ2

]+∞

s

=
|λ|√
2π
e−

s
λ2 −→

λ→0
0

which shows that ∀s > 1, lim
λ−>0

∫ +∞
s Gλ(u)du = 0. Symmetrically, we can show lim

λ−>0

∫ −s
−∞Gλ(u)du =

0.

Going back to (14), we have

0 ≤ |B(λ, x)| ≤M

∫ x−s

−∞
Gλ(t)dt

where M = sup
x∈R

|f(x)| . Since x ∈ [x0, x1], we can choose an s > 1 such that x − s < −1, so

that we can apply the previous result and get

lim
λ→0

|B(λ, x)| = 0. (15)
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Proceeding symmetrically, we have lim
λ→0

|A(λ, x)| = 0.

Finally, since the function u 7→ Gλ(x−u)f(u) is continuous over [−s, s], we can approximate∫ +s
−s Gλ(x− u)f(u)du with a Riemann sum. Denoting

fλ,N (x) =
N∑

n=1

Gλ(x− ξn)f(ξn) (ξn − ξn−1)

where ξn = −s+ n2s
N , we get that

lim
N→∞

fλ,N (x) =

∫ +s

−s
Gλ(x− u)f(u)du. (16)

Denoting an = f(ξn) (ξn − ξn−1), bn = ξn and cn = λ, using (16), (15) in (14) and combining

with (13), we get that

lim
λ→0

(
lim

N→∞
fλ,N (x)

)
= f(x)

which completes the proof.

Appendix A2: Identifying restrictions in nonlinear Moving-Average

models

We now detail how to impose the different identifying restrictions used in the paper. We only

discuss the nonlinear model yt =
∞∑
k=0

Ψk(εt−k, zt−k)εt−k, since it includes the simpler linear

model yt =
∞∑
k=0

Ψkεt−k.

As described in the main text, we impose the identifying restriction when we construct

the likelihood, so that constructing the likelihood and imposing identifying restrictions are

intimately linked, and we thus describe them jointly. To recursively construct the likelihood at

time t, one must ensure that the shock vector εt is uniquely determined given a set of model

parameters and the history of variables up to time t. As described in the main text, in order
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to construct the likelihood recursively, the system of equations

Ψ0(εt,zt)εt = ut (17)

need to have a unique solution vector εt given ut = yt −
K∑
k=0

Ψk(εt−k, zt−k)εt−1−k. That is,

we must ensure that there is a one-to-one mapping from εt to Ψ0(εt, zt)εt. In the linear case,

this means that we must ensure Ψ0 is invertible. In the nonlinear case, ensuring that the shock

vector εt is uniquely determined becomes more complicated, when we allow Ψ0 to depend on

the sign of the shock or on some state variable.56

Consider first the consequences of allowing for state dependence, i.e., when Ψk depends

on the value of the indicator vector zt, so that the likelihood also depends on the value

of the indicator vector zt. Technically, constructing the likelihood of this specification is a

straightforward extension of the linear case, when zt is a function of lagged values of yt.

To see that, note that we use the prediction-error decomposition to construct the likelihood

function. We build a sequence of densities for yt that conditions on past values of yt. Thus,

conditional on past values of yt, zt is known, and as long as Ψ0(zt) is invertible, there is

(one-to-one) mapping from εt to Ψ0εt, and the likelihood can be recursively constructed.57

Consider now the consequences of allowing for asymmetry, i.e., when Ψk depends on the

sign of εt. A complication arises when one allows Ψ0 to depend on the sign of the shock

while also imposing identifying restrictions on Ψ0. The complication arises, because with

asymmetry, the system of equations Ψ0(εt)εt = ut need not have a unique solution vector εt,

because Ψ0(εt), the impact matrix, depends on the sign of the shocks, i.e., on the vector εt.

In this appendix, we show how to address the issue when we allow the identified shocks

56Note that if the impact matrix Ψ0 is a constant and does not depend on εt or zt (so that Ψk depends on
εt or zt only for k > 0), then one can construct the likelihood just as in the linear case, because as long as Ψ0

is invertible, there is (one-to-one) mapping from εt to Ψ0εt, and εt is uniquely defined from ut.
57If we wanted to use an indicator function that was not a function of the history of endogenous variables yt−1,

this would also be possible by using a quasi-likelihood approach. That is, we would build a likelihood function
that not only conditions on the parameters, but also the sequence of indicators zt. This would in general not be
efficient because the joint density of zt and yt could carry more information about the parameters in our model
than the conditional density we advocate using. As long as zt is highly correlated with elements of (functions
of) yt, this loss in efficiency will likely be small.
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to have asymmetric and state dependent effects on the impulse response functions. We suc-

cessively consider each identification scheme used in the paper: (i) recursive ordering, (ii)

narrative identification, and (iii) sign restrictions.

