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Abstract

We study the incentive role of severance compensation. In the canonical principal-

agent model of Sannikov (2008), we introduce exogenous job destruction risk and show

that compensation following job destruction can reduce the costs of incentives prior to

job destruction. In an optimal contract, the award of severance suppresses the growth

of the agent’s value when this value is high, which eliminates the risk of inefficient

retirement of the agent. To achieve this, however, severance compensation must exceed

the agent’s value conditional on job survival, effectively rewarding the agent for “bad

luck” in the event of job destruction. High severance awards, thus, are a part of an

optimal compensation package. Comparative statics with respect to job destruction

risk offer a novel explanation for the positive wage-tenure profile observed in the data:

average tenure and compensation should both be higher in jobs less exposed to job

destruction risk.
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1 Introduction

Standard theories of optimal incentives derive rich predictions on the level and performance-

sensitivity of direct compensation but have much less to say about optimal use of severance

compensation (Edmans and Gabaix, 2016). Severance pay is widely observed: 92 percent

of businesses surveyed in 2018 reported offering some severance pay to their employees

(Lee Hecht Harrison, 2018). In this paper, we add the risk of exogenous separation to a

standard model of dynamic incentives (Sannikov, 2008) and study how severance pay, i.e.,

compensation conditional on separation, should be used in an optimal contract.

We find that awarding an agent compensation in the event of exogenous separation can

reduce the cost of providing incentives to the agent prior to separation. Mechanically, by

shifting the agent’s compensation to the event of separation, severance pay decreases the

value owed to him conditional on no separation. Therefore, severance pay will reduce the

overall cost of providing incentives to the agent if this cost is increasing in the value owed

to the agent prior to separation. In our model, as in Sannikov (2008), incentive costs are

high when the agent’s value prior to separation is either low or high; they are low when the

agent’s value is moderate. Therefore, it is desirable to reduce the value owed to the agent

prior to separation only when this value is already high. An optimal contract, thus, awards

severance compensation to agents who are owed a lot (e.g., those who occupy high-rank

positions, typically in advanced stages of their careers) but does not provide any severance

pay to agents who are owed little (e.g., those in low-rank positions, typically in early stages

of their careers).

In our model, as in Sannikov (2008), the costs of incentives are high when the value

owed to the agent—his so-called continuation value—is high because the agent’s marginal

utility of consumption is decreasing. Specifically, if the agent’s continuation value reaches

a particular threshold, the agent’s marginal utility of consumption becomes low relative to

his marginal disutility of effort. At that point, an optimal contract stops asking for effort

altogether and the agent is retired, which is inefficient ex ante. In our model, severance

pay mitigates this risk of inefficient retirement of the agent.

The event of exogenous separation, or job destruction, presents an opportunity to pay the

agent without negative implications for the agent’s incentives, because the relationship

is at that point over. We model job destruction as an exogenous Poisson shock that

remains outside of the agent’s control. This event can represent, for example, an exogenous

productivity shock or a large negative demand shock in the final product market that

renders the relationship permanently unproductive.1

To mitigate the risk of inefficient retirement of the agent, severance pay must be sufficiently

high. Indeed, how the risk of job destruction affects the agent’s incentives prior to job

1Following Pissarides (1985) and Mortensen and Pissarides (1994), such shocks have been used exten-

sively in the macro-labor literature.
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destruction depends on whether the agent stands to lose or gain value at arrival of the

Poisson job destruction shock. To suppress the growth of the agent’s value prior to job

destruction, which mitigates the risk of inefficient retirement, the agent must stand to gain

at job destruction. For this reason, it is optimal to reward the agent at job destruction—

with a severance award exceeding his value conditional on job survival—if the agent’s value

conditional on job survival is close enough to the inefficient retirement threshold.

Overall, an optimal contract can be divided into three phases. We refer to these phases as

probation, early career, and late career. In late career, the agent’s continuation value is

high and the risk of inefficient retirement is paramount. Severance compensation is used to

mitigate this risk, which means the value of the agent’s severance award exceeds his value

conditional on job survival, i.e., the agent gains value at arrival of a job destruction shock.

In the probation phase, the agent’s value is close to zero. At zero, the agent does not

respond to incentives at all, and thus the productive relationship must end, i.e., the agent

is fired. To mitigate this risk, it would be beneficial to impose a negative severance, but

the agent’s limited liability makes this impossible. In the probation stage, thus, optimal

severance pay is zero, i.e., the agent loses all continuation value if job destruction occurs

in this phase of the contract.

The early career stage covers the middle region between probation and late career. In early

career, the agent’s continuation value is intermediate, and both endogenous separation

risks—i.e., retirement and firing—are moderate. In this stage, the value of severance

awarded to the agent is positive but remains below his continuation value conditional

on job survival. At the point of transition between early and late career, the agent is

indifferent to the event of job destruction: his severance exactly replaces his continuation

value conditional on job survival.

As in Sannikov (2008), the profit of the principal/firm in an optimal contract is a hump-

shaped function of the agent’s value. Its peak is located at the cusp between the probation

and early career stages of an optimal contract, which is where it is optimal for the firm to

initiate the contract.

Job destruction is a bad-news shock in our model: the firm always loses value at job de-

struction. In an optimal contract, the firm’s loss is loaded on late-career job destruction

events. Indeed, in late career the risk of inefficient retirement of the agent is most severe.

The firm mitigates this risk by awarding high severance compensation to the agent, effec-

tively rewarding the agent for “bad luck.” If job destruction arrives in this stage of the

contract, thus, the firm incurs a large loss. This loss can be thought of as a payment for

the extension of the relationship’s duration achieved by the slowing down of the growth of

the agent’s continuation value near the inefficient retirement threshold. More generally, it

can be thought of as an ex post payment for reducing the ex ante costs of incentives.

It is important for our results that the severance-triggering job destruction shock be com-

3



pletely exogenous, i.e., not indicative of any actions taken by the agent.2 The COVID-19

pandemic, along with the lockdowns introduced to contain it, provides a clear example of

such an exogenous negative shock, particularly for the high-contact industries like retail,

entertainment, travel, and hospitality (Epiq, 2022). Consistent with our theory, several

well-publicized corporate bankruptcy filings in the United States in mid-2020, including

JCPenny and Hertz, were immediately preceded by large payouts to executives (Spencer,

2021). These filings stand in contrast to many examples of bankruptcies brought about by

poor performance rather than a purely exogenous event, in which executives are typically

dismissed without severance, e.g., the Lehman Brothers bankruptcy in 2008.

We should note that severance in our model is not merely a benefit awarded to highly-

compensated agents simply because the value owed to them is high.3 Rather, severance

is a tool for reducing overall incentive costs that is effective when the incentive costs are

increasing in the agent’s continuation value. If incentive costs never increase with the

agent’s value, severance is not useful at all. This point is well illustrated by the analysis of

Hoffmann and Pfeil (2010), where the implications of an exogenous “bad luck” shock are

examined in a model in which there is no risk of inefficient retirement of the agent: the

optimal severance following a job-destruction shock causing the firm’s liquidation is always

zero. The same result is obtained in Anderson et al. (2018): with incentive costs decreasing

in the agent’s value, it is never optimal to award severance to a departing agent.

In contrast to several other studies of the impact of exogenous jump risk on incentives,

e.g., Piskorski and Tchistyi (2010) and Li (2017), we focus on job destruction risk, i.e.,

there is no further incentive problem to solve after the jump shock in our model. This

assumption gives to the continuation value owed to the agent right after the jump shock

the meaning of severance, which we study in this paper. This assumption also allows us

to contrast the risk of endogenous versus exogenous separation. Clearly, the possibility of

exogenous separation induced by a job destruction shock reduces the ex ante probability of

endogenous separation at both the agent-firing threshold and the retirement threshold. In

an optimal contract with severance, however, the risk of inefficient retirement is reduced

much more comprehensively than the risk of inefficient firing of the agent.

Specifically, we show that, in probation and in the early-career stage, an optimal contract

gives an upward drift to the agent’s continuation value process. In these two stages,

due to positive volatility of the contract, the agent faces the risk of hitting the firing

threshold. Upon reaching the late-career stage, however, the contract becomes close to

being stationary (has near-zero drift) with reduced volatility, which effectively “slows down”

its dynamics in this region. The contract is thus unlikely to leave the late-career stage before

2DeMarzo et al. (2014) and Wong (2019) study models with negative jump risk that is partially controlled

by the agent.
3This would indeed be true in a model with full information (first best), decreasing marginal utility

of consumption, and exogenous separation shocks. In such a model, however, severance would be strictly

positive at all levels of the continuation value.
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arrival of a job destruction shock. In particular, the transition to the agent retirement

threshold becomes very unlikely. This way, the risk of job destruction completely replaces

the risk of inefficient agent retirement. We show this result analytically in the limit as

the rate of arrival of job destruction becomes high, and also verify it numerically in a

parametrized example with a reasonably low rate of arrival of job destruction.

Comparative statics with respect to the intensity of the Poisson shock allow us to quan-

tify the impact of job destruction risk on the firm’s ex ante profit and on the degree of

compensation backloading achieved by an optimal contract. Higher risk of job destruction

limits the possibility of backloading, which decreases the firm’s ex ante profit.

Consistent with this comparative statics result, our analysis predicts that higher average job

durations, higher wages, and higher severance should be observed in sectors, occupations, or

localities that are less exposed to the risk of job destruction. Our model, thus, suggests that

a positive wage-tenure profile observed in the data, as well as the severance-tenure profile,

can be explained purely by the lower overall incentive costs achieved in more stable long-run

relationships. This novel explanation for a positive wage-tenure profile is independent of the

standard explanation related to accumulation of match-specific human capital, suggesting a

different channel through which contract duration can affect observed compensation levels.

Severance has been studied in the literature on optimal contracts for CEOs. This literature

finds a role for severance in settings in which the principal (the board of directors) faces

additional frictions in addition to the CEO’s moral hazard problem. In Almazan and

Suarez (2003), the board has a time-consistency problem, and severance can be an ex ante

useful commitment device dissuading the board from replacing the CEO with a marginally

better one ex post. In Inderst and Mueller (2010), the CEO has private information about

her outside options, and severance persuades the CEOs with weak outside options to quit.

In He (2012), the CEO has access to private savings and can hurt the firm’s liquidation

value. Severance is a part of the CEO’s compensation, even though the CEO is fired for

poor performance, to preserve consumption smoothing. In our model, in contrast, moral

hazard is a sole contracting friction, which makes our analysis also applicable to many jobs

below the top executive positions. Severance mitigates the risk of inefficient retirement of

the agent, which is not a focus of the literature on CEO incentives.

Organization The rest of this paper is organized as follows. Section 2 lays out an optimal

contracting problem with job destruction risk, and Section 3 casts it in a recursive form.

Section 4 examines first-order conditions. Section 5 characterizes the agent’s exposure to

job destruction risk in an optimal contract, while Section 6 does the same for the firm.

Section 7 provides comparative statics with respect to the arrival rate of job destruction.

Section 8 computes the expected contract duration and exit probabilities. Section 9 studies

the limit when the arrival rate of the job destruction shock goes to infinity. Section 10

discusses testable implications of our model. Section 11 concludes.
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2 A dynamic incentive problem with job destruction risk

We study the canonical dynamic principal-agent model of Sannikov (2008) extended to

allow for exogenous job destruction and severance pay. Upon arrival of a job destruction

shock, the productivity of the match jumps to zero permanently, i.e., the job is destroyed

and it is optimal for the parties to separate. We model the exogenous job destruction shock

as a Poisson time θ arriving with intensity λ ≥ 0.

We also allow for endogenous separations. In particular, it is without loss of generality

to restrict attention to a class of endogenous separations that take place when the agent

becomes sufficiently poor or sufficiently rich. Formally, a separation of this kind takes

place when the value owed to the agent reaches either 0 or a threshold Wgp defined in

(13). Following Sannikov (2008, Section 3), we will refer to these events, respectively, as

agent’s firing and retirement.4 The time of endogenous separation will be denoted by τ .

By τ̂ ≡ min{θ, τ} we denote the time of separation (exogenous or endogenous).

After separation, the agent can still be compensated by the firm, i.e., the agent can collect

pension or severance pay. In the event of endogenous separation, the value owed to the

agent is either 0 or Wgp, where Wgp is the agent’s retirement value or pension. Severance

represents the value promised to the agent in the event of exogenous job destruction.

Specifically, we will refer to the continuation utility promised to the agent conditional on

job destruction occurring at time t as the agent’s severance value at t, and denote it by Jt.

