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1 Introduction

Asymmetric information is a pervasive feature of economic environments. Even when agents are

fully rational their expectation formation and decision-making process are constrained by the fact

that information may be imperfectly distributed in the economy for reasons such as costs of informa-

tion acquisition. Asymmetric information is also a central issue for the conduct of monetary policy

as policymakers regularly face uncertainty about the true state of the economy, either because they

are uncertain about the structure of the economy or because they receive data in real time that

are subject to measurement error. In environments where information is perfect and symmetrically

shared, the literature has shown that ill-designed policy rules can cause indeterminacy. We study

equilibrium determinacy in an asymmetric information setting, where policy is conducted based on

estimates of the true state of the economy.

We consider an economic environment with two types of agents, one who has full information

about the state of economy while the other agent is imperfectly informed. More specifically, the less

informed agent’s information set is nested within the fully informed agent’s. We think of the two

agents as a fully informed public, or alternatively, the private sector as a data-generating process

for aggregate outcomes, and a less informed policymaker. Respectively, we model the private sector

as a homogenously informed representative agent who is perfectly informed about the aggregate

state whereas the policymaker operates under imperfect imperfection, which, for instance, can take

the form of aggregate data subject to measurement error.1

A key assumption of our modelling framework is that both types of agents, the policymaker and

the private sector, employ rational expectations, but use di↵erent information sets. Private-sector

behavior is characterized by a set of linear, expectational di↵erence equations. On the other hand,

the policymaker’s behavior is characterized by the use of a policy instrument. It is set according

to a rule that responds to the policymaker’s optimal estimates of economic conditions.2 Formally,

we consider linear, stochastic equilibria with time-invariant decision rules and Gaussian shocks.

In this case, the rational inference e↵orts of the policymaker are represented by a dynamic signal

extraction problem as captured by the Kalman filter. The interaction of the two sets of expectation

formation processes represents the fundamental mechanism underlying equilibrium determination.

The central result of our paper is that equilibrium indeterminacy is generic in this imperfect

information environment for a broad class of linear models that have unique equilibria under full

information. Mechanically, optimal information processing of the less informed agent introduces

additional stable dynamics into the equation system that then lead to self-fulling expectations.

Intuitively, the interaction of the two expectation processes generates an endogenous feedback

mechanism in a similar vein to strategic complimentarities or the application of ad-hoc behavior in

1Such a dichotomy is well-established in the learning literature. Where our work di↵ers is that both agents have
rational expectations and know the structure of the economy, although not necessarily its state.

2As a specific example, we consider a Taylor-type interest-rate rule that responds to the policymaker’s projection
of inflation.
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the standard indeterminacy literature. Moreover, the interplay of expectations based on di↵erent

information sets results in equilibrium outcomes that are not certainty equivalent even though

we only consider environments that are linear. While the rationality of expectations under both

information sets places non-trivial restrictions on outcomes, they are not su�cient to rule out

multiple equilibria.

We characterize the outcomes of di↵erent equilibria as the result of non-fundamental distur-

bances, similar to the perfect-information literature on equilibrium determinacy in linear rational

expectations models. Such belief shocks are unrelated to fundamental shocks in the original eco-

nomic setup and can be interpreted as self-fulfilling shifts in expectations, or beliefs, that cause

fluctuations consistent with the concept of a linear, stationary equilibrium. When there is indeter-

minacy in the perfect-information case, there are no restrictions on the scale of e↵ects caused by

belief shocks. In contrast, the potential e↵ects of belief shocks are tightly bounded in our imperfect

information environment. The bounds arise from the required consistency of expectations of the

public and the policymaker and the assumption that we consider only environments that have a

unique equilibrium under full information.

Our paper touches upon three strands in the literature. In a broad sense, our paper contributes

to the burgeoning literature on imperfect information in macroeconomic models. The main thrust

of the existing literature has been on the implications of dispersed information among di↵erent

members of the public and the resulting e↵ects on their strategic interactions. Key contributions

by Angeletos and La’O (2013), Nimark (2008a, 2008b, 2014), and Acharya, Benhabib and Huo

(2017) demonstrate that imperfect information has important implications for the amplification

and propagation of economic shocks. However, while the literature has been aware of the potential

for multiple equilibria, this has usually not been a key issue of the analysis. In that vein, our paper

is much closer to Benhabib, Wang and Wen (2015) who consider sentiment shocks in their New

Keynesian model with imperfect information in the private sector. In contrast to our setup, which

involves the interaction between a policymaker and the public under di↵erent information sets,

sunspot or belief shocks do not arise endogenously in their setting. In that respect, our framework

is closer to Rondina and Walker (2017).

