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Abstract

It is well-known that competition for factors of production, including competition for residents,

affects the public services provided in the communities. This paper considers the determination

of local investment in urban transport systems. Many specialists question the effectiveness of

the current U.S. top-to-bottom transportation institutional arrangement in which the federal

government plays a dominant role and recommend a shift toward a decentralized organization.

We examine how such a shift would affect the levels of transport investment. Specifically, we

consider a model of two cities, and assume, as in Brueckner and Selod (2006), that transport

systems are characterized by different time and money costs. We compare the outcomes reached

when the transport system is decided by a central authority (a state or federal government)

to the one decided by each jurisdiction in a decentralized way. In the latter case, city or local

transportation authorities choose the system that maximizes residents’ welfare, taking as given

the decisions made elsewhere, essentially competing for residents (or workers). Our analysis

shows that even though a shift toward a decentralized arrangement of the transportation

system would generally lead to overinvestment (relative to the centralized case), the extent

of this bias depends on the specific factors that drive transport authorities in deciding the

transportation system, on the landownership structure, and on the financing arrangements

in place. The paper also shows that, in a more general setup, when the two cities differ in

their productivity levels, the more productive city will tend to overinvest in transportation

systems that connect the two cities, and the less productive city will tend to underinvest in

those systems.
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1 Introduction

In the U.S., investment in transportation infrastructure is decided through a complicated

process that involves the participation of different levels of government, in addition to

regional and local administrative units. This multilayer decision-making process is partly

explained by the fact that the transportation network serves multiple purposes. First,

within a region, the transportation network connects residential areas with employment

centers or central business districts (CBD). Second, the transportation network connects

cities and regions. And third, commuting patterns frequently entail residents crossing

city and even state political boundaries. In such context, funding and other decisions

concerning the design and organization of the transportation system becomes extremely

challenging. The decision-making process, at least in U.S., has typically been structured

from the “top" to the “bottom."

Fifty years ago, when the interstate highway program was developed, federal gov-

ernment involvement in transportation investment decisions was considered a priority.

More recently, and partly due to the federal government’s financial struggles, the entire

organization of the transportation system has been under scrutiny.1 All this has spurred

a fruitful academic discussion about the role the federal government should play in such

decisions. This paper aims at contributing to this discussion.2

Some people advocate for switching from a transportation system in which deci-

sions are predominantly made by a central transport authority to one that grants local

jurisdictions greater responsibilities.3 Some other researchers, however, suggest that

decentralization leads to higher transportation expenditures. Estache and Humplick

(1994), for instance, examine the impact of decentralization on transportation infrastruc-
1The United States Highway Trust Fund (HTF) is a federal fund that finances different transportation programs. The

HTF receives money from a tax on fuels collected by the federal government. Currently, the HTF is undergoing severe
solvency problems and its future is uncertain. In general, federal funding has been declining as a percentage of total
investment in transportation. To compensate for the federal government struggling, some cities and states have recently
passed referendums that allow them to raise local taxes to fund improvements in their transportation networks.

2See the article by Jaffe (2013) for a summary of the different points of view.
3For instance, Glaeser (2012) calls for the “defederalization" of the transportation system. Glaeser suggests that if

states are granted the responsibility of financing their own transportation infrastructure, they would internalize the
costs of their decisions and spend less and more efficiently. He states:

"Most forms of transport infrastructure overwhelmingly serve the residents of a single state. Yet the federal
government has played an outsized role in funding transportation for 50 years. Whenever the person paying isn’t
the person who benefits, there will always be a push for more largesse and little check on spending efficiency."
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ture spending on a number of developed countries. They conclude that decentralization

increases, so does local infrastructure spending. They suggest that such outcome could

be attributed to the fact that choices made by local jurisdictions tend to differ both in

quality and quantity from the choices made by the central government. Decentralization

also creates other opportunities such as the design of transportation systems tailored to

local needs and the development of new and diverse transportation alternatives.

Those who support a leading role for the federal government in transport investment

decisions claim that if the transport system is “defederalized," states would tend to

underinvest in their segments of the national highway or rail systems. It has also been

argued that states would need to resort to increasingly distortive taxes to fund their

transportation networks, and the burden of such measures tend to disproportionately fall

on low-income residents.

The present paper theoretically examines the economic implications of shifting from

an institutional arrangement in which transportation decisions are made in a centralized

way (by a national or a state agency), to another that gives a more preponderant role

to local or regional agencies. The impact of such reorganization is analyzed in the

context of an urban equilibrium model with multiple employment centers or CBDs in

which individuals simultaneously decide their residential location and where to work.

Commuting to work involves both a money cost and a time cost. We assume that CBDs

can choose from a variety of transportation networks, each one offering residents the

possibility of commuting at different speeds (or different time transportation costs) and

money transportation costs. This characterization of the transport system is similar to the

one developed by Brueckner and Selod (2006). The key trade-off faced by transportation

authorities is that faster transportation systems that reduce commuting time costs would

also require residents to pay higher money costs.

In the present paper, the choice of the transportation system is endogenous. We

separate the analysis in two parts. In the first part of the paper, we develop a framework

that characterizes in a very stylized way the transit and transportation decisions made by

certain local or regional transport authorities. There are numerous examples of such local

authorities in the U.S., including the Regional Transportation Authority (RTA) and the

Chicago Transit Authority (CTA) in Illinois, the Metropolitan Transportation Authority
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(MTA) in New York, and the Jacksonville Transportation Authority (JTA) in Florida. These

agencies are responsible for making several decisions regarding the local transportation

system, including the scope and density of the transportation network, buses or trains

frequency, and they may also even be in charge of expanding or constructing new

highways.

We begin by studying the outcomes of a decentralized system where regional trans-

portation authorities make their decisions individually and determine conditions under

which those outcomes depart from a central arrangement. We also examine how the

solutions differ when a region is more productive than another one. A key element

in our analysis is that decentralization induces local authorities to behave strategically.

We compare the equilibria reached in the centralized and decentralized arrangements

assuming that authorities choose their transportation systems following two alternative

objectives. First, we assume that the corresponding authorities maximize the city surplus

measured as the difference between total production and total transportation costs. Sec-

ond, we assume they maximize total consumption. In this latter case, we compare the

solutions when land rents accrue to an absentee landlord (absentee landlord model) and

when residents own the land. Moreover, we evaluate the effects of relying on alternative

mechanisms to finance the expansion of the transportation network.

The second part of the paper examines the implications of assuming that cities

belong to exogenously delimited regions, so that the region’s transport authorities can

only choose the transport system in their respective region. We slightly modify the

model developed in the first part of the paper in order to focus on the incentives of

regional transportation authorities to invest in transportation within the region or increase

connectivity across regions.