The firm’s continuation profit at separation from an agent who is owed value J will be

denoted by Fsep(J). This function is exogenous to the relationship between the firm and

the agent; Section 2.1 provides further discussion.

Let Xt denote the cumulative output up to date t produced in the relationship. Before

separation, i.e., for t < τ̂ , as in the standard model, Xt follows

dXt = Aat dt+ σdZt,

where Aat ∈ A is the agent’s action (effort) at date t, and Zt is a standard Brownian motion

on (Ω,F , P ) independent of the job destruction shock θ. We assume that the set of feasible

actions A is an interval [0, Ā] for some Ā > 0.5 After separation, i.e., for all t ≥ τ̂ , the

process Xt follows

dXt = 0,

i.e., no further output is produced in the match.

A contract C consists of a stopping time τ and three progressively measurable processes:

C ≡ (τ ≥ 0, {(At, Ct, Jt), 0 ≤ t ≤ ∞}) ,
4The interpretation of endogenous separation at Wgp as agent retirement is consistent with models

embedding dynamic incentive problems into an external labor market, e.g., Wang (2011).
5Our analysis can be extended to allow A to be any compact subset of R+.
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where At is the action recommended for the agent to take at t, Ct is the agent’s flow

compensation, and Jt is the agent’s promised severance value, i.e., his continuation value

conditional on job destruction occurring at t. At each t, the agent chooses privately his

action Aat ∈ A to maximize his utility. A contract is incentive compatible if Aat = At at all

t, i.e., the actual action chosen by the agent is that recommended by the contract.

The agent’s expected payoff from an incentive-compatible contract is

E
[
r

∫ τ̂

0
e−rt (u(Ct)− h(At)) dt+ e−rτ̂

(
1{τ̂=θ}Jτ̂ + 1{τ̂=τ}1{Wτ=Wgp}Wgp

)]
,

where r > 0 and 1{·} is the indicator function. The agent’s utility function u : R+ → R+

is C2 with u′ > 0, u′′ < 0, limc→0 u
′(c) = ∞, and u(0) = 0. The agent’s effort disutility

function h : A → R+ is C2 with h′ > 0, h′′ > 0, and h(0) = 0. In addition, we follow

Sannikov (2008) in assuming

lim
a→0

h′(a) =: γ > 0.6 (1)

Under an incentive compatible contract, at any t < τ̂ , the agent’s continuation value

process is

Wt ≡ Et
[
r

∫ τ̂

t
e−r(s−t) (u(Cs)− h(As)) ds+ e−rτ̂

(
1{τ̂=θ}Jτ̂ + 1{τ̂=τ}1{Wτ=Wgp}Wgp

)]
.

The agent’s continuation value does not jump in an endogenous separation.7 In an ex-

ogenous separation, however, it will be optimal to adjust the agent’s continuation value

discretely, i.e., Jθ 6= Wθ a.s. We study the optimal jump in agent’s continuation value at

job destruction in detail in Section 5.

The firm’s ex ante expected profit from an incentive compatible contract is

E
[
r

∫ τ̂

0
e−rt(At − Ct)dt+

e−rτ̂
(
1{τ̂=θ}Fsep(Jτ̂ ) + 1{τ̂=τ}

(
1{Wτ=Wgp}Fsep(Wgp) + 1{Wτ=0}Fsep(0)

) )]
.

2.1 Severance cost and separation profit

In theory, the firm could keep the agent employed even after arrival of a job destruction

shock θ. To focus on the interesting cases in which separation at job destruction is optimal,

6This assumption is convenient technically, as it implies that the volatility of the agent’s continuation

value remains bounded away from zero at all times prior to separation.
7To deliver promised value of 0 or Wgp, any adjustment to the agent’s continuation value at endogenous

separation would have to be mean-preserving spread. Such spreads are infeasible at 0 because of the agent’s

limited liability. They are suboptimal at Wgp under concave Fsep.
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we will assume that the firm’s separation payoff is at least as high as the payoff from

keeping the agent employed after a job destruction shock has made the match permanently

unproductive. That is, we will assume Fsep ≥ F0, where

F0(W ) ≡ −c such that u(c) = W. (2)

Here, F0 represents the profit from keeping the agent employed after job destruction. Under

F0, the agent’s continuation value W is delivered by constant compensation c with no effort

required.8 Note that F0 is negative, strictly decreasing, and strictly concave.

The continuation profit function Fsep represents the firm’s value from continuation after

separation (e.g., the expected profit from searching for a replacement for the agent) less

the cost to deliver to the agent his severance or retirement value at separation. Specifically,

let

Fsep(J) ≡ D − rL such that V (L) = J, (3)

where D ≥ 0 denotes the firm’s value from continuation after separation, L is the lump-

sum severance payment to the agent, and V (L) denotes the agent’s post-separation value

function for any severance L ≥ 0.

One example covered by (3) is the agent replacement model in Sannikov (2008, Section

3). There, V (L) = u(rL) and D = F (W0) − κ, where F (W0) is the profit from hiring

a new agent with promised value W0, and κ is a search cost. In this example, thus,

Fsep(J) = F (W0) − κ + F0(J). We will maintain flexible assumptions on Fsep to allow a

wide class of models of the form (3).

Assumption 1 F ′sep is strictly decreasing and weakly concave, with F ′sep(0) = 0.

Assumption 2 F ′sep(W ) ≥ F ′0(W ) for all W ≤W ∗gp, where W ∗gp is defined as the solution

to F ′sep(W ) = −1/γ.

Assumption 2 ensures that the first derivative of the firm’s profit function, F ′(W ), is convex

wherever F ′(W ) ≥ F ′sep(W ). Together with the weak concavity of F ′sep in Assumption 1,

this will ensure a single crossing between F ′ and F ′sep in an optimal contract.

3 Recursive formulation

In this section, we formulate the problem recursively and discuss the existence and com-

putation of the solution.

8Indeed, permanent compensation c = u−1(W ) and effort a = 0 deliver W ≥ 0 to the agent because

h(0) = 0 and r
∫∞
0
e−rtu(c)dt = u(c) = W . The total cost to the firm to deliver W to the agent in this

static way is r
∫∞
0
e−rtcdt = c, hence the profit is F0(W ) = −c ≤ 0.

8



3.1 Contract dynamics prior to job termination

Before separation, the dynamics of the agent’s continuation value are

dWt = r(Wt − u(Ct) + h(At))dt+ rYt(dXt −Atdt) + ∆t(dNt − λdt), (4)

where dXt−Atdt is the agent’s observed performance relative to the benchmark Atdt, rYt
represents the sensitivity of the agent’s continuation value to his performance,

∆t ≡ Jt −Wt (5)

represents the sensitivity to the job destruction shock, and Nt is the counting process

stopped at 1. That is, ∆t is the jump in the agent’s continuation value, i.e., the amount

he gains, at arrival of a job destruction shock.

As in Sannikov (2008), a contract C is incentive compatible if and only if

At ∈ argmax
a∈A

Yta− h(a) at all t < τ̂ . (6)

Note that interior effort At ∈ (0, Ā) is incentive compatible if and only if

Yt = h′(At). (7)

At all t < θ, we have dNt = 0. Thus, under an incentive compatible contract, the dynamics

of the agent’s continuation value before separation, given in equation (4), are reduced to

dWt = (rWt − r(u(Ct)− h(At))− λ∆t) dt+ rσYtdZt. (8)

The drift term in the above representation accounts for how Wt is delivered to the agent.

The value owed to the agent grows at the rate of time preference less the flow of utility

delivered to the agent, r(u(Ct) − h(At)), and less λ∆t. The term λ∆t can be thought of

a fair-odds premium charged to the agent in the event of no job destruction at t in order

to account for the gain ∆t = Jt −Wt the agent receives in the event of job destruction

at t. The agent pays this premium indirectly through the drift of his continuation value

Wt. Using this premium, and making the agent’s severance value Jt history-dependent, a

contract can better control the position of Wt while the relationship remains productive.

Specifically, by setting Jt above Wt, the contract can charge a positive premium λ∆t, which

pushes Wt downward. Setting the severance value Jt below Wt has the opposite effect on

the drift of Wt.

Since Jt does not enter the performance-sensitivity term, rσYt, severance does not impact

incentives directly but only indirectly by affecting the average position of Wt prior to sep-

aration. In this respect, severance compensation Jt is similar to immediate compensation

ct paid to the agent while the job remains active.
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Example 1 Suppose the contract provides no severance, i.e., Jt = 0 or, equivalently,

∆t = −Wt, at all t. Since the agent loses all continuation value at job destruction, in

order to deliver Wt to the agent prior to job destruction, the contract must provide a

negative premium term −λWt, which pushes the agent’s continuation value upward. This

push is especially strong when Wt high, i.e., near the agent’s retirement point Wgp, which

accelerates the retirement of the agent and thus is inefficient.

Example 2 Suppose Jt = Wt or, equivalently, ∆t = 0, at all t. With this severance

promise, the agent is fully insured against job destruction risk. Since job destruction, as

an exogenous event, carries no information about the agent’s actions, not exposing the

agent to this risk provides a reasonable benchmark. An optimal contract, however, will

expose the agent to job destruction risk, i.e., Jt 6= Wt, at almost all t.

3.2 The contracting problem in recursive form

The firm designs a contract C to maximize its profit subject to the requirements of incentive

compatibility and the agent’s participation. Assuming the agent’s reservation value of 0,

the contract must deliver nonnegative value to the agent ex ante: W0 ≥ 0.

In the recursive form, the firm’s problem is to maximize the profit value it can attain in the

relationship with the agent, for any W ≥ 0. Let us denote this value function by F (W ).

The controls in this problem are c, a, Y , and J . With these controls, the drift and volatility

of the agent’s continuation value process, in (8), can be written as

µ(W ) = rW − r(u(c)− h(a))− λ(J −W ), (9)

ν(W ) = rσY (W ). (10)

The value function F must satisfy the following HJB equation

rF (W ) = max
c,a,Y,J

{
ra− rc+ F ′(W ) (rW − r(u(c)− h(a))− λ(J −W )) +

1

2
F ′′(W )r2σ2Y 2

− λ(F (W )− Fsep(J))
}
. (11)

This HJB equation is standard except for two terms that capture the job destruction

shock. The term −F ′(W )λ(J−W ) shows how much the firm values the fair-odds premium

λ(J −W ) the agent is charged conditional on job survival. The term −λ(F (W )−Fsep(J))

captures the direct impact of job destruction on the firm’s continuation profit: at job

destruction, the firms gives up F (W ) and gains Fsep(J).

3.3 Boundary conditions and existence of solution

The HJB equation (11) can be solved starting from W = 0 using the boundary condition

F (0) = Fsep(0) (12)
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and a conjectured initial slope F ′(0). In Appendix A.1, we show that the forward-shooting

procedure of Sannikov (2008) pins down the initial slope F ′(0) and determines the optimal

solution curve F , which represents the firm’s value function in an optimal contract. In par-

ticular, barring degenerate cases excluded by Assumption 3 in Appendix A.1, the optimal

solution curve F satisfies F (W ) ≥ Fsep(W ) for all W ≥ 0, and there exists Wgp > 0 such

that

F (Wgp) = Fsep(Wgp) and F ′(Wgp) = F ′sep(Wgp). (13)

The initial slope F ′(0) is strictly positive and the optimal solution curve is strictly concave

with a unique maximum at W ∗ ≡ argmaxF (W ), where 0 < W ∗ < Wgp. An optimal

contract starts with W0 = W ∗ and follows (8), where At, Yt, Ct, and Jt are determined by

the policies that attain F in the HJB equation (11).9 Since F (W ) = Fsep(W ) at W = 0

and W = Wgp, endogenous separation is indeed optimal at either of these points.10

4 Optimal use of compensation

In this section, we use the first-order conditions with respect to J and c to discuss the

optimal use of severance compensation and compare it to immediate compensation. Neither

form of compensation affects the incentive constraint (7) directly. Instead, compensation

pays down the value Wt owed to the agent and, thus, affects the costs of incentives indirectly

via the average position of Wt.

The first-order condition with respect to J in the HJB equation (11) is

− F ′(W )λ+ λF ′sep(J) ≤ 0, (14)

with equality if J > 0. By increasing the agent’s severance value J , on the one hand, the

firm increases its severance costs conditional on job destruction (i.e., reduces its separation

profit) by −F ′sep(J) on the margin. This cost is realized at the rate of arrival of job

destruction, λ. On the other hand, by increasing the severance value J the firm increases

the fair-odds premium charged to the agent conditional on the job’s survival, which reduces

the drift in the agent’s valueWt, also at the rate λ. The first derivative of the value function,

F ′(W ), captures the impact of the drift of Wt on the firm’s profit.