1. Recursive identification scheme

It will be convenient to adopt the following conventions for notation:

• Denote yℓ,t the ℓth variable of vector yt and denote y<ℓ
t = (yℓ,t, ..., yℓ−1,t)

′ the vector of

variables ordered before variable yℓ,t in yt. Similarly, we can define y≤ℓ
t or y>ℓ

t .

• For a matrix Γ of size L× L and (i, j) ∈ {1, ..., L}2, denote Γ<i,<j the (i− 1)× (j − 1)

submatrix of Γ made of the first (i− 1) rows and (j − 1) columns. Similarly, we denote

Γ>i,>j the (L − i) × (L − j) submatrix of Γ made of the last (L − i) rows and (L − j)

columns. In the same spirit, we denote Γi,<j the submatrix of Γ made of the ith row and

the first (j − 1) columns. Γi,<j is in fact a row vector. A combination of these notations

allows us to denote any submatrix of Γ. Finally, d enote Γij the ith row jth column

element of Γ.

With these notations, we can now state the recursive identifying assumption

Assumption 1 (Partial recursive identification) The contemporaneous impact matrix Ψ0

of dimension L× L is of the form

Ψ0 =



Ψ<ℓ,<ℓ
0

(ℓ−1)×(ℓ−1)

0<ℓ,ℓ

(ℓ−1)×1
0<ℓ,>ℓ

(ℓ−1)×(L−ℓ)

Ψℓ,<ℓ
0

1×(ℓ−1)

Ψ0,ℓℓ
1×1

0ℓ,>ℓ

1×(L−ℓ)

Ψ>ℓ,<ℓ
0

(L−ℓ)×(ℓ−1)

Ψ>ℓ,ℓ
0

(L−ℓ)×1

Ψ>ℓ,>ℓ
0

(L−ℓ)×(L−ℓ)


.

with ℓ ∈ {1, .., L}, Ψ<ℓ,<ℓ
0 and Ψ>ℓ,>ℓ

0 matrices of full rank and 0 denoting the L × L zero

matrix.
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Assumption 1 states that the shock of interest εℓ,t, ordered in ℓth position in εt, affects

the variables ordered from 1 to ℓ− 1 with a one period lag, and that the first ℓ variables in yt

do not react contemporaneously to shocks ordered after εℓ,t in εt. For instance, in Primiceri

(2005)’s monetary model used in section 6, the policy rate is ordered last, and the recursive

identification scheme states that shocks to the policy rate do not affect unemployment and

inflation contemporaneously, i.e., that the last column of Ψ0 is filled with zeros except for the

diagonal element.

We first consider a model with only asymmetry and then a model with asymmetry and

state dependence.

1.1 Asymmetric impulse response functions

Proposition 1 Consider the nonlinear moving average model defined in (6) with

Ψk(εt−k) =
[
Ψ+

k 1εℓ,t−k>0 +Ψ−
k 1εℓ,t−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T} (18)

with ℓ ∈ {1, .., L}, εℓ,t, the ℓth structural shock in εt and with Ψ0 satisfying Assumption 1.

Then, given {yt}Tt=1, given the model parameters and given K initial values of the shocks

{ε−K ...ε0}, the series of shocks {εt}Tt=1 is uniquely determined.

Proof. The key to Proposition 1 is to show that the sign of the monetary shock εℓ,t is

uniquely pinned down by (17).

We first establish the following lemma:

Lemma 1 Consider a matrix Γ that can be written as

Γ =

 A B

C D


where A,B,C and D are matrix sub-blocks of arbitrary size, with A a non-singular squared
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matrix and D−CA−1B nonsingular. Then, the inverse of Γ satisfies

Γ−1 =

 A−1+A−1BF−1CA−1 −A−1BF−1

−F−1CA−1 F−1


with F = D−CA−1B.

Proof. Verify that ΓΓ−1 = I.

We prove Proposition 1 by induction, so that given past shocks {εt−1−K , ..., εt−1} (and

given model parameters {Ψk}Kk=0), we will prove that the system

ut = Ψ0(εℓ,t)εt (19)

with ut = yt −
K∑
k=0

Ψk(εℓ,t)εt−1−k, has a unique solution vector εt.