2 The Model

We consider a closed, linear urban area that has unit width, represented by the interval

[0, 1]. There are two employment centers or cities: 0 and 1. The CBD of city 0 (CBD0

hereafter) is located at 0, while the CBD of city 1 (CBD1) is located at the other end 1.

Distance from CBD0 is denoted by x, and distance from the CBD1 by (1− x). The space
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is populated by N identical residents, who consume land directly. We assume that land

consumption is fixed at one unit, so the urban area is also fixed and N = 1. Individuals

receive labor income from working at either CBD0 or CBD1 and are endowed with an

identical share of total land rents. For simplicity, the rent earned by the nonurban land is

set equal to zero.

Urban residents derive utility exclusively from the consumption of a composite

nonland good, denoted z (in other words, the utility of an urban resident is simply z).

Good z is produced at CBD0 and CBD1 using a constant-returns technology that only

employs labor as an input.4 The output produced in CBDi is yiLi, where yi > 0 and Li

denotes aggregate labor input. The labor market is competitive, so a consumer would earn

the wage yi in CBDi in the absence of commuting. However, the time spent commuting

reduces actual income from yi. Assuming that leisure time is fixed, an additional minute

of commute reduces the time available for work in the same amount.

We follow Brueckner and Selod (2006) in assuming that transport costs have two

components: money cost and time cost. The money cost per mile of travel, denoted t,

includes construction and operation costs of the transport system. Time cost, on the

other hand, depends on the value of time spent commuting. Let φ denote the inverse of

the transport system’s speed. Then, the value of time spent in travel is φ multiplied by

the wage rate. Transport systems are characterized by different combinations of money

and time costs {t, φ}, in addition to a fixed cost, which depends both on t and the size

of the transportation system. We assume that φ is a decreasing function of t. Thus, in

choosing the transport system, cities face a trade-off between time and money costs: faster

transport systems (low φ) are associated with higher costs per mile (large t). Specifically,

we assume that this trade-off is continuous and consider that φ′ < 0 and φ′′ > 0, i.e., time

cost decreases with t at a decreasing rate.5

A commute of x miles to CBD0 implies a time cost of φ0x, where φi ≡ φ(ti). If the time

available for work is normalized to 1, then work time for this commuter is (1− φ0x), and

income is reduced to y0(1− φ0x) = y0 − y0φ0x. This last expression represents income

net of time costs after commuting x miles. Specifically, it is the difference between “full
4Good z can be traded with the rest of the world at a price normalized to 1.
5It is assumed that the speed offered by the transportation system in place is constant across space. In particular,

there is no congestion.
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income" (y0) and the value of time lost to commuting (y0φ0x). As a result, the total

number of labor hours at CBD0, L0, is given by the integral of (1− φ0x) over those agents

who commute to CBD0. In addition, a commute of x miles also entails a money cost of

tx. As a result, total transport costs are given by (y0φ + t0)x, so disposable income net of

transport costs is y0 − (y0φ0 + t0)x. A similar argument applies for residents commuting

to CBD1.

Setting up a transportation network with speed si and length x̄ also entails a fixed

cost. We assume that fixed costs take the simplest form. Let K(si) denote the fixed

cost per mile of a network characterized by si, with K′(si) > 0 and K′′(si) > 0. Since

si ≡ s(ti) = 1/φ(ti), then k(ti) ≡ K[s(ti)], with k′(ti) > 0 and k′′(ti) > 0, and the total

fixed cost becomes Fi ≡ k(ti)x̄.6

3 Optimal Transport System

Consider as a first step the socially optimal transport system for the two cities. The

social planner chooses the values of t0 and t1 that maximize the aggregate social surplus

S = S0 + S1. The social surplus of city i, Si, is defined as total production in CBDi, given

by yiNi, where Ni denotes the total number of workers commuting to CBDi, minus total

transport costs TTCi. Let x∗ denote the border that separates residents commuting to

CBD0 from residents commuting to CBD1. The values x∗ and (1− x∗) also represent the

number of commuters to CBD0 and CBD1, respectively. Total transport costs for CBDi,

TTCi, include total time transport costs, total money commuting costs Ci, and total fixed
6Fixed costs include different types of structures such as bridges, overpasses, intersections, drainage facilities,

retaining walls, sound walls, etc., and other fixed expenses such as administration costs and the extent of demolition
required to expand the network. Regulations may also have an impact on fixed costs. For example, shoulders and
medians are generally required to satisfy a specific minimum size. Fixed costs may vary across cities due to physical
geographic factors (flat or mountainous terrain, rivers, lakes, etc.). In this latter case, the fixed cost functions defined
earlier would include the subindex i, i.e., Ki(s) and ki(ti).
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costs Fi:

TTC0 = T0 + C0 + F0

=
∫ x∗

0
y0φ(t0)xdx +

∫ x∗

0
t0xdx + k(t0)x∗, and (1)

TTC1 = T1 + C1 + F1

=
∫ 1

x∗
y1φ(t1)(1− x)dx +

∫ 1

x∗
t1(1− x)dx + k(t1)(1− x∗). (2)

Alternatively, Si can be written as yiLi − Ci − Fi, where Li is defined as the effective

amount of labor in CBDi

L0 =
∫ x∗

0
[1− φ(t0)x]dx, and L1 =

∫ 1

x∗
[1− φ(t1)(1− x)]dx. (3)

Substituting these expressions into S gives

S = S0 + S1 (4)

= x∗
{

y0 − k(t0)− [y0φ(t0) + t0]
x∗

2

}
+ (1− x∗)

{
y1 − k(t1)− [y1φ(t1) + t1]

(1− x∗)
2

}

The following FOCs implicitly define the optimal solutions {x∗O, tO
0 , tO

1 }:7

∂S

∂t0
≡ −

[
y0φ′(t0) + 1

] x∗2

2
− k′(t0)x∗ = 0, (5)

∂S

∂t1
≡ −

[
y1φ′(t1) + 1

] (1− x∗)2

2
− k′(t1)(1− x∗) = 0, (6)

∂S

∂x∗
≡ [y0 − k(t0)]− [y1 − k(t1)] + [y1φ(t1) + t1]

−[y0φ(t0) + t0 + y1φ(t1) + t1]x∗ = 0. (7)

Isolating x∗ from (7) gives

x∗ =
[y0 − k(t0)]− [y1 − k(t1)] + [y1φ(t1) + t1]

[y0φ(t0) + t0) + (y1φ(t1) + t1]
. (8)

Consider equation (5). Recalling that φ′ < 0, the expression −y0φ′(t0) reflects the increase

in production (per mile) due to an increase in t0 . Since individuals working at CBD0

7We assume throughout the entire analysis that the SOCs are always satisfied.
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commute
∫ x∗