The first-order condition for c in the HJB equation (11) is

− F ′(W )u′(c) ≤ 1, (15)

9Given the strictly positive marginal disutility of effort, (1), the agent’s effort At = a(Wt) and the

volatility Yt = Y (Wt) of the agent’s continuation value process remain bounded away from zero at all times

prior to separation. Allowing for Ā sufficiently large, the agent’s effort remains in (0, Ā), i.e., volatility Yt
and effort At are related by the first-order condition (7), as long as 0 < Wt < Wgp and t < θ.

10The endogenous separation time τ , thus, represents the first exit time of the agent’s continuation value

process Wt from the open interval (0,Wgp).
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with equality if c > 0. A marginal unit of immediate compensation for the agent costs the

firm 1 and decreases the drift of the agent’s continuation value at the rate u′(c).

If W ∈ (0,W ∗], then F ′(W ) ≥ 0, i.e., a reduction in the drift of Wt actually lowers the

firm’s profit, as it increases the risk of reaching W = 0, where the agent must be fired.

In this region, it is optimal to set the agent’s compensation at zero: c(W ) = J(W ) = 0.

Following Sannikov (2008), we will refer to this region of the state space as probation. In

probation, to minimize the risk of inefficient termination at W = 0, the agent does not

receive any direct compensation and is not entitled to any severance.

If W ∈ (W ∗,Wgp), then F ′(W ) < 0, i.e., a reduction in the drift of Wt increases the firm’s

profit. In this region, optimal compensation is positive, in both forms, as determined by

F ′sep(J(W )) =
−1

u′(c(W ))
= F ′(W ). (16)

Proposition 1 In an optimal contract, c(W ) = J(W ) = 0 for all W ∈ (0,W ∗]. On

(W ∗,Wgp), c(W ) and J(W ) are strictly increasing, with J(W ) < Wgp for all W ∈ (0,Wgp).

Proof In Appendix A.2.

In sum, at the low endogenous separation point W = 0, the agent is fired with no severance.

At the high endogenous separation point W = Wgp, the agent is retired with value Wgp. In

an exogenous separation at the moment of job destruction, θ < τ , we have 0 < Jθ < Wgp,

with Jθ increasing in Wθ.

Figure 1 provides an illustration.11 As noted in Example 2, Jθ is generally not equal to Wθ.

In probation, J(W ) = 0. Positive severance is awarded to the agent outside of probation.

Next, we discuss the impact the agent’s severance promise has on his continuation value

prior to job destruction.

5 The agent’s exposure to job destruction risk

In this section, we examine the agent’s exposure to job destruction, which is captured by

the jump in the agent’s continuation value triggered by the arrival of a job destruction

shock: ∆(W ) = J(W ) −W . This exposure also determines the impact of severance on

the agent’s continuation value Wt and, thus, on the incentive costs incurred prior to job

destruction.

11Parameter values used to compute this example are given in Section 8.2.
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Figure 1: Optimal severance value J(W ).

5.1 Reward and punishment at job destruction

Proposition 1 already implies that ∆(W ) < 0 for W low enough. In probation J(W ) = 0,

so ∆(W ) = −W < 0 for all W ∈ (0,W ∗]. Outside of probation, we have the following

characterization of the agent’s exposure to job destruction risk.

Proposition 2 In an optimal contract, there exists a unique Wnj ∈ (W ∗,Wgp) such that

∆(W ) < 0 for W ∈ (0,Wnj),

∆(W ) = 0 for W = Wnj ,

∆(W ) > 0 for W ∈ (Wnj ,Wgp).

Thus, the agent loses at job destruction if Wθ < Wnj and gains if Wθ > Wnj.

Proof In Appendix A.3.

The proof of this result boils down to showing that the functions F ′ and F ′sep cross exactly

once on (0,Wgp). Indeed, since F ′ and F ′sep are strictly decreasing, the first-order condition

(14) will be met with a negative ∆(W ) = J(W )−W < 0 if F ′(W ) > F ′sep(W ), and with a

positive ∆(W ) > 0 if F ′(W ) < F ′sep(W ).

From the smooth-pasting condition F ′(Wgp) = F ′sep(Wgp), clearly, we have that F ′ and F ′sep

are equal at Wgp. They must cross at least once on (0,Wgp) because F ′(0) > 0 = F ′sep(0)

and F (W ) = Fsep(W ) at both W = 0 and W = Wgp.
12

12Indeed, since F ′(0) > 0 = F ′sep(0) and F ′ and F ′sep are continuous, F ′(W ) ≥ F ′sep(W ) for all W ∈
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Figure 2: The single crossing between F ′sep and F ′. For W > W ∗, the optimal jump of the agent’s

continuation value at job destruction, ∆(W ), equalizes the two slopes.

The proof that only a single crossing between F ′ and F ′sep exists on (0,Wgp) would be imme-

diate if F ′ were convex and F ′sep concave on (0,Wgp). Assumption 1 provides the concavity

of F ′sep, but the convexity of F ′ on the whole interval (0,Wgp) cannot be guaranteed.

However, by differentiating the HJB equation we can show that F ′ is strictly convex when-

ever F ′ is above F ′sep, which is enough to eliminate the possibility of a second crossing

between F ′ and F ′sep on (0,Wgp). Indeed, if a second crossing between F ′ and F ′sep were to

occur at some Ŵ < Wgp, then on the interval (Ŵ ,Wgp) we would have F ′ above F ′sep and

bending upward (because F ′ is strictly convex), while F ′sep is bending (weakly) downwards.

This would mean that, on the interval (Ŵ ,Wgp), F
′ moves farther and farther away from

F ′sep, contradicting the smooth-pasting condition F ′(Wgp) = F ′sep(Wgp).

Figure 2 shows the single crossing between F ′ and F ′sep in a computed example. The optimal

adjustment ∆(W ) is given by the horizontal distance from F ′(W ) to the line representing

F ′sep, or to the vertical axis if F ′(W ) > 0.

Assumptions 1 and 2 are convenient sufficient conditions for a single crossing between F ′

and F ′sep, but they are not necessary. In Figure 2, it is easy to see that we can change

F ′sep slightly to make it slightly convex without substantially changing the shape of F ′

(0,Wgp) would imply
∫Wgp

0
(F ′(W ) − F ′sep(W ))dW = (F (W ) − Fsep(W ))|Wgp

0 > 0, i.e., we could not have

F (W ) = Fsep(W ) at both W = 0 and W = Wgp.
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thus preserving the single crossing between these two curves inside the interval (0,Wgp).

Similarly, a violation of Assumption 2 for W much smaller than Wnj will not affect the

convexity of F ′ above Wnj , thus preserving the single-crossing property.

5.2 Early and late career: two stages of an optimal contract

We will refer to the interval (W ∗,Wnj) as the early career stage and the interval (Wnj ,Wgp)

as the late career stage of the optimal contract.

Proposition 2 shows that at arrival of a job destruction shock it is optimal to widen the

spread of the continuation value: agents with high W (i.e., in late career) see their con-

tinuation value jump upward, while agents with low W (in probation or in early career)

experience a drop in their continuation value. In other words, rich agents become richer

and poor agents become poorer at the moment of job destruction. This increase in disper-

sion at job destruction is optimal because the jump ∆ has an inverse impact on the drift of

Wt prior to job destruction: the threat of a negative ∆ pushes Wt upward, and the promise

of a positive ∆ pushes Wt downward. By suppressing the growth of Wt when Wt is high

and boosting the growth of Wt when Wt is low, the optimal severance J(Wt) decreases the

risk of hitting either of the two inefficient separation points, 0 and Wgp, while the match

remains productive.

In particular, a “golden parachute” severance package with J(Wt) > Wt is optimal for

agents in late career, where the risk of inefficient retirement at Wgp is paramount. In

probation, the risk of inefficient termination of the agent at W = 0 is the primary concern:

combined with the agent’s limited liability, this risk implies J(Wt) = 0 in this region.

Proposition 2 shows that this intuition holds not only when Wt is close to 0 or Wgp but

everywhere in the support of Wt. The early career stage of an optimal contract is where

the balance of these two risks shifts: as Wt increases, the risk of inefficient retirement takes

on more and more weight in determining the optimal severance J(Wt).

Further, Lemma 3 in Appendix A.3 implies the following corollary to Proposition 2:

Corollary 1 In probation and in the early career stage of an optimal contract, the agent’s

is under-paid, u(c(W )) ≤ J(W ) ≤W , and his continuation value increases in expectation:

µ(W ) > 0 for all W ∈ (0,Wnj).

Intuitively, the agent is under-paid in probation and in early career, both with direct

compensation and with severance, in order to mitigate the risk of the inefficient endoge-

nous separation at W = 0. In these two regions, the expected movement of the agent’s

continuation value is unambiguously upward, toward the late-career stage of the contract.
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5.3 The agent’s maximum exposure to job destruction

Proposition 3 The agent’s gain at job destruction, ∆(W ), is zero at both 0 and Wnj and

has a V-shape on (0,Wnj):

∆′(W ) < 0 for W ∈ (0,W ∗),

∆′(W ) > 0 for W ∈ (W ∗,Wnj ].

Thus, W ∗ is a unique trough point of ∆(W ).

Proof In Appendix A.4.

This result shows that the agent stands to lose the most from job destruction at the very

beginning of the contract, right in between probation and early career. In probation, the

agent gets no compensation of either form. To start receiving compensation, the agent

must reach the early-career stage of the contract. The deeper in probation the agent finds

himself, thus, the less he stands to lose at job destruction because the expected transition

to the early-career stage would take longer should job destruction not occur. In early

career, the agent is still at risk of losing value at job destruction, and only upon reaching

the late-career stage he stands to gain. The closer he finds himself to the transition point

Wnj , thus, the smaller his exposure to the job destruction risk.

We should also note that while the agent gains at job destruction in late career, this gain

approaches zero at both ends of (Wnj ,Wgp). Thus, the peak of the agent’s gain occurs in

the interior of the late-career interval.

6 The firm’s exposure to job destruction risk

In this section, we examine the firm’s exposure to job destruction risk in an optimal con-

tract. We show that severance compensation is used to optimally load the firm’s loss at

job destruction onto events in which the agent has produced strong performance and the

contract has reached the late-career stage.

Proposition 4 In an optimal contract, the firm’s loss of value at job destruction is always

strictly positive: F (W ) − Fsep(J(W )) > 0 for all W ∈ (W,Wgp). Further, it is optimal

to load the firm’s loss at job destruction onto late-career events: the loss is highest if

Wθ ∈ (Wnj ,Wgp).

Proof In Appendix A.5.

To understand this result, it is useful to consider the firm’s loss at job destruction under

the two severance plans in the examples in Section 3. In Example 1, J(W ) is restricted to

be 0 for all W . The shape of the firm’s loss at job destruction, thus, matches exactly the
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shape of F , which means the peak loss occurs if Wθ = W ∗. In Example 2, J(W ) = W for

all W . The firm’s loss at job destruction, thus, is F (W )−Fsep(W ). By the single-crossing

property of F ′ and Fsep, this difference has a unique peak at Wnj , which means the peak

loss occurs if Wθ = Wnj .

Proposition 4 shows that in an optimal contract, the firm’s loss is shifted even further to

the right: the peak loss at job destruction occurs above Wnj , i.e., in the late-career stage of

the contract, where the risk of inefficient retirement of the agent is most severe. Severance

is used to mitigate this risk, i.e., to suppress the drift of Wt and extend the duration of

the contract. This extension comes at the cost of a large severance obligation to the agent

if job destruction occurs in this stage of the contract.

7 Comparative statics for job destruction risk

In this section, we provide two comparative statics results. We examine how the firm’s profit

and the back-loading of the agent’s compensation depend on the risk of job destruction as

measured by the arrival rate λ.

7.1 Sensitivity of profit to job destruction risk

Proposition 5 F ′(0), Wgp, and F (W ) for any W ∈ (0,Wgp) are all strictly decreasing in

λ. Further,
∂F (W )

∂λ
= −E

[∫ τ

0
e−(r+λ)tS(Wt)dt

]
< 0, (17)

where W0 = W ∈ (0,Wgp), τ denotes the time of the first exit of Wt from (0,Wgp), and

S(W ) ≡ F (W )− F ′(W )W −max
J≥0

{
Fsep(J)− F ′(W )J

}
> 0 ∀W ∈ (0,Wgp) (18)

represents the value at risk of job destruction, i.e., the value of the option to not separate

before job destruction.