Our research also makes a contribution to the literature on indeterminacy in linear rational

expectations models by expanding the set of plausible economic mechanisms that can lead to mul-

tiple equilibria. A key element of the indeterminacy literature is the presence of a mechanism that

validates self-fulfilling expectations. In the standard literature, these could arise from what is often

termed strategic complimentarities, such as increasing returns to scale in production that are not

internalized, as in the seminal contributions of Benhabib and Farmer (1994), Farmer and Jang-Ting

(1994), and Schmitt-Grohe (1997). An alternative mechanism is the interplay between economic

agents’ forward-looking behavior and the reaction function of a policymaker, which Clarida, Gali

and Gertler (2000) and Lubik and Schorfheide (2004) show to be a key feature of macroeconomic
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fluctuations.3

In contrast, our framework does not rely on these previously identified sources of indetermi-

nacy but rather on the interaction of di↵erent expectation formation processes under asymmetric

information sets. This also sets our framework apart from the general imperfect information litera-

ture, which is largely concerned with the strategic interaction between agents in the private sector.

Although our framework utilizes the formalism of the indeterminacy literature, where we build on

the contributions of Lubik and Schorfheide (2003, 2004) and Farmer, Khramov and Nicolò (2015),

the mechanism to get there is novel. More specifically, we show that in an imperfect informa-

tion environment the standard root-counting approach in the literature is inadequate in identifying

the set of multiple equilibria. At the same time, we show that the set of multiple equilibria, de-

spite the generic pervasiveness of indeterminacy, is tightly circumscribed by internal consistency

requirements for the interaction between the two expectation processes. Our paper thereby puts

some caveats on the notion that sunspot shocks are unrestricted in their e↵ects on macroeconomic

outcomes.

It is a well-known result from the monetary policy literature that the Taylor principle, namely

that interest rate rules need to respond to endogenous variables with su�cient strength, is required

for determinacy and to avoid multiple equilibria. Clarida et al. (2000) and Lubik and Schorfheide

(2004) have pointed to a neglect of the Taylor rule as a possible factor behind the Great Inflation.

However, their evidence is based on a full-information perspective that does not account for the

uncertainties faced by the Federal Reserve in assessing the state of the economy in real time, as

discussed by Orphanides (2001). The framework that we develop in this paper sheds new light on

this issue.

A key paper in this literature is Orphanides (2003) who models the consequences of an im-

perfectly informed central bank for economic outcomes. Similar to our framework, his model

considers a policy rule that responds to estimates of economic conditions generated from optimal

signal extraction e↵orts. But in a fundamental di↵erence to our framework, his model is purely

backward-looking so that the issue of indeterminacy does not arise. Our paper also relates to

Svensson and Woodford (2004) and Aoki (2006) who derive conditions for optimal policy when the

policymaker is less informed than the public in forward-looking linear rational expectations models,

but take determinacy as given.4

Our paper is structured as follows. In the next section we introduce our framework by means of

a simple example in which we can derive analytical results. The section proceeds by developing the

various model components sequentially so as to build up the full set of equilibrium relationships.

3Ascari, Bonomolo and Lopes (2019) also point to sunspot-driven equilibria as a key source of fluctuations during
the high-inflation era of the 1970s.

4Applications following Svensson and Woodford to various economic issues are Carboni and Ellison (2011), Dotsey
and Hornstein (2003), and Nimark (2008b). Evans and Honkapohja (2001) and Orphanides and Williams (2006, 2007)
revisit the question of policymaking under imperfect information in an environment with learning. Faust and Svensson
(2002) and Mertens (2016) study the implications for optimal policy of the opposite informational asymmetry, where
the public does not perfectly share the policymaker’s information set.
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We also discuss various extensions and some additional findings that connect our framework to the

literature. Section 3 contains the main body of the paper. We present a general linear rational

expectations framework with heterogenous information sets and use results from general linear

systems theory to prove existence of a variety of equilibria. It is here that we establish our central

result that equilibrium indeterminacy is generic in this framework. We conduct some quantitative

exercises in section 4. We first solve the simple example of section 2 numerically in order to provide

additional insights. In the next step, we solve a New Keynesian model under our informational

assumptions. We show that while indeterminacy is, in fact, generic in this policy-relevant model,

the quantitative implications appear relatively limited. In section 5, we consider a set of alternative

policy rules that could lead to determinate outcomes. Section 6 concludes and discusses further

extensions of our framework.