Notice that (19) implies the sub-system with ℓ equations

u≤ℓ
t =

 Ψ<ℓ,<ℓ
0 0<ℓ,1

Ψℓ,<ℓ
0 Ψ0,ℓℓ(εℓ,t)

 ε≤ℓ
t (20)

and notice that the matrix in (20) depends on εℓ,t only through the scalar Ψ0,ℓℓ(εℓ,t). Denoting

A ≡ Ψ<ℓ,<ℓ
0 a (ℓ− 1)× (ℓ− 1) invertible matrix (from Assumption 1), C ≡ Ψℓ,<ℓ

0 a 1× (ℓ− 1)

matrix, B ≡ 0 of dimension (ℓ− 1) × 1, and D(εℓ,t)≡Ψ0,ℓℓ(εℓ,t) the (ℓ, ℓ) coefficient of Ψ0 (a

scalar), we can use Lemma 1 to invert the system (20) and obtain

ε≤ℓ
t =

1

D(εℓ,t)

 D(εℓ,t)A
−1 0<ℓ,1

−CA−1 1

u≤ℓ
t . (21)

The last row of (21) provides the equation εℓ,t = 1
D(εℓ,t)

( −CA−1 1 )ut, which defines

εℓ,t. Since the right hand side of that equation only depends on εℓ,t through D(εℓ,t), the sign

of the right hand side depends on εℓ,t only through the sign of D(εℓ,t) = Ψ0,ℓℓ(εℓ,t). But since
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Ψ0,ℓℓ(εℓ,t), the sign of the contemporaneous effect of the shock εℓ,t on variable yl,t, is posited to

be positive as a normalization, the sign (and the value) of εℓ,t is uniquely determined from the

last row of (21). Then, with Ψ<ℓ,<ℓ
0 and Ψ>ℓ,>ℓ

0 invertible, (19) has a unique solution vector

εt.

Proposition 1 ensures that the system (17) has a unique solution vector, even when the

shock εℓ,t, identified from a recursive ordering, triggers asymmetric impulse response functions.

With Proposition 1, we can then construct the likelihood recursively. To write down the

one-step ahead forecast density p(yt|θ,yt−1) as a function of past observations and model

parameters, we use the standard result (see e.g., Casella-Berger, 2002) that for Ψ0 a function

of εt, we have

p(Ψ0(εℓ,t)εℓ,t|θ,yt−1) = Jtp(εt)

where Jt is the Jacobian of the (one-to-one) mapping from εt to Ψ0(εt)εt and where p(εt) is

the density of εt.
58

Finally, note that while we considered the case of a partially identified model, we can

proceed similarly for a fully identified model with Ψ0 lower triangular and show that the shock

vector εt is uniquely determined by (17) even when all shocks have asymmetric effects.

1.2 Asymmetric and state-dependent impulse response functions

We now consider a model with asymmetry and state dependence. For clarity of exposition,

we consider the simpler case of a univariate state variable zt ∈ [z, z] with z = min
t∈[1,T ]

(zt) and

z = max
t∈[1,T ]

(zt). The following proposition establishes the condition under which system (17)

has a unique solution even when the identified shock εℓ,t has asymmetric and state dependent

effects.

58In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
εℓ,t = 0. Since we will never exactly observe εℓ,t = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.
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Proposition 2 Consider the nonlinear moving average model defined in (6) with

Ψk(εt−k, zt−k) =
[
Ψ+

k (zt−k)1εℓ,t−k>0 +Ψ−
k (zt−k)1εℓ,t−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T}

(22)

with zt ∈ [z, z], ℓ ∈ {1, .., L}, εℓ,t, the ℓth structural shock in εt, and with Ψ0 satisfying

Assumption 1. Then, given {yt}Tt=1, given the model parameters and given K initial values

of the shocks {ε−K ...ε0}, the series of shocks {εt}Tt=1 is uniquely determined provided that

sgn
(
Ψ+

0,ℓℓ(zt)
)
= sgn

(
Ψ−

0,ℓℓ(zt)
)
> 0, ∀zt ∈ [z, z].

Proof. The proof proceeds exactly as with Proposition 1 and consists in showing that the

system ut = Ψ0(εℓ,t, zt)εt determines a unique solution vector εt. As with Proposition 1, this

is the case as long as Ψ0,ℓℓ(εℓ,t, zt) > 0 regardless of the value of zt.