Proof In Appendix A.6.

It is intuitive that F (W ) should be decreasing in λ. Operating the productive technology

for a shorter expected duration (i.e., under higher λ) gives the firm a smaller expected

profit ex ante. Geometrically, higher λ flattens out the hump-shaped function F (·), which

implies that both F ′(0) and −F ′(Wgp) are lower. Because Wgp is pinned by the smooth-

pasting condition in (13), a lower −F ′(Wgp) also shifts Wgp to the left. The left end of the

domain of F is unaffected by λ because the boundary condition F (0) = 0 is independent

of λ.
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Note that Wgp decreasing in λ means that with moral hazard some jobs can be non-viable

just because the anticipated job duration is too short. Indeed, consider two jobs in two

different occupations or industries with the same productivity and the same continuation

value owed to the worker, but with different arrival rates of job destruction. It may be

profitable to continue with a worker in the longer-expected-duration job but endogenously

terminate (retire) a worker in the job that has lower expected duration, despite both

workers being equally productive and owed the same compensation.

In (17), the quantity S can be thought of as representing the value at risk of job destruction

or, equivalently, the surplus from the option to not separate. The first term in (18),

F (W ) − F ′(W )W , gives the total value of the relationship before job destruction. It

is the sum of the firm’s profit, F (W ), and the agent’s value, W , with the slope of the

Pareto frontier, −F ′(W ), representing the shadow price of the agent’s value in terms of

profits (mapping utils to dollars). The second term represents the relationship’s value at

separation, where the agent’s severance value, J , is selected optimally.13

Using S, we can write the HJB equation (11) as:

rF (W ) = max
c,a,Y
{ra− rc+ F ′(W )r

(
W − u(c) + h(a)

)
+

1

2
F ′′(W )r2σ2Y 2} − λS(W ).

Mechanically, S(W ) captures the direct impact of a change in λ on F (W ). The equality

in (17) shows that total impact of a change in λ on F (W0) is equal to the discounted sum

of future S(Wt), accounting for the expected position of the process Wt at all t ≥ 0. The

discount factor in (17) contains the probability of job survival till t, e−λt, because the firm’s

option to not separate is conditional on job survival.

The strict inequality in (17), follows from the fact that the option value S(W ) is strictly

positive for all W ∈ (0,Wgp). Additionally, Lemma 6 in Appendix A.6 shows that S(W )

approaches zero at both ends of this interval, where endogenous separations indeed occur,

and is hump-shaped with a unique peak at Wnj .

7.2 Backloading of reward and punishment

We now examine the impact of the risk of job destruction on the timing of the agent’s

rewards and punishment in an optimal contract.

Proposition 6 Let λ̃ > λ ≥ 0. There exists a unique W s ≤ W̃gp such that, for all

W ∈ [0, W̃gp], J̃(W ) ≥ J(W ) and c̃(W ) ≥ c(W ) if and only if W ≤W s.

Proof In Appendix A.7.

13The outside equality in (16) implies that slope of the Pareto frontier remains unchanged through job

destruction if F ′(Wθ) ≤ 0. In the other case, the agent’s limited liability constraint, J ≥ 0, binds.
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This result means that the agent’s rewards and punishment, implemented via both com-

pensation and severance, are more backloaded and spread out when the expected duration

of the contract is longer. With λ = 0, the standard moral hazard model of Sannikov (2008)

maximally backloads and spreads out the agent’s rewards and punishment. Indeed, that

model only has endogenous separations with the agent’s continuation value either max-

imally low, Wτ = 0, or maximally high, Wτ = Wgp. With exogenous separations, the

expected job duration is shorter, and the agent’s separation value Jθ is bounded below by

0 and above by Wgp. The same bounds apply to the agent’s consumption utility flow that

the optimal contract delivers to the agent prior to separation.

More precisely, Proposition 6 implies that for any two job destruction arrival rates λ̃ > λ,

the dispersion in compensation and severance across agents with different output histories

is lower when the expected duration of the contract is shorter. To see this, suppose we

start with λ̃ = λ, which obviously means F̃ ′(W ) = F ′(W ) for all W . If we increase λ̃

slightly above λ, it is easy to see in Figure 2 that the curve F̃ ′ starts moving away from

F ′ and toward F ′sep. Indeed, we know from Proposition 5 that F̃ ′(0) decreases toward

zero. We know from Proposition 6 that there can be only a single crossing between F̃ ′ and

F ′, at W s. Thus, F̃ ′ rotates counterclockwise as it approaches F ′sep, meaning the value

of F̃ ′(W ) goes down at small W and goes up at large W , i.e., F̃ ′ becomes flatter as λ̃

increases.14 By the first-order conditions (14) and (15), the slope of the first derivative of

the profit function determines the dispersion in the agent’s compensation and severance.

Thus, the dispersion is lower when the arrival rate of job destruction is higher, i.e., the

expected contract duration is shorter. Intuitively, job destruction puts a constraint on how

backloaded incentives can be.

8 Computation of contract duration and exit probabilities

In this section, we show how to compute additional features of the contract: the conditional

expected duration and exit probabilities. We compute a baseline example without job

destruction shocks and an example with job destruction to show how job destruction shocks

impact the expected duration and exit probabilities of an optimal contract.

14This rotation of F ′ is consistent with the flattening of F shown in Proposition 5 because F is hump-

shaped. Indeed, for a hump-shaped function function F to flatten, the positive part of F ′ must be decreased

and the negative part of F ′ must be increased (made less negative).
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8.1 Job duration and exit probability

Let T (W ) denote the expected remaining job duration, i.e., the expected amount of time

until endogenous separation or exogenous job destruction:

T (W ) ≡ E
[∫ τ̂

0
dt

]
, W0 = W. (19)

Let P0(W ) denote the probability that the continuation value process Wt started at W0 =

W hits 0, i.e., the contract ends with the agent being fired. Similarly, let Pgp(W ) denote

the probability that the contract exits at Wgp with the agent being retired. The probability

that the contract ends with job destruction, i.e., that a shock θ arrives before Wt reaches

either 0 or Wgp, will be denoted by PJD(W ). Clearly, P0(W ) +Pgp(W ) +PJD(W ) = 1 for

any W ∈ [0,Wgp].

To compute the expected duration T (W ) and exit probabilities P0(W ), Pgp(W ), and

PJD(W ) for all W ∈ [0,Wgp], we find an ordinary differential equation (ODE) for each

of these functions along with the associated boundary conditions. These ODEs can then

be easily solved numerically using policy functions (or drift and volatility) from the optimal

contract.

Lemma 1 Suppose for some constants k, g0, and g1, function g : [0,Wgp] → R satisfies

the following ODE:

λg(W ) = k + g′(W )µ(W ) +
1

2
g′′(W )ν(W )2 (20)

with boundary conditions g(0) = g0 and g(Wgp) = g1. Then,

k = 1, g0 = 0, g1 = 0 =⇒ g = T,

k = 0, g0 = 1, g1 = 0 =⇒ g = P0,

k = 0, g0 = 0, g1 = 1 =⇒ g = Pgp,

k = λ, g0 = 0, g1 = 0 =⇒ g = PJD.

Proof In Appendix A.8.

8.2 Computed examples

For the computation of examples, we use the same utility functions as in Sannikov (2008):

h(a) = 0.5a2 + 0.4a and u(c) =
√
c, which gives us F0(W ) = −W 2. To isolate on the

impact of λ on an optimal contract, we take Fsep(W ) = F0(W ) in our examples. To match

the standard annualized rate of time preference of 5 percent, we take r = 0.0488. Following
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Figure 3: Expected contract duration T (W ), in years. Left panel: standard model with no job

destruction. Right panel: model with job destruction risk matching T (W ∗) = 2.5 years.

Sannikov (2008), we take σ = 1.15 In the baseline case without job destruction risk, we

take λ = 0. In the example with job destruction risk, we take λ = 0.341. With this value

of λ the expected ex ante duration of the contract is T (W ∗) = 2.5, which matches the

average job duration in the data (Shimer, 2005).

To solve for the value function F and the associated policy functions, we use the forward-

shooting procedure described in Appendix A.1. We then use Lemma 1 to compute, for

each W ∈ [0,Wgp], the conditional duration T (W ) and the conditional exit probabilities

P0(W ), Pgp(W ), and PJD(W ).

Figure 3 plots the expected duration function T (W ). The left panel shows the baseline

example without job destruction. Expected conditional job durations are very long in the

baseline case except for W very close to 0 or Wgp. The right panel of Figure 3 shows the

example with job destruction risk. In this example, the expected time till job destruction

is 1/λ = 2.93 years. For W close to W ∗, the expected duration is noticeably shorter than

1/λ, which means the contract has a positive chance of endogenous termination. However,

in the middle of the domain [0,Wgp] duration T (W ) is extremely close to 1/λ, which means

that once the contract enters this area, the chance of an endogenous exit at either 0 or Wgp

is practically zero.

Figure 4 plots the conditional exit probabilities P0(W ), Pgp(W ), and PJD(W ). In the

left panel, in the baseline case without job destruction, obviously, PJD(W ) is zero and

15Using Compustat data, Comin and Mulani (2006) estimate the volatility of the growth rate of sales at

the firm level to be about 0.25. Although the mapping between the volatility measure they estimate and

our volatility parameter σ is not exact, our value of σ = 1 probably overstates the volatility of shocks to

an individual worker’s output.

21



Figure 4: Exit probabilities P0(W ), Pgp(W ), and PJD(W ). Left panel: standard model with no

job destruction. Right panel: model with job destruction risk matching T (W ∗) = 2.5 years.

P0(W ) and Pgp(W ) are strictly decreasing in the distance from, respectively, 0 and Wgp.

For W close to 0, P0(W ) is high but Pgp(W ) is not negligible. Likewise, for W close to

Wgp, P0(W ) is not insignificant. In the baseline model, thus, an optimal contract shows

significant communication (i.e., the probability of transition) between low and high states.

The right panel of Figure 4 plots the conditional exit probabilities in the example with

job destruction. In this example, there is practically no communication between states W

close to 0 and those close to Wgp. In the middle of the domain [0,Wgp], the probability

that the contract ends with arrival of job destruction is practically full.

To help us better understand the dynamics of Wt, Figure 5 plots the drift and volatility

functions µ(W ) and ν(W ) for an optimal contract in the two examples. These functions

are qualitatively similar in both cases. Starting from W ∗, the contract has an initial strong

positive drift and sizable volatility. Conditional on not reaching 0, thus, the contract moves

up quickly into the middle of the interval [0,Wgp]. There, however, the movement of Wt

“slows down” very significantly. Indeed, in the middle of the interval [0,Wgp], as well as at

high W , the process Wt has near-zero drift and reduced volatility. This means the contract,

upon reaching the middle of its domain, is expected to spend a lot of time in this region.

In the baseline case, this feature leads to the long expected contract duration shown in

the left panel of Figure 3. In the example with job destruction, this feature implies that

job destruction arrives before the contract leaves the middle region, i.e., the chance that

the contract eventually ends with an endogenous separation becomes practically zero, as

shown in the right panel of Figure 4. Consistent with Corollary 1, in the right panel of

Figure 5, µ(W ) > 0 for all W in the probation and early career regions, while the region

of “slow” contract dynamics is a subset of the late-career region.
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Figure 5: Drift µ and volatility ν under an optimal contract. Left panel: standard model with no

job destruction. Right panel: model with job destruction risk matching T (W ∗) = 2.5 years.

The drift and volatility of the optimal contract in the right panel of Figure 5 also suggest

that the realized severance award should be positively correlated with realized tenure.

Indeed, an observed short job spell is more likely than a long spell to have ended with

an endogenous termination at W = 0, or with an exogenous termination in the probation

region of the contract, where severance pay is zero. Figure 6 confirms this intuition by

plotting realized severance pay against job duration in 100 complete job spells simulated in

our model. The positive correlation predicted by our model is broadly consistent with an

assumption made in the quantitative macro-labor literature, where severance is commonly

assumed to be an increasing function of job tenure, see, e.g., Cozzi and Fella (2016).

We also note that the simulated data in Figure 6 show no instances of agent retirement,

i.e., no endogenous terminations at Wgp. Clearly, the possibility of job destruction makes

endogenous endogenous termination less likely. In particular, as shown in the right panel

of Figure 4, with W0 = W ∗, the probability of the contract reaching Wgp ahead of job de-

struction is very close to zero. In the next section, we confirm this observation analytically

allowing for a sufficiently high rate of job destruction.