0 xdx = x∗2/2 miles, then −y0φ′(t0)x∗2/2 represents the increase in total

production taking place at CBD0 due to an increase in t0. At the same time, a higher t0

increases total transportation costs: a higher t0 increases money transport cost in 1 per

mile traveled, so it increases total money transportation cost in x∗2/2; and an increase in

t0 increases the fixed cost of a transport network of size x∗ in k′(t0)x∗. The value of t0

chosen by the social planner is attained when the former and the latter expressions are

equalized. A similar reasoning holds for the determination of t1. For future reference, we

denote the solutions {x∗O, tO
0 , tO

1 }.
Note that the condition (8) assumes an interior solution for x∗. In principle, if the

productivity yi becomes large enough (or the productivity in yj becomes low enough,

or both), it is clear from the comparative static results in expression (39) that CBDi may

eventually end up attracting all workers. Specifically, when production at CBD0 net of

transport costs for a worker residing at x = 1 is greater than production at CBD1 for that

same resident (transport costs would be zero in this case), or if y0− k(t0)− [y0φ(t0)+ t0] >

y1 − k(t1), then x∗ = 1. In the rest of the paper, the analysis focuses on interior solutions,

which means that y0 and y1 are such that 0 < x∗ < 1.

4 Equilibrium Analysis

Our goal is now to characterize and compare the values of t0 and t1 chosen by a central

transport authority (or by the “federal government") to the same values chosen by the

cities acting in a decentralized way. The timing of the decisions is the following. The

transport authorities (either the central authority or the cities) decide the respective

{t0, t1}. After observing these choices, individuals decide their residential location and

whether to commute to CBD0 or CBD1.

Throughout most of the analysis, we assume that the fixed transportation cost Fi is

equally shared among all residents commuting to CBDi. Specifically, let τi denote the

lump-sum tax imposed on an individual who commutes to location i to pay for the fixed

transportation cost Fi. Then, each commuter to CBD0 pays τ0 = F0/x∗ = k(t0), and

each commuter to CBD1 pays τ1 = F1/(1− x∗) = k(t1). We examine in section 6.1 the

implications of relying on an alternative financing mechanism.
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4.1 Land market equilibrium

We start by defining a land market equilibrium in the present framework.

Definition: A land market equilibrium in a duocentric, closed, and linear urban model is

a vector {z, x∗} such that:

1. z0 = z1 = z for all x ∈ [0, 1],

2. r(x∗) = r(1− x∗) = 0,

3. Equilibrium land rent at x ∈ [0, 1] : r̄(x) = max{r(x), r(1− x), 0}.

Condition 1 states that in equilibrium all individuals obtain the same utility at all

locations x regardless of where they commute to work (CBD0 and CBD1). Condition

2 determines the border x∗ between those who commute to CBD0 and CBD1. In other

words, the bid-rent functions of CBD0− and CBD1−workers intersect at x∗. As a result,∫ x∗

0 dx = N0 individuals commute to CBD0 and
∫ 1

x∗ dx = N1 to CBD1. At the border x∗,

the opportunity cost of land is equal to agricultural rent, which is assumed equal to 0.

Finally, condition 3 determines the equilibrium land rent at all locations x ∈ [0, 1].

To compute the equilibrium, the first step is to derive the bid-rent curves. Let r(x)

denote land rent per unit of land at distance x from CBD0, and a the share of land rents

received by each individual (a is defined below). The budget constraint for an individual

located at x who commutes to CBD0 becomes

z0 + r(x) = a + y0 − τ0 − [y0φ(t0) + t0]x, (9)

while the corresponding budget constraint if the resident commutes to CBD1 is

z1 + r(1− x) = a + y1 − τ1 − [y1φ(t1) + t1](1− x). (10)

Since in equilibrium residents are indifferent between all locations, consumption should

be the same for all residents regardless of their place of residence. This means that land

rent must vary with location to offset transportation costs. As a result, z0 = z1 = z.

Residents at locations x ∈ [0, x∗] commute to CBD0, and residents at locations x ∈ (x∗, 1]
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commute to CBD1, where x∗ is defined by r(x∗) = r(1− x∗), or

a + y0 − τ0 − [y0φ(t0) + t0]x∗ − z = a + y1 − τ1 − [y1φ(t1) + t1](1− x∗)− z, (11)

which gives8

x∗ =
[(y0 − τ0)− (y1 − τ1)] + [y1φ(t1) + t1]

[y0φ(t0) + t0) + (y1φ(t1) + t1]
. (12)

Given that the relationship r(x)− r(x∗) = (y0φ(t0) + t0)(x∗ − x) must hold and that the

opportunity cost of land is zero (so that r(x∗) = 0), then

r(x) = [y0φ(t0) + t0](x∗ − x).

A similar argument for those who commute to CBD1 establishes that

r(1− x) = [y1φ(t1) + t1](x− x∗).

A graphical representation of the equilibrium is shown in figure 1. Substituting the

previous two expressions respectively into (9) and (10) gives the equilibrium consumption

level

z = a + z̃

= a + y0 − τ0 − [y0φ(t0) + t0]x∗

= a + y1 − τ1 − [y1φ(t1) + t1](1− x∗),

where z̃ = y0− τ0− [y0φ(t0)+ t0]x∗ = y1− τ1− [y1φ(t1)+ t1](1− x∗). Thus, consumption

is equal to disposable income at the edge of each city. Throughout the analysis we focus

on equilibria in which z̃ > 0.
8Note that in this case it is possible to explicitly solve for x∗ because the τi’s do not depend on x∗.
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Finally, aggregate land rent R = R0 + R1 is defined as aggregate land rent in region 0

plus aggregate land rent in region 1, where

R0 =
∫ x∗

0
r(x)dx = [y0φ(t0) + t0]

x∗2

2
= T0 + C0

R1 =
∫ 1

x∗
r(1− x)dx = [y1φ(t1) + t1]

(1− x∗)2

2
= T1 + C1.

These expressions show that Ri is in fact the sum of time and money transportation

costs for region i. The land rent as capitalized transportation cost (excluding transport

fixed costs) was first highlighted by Arnott and Stiglitz (1979) and is a general property

inherent in urban models. This relationship is also highlighted by Brueckner and Selod

(2006). Note that using Ri we can rewrite total surplus S as

S = x∗[y0 − k(t0)]− R0︸ ︷︷ ︸
S0

+ (1− x∗)[y1 − k(t1)]− R1︸ ︷︷ ︸
S1

.

Hence, choosing the transportation networks that maximize S also entails minimizing R.