2 A Simple Example Model

We develop the basic concepts and ideas underlying our modelling framework by means of a simple

example. First, we describe the basic structural relationships before introducing two types of

information sets. For exposition purposes we distinguish information sets where the observed

signals reflect solely exogenous variables or where the signal also reflects endogenous variables. We

then introduce the key component of the framework, namely optimal information extraction by

the less informed agent via Kalman-filtering, and a projection condition that rational expectations

equilibria in our framework need to obey. We conclude this section by discussing the underlying

intuition and some special results from the simple framework.

2.1 Economic Framework

We consider a simple textbook model of inflation determination in a frictionless economy. The

economy is described by a Fisher equation that links the nominal interest rate it to the real rate

rt via expected inflation Et⇡t+1, where Et is an expectation operator. The nominal rate is set

according to a monetary policy rule where it responds to current inflation ⇡t.5 Reflecting the

central role of the Fisher equation here, we refer to the small model also as a Fisher economy. We

assume that the real rate is characterized by an exogenous AR(1) process with a Gaussian shock.

The equation system is thus given by:

it = rt + Et⇡t+1, (1)

it = �⇡t, (2)

rt = ⇢rt�1 + "t, (3)

where "t ⇠ iid N(0,�2
") and |⇢| < 1. Throughout this paper we assume that the monetary policy

parameter � is outside the unit circle, |�| > 1.

5In the Supplementary Appendix, we also consider a policy rule of the type: it = rt + �⇡t, with a time-varying
intercept given by the real rate of interest.
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There are two agents in this economy: a representative private-sector agent whose behavior is

characterized by the Fisher equation (1), and a central bank whose behavior is given by a monetary

policy rule such as (2). We assume that the agents know the structure of the economy, including

the structural parameters, and that they observe the history of their respective information sets.

Crucially, both agents form expectations rationally. The central assumption of our framework is

that the two agents have di↵erent, but nested information sets. The full information set St contains

realizations of all shocks through time t, where Et is the rational expectations operator under full

information, so that for some variable xt, Etxt+h = E
�
xt+h|St

�
, for all h, and Etxt = xt. We

also define a limited information set Zt which is nested in St, Zt ⇢ St.6 The expectations, or

projections, of the less informed agent for any variable xt are denoted as xt|t = E
�
xt|Zt

�
and

xt+h|t = E
�
xt+h|Zt

�
. Since Zt is spanned by St we can apply the law of iterated expectations to

obtain: E
�
E(xt+h|Zt)|St

�
= xt+h|t.

We consider two informational environments: full and limited information. Under full informa-

tion rational expectations (FIRE), both agents are assumed to know St.7 This means that they

observe all variables in the model without error, that they know the history of all shocks, and that

they understand the structure of the economy and the solution concepts. Under limited informa-

tion rational expectations (LIRE), we assume that one agent has access to the full information set

St, while the other observes the limited information set Zt only. For the purposes of this simple

example, we assume that the private sector is fully informed whereas the central bank has limited

information.

2.2 Rational Expectations Equilibria with Full Information

The equation system (1) - (3) forms a linear rational expectations model that can be solved un-

der FIRE with standard methods. Substituting the policy rule into the Fisher equation yields a

relationship in inflation with driving process rt:

Et⇡t+1 = �⇡t + rt. (4)

The type of solution depends on the value of the policy coe�cient �. It is well known that the

solution is unique if and only if |�| > 1. In this case, the determinate rational expectations (RE)

solution is: ⇡t =
1

��⇢
rt and it =

�

��⇢
rt. Inflation and the nominal rate inherit the properties of the

exogenous process rt and are thus first-order autoregressive processes.

When |�| < 1, the full-information solution is indeterminate, and there are infinitely many

solutions to equation (4). Although the remainder of the paper considers the case |�| > 1, it is

instructive to review the implications of equilibrium indeterminacy when � is inside the unit circle,

since we utilize these concepts later. We follow the approach developed by Lubik and Schorfheide

(2003), which extends the Sims (2002) solution method to the case of indeterminacy.

6Allowing Zt to be only weakly nested in St, Zt ✓ St, would also encompass the case when both agents are fully
informed. We will typically consider the limited-information case as such that Zt is strictly less informative than St.