Taking as an example the case of the monetary model from section 6, the restriction in

Proposition 2 implies sgn
(
Ψ+

0,ℓℓ(z)
)

= sgn
(
Ψ+

0,ℓℓ(z)
)

and similarly for Ψ−
0,ℓℓ, so that the

coefficient of the impact response of the fed funds rate to a monetary shock is always positive,

regardless of the state of the cycle. Note that this restriction is very mild, in that it is in fact

an existence condition for the moving average model, since the diagonal coefficients of Ψk are

posited to be positive as a normalization.

With Proposition 2 in hand, we can then construct the likelihood recursively as described

in the previous section.

2. Narrative identification scheme

For a narrative identification scheme, we can use the previous results on recursive identification,

since the use of narratively identified shocks can be cast as a partial identification scheme.

Indeed, if one orders the narratively identified shocks series first in yt, we can assume that

Ψ0 has its first row filled with 0 except for the diagonal coefficient, which implies that the

narratively identified shock does not react contemporaneously to other shocks (as should be

the case if the narrative shocks were correctly identified). With Assumption 1 satisfied with
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ℓ = 1, Proposition 1 and 2 then imply that (17) has a unique solution vector εt even when the

narratively identified shocks has asymmetric and state dependent effects.

3. Identification from sign restrictions

We now consider the case of a set identification scheme based on sign restrictions. Denote εrt the

structural shock of interest identified from sign restrictions. We now establish the conditions

under which system (17) has a unique solution vector, first in a model with asymmetry, and

second in a model with asymmetry and state dependence.

3.1 Asymmetric impulse response functions

Proposition 3 Consider the nonlinear moving average model defined in (6) with

Ψk(εt−k) =
[
Ψ+

k 1εrt−k>0 +Ψ−
k 1εrt−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T} (23)

with εrt the structural shock identified from sign restrictions. Then, given {yt}Tt=1, given the

model parameters and given K initial values of the shocks {ε−K ...ε0}, the series of shocks

{εt}Tt=1 is uniquely determined provided that sgn(detΨ+
0 ) = sgn(detΨ−

0 ).

Proof. Without loss of generality, let us order the variables such that εrt , the shock with

asymmetric effects, is ordered last. We can then write Ψ0(ε
r
t ) (of dimension L× L) as

Ψ0(εt) =

 A B(εrt )

C D(εrt )


with A a (L− 1) × (L− 1) invertible matrix, C a 1 × (L − 1) matrix, B(εrt ) a matrix of

dimension (L−1)×1 that depends on εrt , and D(εrt )≡Ψ0,LL(ε
r
t ) a scalar. Notice that only the

last column of Ψ0 depends on εrt .

We will make use of the following lemma:
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Lemma 2 Consider the same matrix Γ as in Lemma 1. We have

detΓ = det(A) det(D−CA−1B).

Proof. Rewrite Γ as

Γ =

 A 0

C I


 I A−1B

0 D−CA−1B


and the lemma follows.

Using Lemma 1 and noting that D(εrt ) is a scalar, we have that the inverse of Ψ0 satisfies

Ψ−1
0 =

1

D(εrt )−CA−1B(εrt )

 (
D(εrt )−CA−1B(εrt )

)
A−1+A−1BCA−1 −A−1B(εrt )

−CA−1 1

 .

The last row of the system εt = Ψ−1
0 ut provides the equation ε

r
t =

1
D(εrt )−CA−1B(εrt )

( −CA−1 1 )ut,

which defines εrt . Since the right hand side of that equation only depends on εrt through

D(εrt ) − CA−1B(εrt ), the sign of the right hand side depends on εrt only through the sign

of D(εrt ) − CA−1B(εrt ).
59 Using Lemma 2, this means that the sign of the right hand side

depends on εrt only through the sign of detΨ0. Thus, with sgn(detΨ
+
0 ) = sgn(detΨ−

0 ), the

sign (and value) of εrt is uniquely pinned down, so that with A invertible, the system (17) has

a unique solution vector.

Proposition 3 states that the system ut = Ψ0(ε
r
t )εt determines a unique solution vector εt

as long as both sgn
(
detΨ+

0

)
= sgn

(
detΨ−

0

)
, i.e., as long as the asymmetry is not too strong.

In practice, we impose this restriction by assigning a minus infinity value to the likelihood

whenever sgn(detΨ+
0 ) ̸= sgn(detΨ−

0 ).

59In fact, we have D(εrt )−CA−1B(εrt ) = Ψ0,LL(ε
r
t )−

L−1∑
ℓ=1

(
CA−1

)
ℓ
Ψ0,ℓL(ε

r
t ).
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Then, to construct the likelihood, we proceed as described in the recursive identification

section by using the fact that there is a one-to-one mapping from εt to Ψ0(εt)εt.