Since the total population is normalized to 1 (N = 1), R is also the average land rent

(ALR). We assume that each individual in this economy receives a share 0 6 θ 6 1 of

ALR, which means that a ≡ θR. The value of θ describes different cases of landownership:

θ = 0 would describe the absentee-landowner case, and θ = 1 the case where land is

entirely owned by residents.
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4.2 Comparative Static Analysis

For future reference, we derive the following comparative static results:

∂x∗

∂t0
= −{[y0φ′(t0) + 1]x∗ + k′(t0)}

(1− α0)

[y1φ(t1) + t1]
, (13)

∂x∗

∂t1
= {[y1φ′(t1) + 1](1− x∗) + k′(t1)}

(1− α0)

[y1φ(t1) + t1]
, (14)

∂z̃0

∂t0
= −{[y0φ′(t0) + 1]x∗ + k′(t0)}(1− α0), (15)

∂z̃1

∂t1
= −{[y1φ′(t1) + 1](1− x∗) + k′(t1)}α0, (16)

∂R
∂t0

= {[y0φ′(t0) + 1]x∗ + k′(t0)}(1− α0)−
{
[y0φ′(t0) + 1]

x∗2

2
+ k′(t0)x∗

}
, (17)

∂R
∂t1

= {[y1φ′(t1) + 1](1− x∗) + k′(t1)}α0

−
{
[y1φ′(t1) + 1]

(1− x∗)2

2
+ k′(t1)(1− x∗)

}
, (18)

where

0 6 α0 =
y0φ(t0) + t0

y0φ(t0) + t0 + y1φ(t1) + t1
6 1. (19)

A few observations are worth noting from the previous expressions. First, ∂z̃i/∂ti = 0

if and only if ∂x∗/∂ti = 0. In other words, both z̃i and x∗, as it will become clear later,

reach a maximum at the same value of ti.9 This result will be particularly relevant in the

decentralized case examined below.

Second, the utility of resident in i, represented by z̃i, depends on x∗, and x∗ ultimately

depends on t0 and t1. Hence, a change in ti will, in general, affect the utility of residents in

both CBDi and CBDj. The effect on jurisdiction j will not be internalized by the transport

authority in i when decisions are made in a decentralized way. However, if ∂x∗/∂ti = 0,

then the strategic effect in the choice of ti vanishes.

And third, consider expression (17). It follows that if the first term, which is equal

to −∂z̃0/∂t0 = −(∂x∗/∂t0)[y0φ(t1) + t1], is zero, then the second term is negative, which
9It can be shown that (∂2x∗/∂t2

0) evaluated at the value of t0 at which ∂x∗/∂t0 = 0 is negative, so the second order
condition is satisfied locally. Similar results hold for z̃i.
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means that ∂R/∂t0 < 0. This result is relevant because it reflects the trade-offs faced by

the transport authority when choosing the system that maximizes z = θR + z̃, since t0

affects z̃ and R in conflicting ways. Similar reasoning applies to ∂R/∂t1 in (18).

5 Determination of the Transport System

We now examine the determination of t0 and t1 decided by the transportation authorities

prior to the residents’ localization and commuting choices. In principle, when transport

authorities decide the characteristics of the transportation system, they may consider

a variety of objectives. In the following sections, we study and compare the outcomes

reached under two alternative objectives. First, we assume that the corresponding

transportation authorities choose {t0, t1} that maximize the city’s total surplus defined

as the difference between total production and total transportation costs. Second, we

assume that authorities choose the values of {t0, t1} that maximize total consumption.

In this latter case, we also examine the implications of making different assumptions

regarding landownership, i.e, the distribution of ALR. We compare the outcomes when

θ = 0 (absentee landlord model) to those reached when 0 < θ 6 1 (residents receive at

least part of the ALR).

As stated earlier, we assume for the moment that residents commuting to CBDi equally

pay for the fixed costs Fi. We examine later in section 6.1 how the choices change when

aggregate fixed costs (F0 + F1) are uniformly distributed across residents.

5.1 Total Surplus

5.1.1 Centralized Solution

Consider the following problem faced by a central (or federal) transport authority: choose

{t0, t1} that maximize aggregate surplus S = S1 + S2.10 When deciding these values, the

central transport authority anticipates that individuals behave in the way described in

section 4. This means that after observing the transport systems characterized by t0 and
10In this section, we use Si instead of Si to refer to city i’s surplus. The difference between the two is explained by

the fact that S = S1 + S2 depends on the specific financing mechanism chosen by the authorities S = S1 + S2 does not.
Since in this section we assume that ti = k(ti), then the two expressions coincide. However, we will later evaluate the
implications of financing the fixed costs using alternative mechanisms, so Si and Si will differ.
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t1 chosen by the central authority, individuals simultaneously decide where to live and

where to commute. These decisions determine an equilibrium value of x∗, defined earlier

by (12). We assume there is a specific institutional arrangement in place that determines

the way the fixed costs are shared. In general, when residents commuting to CBDi pay

the lump-sum tax τi to cover the fixed costs, the total surplus S becomes

S = S0 + S1 (20)

= x∗
{

y0 − τ0 − [y0φ(t0) + t0]
x∗

2

}
+ (1− x∗)

{
y1 − τ1 − [y1φ(t1) + t1]

(1− x∗)
2

}
,

and x∗ is defined by (12). This expression differs from the social surplus defined earlier

in that each resident of city is now responsible for the share τi of the fixed transportation

costs.

Recall that we assume in this section that the fixed cost Fi is equally shared among all

residents commuting to CBDi, so τ0 = F0/x∗ = k(t0) and τ1 = F1/(1− x∗) = k(t1). Then,

note that (20) and (12) are identical to (4) and (8), respectively, so the problem faced by a

central authority is exactly the same as the one faced by the social planner. This means

that the centralized solution denoted by {x∗CS, tC,S
0 , tC,S

1 } is also optimal.

Proposition 1. Suppose that residents of city i equally share the fixed cost associated with the

transportation system in city i, Fi. Then, a central transportation authority that maximizes total

surplus chooses the optimal transportation systems, i.e., {tO
0 , tO

1 } = {t
C,S
0 , tC,S

1 }.

5.1.2 Decentralized Equilibrium

We now characterize the equilibrium values of {t0, t1} when cities make decisions in

a decentralized way. The sequence of events is as follows. Each CBDi simultaneously

chooses the value of ti that maximizes the city’s total surplus Si. After observing the

corresponding choices, individuals decide their residential locations and whether they

commute to CBD0 or CBD1. When choosing the value of ti that maximizes the city

surplus Si, the transport authority in CBDi takes the value of tj chosen by the other city

parametrically.
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From the FOCs of each city’s maximization problem, we obtain

−
[
y0φ′(t0) + 1

] x∗2

2
= γ0k′(t0)x∗, (21)

−
[
y1φ′(t1) + 1

] (1− x∗)2

2
= γ1k′(t1)(1− x∗), (22)

where

γ0 ≡
y0 − k(t0) + [y1φ(t1) + t1]x∗

y0 − k(t0) + [y1φ(t1) + t1]x∗ + y0 − k(t0)− [y0φ(t0) + t0]x∗
, (23)

γ1 ≡
y1 − k(t1) + [y0φ(t0) + t0](1− x∗)

y1 − k(t1) + [y0φ(t0) + t0](1− x∗) + y1 − k(t1)− [y1φ(t1) + t1](1− x∗)
. (24)

Note that since we assume that z̃ > 0, it follows 1/2 < γi < 1. Substituting (21) and

(22) into (5) and (6), respectively, gives ∂S/∂ti < 0, i = 0, 1. This means that, relative to

the centralized case, cities tend to choose higher values of ti and, consequently, lower

values of φ(ti). In other words, when cities behave strategically, they tend to choose more

expensive and faster transport systems.