7In terms of notation, the full-information case corresponds to the situation where Zt = St.
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We define the rational expectations forecast error ⌘t = ⇡t � Et�1⇡t, whereby Et�1⌘t = 0 by

construction. This allows us to substitute out inflation expectations Et⇡t+1 in (4), so that we can

write:

⇡t = �⇡t�1 + rt�1 + ⌘t. (5)

It is easily verifiable that this representation is a solution to the expectational di↵erence equation

(4). Inflation is a stationary process with autoregressive parameter |�| < 1 and driving process

rt�1. What makes this equilibrium indeterminate is the fact that the solution imposes no restriction

on the evolution of ⌘t other than that it is a martingale di↵erence sequence with Et�1⌘t = 0.

Consequently, there can be infinitely many solutions.

Without loss of generality, we can, however, put some structure on the solution.8 Following

Farmer, Khramov, and Nicolò (2015) we decompose the RE forecast error ⌘t into a fundamental

component, namely the policy innovation "t, and a non-fundamental component, the belief shock bt.

More specifically, we can write ⌘t = �""t+�bbt, where Et�1bt = 0.9 The loadings �1 < �", �b < 1
on the two sources of uncertainty are unrestricted and their choice is arbitrary. They can be used

to index specific equilibria within the set of indeterminate equilibria. A specific solution to (4)

when |�| < 1 can therefore be written as:

⇡t = �⇡t�1 + rt�1 + �""t + �bbt. (6)

Returning to the case of |�| > 1, we can also compute an RE equilibrium for the case when

the dynamic system is conditioned down onto the information set Zt. Since the content of

this information set is known to both agents, we can apply the law of iterated expectations:

E
�
E(xt+h|Zt)|St

�
= xt+h|t. Except for changing the information set on which the expectations

operator is conditioned, the structure of the system remains unchanged. The policy rule now

becomes:

it|t = �⇡t|t. (7)

Following the same steps as before, we find that:

⇡t+1|t = �⇡t|t + rt|t, (8)

which is a first-order di↵erence equation in projected inflation ⇡t|t. Under the maintained assump-

tion that |�| > 1, the RE equilibrium is ⇡t|t =
1

��⇢
rt|t and it|t =

�

��⇢
rt|t. The form of the solution

is isomorphic to the FIRE solution above. That is, central bank projections of inflation and the

evolution of the policy rate obey the same functional form as the actual variables in the full in-

formation model. Moreover, in our setup central bank decisions are always based on Zt such that

8Strictly speaking, this is without loss of generality within the set of equilibria that are time-invariant and linear.
There are other non-linear equilibria that can be constructed in this linear model. See Evans and McGough (2005)
for further discussion.

9The interpretation of a belief shock in the terminology of Lubik and Schorfheide (2003) and Farmer, Khramov,
and Nicolò (2015) emerges when the inflation equation is rewritten in terms of expectations only. Define ⇠t = Et⇡t+1

and rewrite equation (4) as ⇠t = �⇠t�1+rt+�⌘t. In this representation, the forecast error ⌘t is akin to an innovation
to the conditional expectation ⇠t.
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it = it|t. The key insight is that under Zt, the central bank has less information than under St, but

it still forms expectations rationally under its own information set, given its real rate projections

rt|t.
10

2.3 Rational Expectations Equilibria with Limited Information

The key aspect of our limited information framework is that there are two expectation formation

processes interacting with each other. The nature of this interaction, and how it a↵ects equilibrium

determination, depends on how the limited-information agent extracts and updates information.

Our framework has four building blocks: first, the relationships describing the fully-informed agent;

second, those of the limited-information agent; third, the filtering and updating mechanism used by

the latter to gain additional information; and fourth, restrictions on agents’ projections to ensure

consistency of expectation formation in an RE equilibrium.