3.2 Asymmetric and state-dependent impulse response functions

For clarity of exposition, we consider the simpler case of a univariate state variable zt ∈ [z, z]

with z = max
t∈[1,T ]

(zt) and z = min
t∈[1,T ]

(zt). With asymmetric and state dependent effects of εrt , we

can establish the proposition

Proposition 4 Consider the nonlinear moving average model defined in (6) with

Ψk(εt−k, zt−k) =
[
Ψ+

k (zt−k)1εrt−k>0 +Ψ−
k (zt−k)1εrt−k<0

]
, ∀k ∈ {0, ..,K}, ∀t ∈ {1, .., T}

(24)

with εrt the structural shock identified from sign restrictions. Then, given {yt}Tt=1, given the

model parameters and given K initial values of the shocks {ε−K ...ε0}, the series of shocks

{εt}Tt=1 is uniquely determined provided that sgn(detΨ+
0 (zt)) = sgn(detΨ−

0 (zt)), ∀zt ∈ [z, z].

Proof. Proceed as in the proof of Proposition 3.

Proposition 4 states that the system ut = Ψ0(ε
r
t , zt)εt determines a unique solution vector

εt as long as sgn
(
detΨ+

0 (zt)
)
= sgn

(
detΨ−

0 (zt)
)
is independent of the value of zt, i.e., as long

as state dependence is not too strong. In practice, we can impose this restriction by assigning

a minus infinity value to the likelihood whenever sgn(detΨ±
0 (z)) ̸= sgn(detΨ±

0 (z)).

Constructing the likelihood then proceeds as described in the previous section on recursive

identification.
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Figure 1: Impulse response functions of the unemployment rate (in ppt), the (log) price level
(in percent) and the federal funds rate (in ppt) to a one standard-deviation monetary shock.
Impulse responses estimated with a VAR (dashed-line) or approximated using one Gaussian
basis function (GMA(1), left-panel, thick line) or two Gaussian basis functions (GMA(2), right
panel thick line). Estimation using data covering 1959-2007.
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Figure 2: Gaussian basis functions (dashed lines) used by a GMA(2) to approximate the
responses of unemployment, inflation and the fed funds rate to a monetary shock. The basis
functions are appropriately weighted so that their sum gives the GMA(2) parametrization of
the impulse response functions (solid lines) reported in the right-panels of Figure 1.
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Figure 4: Monte Carlo simulation with asymmetric impulse responses to monetary shocks.
The thick blue lines report the simulated impulse responses to a contractionary shock, and
the thick red lines report the simulated impulse responses to an expansionary shock (with the
responses to an expansionary shock multiplied by -1 for clarity of exposition). The dashed
lines are the impulse responses estimated from a VAR over 1959-2007.
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Figure 5: Impulse response functions of the unemployment rate (in ppt), the (log) price level
(in percent) and the federal funds rate (in ppt) to a one standard-deviation monetary shock
identified from a recursive ordering. Estimation from a VAR (dashed-line) or from a GMA(2)
with asymmetry (plain line). Shaded bands denote the 5th and 95th posterior percentiles.
For ease of comparison, responses to the expansionary shock are multiplied by -1. Estimation
using data covering 1959-2007.

56



5 15 25
−0.1

0

0.1

0.2

0.3
Unemployment

D
iff

er
en

ce
 in

 IR
F

s

5 15 25
−0.1

−0.05

0

0.05

0.1
Inflation

5 15 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Fed funds rate

Figure 6: Differences in impulse response functions of the unemployment rate (in ppt), the
(log) price level (in percent) and the federal funds rate (in ppt) to a one standard-deviation
monetary shock. Shaded bands denote the 5th and 95th posterior percentiles. Estimation
using data covering 1959-2007.
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Figure 7: Impulse response functions of the unemployment rate (in ppt), the (log) price level
(in percent) and the federal funds rate (in ppt) to a one standard-deviation Romer and Romer
monetary shock. Estimation from a VAR (dashed-line) or from a GMA(2) with asymmetry
(plain line). Shaded bands denote the 5th and 95th posterior percentiles. For ease of compari-
son, responses to the expansionary shock are multiplied by -1. Estimation using data covering
1966-2007.
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Figure 8: Impulse response functions of the unemployment rate (in ppt), the (log) price level
(in percent) and the federal funds rate (in ppt) to a one standard-deviation monetary shock
identified with sign restrictions. Estimation from a GMA(1) with asymmetry (plain line).
Shaded bands denote the 5th and 95th posterior percentiles. For ease of comparison, responses
to the expansionary shock are multiplied by -1. Estimation using data covering 1959-2007.