Proposition 2. Suppose that transportation authorities (central or local) maximize total surplus.

Let tC,S
i denote the value of ti chosen by a central transport authority (i.e., when it maximizes

S = S1 + S2), and tD,S
i the equilibrium values when cities act in a decentralized way (i.e., when

each city maximizes its own surplus Si) for i = 0, 1. Then, tD,S
i > tC,S

i and φ(tD,S
i ) < φ(tC,S

i ).

This result can also be explained by focusing on the external effects generated by one

city on the other one. Consider the choice of t0 by the transport authorities in region 0.

First, note that evaluated at the equilibrium (21), ∂x∗/∂t0 > 0.11 Next, the external effect

of t0 on the surplus of CBD1 is given by

∂S1

∂t0
= −{y1 − k(t1)− [y1φ(t1) + t1](1− x∗)}∂x∗

∂t0
< 0. (25)

The expression between brackets is the disposable income or consumption at the border

x∗ (or z̃), which is positive. Since ∂x∗/∂t0 > 0, then ∂S1/∂t0 < 0. In other words, in

equilibrium, the choice of t0 by city 0 generates a negative effect on the surplus of city 1.
11Substituting (21) into the comparative static result (13) gives (∂x∗/∂t0) > 0
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Since this negative effect is not internalized by local transport authorities in city 0, they

will end up choosing an excessively large value of t0 (relative to the optimal one).

Additionally, a closer inspection of the FOCs that determine the optimal and decen-

tralized levels of t0 (expressions (5) and (21), respectively) reveals that the marginal cost

of expanding the network in region 0, k′(t0), is in fact multiplied by 1/2 < γ0 < 1 in

the decentralized case. This means that in the decentralized case this marginal cost is

underestimated, inducing region 0 to choose a larger transport system.

5.2 Total Consumption

We now assume the central authority or each region acting independently chooses the

transport systems that maximize total consumption. One difference with respect to the

maximization of total surplus is that in this case the distribution of landownership matters

in deciding t0 and t1. We examine the implications of different landownership arrange-

ments including the extreme cases of absentee landlord (θ = 0) and full distribution of

aggregate land rents across individuals (θ = 1).

5.2.1 Centralized Solution

Suppose the central authority sets the levels of {t0, t1} that maximize total consumption.

The problem in this case becomes

max
{t0,t1}

W = x∗z0 + (1− x∗)z1. (26)

However, since z0 = z1 = z = z̃ + a, this problem is equivalent to maximizing z with

respect to t0 and t1. We assume as before that τi = k(ti). The FOCs in this case are

∂W
∂ti

=
∂z̃i

∂ti
+ θ

∂R
∂ti

= 0, i = 0, 1. (27)

To characterize the solution of this problem, suppose initially that θ = 0. Then, maximiz-

ing W entails maximizing z̃i, and the solution would satisfy ∂z̃i/∂ti = 0, or

[y0φ′(t0) + 1]x∗ + k′(t0) = 0, (28)

[y1φ′(t1) + 1](1− x∗) + k′(t1) = 0. (29)
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Now suppose that 0 < θ 6 1, but the values of {t0, t1} still satisfy (28) and (29). Then,

substituting these expressions into comparative static results (17) and (18), it follows that

∂R/∂ti < 0, and, consequently, ∂W/∂ti < 0. This means that when 0 < θ 6 1, the values

of ti that maximize zi are lower than those that maximize z̃i.

Proposition 3. The values {t0, t1} that maximize z = a + z̃ are higher when θ = 0 (absentee

landlord case) than when 0 < θ 6 1 (residents receive at least part of the ALR).

Finally, we compare the values of t0 and t1 that maximize total surplus to those that

maximize total consumption in the centralized case. First, note that when θ = 1, S = W,

which means that the centralized and optimal solutions coincide. Next, suppose that

θ = 0. Then, by substituting (28) and (29) into (5) and (6), it is straightforward to obtain

∂S/∂ti < 0, which means that when θ = 0, the centralized solutions {t0, t1} are larger

than the optimal ones. In fact, the latter holds for all values 0 < θ < 1.

Proposition 4. When the central transport authority maximizes total consumption and 0 6 θ <

1, it chooses higher values of t0 and t1 than the optimal values. The centralized solutions are

optimal when θ = 1.

5.2.2 Decentralized Solution

Suppose that in the decentralized case cities maximize total consumption taking place

within the region. In other words, suppose that region 0 chooses the value of t0 that

maximizes W0 = x∗z0 (taking t1 as given), and region 1 chooses the value of t1 that

maximizes W1 = (1 − x∗)z1 (taking t0 as given). In both cases, the city authorities

anticipate that z0 = z1 = z. The FOCs are given by12

∂W0

∂t0
= (z̃0 + θR)

∂x∗

∂t0
+ x∗

(
∂z̃0

∂t0
+ θ

∂R
∂t0

)
= 0, (30)

∂W1

∂t1
= −(z̃1 + θR)

∂x∗

∂t1
+ (1− x∗)

(
∂z̃1

∂t1
+ θ

∂R
∂t1

)
= 0. (31)

12We assume the second order conditions ∂2Wi/∂t2
i < 0, i = 0, 1 are satisfied.
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Consider expression (30) and suppose initially that θ = 0. Hence,

∂W0

∂t0
= z̃0

∂x∗

∂t0
+ x∗

∂z̃0

∂t0
= 0, (32)

∂W1

∂t1
= −z̃1

∂x∗

∂t1
+ (1− x∗)

∂z̃1

∂t1
= 0. (33)

Substituting the comparative static results derived earlier into (32) and (33), it can be

shown that the equilibrium in this case is achieved when

[y0φ′(t0) + 1]x∗ + k′(t0) = 0, (34)

[y1φ′(t1) + 1](1− x∗) + k′(t1) = 0. (35)

Notice that these conditions are the same as (28) and (29) obtained in the centralized

case. This result holds because both the city size (x∗ or (1− x∗), respectively) and z̃i

are maximized at the same values of ti, as explained earlier.13 When (34) and (35) hold,

∂x∗/∂t0 = ∂x∗/∂t1 = ∂z0/∂t0 = ∂z1/∂t1 = 0. As a result, the strategic competition effect

that would arise in the decentralized case vanishes.