9 Endogenous termination when contract duration is short

In this section, we study the limit case as λ goes to infinity, i.e., as the expected job duration

becomes short. We examine the survival of the possibility of endogenous separations ahead

of exogenous job destruction. We show that endogenous terminations survive even in the

limit. In particular, the endogenous termination at 0 survives while the termination at

Wgp gets eliminated.
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Figure 6: Severance and job duration in 100 simulated complete job spells.

Proposition 7 Suppose

κ < F ′′sep(0) < 0. (21)

Then,

lim
λ→∞

P0(W ∗) > 0 and lim
λ→∞

Pgp(W
∗) = 0.

Proof In Appendix A.9.

The left inequality in (21) ensures that a non-degenerate contract exists. The right in-

equality in (21) is a convenient technical assumption that may be relaxed.16

Intuition for the results of Proposition 7 comes from two effects that an increase in the job

destruction arrival rate λ has on endogenous separations. First, clearly, higher λ increases

the probability of exogenous separation and hence decreases the probability of endogenous

separation. Second, higher λ decreases the agent’s ex ante value of the job, thus making

W0 = W ∗ smaller. Both effects make a transition of Wt from W ∗ to Wgp less likely. The

second effect, however, turns out to be strong enough for the endogenous separation at

W = 0 to survive, even in the limit as λ goes to infinity.

Proposition 7 shows that exogenous job destruction shocks change qualitative properties

of an optimal contract. Such shocks not only add the possibility of exogenous separation

16We conjecture that the same result holds in many cases with F ′′0 (0) = 0, but we do not offer a proof.
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with severance compensation at any t but also, for λ sufficiently high, they eliminate the

possibility of endogenous separation at the retirement point Wgp. As demonstrated by the

numerical example in Section 8.2, the retirement separations are practically eliminated not

only in the limit but already at realistic levels of job destruction risk λ > 0.

10 Testable implications for compensation and tenure

In this section, we show that our model predicts a positive relationship between expected

job duration and average compensation. By adjusting the arrival rate of job destruction, λ,

we generate optimal contracts with expected job duration ranging from less than 2 months

to over 10 years. For each of these contracts, we compute two measures of compensation:

the ex ante expected average wage rate and the ex ante expected severance benefit. We

show that both are increasing in the ex ante expected job duration.

Denote by TC(W ) the expected total wage paid in the remainder of the contract:

TC(W ) ≡ E
[∫ τ̂

0
c (Wt) dt

]
, W0 = W.17

We define the expected average wage in an optimal contract, C̄, as the total expected wage

in the contract starting at W ∗ divided by the total expected duration of this contract:

C̄ ≡ TC(W ∗)

T (W ∗)
,

where the expected contract duration function T (W ) is defined in (19).

To express severance in the units of the firm’s profit rather than in utils, let b = −F0(J)

denote the firm’s (permanent flow) cost to fund the agent’s severance value J .18 Denote

by B(W ) the expected cost b of severance to be due to the agent at job destruction, for a

contract starting at W :

B(W ) ≡ E [−F0(J(Wθ))] , W0 = W.19

The expected severance in an optimal contract is defined as

B̄ ≡ B(W ∗).

17Similar to Lemma 1, we compute TC(W ) by solving an ODE identical to (20) except with the constant

k replaced by the policy function c(W ). The boundary conditions for TC(W ) are TC(0) = TC(Wgp) = 0.
18In the notation of equation (3), b = rL. Since we use Fsep = F0 here, D = 0 and V = u(b).
19We compute B(W ) by solving an ODE identical to (20) except with the constant k replaced by

−λF0(W ). The boundary conditions for B(W ) are B(0) = 0 and B(Wgp) = −F0(Wgp).
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Figure 7: Expected average wage C̄ and expected severance B̄ in optimal contracts with different

expected duration T (W ∗).

Figure 7 plots C̄ and B̄ as a function of T (W ∗). It shows that the expected average

wage and the expected severance are lower in jobs with shorter expected duration.20 The

relationship between expected job duration and average compensation can be explained

through two effects. First, the agent’s ex ante value, W ∗, is lower when the expected

job duration is shorter. Second, recall from Proposition 5 that higher λ flattens out the

hump-shaped profit function F . That is, both the increasing segment and the decreasing

segment of F are less steep when λ is higher. The first-order condition (15) then implies

that the agent’s compensation flow, c, weakly decreases with λ: on the increasing segment

of F , c is always zero, i.e., is unaffected by λ; on the decreasing segment of F , c is strictly

lower when F is less steep. This flattening of F makes the agent’s average compensation

C̄ lower, holding the value delivered to the agent constant. The same intuition applies

to the expected severance B̄ because the first-order condition (16) implies that direct

compensation c and severance compensation −F0(J) are positively related.

The main testable implication of our model, therefore, is a positive correlation between

20Figure 6, by contrast, shows a positive ex post tenure-severance correlation among jobs with the same

ex ante expected duration.
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expected job duration and average wages and severance. There is a large literature on

the individual-level correlation between tenure and wages. This literature, generally using

PSID data, e.g., Topel (1991) and Buchinsky et al. (2010), finds a positive wage-tenure

profile, which is often attributed to the accumulation of unobservable human capital. This

channel is not present in our model, where agent productivity is iid. Our model suggests a

different channel for generating a positive wage-tenure profile: both tenure and wages can

be driven by job destruction risk, which can be heterogeneous across occupations, sectors,

localities, or demographic groups.

Our model also generates a positive severance-tenure profile, consistent with the data,

as documented in, e.g., Boeri et al. (2017). Although it is not important for our finding

concerning the slope of severance against tenure, we note that in our computed example the

level of severance constitutes an outsized proportion of average wages. In particular, with

the expected job duration of 2.5 years, Figure 7 implies a lump-sum severance equivalent

to about 17 years of average wages, which is an order of magnitude higher than what Boeri

et al. (2017) find in OECD data.21 Clearly, our numerical example understates the agent’s

post-separation outside value, which under the separation profit function F0 is set equal to

zero.

11 Conclusion

Our analysis underscores a simple intuition for why severance pay can be an efficient

means of compensation: by deferring a part of the agent’s compensation until separation,

severance reduces the agent’s compensation prior to separation, which can be beneficial

for incentives. We show that this intuition holds in the canonical dynamic moral hazard

model of Sannikov (2008), where incentive cost increase with the agent’s value, but only

when this value is sufficiently high. The resulting optimal contract can be split into three

stages: probation, where severance is zero; early career, where severance is small; and late

career, where a large severance award reduces the incentive costs by mitigating the risk of

inefficient retirement of the agent. Our model, thus, provides a rationale awarding high

severance to agents in high-rank positions while not awarding any to agents in low-rank,

entry-level positions.

Our characterization of an optimal contract shows that the late-career stage is almost

absorbing: In late career, incentives are relatively weak, and the agent’s continuation value

is close to stationary. The contract dynamics slow down, and exogenous job destruction

becomes the only viable exit for the contract. In particular, endogenous retirement of

21Indeed, the present value of a permanent severance benefit B̄ is r
∫∞
0
e−rtB̄dt = B̄, while the present

value of one year of average wage C̄ is r
∫ 1

0
e−rtC̄dt = (1 − e−r)C̄. At T (W ∗) = 2.5, we have in Figure 7

C̄ = 0.75 and B̄ = 0.6. With r = 0.0488, these values imply a ratio B̄/(1− e−r)C̄ of 16.8.

27



the agent is almost never observed. This does not mean, however, that the risk of agent

retirement becomes unimportant, as it is this risk that shapes the optimal use of severance

pay. In an optimal contract, severance pay eliminates this risk almost completely.

We model exogenous separations as a simple Poisson shock that permanently eliminates

all productivity in the relationship between the firm and the agent. For our results, it is

not essential that the shock eliminates all productivity so long as ending the relationship

at the shock’s arrival remains optimal. The essential role of severance in our model is to

shift the allocation of the agent’s value from events with high incentive costs to events with

low incentive costs.

Our model delivers testable implications that positively relate the expected job duration

with average compensation levels. In jobs less exposed to risk of exogenous destruction,

backloading of incentives can be used more extensively, incentive frictions can therefore

be resolved more efficiently, resulting with higher profits and compensation levels. In data

covering a cross section of jobs, we should thus observe a positive correlation between

tenure and compensation.

In the optimal contracting problem we solve, while we use a flexible specification for the

agent’s continuation value function at separation, we take this function as exogenous. By

calibrating V or, equivalently, Fsep to the data, quantitative predictions can be obtained on

the optimal level and performance sensitivity of severance. Alternatively, an explicit model

of a labor market with search frictions can be used to endogenize Fsep. Such analysis can

provide additional testable implications as well as new theoretical results on the interaction

between incentive costs and search costs. Specifically, equilibrium profits and agent value

could be non-monotonic in the level of search costs, because more severe search frictions

can give rise to longer expected job durations, and, as we show in this paper, incentive

costs are lower when expected job durations are longer.

Appendix

A.1 Existence of an optimal solution F

In this section, we verify that the forward-shooting procedure used in Sannikov (2008) to

pin down a unique optimal HJB solution F applies with only minor changes to our model,

where Fsep ≥ F0 and a job destruction shock arrives at rate λ ≥ 0.

It will be convenient to use the following notation

U(W ) ≡ F (W )−max
c≥0

{
F ′(W )(W − u(c))− c

}
, (22)
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and write the HJB equation (11) as

F ′′(W ) = min
a≥0

U(W ) + λ
rS(W )− a− F ′(W )h(a)

1
2rσ

2(h′(a))2
, (23)

where S is defined in (18).

Define

B ≡
{
x : solution F to HJB equation (23) started from (F (0), F ′(0)) = (Fsep(0), x)

satisfies F (W ) < Fsep(W ) at some W > 0
}
.

All x < 0 belong to B because F ′sep(0) = 0. It is easy to verify that for a sufficiently large

x > 0 the solution F stays above Fsep at all W > 0, i.e., B is bounded above.

To avoid degenerate cases, in which Wgp = 0 and the optimal contract calls for immediate

separation at t = 0, we will follow Sannikov (2008) in assuming that HJB solutions F have

sufficient curvature at W = 0 to imply that x = 0 belongs to B.

Define

κ ≡ −max
a∈A

a− Fsep(0)
1
2rσ

2h′(a)2
< 0. (24)

This constant represents, regardless of the value of λ, the curvature at W = 0 of the

HJB solution started from the boundary value F (0) = Fsep(0) with the initial slope of

x = F ′(0) = 0. Indeed, with (F (0), F ′(0)) = (Fsep(0), 0) we have U(0) = Fsep(0) and

S(0) = 0, for any λ. Evaluating (23) at (F (0), F ′(0)) = (Fsep(0), 0), thus, yields F ′′(0) = κ,

for any λ.

Assumption 3 κ < F ′′sep(0).

Since F ′sep(0) = 0, Assumption 3 implies immediately that x = 0 ∈ B. By continuity, B
contains strictly positive numbers. Following Lemma 1 in Sannikov (2008), it is easy to

show that if the initial slope is positive, x ≥ 0, the HJB solution F is strictly concave. For

any x ≥ 0, it follows from (23) and F ′′ < 0 that the first derivative F ′ is bounded below

by −1
γ , where γ = lima→0 h

′(a) > 0, as defined in (1).

To pin down the initial slope F ′(0) of an optimal solution, we follow the forward-shooting

procedure of Sannikov (2008). Starting with a small 0 < x ∈ B, we gradually increase x

until the solution F only touches Fsep at some point, where smooth pasting conditions (13)

hold. Define x̄ ≡ supx B. Since B is bounded above and contains some x > 0, x̄ is finite and

strictly positive. Recall W ∗gp defined in Assumption 2 as the solution to F ′sep(W ) = −1/γ.

Lemma 2 If F ′(0) = x̄, then F (W ) ≥ Fsep(W ) for all W > 0, and there exists Wgp ∈
(0,W ∗gp] at which the smooth-pasting conditions (13) are met.
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Proof First, if F ′(0) = x̄ and F (W ) < Fsep(W ) at some W > 0, then, by continuity,

F still goes under Fsep when F ′(0) is slightly above x̄. This contradicts the fact that

x̄ = supx B.