59



U
ne

m
pl

oy
m

en
t

 

 

1960 1970 1980 1990 2000
−4

−2

0

2

4

6

8

10

12
UR
Monetary shocks

Figure 9: Unemployment rate –the business cycle indicator (solid line, left scale)–, and esti-
mated monetary shocks (circles, right scale) with larger circles indicating larger shocks.
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Figure 10: Peak effect of monetary policy on unemployment and inflation (in ppt) as a function
of the state of the business cycle (measured with the unemployment rate) for one standard
deviation contractionary monetary shocks (left panel) and expansionary monetary shocks (right
panel). The dashed lines represent the 5th and 95th posterior percentiles. The thick-dashed
line is the linear VAR estimate. The bottom panel plots the distribution of (respectively)
contractionary shocks and expansionary shocks over the business cycle. Estimation using data
covering 1959-2007.
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Table 1: Summary statistics for Monte Carlo simulation with a linear model 

 U 𝛑 ffr 

 VAR GMA VAR GMA VAR GMA 

       

MSE 0.057 0.043 0.077 0.041 0.003 0.002 

 
Avg length 
(at peak effect) 

0.16 0.13 0.27 0.11 0.05 0.03 

 
Coverage rate 
(at peak effect)  

0.94 0.83 1 0.78 0.94 0.93 

       
Note: Summary statistics over 50 Monte-Carlo replications. MSE is the mean-squared error of the estimated impulse response function over horizons 1 to 25. Avg length is the 
average distance between the lower (2.5%) and upper (97.5%) confidence bands at the time of peak effect of the monetary shock. The coverage rate is the frequency with which 
the true value lays within 95 percent of the posterior distribution. The VAR estimates and confidence bands are obtained from a Bayesian VAR with Normal-Whishart priors. U, 
π and ffr denote respectively unemployment, inflation and the fed funds rate. 

 
 
 
 
Table 2: Summary statistics for Monte Carlo simulation with asymmetry 

 a+-a- 

 gdp 𝛑 ffr 

    

Frequency of rejection 
of zero coefficient 0.94 0.90 0.08 

Mean  
(true value) 

-0.82 
(-1.00) 

-0.50 
(-0.60) 

0.03 
(0.00) 

Std-dev  0.28 0.17 0.12 

Coverage rate  0.82 0.86 0.88 

    
Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency 
of rejection of zero coefficient" is the frequency that 0 lies outside 90 percent of the posterior 
distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the 
posterior distribution. gdp, π and ffr denote respectively output, inflation and the fed funds rate.  

 
 
 
 
 



 
 
Table 3: Summary statistics for Monte Carlo simulation with asymmetry and state dependence 

 γ+-γ- α+-α- γ+ γ- 

 gdp 𝛑 gdp 𝛑 gdp 𝛑 gdp 𝛑 

 
        

 
Frequency of 
rejection of 
zero coefficient 
 

0.96 0.03 0.82 0.80 0.87 0.06 0.20 0.05 

Mean 
(true value) 

0.96 
(1.00) 

0.02 
(0.00) 

-0.78 
(-1.00) 

-0.48 
(-0.60) 

0.71 
(1.00) 

0.00 
(0.00) 

-0.21 
(0.00) 

-0.00 
(0.00) 

Std-dev 0.26 0.17 0.37 0.23 0.31 0.19 0.23 0.19 

Coverage rate  0.84 0.92 0.71 0.70 0.68 0.92 0.65 0.90 

   
      

Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency of rejection of zero coefficient" is the frequency that 0 lies 
outside 90 percent of the posterior distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the posterior distribution. 
gdp and π denote respectively output and inflation. 

 
 
 
 
Table 4: Marginal data densities 

 VAR GMA(1) GMA(1) 
Asymmetry 

GMA(2) 
Asymmetry 

GMA(3) 
Asymmetry 

 
GMA(2) 

Asymmetry 
State dep. 

 (1) (2) (3) (4) (5) (6) 

       
(log) marginal data density 112 118 127 138 107 158 

       
Note: Trivariate models with unemployment, PCE inflation and the fed funds rate estimated over 1959-2007. The VAR estimates and confidence bands are obtained from a Bayesian 
VAR with Normal-Whishart priors. 
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