Now, suppose that 0 < θ 6 1 and conditions (34) and (35) still hold. Then, it turns

out that ∂x∗/∂ti = ∂zi/∂ti = 0 and ∂R/∂ti < 0, which implies ∂Wi/∂ti < 0. The latter

means that, as in the centralized case, the equilibrium values of t0 and t1 are lower in the

absentee landlord case, θ = 0, than the corresponding values achieved when residents

receive at least some of the ALR, or 0 < θ 6 1.

Proposition 5. When the transport system is decided in a decentralized way, and regional

transport authorities maximize total consumption within the limits of their respective regions, the

equilibrium values of t0 and t1 are higher when θ = 0 than when 0 < θ 6 1.

Next, we compare the values of t0 and t1 in the centralized and decentralized cases.

Evaluating the centralized solution (27) at ∂W0/∂t0 = 0 and ∂W1/∂t1 = 0 gives

∂W
∂t0

= − 1
x∗

∂x∗

∂t0
(z̃0 + θR), (36)

∂W
∂t1

=
1

(1− x∗)
∂x∗

∂t1
(z̃1 + θR). (37)

13In other words z̃0 (z̃1, respectively) and x∗ z̃0 ((1− x∗)z̃1, respectively) reach a maximum at the same value of t0 (t1,
respectively).
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When θ = 0, the equilibrium is characterized by (34) and (35), so ∂x∗/∂ti = 0. As a

result, ∂W/∂ti = 0, which means that the centralized and the decentralized solutions

are identical. Now, assume that 0 < θ 6 1. Since by Proposition 5 the values of ti are

lower in this case, then −[y0φ′(t0)x∗ + k′(t0)] > 0 and −[y1φ′(t1)(1− x∗) + k′(t1)] > 0.

By substituting these expressions into ∂x∗/∂t0 and ∂x∗/∂t1 gives ∂x∗/∂t0 > 0 and

∂x∗/∂t1 < 0, which, in turn, implies, ∂W/∂ti < 0, i = 0, 1. Then, we conclude that relative

to the centralized case, the values of ti chosen by the regions are larger. The following

proposition summarizes the results.

Proposition 6. Suppose that the transport authorities both in the centralized and decentralized

cases choose the values of ti that maximize consumption (aggregate consumption or total con-

sumption within the region, respectively). Let {tC,C
0 , tC,C

1 } denote the centralized solution and

{tD,C
0 , tD,C

1 } the decentralized solution. Then,

(i) If θ = 0, then tD,C
i = tC,C

i , i = 0, 1.

(ii) If 0 < θ 6 1, tD,C
i > tC,C

i , i = 0, 1.

A simple numerical example helps illustrate the results obtained thus far. The numeri-

cal example assumes that φ(ti) = 1/t2
i and k(ti) = κi ti, where κi is a positive constant.

Also, y0 = y1 = 50. Figure 3 shows the optimal values of ti and equilibrium values of ti

for different values of θ ∈ [0, 1], when the transport authorities maximize either the city’s

surplus or consumption.14 When cities maximize their surplus, the solutions are inde-

pendent of θ. The graph shows, however, that the decentralized solution ti(DS) = 2.14

is larger than the optimal and centralized solution value ti(O) = ti(CS) = 1.81. When

the cities maximize total consumption, the values ti decline as θ rises. The centralized

and decentralized solutions in this case (ti(CC) and ti(DC), respectively) are equal when

θ = 0, but ti(CC) < ti(DC) when 0 < θ 6 1. Note that the centralized solution is optimal

when θ = 1.
14This example assumes, among other things, that the productivity levels y0 and y1 and the costs κ0 and κ1 are

identical. Given that cities are completely identical, we then focus on a symmetric equilibrium, with t0 = t1 = ti. The
next section examines how the transportation system changes when one city becomes more productive than the other.
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6 Extensions

We consider two possible extensions of the previous analysis. In first place, we analyze

the additional distortions generated by a financing mechanism that shares the cost of

the transportation systems uniformly across the entire population, regardless of their

residential location. And in second place, we compare the distortions in the transportation

systems arising in urban settings where the cities differ in their productivity levels.

6.1 Alternative financing mechanism

Suppose now that the total fixed cost of setting up the transportation networks is financed

by all individuals regardless of their residential location and commuting destination.15

In other words, suppose that τ0 = τ1 = τ = k(t0)x∗ + k(t1)(1− x∗). In general, the

equilibrium solutions are no longer optimal. One consequence of implementing a uniform

lump-sum tax across cities is that x∗ no longer depends on k(t0) and k(t1):

x∗ =
(y0 − y1) + [y1φ(t1) + t1]

[y0φ(t0) + t0) + (y1φ(t1) + t1]
. (38)

We use the previous numerical example to compare the values of ti chosen under

different objective functions when the transport fixed costs are funded through a uniform

lump-sum tax or a city-specific tax. We assume as before that CBDs are identical

(y0 = y1 = 50) and focus on symmetric equilibria. The results are reported in figure 4.

Consider the case of total surplus maximization. It was shown earlier that the

centralized solution is optimal when τ0 = k(t0) and τ1 = k(t1). A uniform tax is only

optimal when the cities are completely identical (shown in the figure). In this situation, it

becomes irrelevant whether the fixed costs are financed by each city or through a uniform

tax. In the decentralized case, cities are induced to choose even larger ti’s since they

expect to shift part of the burden of financing the local transport system to the other city.

In the figure, this is represented by the horizontal line at ti(DS) = 3.79.

When transport authorities maximize consumption, the results are similar to those

shown in figure 3. In other words, the level of ti(CC) chosen when the costs are uniformly
15To some extent, this could be considered the truly “centralized" case, since total transport fixed costs are financed

through centrally collected taxes.
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shared is the same as the one chosen if they are financed through a city- or region-

specific tax. As before, ti(CC) is inefficiently high and it declines as θ increases. In

the decentralized case, and when the cities are identical, the equilibrium values of

ti(DC) do not depend on θ when the tax is uniform across cities, since in this case

R(∂x∗/∂t0) + x∗(∂R/∂t0) = 0. In fact, the values of ti(DC) are exactly the same as the

equilibrium values of ti(DS), observed when cities maximize their respective surplus.

6.2 Cities with different productivity levels

How do the optimal, centralized, and decentralized transportation networks change when

one city is more productive than the other? The examples developed thus far focus on

symmetric equilibria, where y0 = y1. Suppose now that y0 and y1 may differ. Consider

first the social planner’s problem. By differentiating the previous FOCs (5), (6), and (7)

with respect to yi, we obtain16

∂x∗

∂y0
> 0,

∂x∗

∂y1
< 0,

∂ti

∂yi
> 0, and

∂tj

∂yi
< 0, i 6= j. (39)

This means that the social planner chooses a higher value of t for city i when the city

becomes relatively more productive and a lower t for the city that becomes less productive

(in this case, city j). As a result, the border that determines the number of commuters to i

also increases.