Second, there exists some Wgp > 0 such that F (Wgp) = Fsep(Wgp). To prove this, consider

the sequence xn ≡ x̄ − 1
n approaching x̄ from below. Since xn ∈ B, the solution curve

Fn starting with F ′n(0) = xn goes under Fsep. Denote the first crossing point by Wn ≡
min{W > 0 : Fn(W ) = Fsep(W )}. Since xn < xn+1 and Fn < Fn+1, we have 0 < Wn <

Wn+1. We have Wn < W ∗gp because F ′sep(Wn) ≥ F ′n(Wn) > −1
γ = F ′sep(W ∗gp). Therefore,

being both increasing and bounded, the sequence {Wn} has a limit Wgp ≡ limn→∞Wn ∈
(0,W ∗gp]. We have

F (Wgp) = lim
n→∞

Fn(Wn) = lim
n→∞

Fsep(Wn) = Fsep(Wgp),

where the first equality follows from the continuity of F (W ) in x and W , and the second

equality follows from Fn(Wn) = Fsep(Wn)∀n, and the third from the continuity of Fsep.

Third, F ′(Wgp) = F ′sep(Wgp) follows from F (Wgp) = Fsep(Wgp) and F (W ) ≥ Fsep(W ) for

all W > 0.

The HJB solution F with initial slope F ′(0) = x̄ provides policy functions from which an

optimal contract is constructed and verified, as in Sannikov (2008). Because x̄ > 0 and

Wgp > 0, the optimal contract is non-degenerate for any λ ≥ 0. In sum, Assumption 3

guarantees the existence of a non-degenerate optimal contract, even if λ is high.

We maintain Assumption 3 in this paper. However, we note in (23) that higher λ reduces

the curvature of the solution F , i.e., makes F ′′(W ) less negative. In the forward-shooting

procedure, therefore, higher λ makes it harder for the solution curve F to return to Fsep.

If Assumption 3 does not hold, it is possible, with sufficiently high λ > 0, that 0 /∈ B, i.e.,

all solutions with initial slope x ≥ 0 stay above Fsep(W ) for all W > 0. In this case, the

optimal contract is degenerate, i.e., Wgp = 0 and immediate separation is optimal.

A.2 Proof of Proposition 1

For W ∈ (0,W ∗], the conclusion follows from (14), (15), and F ′(W ) ≥ 0. For W ∈
(W ∗,Wgp), differentiation of (16) yields

F ′′sep(J(W ))J ′(W ) =
1

u′′(c(W ))
c′(W ) = F ′′(W ). (25)

The strict concavity of u, F , and Fsep implies J ′(W ) > 0 and c′(W ) > 0.

Finally, for any W < Wgp, we have F ′sep(J(W )) = F ′(W ) > F ′(Wgp) = F ′sep(Wgp), where
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the first equality comes from (16), the inequality follows from the strict concavity of F ,

and the second equality comes from (13). It then follows from the strict concavity of Fsep

that J(W ) < Wgp.

QED

A.3 Proof of Proposition 2

We start by proving two auxiliary lemmas.

Lemma 3 For any W ∈ (0,Wgp), F
′(W ) ≥ F ′sep(W ) implies u(c(W )) ≤ J(W ) ≤ W ,

µ(W ) > 0, and F ′′′(W ) > 0.

Proof If F ′(W ) ≥ 0, then, by Proposition 1, u(c(W )) = J(W ) = 0, which means

u(c(W )) = J(W ) < W . If F ′(W ) < 0, we have

F ′sep(u(c(W ))) ≥ F ′0(u(c(W ))) =
−1

u′(c(W ))
= F ′sep(J(W )) = F ′(W ) ≥ F ′sep(W ),

where the first inequality comes from Assumption 2. The three equalities follow from the

definition of F0 and the first-order conditions (16). Since F ′sep is decreasing, we thus have

u(c(W )) ≤ J(W ) ≤W . Thus, for any W ∈ (0,Wgp), F
′(W ) ≥ F ′sep(W ) implies

µ(W ) = r(W − u(c(W ))) + λ(W − J(W )) + rh(a(W )) > 0, (26)

where the strict inequality follows from a(W ) > 0 for all W ∈ (0,Wgp), which is implied

by (1).

Differentiating the HJB equation (11) and canceling out like terms, we obtain

0 = F ′′(W )µ(W ) +
1

2
F ′′′(W )ν(W )2, (27)

where ν(W ) > 0, as in (10). It now follows from (26) and F ′′ < 0 that F ′′′(W )ν(W )2 > 0.

Lemma 4 For any W ∈ (0,Wgp), F
′(W ) = F ′sep(W ) implies F ′′(W ) < F ′′sep(W ).

Proof By contradiction, suppose for some W1 ∈ (0,Wgp)

F ′(W1) = F ′sep(W1) and F ′′(W1) ≥ F ′′sep(W1). (28)

First, we show that there exists ε > 0 such that

F ′(W ) > F ′sep(W ) for all W ∈ (W1,W1 + ε]. (29)
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The conclusion is obvious if F ′′(W1) > F ′′sep(W1). If F ′′(W1) = F ′′sep(W1), the conclusion

follows from F ′′′(W1) > 0 ≥ F ′′′sep(W1), where the first inequality follows from Lemma 3

and the second from Assumption 1.

Define now W̄ ≡ min{W > W1 : F ′(W ) = F ′sep(W )}. The smooth-pasting condition (13)

implies that W̄ exists and W̄ ≤Wgp. Equation (29) implies W̄ > W1 + ε. From definition

of W̄ , F ′(W ) > F ′sep(W ) for W ∈ (W1, W̄ ). Then, Lemma 3 implies that F ′ is strictly

convex on (W1, W̄ ). We thus have

F ′(W̄ ) > F ′(W1) + F ′′(W1)(W̄ −W1) ≥ F ′sep(W1) + F ′′sep(W1)(W̄ −W1) ≥ F ′sep(W̄ ),

where the first inequality follows from the strict convexity of F ′ on (W1, W̄ ), the sec-

ond from (28), and the third from the concavity of F ′sep, i.e., Assumption 1. This strict

inequality contradicts F ′(W̄ ) = F ′sep(W̄ ).

The next lemma shows that F ′ and F ′sep cross once on (0,Wgp).

Lemma 5 There exists a unique Wnj ∈ (W ∗,Wgp) such that

F ′(W ) > F ′sep(W ) for W ∈ (0,Wnj),

F ′(W ) = F ′sep(W ) for W = Wnj ,

F ′(W ) < F ′sep(W ) for W ∈ (Wnj ,Wgp).

Proof The proof proceeds in four steps.

First, we define Wnj ≡ min{W : F ′(W ) = F ′sep(W )}. It follows from F ′(0) > 0 = F ′sep(0)

and F ′(Wgp) = F ′sep(Wgp) that 0 < Wnj ≤ Wgp. We show Wnj < Wgp. By contradiction,

suppose Wnj = Wgp. Then, F ′(W ) > F ′sep(W ) for all 0 < W < Wgp. But then F (Wgp) =

F (0) +
∫Wgp

0 F ′(W )dW > Fsep(0) +
∫Wgp

0 F ′sep(W )dW = Fsep(Wgp), which contradicts (13).

Second, Lemma 4 implies F ′′(Wnj) < F ′′sep(Wnj). Thus, there exists ε > 0 such that

F ′(W ) < F ′sep(W ) for all W ∈ (Wnj ,Wnj + ε]. (30)

Third, we will show F ′(W ) < F ′sep(W ) for all W ∈ (Wnj ,Wgp). By contradiction, suppose

it is not true. By (30), F ′ must be equal to F ′sep at some point on (Wnj+ε,Wgp). Denote the

smallest such a point by Ŵ ≡ min{W ∈ (Wnj ,Wgp) : F ′(W ) = F ′sep(W )}. It now follows

from F ′(W ) < F ′sep(W ) for W ∈ (Wnj , Ŵ ) and F ′(Ŵ ) = F ′sep(Ŵ ) that F ′′(Ŵ ) ≥ F ′′sep(Ŵ ).

But Lemma 4 implies F ′′(Ŵ ) < F ′′sep(Ŵ ), a contradiction.

Fourth, Wnj > W ∗ follows from F ′(W ∗) = 0 > F ′sep(Wnj) = F ′(Wnj) and F ′ is continuous

and decreasing.

The proof of Proposition 2 follows from Lemma 5 and the observation that the sign of

∆(W ) is the same as the sign of F ′sep(W )− F ′(W ).

QED
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A.4 Proof of Proposition 3

For W ∈ (0,W ∗), we have F ′(W ) > 0, which implies J(W ) = 0. Thus, clearly, ∆′(W ) =

J ′(W )− 1 = −1 < 0 for all W ∈ (0,W ∗).

For W ∈ (W ∗,Wgp], the outside equality in (25) shows J ′(W ) = F ′′(W )
F ′′sep(J(W )) . Thus, ∆′(W ) =

J ′(W )− 1 > 0 if and only if F ′′(W ) < F ′′sep(J(W )), which does hold for all W ∈ (W ∗,Wnj ]

because

F ′′(W ) ≤ F ′′(Wnj) < F ′′sep(Wnj) ≤ F ′′sep(J(W )).

The first inequality follows from the strict convexity of F ′ on (0,Wnj), which is implied by

Lemma 3. The second inequality follows from Lemma 4, and the third inequality follows

from F ′′′sep ≤ 0 and J(W ) ≤W ≤Wnj .

QED

A.5 Proof of Proposition 4

At W = 0 and W = Wgp, we have J(W ) = W and F (W ) = Fsep(W ). Then, clearly,

F (W ) = F (J(W )) = Fsep(J(W )) at either of these two points.

To show that F (W ) − Fsep(J(W )) > 0 for all W ∈ (0,Wnj ] and that argmaxW F (W ) −
Fsep(J(W )) > Wnj , we will show that F (W )−Fsep(J(W )) is strictly increasing on (0,W ∗)

and on (W ∗,Wnj ]. On (0,W ∗), the conclusion follows from J(W ) = 0 and F ′(W ) > 0 for all

W ∈ (0,W ∗). On (W ∗,Wnj ], the conclusion follows by differentiating F (W )−Fsep(J(W ))

and using (16):

d

dW

(
F (W )− Fsep(J(W ))

)
= F ′(W )− F ′sep(J(W ))J ′(W )

= F ′(W )(1− J ′(W ))

= −F ′(W )∆′(W )

> 0,

where the inequality follows because F ′(W ) < 0 and, by Proposition 3, ∆′(W ) > 0 for all

W ∈ (W ∗,Wnj ].

It remains to be shown that F (W ) − Fsep(J(W )) > 0 for all W ∈ (Wnj ,Wgp). On this

interval, we have J(W ) > W . Therefore:

F (W )− Fsep(J(W )) > F (W )− Fsep(W ) =

∫ Wgp

W
(F ′sep(x)− F ′(x))dx > 0,

where the first inequality follows from F ′sep < 0 and the second from the boundary condition

F (Wgp) = Fsep(Wgp) and Lemma 5.

QED
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A.6 Proof of Proposition 5

We start with an axillary lemma characterizing S.

Lemma 6 S(0) = S(Wgp) = 0. S′(W ) > 0 for all W ∈ (0,Wnj), S
′(Wnj) = 0, and

S′(W ) < 0 for all W ∈ (Wnj ,Wgp). Thus, Wnj is a unique peak point of S(W ).22

Proof S(0) = S(Wgp) = 0 follows directly from the boundary conditions F (0) = Fsep(0),

F (Wgp) = Fsep(Wgp). Differentiating S(W ) we have

S′(W ) = F ′(W )− F ′′(W )(W − J(W ))− F ′(W )

= F ′′(W ) (J(W )−W )

= F ′′(W )∆(W ). (31)

Because F ′′ < 0, ∆ and S′ are of opposite signs. The conclusion follows now from Propo-

sition 2.