In the simple example considered thus far, the first element is given by the Fisher equation (1)

and the law of motion of the real rate (3). Considering the second building block, we assume that

the central bank is the less informed agent and therefore has access to the information set Zt. As

in Svensson and Woodford (2004), policy is set based on target variable projections. Specifically,

the behavior of the central bank is given by a limited information policy rule where the policy rate

responds to the inflation projection ⇡t|t:

it = �⇡t|t (9)

The third element is the specification of the central bank’s information extraction and updating

problem. The policymaker is aware of the limited information set and solves a signal extraction

problem to conduct inference about unobserved variables.11 The model is linear and the exogenous

shocks are Gaussian; in addition, we assume that the belief shocks are Gaussian. Without loss of

generality, the variance of belief shocks is normalized to one:12

bt ⇠ N(0, 1). (10)

As a result, the Kalman filter is the optimal filter in this environment. The gain in the optimal

projection equation is endogenous and depends on the second moments of the model variables in

an equilibrium. In turn, existence and uniqueness of an equilibrium depends on the endogenous

Kalman gain. This feature of our framework implies a non-trivial fixed-point problem. Finally, the

10This is a key di↵erence to the framework in Lubik and Matthes (2016) who assume that the central bank engages
in least-squares learning to gain information about private-sector outcomes. In our setup, the deviation from the
standard RE benchmark is only minor in the sense that the central bank does not observe everything that the private
sector does, but employs fully rational expectations in its inferences about current and future conditions.

11Conceptually, this is an environment where the central bank receives noisy measurements of incoming data but
makes decisions in real time based on its best projections of the true underlying data.

12Similar to the full-information case shown in (6), belief shocks will enter the system only via the endogenous
forecast error, which linearly depends on the belief shock bt with sensitivity �b, This allows us to normalize the
variance of belief shocks.
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fourth building block of our framework is an additional restriction on equilibrium determination.

We posit that rational expectations formation across all information sets has to be mutually and

internally consistent. Specifically, the central bank’s behavior is constrained by its own projections,

namely ⇡t|t =
1

��⇢
rt|t and it =

�

��⇢
rt|t, and a projection for rt|t. These projections imply a restriction

on the joint behavior of the model variables’ second moments so as to validate the RE of the fully

informed and the limited-information agents.

We now discuss the solution of our simple framework in two steps. We specify simple information

sets that make the central bank’s projection equations analytically tractable, whereby we distinguish

between exogenous and endogenous information sets. The former contains only exogenous variables

where there is no feedback between projection and model evolution. Specifically, we assume that

the central bank receives a noisy measurement of the real rate of interest. In the second step,

we assume endogenous information where the central bank observes inflation with a measurement

error.

2.3.1 Equilibrium with an Exogenous Signal

We assume that the central bank observes the real rate with measurement error ⌫t ⇠ iid N(0,�2
⌫),

so that its information set is Zt = {Zt, Zt�1, . . .}, with Zt = rt + ⌫t.13 The signal Zt is exogenous

in that the real rate is an exogenous process that does not depend on other endogenous variables.14

The Kalman projection equation for the real rate is:

rt|t = rt|t�1 + r
�
rt � rt|t�1 + ⌫t

�
, (11)

where the Kalman gain r is an endogenous coe�cient, and the one-step-ahead projection of the

real rate is rt|t�1 = ⇢rt�1|t�1.

We now combine the private sector Fisher equation (1) with the policy rule (9):

�⇡t|t = rt + Et⇡t+1. (12)

The evolution of inflation depends on two expectation processes: the central bank’s projection of

inflation ⇡t|t and the private sector’s expectation Et⇡t+1. Using the formalism described above, we

introduce the RE forecast error ⌘t and rewrite this equation as:

⇡t = �⇡t�1|t�1 � rt�1 + ⌘t. (13)

In addition, recall that after conditioning down all equations of the model onto Zt and solving for

an RE equilibrium conditional on Zt, we obtain:

⇡t|t =
1

�� ⇢
rt|t . (14)

13In addition, the central bank knows the structure of the economy and all parameters of the model, which are
common knowledge. For brevity, these elements of the information set are omitted in our notation.

14However, the process of making projections of the real rate, that is, of gaining information about its true value
can depend on endogenous outcomes.
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Equation (14) is a consistency condition for the RE equilibrium that we will also refer to as “pro-

jection condition” since it restricts central bank projections to be consistent with predictions from

the full-information model.

We can now combine these equations into a linear RE system:

⇡t =
�

�� ⇢
rt�1|t�1 � rt�1 + ⌘t,

rt|t = (1� r) ⇢rt�1|t�1 + r⇢rt�1 + r"t + r⌫t, (15)

rt = ⇢rt�1 + "t.