For the decentralized case, the comparative static analysis is substantially more

complicated. As result, we rely on numerical example to illustrate what happens to the

equilibrium values of ti when cities differ in their productivity levels. We compare as well

the solutions arising in those cases to the respective centralized solutions. In the exercise,

we assume that y0 = y1 + ∆, and calculate the equilibrium values of x∗, t0, and t1 for

different ∆s. Moreover, we consider all the different scenarios studied earlier, including

the uniform financing alternative of section 6.1. The solutions are shown in figures 5 and

6. A few remarks are worth pointing out. First, the border x∗ that determines the number

of residents working at CBD0, which in this case is the city that is more productive,

is always larger in the decentralized case than in the centralized case. Second, when
16The derivations are shown in the Appendix.
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uniform financing is added to the decentralized case, x∗ becomes even larger (i.e., the

distortion becomes even larger). Note, however, that the financing mechanism does not

affect the decisions made in the case CS (in other words, ti(CSuni f orm) = ti(O) = ti(CS)).

Third, in the decentralized case, t0 increases and t1 decreases, as in the optimal and

centralized cases, but the levels of ti(DS) are always above the levels of ti(O), ti(CS), and

ti(CSuni f orm). And fourth, uniform financing in the decentralized case gives the largest

values of ti.

7 Exogenous Political Boundaries

We now assume that each city belongs to a different region, where regions are delimited

by an exogenously given border x̄. We modify slightly our setup and assume that there

is one residential location in each region, denoted by xi. In other words, all residents of

region 0 reside at a single location x0 miles from CBD0, such that x0 < x̄, and all residents

of region 1 live at x1, where x1 > x̄, or at (1− x1) miles from CBD1.17 The objective

in this section is once more to characterize the transportation system decided by each

regional administrative unit in a decentralized way when the productivities differ across

cities and compare the solutions to those decided by a central transport authority.

Households residing at xi commute to work to either CBDi or CBDj. Utility is given

by uij = zα
ij εij, 0 < α 6 1, where i denotes the place of residence and j the place or work,

and εij is an idiosyncratic preference shock that captures the idea that individuals may

differ in terms of their preferences for living and working in different cities. The values

of εij are drawn from an independent Fréchet distribution, F(εij) = e−ε−σ
ij , where σ > 1

determines the dispersion of the idiosyncratic utility.

We also assume, that ex-ante, it is possible to choose different transportation systems

within each region i, discriminating between those who commute inwards to city i,

represented by transportation system tii, and those who commute outwards, to city j,
17We use the same name for regions and CBDs.
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given by tij. Under these conditions, zij becomes18

Work in 0

x0 < x̄ : z00 = y0 − [y0φ(t00) + t00] x0 − τ00 − r(x0),

x1 > x̄ : z10 = y0 − [y0φ(t10) + t10] (x1 − x̄)

− [y0φ(t01) + t01] (x̄− x0)

− [y0φ(t00) + t00] x0 − τ10 − r(x1),

Work in 1

x1 > x̄ : z11 = y1 − [y1φ(t11) + t11] (1− x1)− τ11 − r(x1),

x0 < x̄ : z01 = y1 − [y1φ(t00) + t00] (x̄− x0)

− [y1φ(t10) + t10] (x̄− x1)

− [y1φ(t11) + t11] (1− x̄)− τ01 − r(x0),

We consider a closed-city model in which the total number of residents is given by N,

which is also equal to the total labor supply. Housing supply at location i is exogenously

given and equal to HS
i . The two regions can host the total number of residents, so that

N = HS
0 + HS

1 . Given the assumption on the distribution of εij, the probability of living

in i and commuting to j is

λij =
(zα

ij)
σ

∑r ∑s(zα
rs)

σ
, r, s = 1, 2. (40)

As a result, the total number of individuals residing in i is ∑s λisN, and the total number

of individuals working in j is Lj = ∑r λrjN. Since each household demands one unit

of housing and local housing markets clear, so that ∑s λisN = HS
i . This last equality

determines {r(x0), r(x1)}.
When deciding the transportation system, we assume that the authority in i decided

the transportation system that maximizes the city surplus Si defined, in the present case,
18We also assume that in principle residents can be taxed differently depending on both where they reside and where

they work. Additionally, we assume that land rents accrue to absentee landowners.
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by

S0 = y0L0 {1− [φ(t00)y0 + t00]x0}

−λ10N {[φ(t01)y0 + t01](x̄− x0) + [φ(t10)y0 + t10](x1 − x̄)} ,

S1 = y1L1 {1− [φ(t11)y1 + t11](1− x1)}

−λ01N {[φ(t01)y1 + t01](x̄− x0) + [φ(t10)y1 + t10](x1 − x̄)} .

The central transport authority, on the other hand, chooses the values of {tij}i,j=0,1 that

maximize total surplus S = S0 + S1.

We develop a numerical example that illustrates how the outcomes differ when one

city becomes more productive than the other. Specifically, we assume that y0 = y + ∆

and y1 = y and evaluate how the policies tij change when ∆ rises. We assume in the

numerical example that ασ = 1.19 In this case, housing demand is homogeneous of

degree 0 in prices, and we choose the normalization {r(x0), 1}. We also consider two

cases concerning fixed costs of setting up the transportation network. In first place, we

assume that fixed costs are zero, which means that τij = 0. In second place, we assume

that fixed costs are uniformly shared across the entire population, regardless of where

they live and work, i.e., τij = (F0 + F1)/N. The results are summarized in figures 8, 9,

and 10.

A few interesting conclusions emerge from this exercise. Consider the case in which

τij = 0. First, the levels of t00 and t11 in both the centralized and decentralized cases

coincide. In all these cases, tii satisfies [yiφ
′(tii) + 1] = 0. In other words, tii is chosen

to minimize the transportation costs yiφ(tii) + tii. Moreover, as ∆ increases, t00 also

increases.20

Second, the central transport authority always chooses t01 = t10. This means that the

central authority does not discriminate between residents who commute to work outward

to a different city. Also, as ∆ increases, tij increases as well. So when one city becomes

more productive than the other, a central authority would invest in faster transportation

networks connecting the cities.
19For instance, this relationship holds if the systematic part of the utility function is

√
z and σ = 2.

20Since y1 is held constant throughout this exercises, t11 does not change.
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Third, the centralized and decentralized solutions are equal when ∆ = 0. When ∆ > 0,

t01 and t10 differ in the decentralized case. Moreover, when ∆ increases, t01 tends to rise,

and t10 tends to decrease for low values of ∆, and tends to increase when ∆ becomes

sufficiently large.