We now show (17). Differentiating the HJB equation (11) with respect to λ and using

S(W ) = F (W )−maxJ≥0 {F ′(W )(W − J) + Fsep(J)}, we have

(r + λ)
∂F (W )

∂λ
=
∂F ′(W )

∂λ
(rW − r(u(c)− h(a))− λ(J −W )) +

1

2

∂F ′′(W )

∂λ
r2σ2Y 2 − S(W ),

where the controls c, a, and Y are optimal for the value function F . Denoting ∂F (W )
∂λ by

G(W ) and collecting terms, we thus have the following second-order differential equation:

(r + λ)G(W ) = G′(W ) (rW − r(u(c)− h(a))− λ(J −W )) +
1

2
G′′(W )r2σ2Y 2 − S(W ),

which, using (9) and (10), we can write simply as

(r + λ)G(W ) = −S(W ) +G′(W )µ(W ) +
1

2
G′′(W )ν(W )2. (32)

At W = 0, we have G(0) = ∂F (0)
∂λ = 0 because F (0) = 0 for all λ. To obtain a boundary

condition for G at W = Wgp, differentiate the boundary condition F (Wgp) = Fsep(Wgp)

totally with respect to λ:

∂F (Wgp)

∂λ
+ F ′(Wgp)

dWgp

dλ
= F ′sep(Wgp)

dWgp

dλ
,

which gives us

G(Wgp) =
∂F (Wgp)

∂λ
= (−F ′(Wgp) + F ′sep(Wgp))

dWgp

dλ
= 0,

22Note that S(W ) does not have to be concave.
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where the last inequality uses the smooth-pasting condition F ′(Wgp) = F ′sep(Wgp).

To derive the equality in (17), let

Ht ≡ −
∫ t

0
e−(r+λ)sS(Ws)ds+ e−(r+λ)tG(Wt).

We have

dHt = −e−(r+λ)tS(Wt)dt− (r + λ)e−(r+λ)tG(Wt)dt+ e−(r+λ)tdG(Wt),

and so, applying Ito’s lemma to compute dG(Wt), we have

e(r+λ)tdHt =− S(Wt)dt− (r + λ)G(Wt)dt+

(
G′(Wt)µ(Wt) +

1

2
ν(Wt)

2G′′(Wt)

)
dt

+G′(Wt)ν(Wt)dZt.

The dt terms sum up to zero by (32), and E [Ht] is bounded, i.e., Ht is a martingale. Thus,

with τ being a stopping time, we have

G(W0) = H0 = E [Hτ ] = E
[
−
∫ τ

0
e−(r+λ)tS(Wt)dt+ e−(r+λ)τG(Wτ )

]
.

Using the boundary conditions G(Wτ ) = G(0) = G(Wgp) = 0, we obtain

∂F (W0)

∂λ
= G(W0) = E

[
−
∫ τ

0
e−(r+λ)tS(Wt)dt

]
.

The strict inequality in (17), i.e.,

∂F (W0)

∂λ
= G(W0) < 0 for all W0 ∈ (0,Wgp),

follows now from S(W ) > 0 for all W ∈ (0,Wgp), which is impled by Lemma 6.

Next, we show that Wgp is strictly decreasing in λ. Let λ̃ > λ, and denote by F̃ and

W̃gp, respectively, the firm’s value function and the upper endogenous separation point

obtained in the optimal contract with the job destruction shock arrival rate λ̃. We show

W̃gp < Wgp. Clearly, W̃gp ≤Wgp because the first step implies that F > F̃ on (0, W̃gp). To

show W̃gp < Wgp, suppose by contradiction Wgp = W̃gp. This implies

F (Wgp) = F̃ (Wgp) = Fsep(Wgp) and F ′(Wgp) = F̃ ′(Wgp) = F ′sep(Wgp). (33)

First-order conditions for c and a, and HJB equation (23) immediately imply c(Wgp) =

c̃(Wgp), a(Wgp) = ã(Wgp), J(Wgp) = J̃(Wgp), and F ′′(Wgp) = F̃ ′′(Wgp).
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1. Differentiating the HJB equation (23) yields

F ′′′(W ) =
(W − u(c)) + λ

r (W − J(W )) + h(a)
1
2rσ

2(h′(a))2
(−F ′′(W )), (34)

which implies F ′′′(Wgp) = F̃ ′′′(Wgp), because c(Wgp) = c̃(Wgp), a(Wgp) = ã(Wgp),

λ(Wgp − J(Wgp)) = λ̃(Wgp − J̃(Wgp)) = 0, and F ′′(Wgp) = F̃ ′′(Wgp).

2. We show that a′(W ) = ã′(W ) at W = Wgp. The first-order condition for a is

(1 + F ′(W )h′(a))h′(a) +

(
U(W ) +

λ

r
S(W )− a− F ′(W )h(a)

)
2h′′(a) = 0.

U ′(Wgp) = −F ′′(Wgp)(Wgp − u(c(Wgp))) = −F̃ ′′(Wgp)(Wgp − u(c̃(Wgp))) = Ũ ′(Wgp).

From (31) and ∆(Wgp) = 0, we have S′(Wgp) = F ′′(Wgp)∆(Wgp) = 0. By the implicit

function theorem, thus, da
dW |W=Wgp is independent of λ.

3. We now show that at W = Wgp,
d(J(W ))
dW =

F ′′(Wgp)
F ′′sep(Wgp) < 1. By contradiction, suppose

F ′′(Wgp) ≤ F ′′sep(Wgp) < 0. Because F ′′′(Wgp) > 0 ≥ F ′′′sep(Wgp), the Taylor expansion

of F ′(Wgp − ε) shows that F ′(Wgp − ε) > F ′sep(Wgp − ε) for all small ε > 0, which

contradicts the fact that F (Wgp − ε) ≥ Fsep(Wgp − ε) for small ε > 0.

4. We show F ′′′′(Wgp) < F̃ ′′′′(Wgp). We have

F ′′′′(W ) =
W − u(c) + λ

r (W − J(W )) + h(a)
1
2rσ

2(h′(a))2
(−F ′′′(W ))

+
∂

∂a

(
W − u(c) + λ

r (W − J(W )) + h(a)
1
2rσ

2(h′(a))2

)
a′(W )(−F ′′(W ))

+
1

1
2rσ

2(h′(a))2

(
d(W − u(c))

dW
+
λ

r

d(W − J(W ))

dW

)
(−F ′′(W )).

Because d(W−J(W ))
dW = 1− dJ(W )

dW > 0 and λ < λ̃, we have F ′′′′(Wgp) < F̃ ′′′′(Wgp). The

Taylor expansion now shows that F (W ) < F̃ (W ) holds in a neighborhood of Wgp.

This contradicts the fact that F̃ (Wgp − ε) stays below F (Wgp − ε) for small ε > 0.

Finally, we show that if λ̃ > λ, then F ′(0) > F̃ ′(0). That F ′(0) ≥ F̃ ′(0) follows from

F (0) = F̃ (0) = 0 and F > F̃ on (0, W̃gp). To show F ′(0) > F̃ ′(0), suppose by contradiction

F ′(0) = F̃ ′(0). Using the same proof as in the second step, we can show F ′′(0) = F̃ ′′(0),

F ′′′(0) = F̃ ′′′(0), and F ′′′′(0) < F̃ ′′′′(0). They imply that F (W ) < F̃ (W ) for W near 0,

which contradicts the fact that F > F̃ on (0, W̃gp).

QED
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A.7 Proof of Proposition 6

By the first-order conditions (15) and (14), it is sufficient to show that F̃ ′ and F ′ cross

at most once. If they do not cross, then F̃ ′ is always below F ′ because, by Proposition 5,

F̃ ′(0) < F ′(0). Then J(W ) ≤ J̃(W ) and c(W ) ≤ c̃(W ) for all W ∈ [0, W̃gp], and we define

W s ≡ W̃gp. If they cross, we show below that they cross only once. The proof consists of

two main steps.

First, we show that if F̃ ′(W ) ≥ F ′(W ) at some W ≥ Wnj , then F̃ ′ > F ′ for all W̃ > W .

By contradiction, suppose either F̃ ′(W2) < F ′(W2) or F̃ ′(W2) = F ′(W2) at some W2 >

W ≥Wnj .

1. If F̃ ′(W2) < F ′(W2), then define

W1 ≡ inf{W̃ < W2 : F̃ ′(W̃ ) < F ′(W̃ )},
W3 ≡ sup{W̃ > W2 : F̃ ′(W̃ ) < F ′(W̃ )}.

W3 < W̃gp because F̃ ′(W̃gp) = F ′sep(W̃gp) > F ′(W̃gp). F̃
′ = F ′ at both W1 and W3.

It follows from F̃ ′′(W1) ≤ F ′′(W1) and

F̃ ′′(W1) =
Ũ(W1) + λ̃

r S̃(W1)− a− F̃ ′(W1)h(a)
1
2rσ

2(h′(a))2

F ′′(W1) =
U(W1) + λ

rS(W1)− a− F ′(W1)h(a)
1
2rσ

2(h′(a))2

that Ũ(W1) + λ̃
r S̃(W1) ≤ U(W1) + λ

rS(W1). Therefore,

Ũ(W3) +
λ̃

r
S̃(W3) = Ũ(W1) +

λ̃

r
S̃(W1) + (Ũ(W3)− Ũ(W1)) +

λ̃

r
(S̃(W3)− S̃(W1))

≤ U(W1) +
λ

r
S(W1) + (Ũ(W3)− Ũ(W1)) +

λ̃

r
(S̃(W3)− S̃(W1))

< U(W1) +
λ

r
S(W1) + (U(W3)− U(W1)) +

λ̃

r
(S(W3)− S(W1))

< U(W1) +
λ

r
S(W1) + (U(W3)− U(W1)) +

λ

r
(S(W3)− S(W1))

= U(W3) +
λ

r
S(W3), (35)

where the first inequality follows from Ũ(W1) + λ̃
r S̃(W1) ≤ U(W1) + λ

rS(W1), the
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second from

(Ũ(W3)− Ũ(W1))− (U(W3)− U(W1)) = (Ũ(W3)− U(W3))− (Ũ(W1)− U(W1))

= (F̃ (W3)− F (W3))− (F̃ (W1)− F (W1))

=

∫ W3

W1

(F̃ ′(W )− F ′(W ))dW < 0

and

(S̃(W3)− S̃(W1))− (S(W3)− S(W1)) = (S̃(W3)− S(W3))− (S̃(W1)− S(W1))

= (F̃ (W3)− F (W3))− (F̃ (W1)− F (W1))

=

∫ W3

W1

(F̃ ′(W )− F ′(W ))dW < 0,

and the third inequality from W1 ≥ Wnj , S(W3) − S(W1) =
∫W3

W1
F ′′(W )(J(W ) −

W )dW < 0, and λ̃ > λ. But F̃ ′′(W3) ≥ F ′′(W3) implies Ũ(W3) + λ̃
r S̃(W3) ≥

U(W3) + λ
rS(W3), contradicting (35).

2. Suppose F̃ ′(W2) = F ′(W2) at some W2 > W ≥ Wnj . Since part 1 shows F̃ ′ ≥ F ′

everywhere above W , we have F̃ ′′(W2) = F ′′(W2), which implies Ũ(W2) + λ̃
r S̃(W2) =

U(W2) + λ
rS(W2) and a(W2) = ã(W2). It follows from (34), λ̃ > λ, and W2 <

J(W2) = J̃(W2) that F̃ ′′′(W2) < F ′′′(W2). This implies F̃ ′(W ) < F ′(W ) for W near

W2, contradicting part 1.

Second, define W as the first crossing point: W ≡ min{W : F̃ ′(W ) = F ′(W )}. We show

that the curves F̃ ′ and F ′ do not cross after W . If W ≥ Wnj , then the first step already

shows that F̃ ′ > F ′ after W . If W < Wnj , we show below that F̃ ′(W ) > F ′(W ) for all

W ∈ (W,Wnj ], which, together with the first step, implies that F̃ ′(W ) > F ′(W ) for all

W > W .

1. F̃ ′(W ) > F ′(W ) for W slightly above W . If F̃ ′′(W ) > F ′′(W ), this property is

obvious. If F̃ ′′(W ) = F ′′(W ), then Ũ(W ) + λ̃
r S̃(W ) = U(W ) + λ

rS(W ) and a(W ) =

ã(W ). It follows from (34), λ̃ > λ, and W > J(W ) = J̃(W ) that F̃ ′′′(W ) > F ′′′(W ).

This implies F̃ ′(W ) > F ′(W ) for W slightly above W .