Fourth, when ∆ increases, more households would be willing not only to work in

CBD0, but also to live in region 0. Since housing supply is inelastically given at location

x0, r(x0) would tend to rise. Note, however, that r(x0) rises more in the decentralized

case than in the centralized case.

From this exercise, it is possible to calculate total surplus arising in both the centralized

and decentralized cases. It follows that SD < SC.21 The previous analysis also sheds some

light on an alternative institutional arrangement that combines both regional and central

efforts, which may reinstate the outcomes observed in the centralized case. Specifically,

this arrangement would grant cities the responsibility of deciding the transportation

system that best connects the region’s residential area with the city, while the central

government would be fully responsible for ensuring the appropriate level of transportation

connectivity across regions.22

Figure 10 shows the solutions tij when τij = (F0 + F1)/N for both the centralized and

decentralized cases. When costs are equally shared across all residents regardless of

where they live and work, an additional external effect is generated across cities: when

city i raises tii or tij, it does not fully internalize the full cost of such a decision. As a

result, note that the levels of t00 and t11 are now higher in the decentralized case. Similar

results are observed concerning the choices of t01 and t10 as those obtained in the previous

case with no fixed costs: in the centralized case, t01 = t10 and tij increases as ∆ increases;

t01 > t10 in the decentralized with t01 rising and t10 initially declining and then rising as

∆ gets sufficiently large.23

21The numbers are not shown here.
22The solution of the following program gives precisely this solution: city i chooses the levels of tii that maximize Si,

and the central authority chooses the levels of t01 and t10 that maximize S = S0 + S1, where each authority takes the
decisions of the others as given.

23In this situation, a program as the one described in the previous footnote does not fully restore the centralized
equilibrium, but it definitely improves upon the fully decentralized case.
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8 Conclusions

Shifting toward a decentralized transportation system could be beneficial for several rea-

sons. For instance, it would allow local transport authorities to tailor their transportation

systems to satisfy local needs. Also, since local officials would be responsible for funding

their own projects, they would have incentives to act more efficiently. And finally, the

defederalization process could generate a variety of transportation systems benefiting

consumers.

Defederalization also presents several challenges, though. This paper focuses on one

of them: when local transportation authorities make their decisions in a decentralized

way, they would not internalize the impact that their choices have on other jurisdictions.

The paper establishes certain conditions under which the decentralized case would lead

to overinvestment in transportation relative to the centralized arrangement. Specifically,

it shows that when transport authorities choose transportation systems that maximize

total surplus, the outcome in the decentralized case would be larger than the outcome in

the decentralized case. A similar result would hold when the objective is to maximize

total consumption and residents receive part of the aggregate land rents. However, in the

absentee landlord case, i.e., land rents accrue to an absentee landlord, the centralized and

decentralized solutions coincide. The distortion is even larger if the transport systems are

funded through a uniform tax on all residents regardless of their residential location and

commuting destinations. Finally, other distortions arise when cities belong to exogenously

delimited regions, and transport authorities can only choose the transport system in their

own regions. In the decentralized case, city transport authorities tend to overinvest in

transport systems that connect their own residential areas with the city. Moreover, when

the productivity of cities differ, more productive cities tend to overinvest in transport

systems connecting their residential areas with surrounding regions, while low productive

cities tend to underinvest. A central transport authority, however, connects regions by

choosing the same transport system in every region, and this transport system is faster

when the productivity of at least one city increases.

26



References

Arnott, Richard J and Joseph E Stiglitz (1979). “Aggregate land rents, expenditure on public goods,

and optimal city size”. The Quarterly Journal of Economics, pp. 471–500.

Brueckner, Jan K and Harris Selod (2006). “The political economy of urban transport-system

choice”. Journal of Public Economics, 90(6), pp. 983–1005.

Estache, Antonio and Frannie Humplick (1994). “Does Decentralization Improve Efficiency in

Infrastructure?” World Bank, Washington, DC.

Glaeser, E. (2012). Spending Won’t Fix What Ails U.S. Infrastructure. Bloomberg. Online (accessed

September 2, 2016).

Jaffe, E. (2013). The Big Fix: The End of the Federal Transportation Funding As We Know It. The Atlantic,

CityLab. Online (accessed September 2, 2016).

27



Figure 1: Land Market Equilibrium

r(x) r(1‐x)

[y1(t1) + t1](1 ‐ x*)[y0(t0) + t0]x*

x*0 1
CBD0 CBD1r(x*) = 

r(1‐x*) = 0commute/work 
CBD0

commute/work 
CBD1

R1 R2

28



Figure 2: Transportation Systems Under Different Scenarios
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Figure 3: Transportation Systems Under Different Scenarios
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Figure 4: Transportation Systems: City Specific vs. Uniform Tax
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Figure 5: Cities with different productivity levels: y0 = y1 + ∆
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Figure 6: Cities with different productivity levels
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Figure 7: Exogenously given border
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Figure 8: Exogenously given border: τij = 0
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Figure 9: Exogenously given border: τij = 0
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Figure 10: Exogenously given border: τij = TTC/N
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Appendix

A Section 3: Comparative Statics Results

By denoting Sm ≡ ∂S/∂m and Smn ≡ ∂2S/∂m∂n, we can express the Hessian of the

optimal transport system program as

H =


St0t0 St0t1 St0x∗

St1t0 St1t1 St1x∗

Sx∗t0 Sx∗t1 Sx∗x∗



=


−1

2 x∗(2k′′0 + x∗y0φ′′0 ) 0 −(k′0 + x∗y0φ′0)

0 −1
2(1− x∗)[2k′′1 + (1− x∗)y1φ′′1 ] k′1 + (1− x∗)y1φ′1

−(k′0 + x∗y0φ′0) k′1 + (1− x∗)y1φ′1 −(t0 + y0φ0 + t1 + y1φ1)

 .

Moreover, differentiating the system of equations 5, 6, and 7 with respect to y0, we obtain
St0y0

St1y0

Sx∗y0

 =


−1

2 x∗2φ′0

0

−(1− φ0x∗)

 .

This means that

∂t0

∂y0
=

1
|H|

[
−St0y0(St1t1Sx∗x∗ − S2

t1x∗) + Sx∗y0St1t1St0x∗
]
> 0, (41)

∂t1

∂y0
=

1
|H|

[
St0y0St1t1Sx∗t0 + Sx∗y0St0t0St1x∗)

]
< 0, (42)

∂x∗

∂y0
=

1
|H|

[
St0y0St1t1Sx∗t0 − Sx∗y0St0t0St1t1)

]
> 0. (43)

The results are obtained using the second order conditions for a maximum, specifically,

Smm < 0, SmmSnn − S2
mn > 0, for m 6= n, and |H| < 0, in addition to the fact that from the

FOCs, (k′0 + x∗φ′0) < 0 and (k′1 + (1− x∗)φ′1). Similar results hold for changes in y1.
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