2. By contradiction, suppose F̃ ′(W ) ≤ F ′(W ) for some W ∈ (W,Wnj ], and define W̄

as the second crossing point: W̄ ≡ min{W ∈ (W,Wnj ] : F̃ ′(W ) = F ′(W )}. We have

F̃ ′ > F ′ for W ∈ (W, W̄ ). It follows from F̃ ′′(W ) ≥ F ′′(W ) that Ũ(W ) + λ̃
r S̃(W ) ≥
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U(W ) + λ
rS(W ). Therefore,

Ũ(W̄ ) +
λ̃

r
S̃(W̄ ) = Ũ(W ) +

λ̃

r
S̃(W ) + (Ũ(W̄ )− Ũ(W )) +

λ̃

r
(S̃(W̄ )− S̃(W ))

≥ U(W ) +
λ

r
S(W ) + (Ũ(W̄ )− Ũ(W )) +

λ̃

r
(S̃(W̄ )− S̃(W ))

> U(W ) +
λ

r
S(W ) + (U(W̄ )− U(W )) +

λ̃

r
(S(W̄ )− S(W ))

> U(W ) +
λ

r
S(W ) + (U(W̄ )− U(W )) +

λ

r
(S(W̄ )− S(W ))

= U(W̄ ) +
λ

r
S(W̄ ), (36)

where the first inequality follows from Ũ(W )+ λ̃
r S̃(W ) ≥ U(W )+ λ

rS(W ), the second

from

(Ũ(W̄ )− Ũ(W ))− (U(W̄ )− U(W )) = (Ũ(W̄ )− U(W̄ ))− (Ũ(W )− U(W ))

= (F̃ (W̄ )− F (W̄ ))− (F̃ (W )− F (W ))

=

∫ W̄

W
(F̃ ′(W )− F ′(W ))dW > 0

and

(S̃(W̄ )− S̃(W ))− (S(W̄ )− S(W )) = (S̃(W̄ )− S(W̄ ))− (S̃(W )− S(W ))

= (F̃ (W̄ )− F (W̄ ))− (F̃ (W )− F (W ))

=

∫ W̄

W
(F̃ ′(W )− F ′(W ))dW > 0,

and the third inequality from W̄ ≤ Wnj , S(W̄ ) − S(W ) =
∫ W̄
W F ′′(W )(J(W ) −

W )dW > 0, and λ̃ > λ. But F̃ ′′(W̄ ) ≤ F ′′(W̄ ) implies Ũ(W̄ ) + λ̃
r S̃(W̄ ) ≤ U(W̄ ) +

λ
rS(W̄ ), contradicting (36).

QED

A.8 Proof of Lemma 1

For the expected duration T , define H =
∫∞

0 1s<θ1s<τds, where θ is the arrival time of

the job destruction shock and τ = min{t : Wt /∈ (0,Wgp)}. Define a martingale Ht as

Ht = Et[H] =
∫ t

0 Et[1s<θ]1s<τds + Et[1t<θ]Et[
∫∞
t 1s<θ1s<τds|t < θ] =

∫ t
0 e
−λs1s<τds +

e−λt1t<τT (Wt). For t < τ , the drift of Ht is

e−λt
(

1 + T ′(W )((r + λ)(W − u) + rh) +
1

2
T ′′(W )(rσY )2 − λT (W )

)
,
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which must be zero. For the exit probability functions P , the proof is very similar.

QED

A.9 Proof of Proposition 7

We organize the proof into three lemmas. Lemma 7 starts out by providing auxiliary results.

Lemma 8 shows that limλ→∞ P0(W ∗) > 0. Lemma 9 shows that limλ→∞ Pgp(W
∗) = 0.

Notation: Let us denote by ϕ the absolute value of the second derivative of Fsep at W = 0.

That is, ϕ ≡ −F ′′sep(0). By assumption, we have ϕ > 0.

Lemma 7 1. F (W ) ≤ Fsep(W ) + r
r+λĀ for all W ∈ [0,Wgp].

2. Define m ≡
√

4rĀ
ϕ . Then, W ∗ ≤ m√

λ
for sufficiently large λ, which implies

lim
λ→∞

W ∗ = 0. (37)

3. limλ→∞ F
′(0) = 0.

4. Wgp is decreasing in λ, but

M ≡ lim
λ→∞

Wgp > 0. (38)

5. There exists n > 0 such that the drift of Wt ∈ (0,Wgp), µ(Wt), satisfies

µ(Wt) ≤ n
√
λ (39)

for sufficiently large λ.

Proof

1. Let (At, Ct, Jt) be an optimal contract starting from W0 = W ∈ [0,Wgp]. We have

F (W0) = E
[
r

∫ τ̂

0
e−rt(At − Ct)dt+ e−rτ̂Fsep(Jτ̂ )

]
≤ r

r + λ
Ā+ E

[
r

∫ τ̂

0
e−rtF0(u(Ct))dt+ e−rτ̂Fsep(Jτ̂ )

]
≤ r

r + λ
Ā+ Fsep

(
E
[
r

∫ τ̂

0
e−rtu(Ct)dt+ e−rτ̂Jτ̂

])
≤ r

r + λ
Ā+ Fsep

(
E
[
r

∫ τ̂

0
e−rt(u(Ct)− h(At))dt+ e−rτ̂Jτ̂

])
=

r

r + λ
Ā+ Fsep (W0) ,
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where the second inequality follows from F0 ≤ Fsep and the concavity of Fsep, the

third inequality follows from h(At) ≥ 0 and the monotonicity of Fsep, and the last

equality follows from the promise-keeping constraint.

2. Pick a large λ̄ so that Fsep( m√
λ

) < Fsep(0) − 1
4ϕ

m2

λ for all λ ≥ λ̄. This is feasible

because Fsep(W ) ≈ Fsep(0)− 1
2ϕW

2 for small W . If λ ≥ λ̄, then

F

(
m√
λ

)
≤ r

r + λ
Ā+ Fsep

(
m√
λ

)
<

r

r + λ
Ā+ Fsep(0)− 1

4
ϕ
m2

λ

=
r

r + λ
Ā+ Fsep(0)− 1

4
ϕ

4rĀ

ϕλ

< Fsep(0).

It follows from F (W ∗) > Fsep(0) > F
(
m√
λ

)
that W ∗ < m√

λ
for all λ ≥ λ̄.

3. We have

−F ′′(W ) = max
a≥0

a+ F ′(W )h(a)− U(W )− λ
rS(W )

1
2rσ

2(h′(a))2
≤ max

a≥0

a+ Zh(a)
1
2rσ

2(h′(a))2
,

where Z equals F ′(0) under λ = 0. Hence,

F ′(0) = F ′(0)− F ′(W ∗) =

∫ W ∗

0
−F ′′(W )dW ≤ max

a≥0

a+ Zh(a)
1
2rσ

2(h′(a))2
W ∗.

It follows from (37) that limλ→∞ F
′(0) = 0.

4. Pick a small w such that −maxa
a+F ′sep(W )h(a)−U(W )

1
2
rσ2h′(a)2

< F ′′sep(W ) for all W ∈ [0, w].

This is feasible because limW→0 F
′
sep(W ) = 0, limW→0 U(W ) = Fsep(0), and we have

assumed that −maxa
a−Fsep(0)
1
2
rσ2h′(a)2

< F ′′sep(0) so a non-degenerate solution F exists.

We show Wgp > w for all λ. It follows from F (Wgp) = Fsep(Wgp), F
′(Wgp) =

F ′sep(Wgp), and F ′′(Wgp) ≥ F ′′sep(Wgp) that

F ′′sep(Wgp) ≤ F ′′(Wgp) = min
a

−a− F ′(Wgp)h(a) + U(Wgp) + λ
rS(Wgp)

1
2rσ

2h′(a)2

= −max
a

a+ F ′sep(Wgp)h(a)− U(Wgp)
1
2rσ

2h′(a)2
,

which implies −maxa
a+F ′sep(Wgp)h(a)−U(Wgp)

1
2
rσ2h′(a)2

≥ F ′′sep(Wgp). Therefore, Wgp > w.
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5. By (9), the drift of Wt is µ(Wt) = r(Wt − u(Ct) + h(At)) + λ(Wt − J(Wt)). We have

r(Wt − u(Ct) + h(At)) ≤ r(W ∗gp − 0 + h(Ā)),

where the right-hand side is a constant. Proposition 3 shows that ∆(W ) = J(W )−W
has a global minimum at W = W ∗. We thus have

λ(Wt − J(Wt)) ≤ λ(W ∗ − J(W ∗)) = λW ∗ ≤ λ m√
λ

= m
√
λ,

where the last inequality follows from part 2 of Lemma 7. We can therefore find a

sufficiently large n such that (39) holds.

Recall that P0(W ) denotes the probability that the process Wt started at W reaches 0

before a job destruction shock arrives and before Wt reaches Wgp. The next lemma shows

that P0(W ∗) remains strictly positive even in the limit as λ→∞. In particular, it shows

that P0(W ) is bounded below by p̃(W ) defined by

p̃(W ) ≡ p(W )− p(M), (40)

where M is defined in (38), and

p(W ) ≡ exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2

√
λW

)
with γ defined in (1), and with n being a constant sufficiently large for (39). As shown in

Lemma 7, M > 0. As assumed in (1), γ > 0. Clearly, p̃ and p are strictly decreasing and

strictly convex.

Lemma 8 P0(W ) ≥ p̃(W ) for all W ∈ [0,M ]. In particular, if W = W ∗, then P0(W ∗) ≥
p̃(W ∗) = p(W ∗)−p(M) > 0. Furthermore, limλ→∞ P0(W ∗) ≥ limλ→∞(p(W ∗)−p(M)) > 0.

Proof First, p(W ) satisfies p(0) = 1 and

λp(W ) = p′(W )n
√
λ+

1

2
p′′(W )(rσγ)2,

which can be confirmed by differentiation. By (40), thus, p̃ satisfies p̃(0) < 1, p̃(M) = 0,

and

λp̃(W ) < p̃′(W )n
√
λ+

1

2
p̃′′(W )(rσγ)2. (41)

Second, we show that, for sufficiently large λ, e−λtp̃(Wt) is a submartingale. By Ito’s

lemma, the drift of e−λtp̃(Wt) is

−λp̃(Wt) + p̃′(Wt)µ(Wt) +
1

2
p̃′′(Wt)ν(Wt)

2,
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where µ(Wt) and ν(Wt) are the drift and volatility ofWt, given in, respectively, (9) and (10).

By (39), for sufficiently large λ, we have µ(Wt) ≤ n
√
λ. Also, ν(Wt)

2 = (rσh′(a(Wt)))
2 ≥

(rσh′(0))2 = (rσγ)2. With p̃′ < 0, and p̃′′ > 0, these two inequalities imply that

−λp̃(Wt) + p̃′(Wt)n
√
λ+

1

2
p̃′′(Wt)(rσγ)2

is a lower bound on the drift of e−λtp̃(Wt). By (41), this lower bound is strictly positive,

i.e., e−λtp̃(Wt) is a submartingale for sufficiently large λ.

Third, let τM denote the first exit of Wt from (0,M), a stopping time. Since, for sufficiently

large λ, e−λtp̃(Wt) is a submartingale, we have p̃(W0) ≤ E[e−λτM p̃(WτM )] < P0(W0).

Last, we show limλ→∞(p(W ∗)− p(M)) > 0. Indeed, since W ∗ ≤ m√
λ

, we have

lim
λ→∞

p(W ∗) ≥ lim
λ→∞

p
( m√

λ

)
= lim

λ→∞
exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2
m

)

= exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2
m

)
> 0,

while

lim
λ→∞

p(M) = lim
λ→∞

exp

(
−
n+

√
n2 + 2(rσγ)2

(rσγ)2

√
λM

)
= 0.

The last lemma in this proof shows the vanishing probability of an exit at Wgp.

Lemma 9 limλ→∞ Pgp(W
∗) = 0.

Proof Let W̃t be the solution to (8) for all t ≥ 0, i.e., Wt is defined both before and after

θ. First, we show that F ′(W̃t) is a martingale. Differentiating the HJB equation (11) with

respect to W yields

0 = F ′′(W )r
(
W − u(c) + h(a)− λ

r
∆
)

+
1

2
F ′′′(W )r2σ2Y 2,

which means the drift of F ′(W̃t) is zero.

Second, suppose W̃0 = W ∗. That F ′(W̃t) is a martingale implies F ′(W ∗) = P̃0(W ∗)F ′(0)+

P̃gp(W
∗)F ′(Wgp), where P̃0(W ∗) and P̃gp(W

∗) are the probabilities of W̃t reaching 0 and

Wgp, respectively. Then

P̃gp(W
∗) =

F ′(W ∗)− P̃0(W ∗)F ′(0)

F ′(Wgp)
=

0− P̃0(W ∗)F ′(0)

F ′sep(Wgp)
.
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As λ → ∞, the limit of the above is 0 because limλ→∞ F
′(0) = 0 by Lemma 7.3, and

limλ→∞ F
′
sep(Wgp) = F ′sep(M) 6= 0.

Finally, limλ→∞ Pgp(W
∗) = 0 because Pgp < P̃gp.

This concludes the proof of Proposition 7.

QED
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