The first equation in (15) is derived from the Fisher equation, where we substituted out the central

bank’s lagged inflation projection by using the projection condition (14). The second equation is

derived from the Kalman projection equation for the real rate, while the third equation is the law

of motion of the actual real rate. The set of equations in (15) is a well-specified equation system in

three unknowns: inflation ⇡t, the exogenous real rate rt, and the central bank projection of the real

rate rt|t. In principle, it can be solved using standard methods for linear RE models that allow for

indeterminacy such as Lubik and Schorfheide (2003). However, there are two key di↵erences to the

standard framework. First, the gain coe�cient r is endogenous and has to be computed from the

second moments of the model solution. The second di↵erence is that the central bank’s projection

rt|t has to be consistent with the solution of the full system it determines. This projection condition

necessitates an additional computational step in the solution of the model.

We solve the model in three steps. First, in the exogenous signal case, the Kalman filtering

problem can be solved independently of the solution for inflation dynamics. Second, as shown

below, the Kalman gain lies between zero and one. As a result, rt|t is stationary and standard root-

counting implies that the system (15) is indeterminate. Third, we impose the projection condition.

Following Farmer, Khramov, and Nicolò (2015), we find it convenient to express the endogenous

forecast error as a linear combination of fundamental and belief shocks:15

⌘t = �""t + �⌫⌫t + �bbt. (16)

The solution is determinate if �b = 0 and �" and �⌫ are uniquely determined. An RE equilibrium

may not exist when there are no loadings that fulfill the restrictions imposed by and on the model,

specifically, the projection condition (14).

We find it convenient to define innovations of any variable xt as its unexpected component

relative to the limited information set Zt�1: ext = xt � xt|t�1, that is, the projection innovations.

We can then define the projection error variance ⌃ = var
�
ert � ert|t

�
= var (ert)�var

�
ert|t

�
, whereby

cov(ert, ert|t) = var(ert|t). The steady-state Kalman gain is given by:

r =
cov

⇣
ert, eZt

⌘

var( eZt)
, (17)

15Alongside "t, we refer to the measurement error ⌫t as a fundamental shock, too.
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where eZt = ert + ⌫t. It is straightforward to verify that var (ert) = ⇢2⌃ + �2
" and that var( eZt) =

var (ert) + �2
⌫ . Similarly, we have that cov(ert, eZt) = var (ert). This leads to the following expression:

r =
⇢2⌃+ �2

"

⇢2⌃+ �2
" + �2

⌫

, (18)

whereby clearly 0 < r < 1. We can now find an expression for the projection error variance ⌃ by

noting that cov(ert, ert|t) = var(ert|t) and var
�
ert|t

�
= r cov

⇣
ert, eZt

⌘
, given the projection equation

ert|t = r eZt. Substituting these expressions into the definition of ⌃ results in a quadratic equation,

commonly known as a Riccati equation:

⌃ =
⇢2⌃+ �2

"

⇢2⌃+ �2
" + �2

⌫

�2
⌫ . (19)

The (positive) solution to this equation is given by:

⌃ =
1

2⇢2


�
�
�2
" +

�
1� ⇢2

�
�2
⌫

�
+
q
(�2

" + (1� ⇢2)�2
⌫)

2 + 4�2
"�

2
⌫⇢

2

�
. (20)

We can now establish that the LIRE model with an exogenous signal vector always has multiple

equilibria. We have 0 < r < 1, from which it follows that |(1� r) ⇢| < 1, so that the law of

motion for rt|t in the full equation system is a stable di↵erence equation. In (13), inflation depends

only on lags of the real rate rt and lags of the real-rate projection rt|t, which are both stationary.

Without any dependence of inflation on lags of its own, inflation is stationary for any specification

of ⌘t, and we can conclude that the equilibrium cannot be determinate. That is, the structure

of the model does not impose restrictions that would uniquely pin down the endogenous forecast

error ⌘t and which would typically derive from the set of explosive roots in the system. One such

restriction could be |r| > 1, which we can rule out in this case. In other words, the representation

(15) is already a candidate solution to the model.

In the final step, we need to ensure that central bank projections for inflation and the real

rate are mutually consistent. Specifically, ⇡t|t =
1

��⇢
rt|t needs to hold along any equilibrium path.

This projection condition imposes a second-moment restriction on innovations with respect to the

central bank’s information set cov
⇣
e⇡t, eZt

⌘
= 1

��⇢
cov

⇣
ert, eZt

⌘
. Since cov

⇣
ert, eZt

⌘
= ⇢2⌃+�2

", we can

write cov
⇣
e⇡t, eZt

⌘
= cov (e⇡t, ert)+cov (e⇡t, ⌫t). Using the innovation representation of the projection

equation for ⇡t, we have:

e⇡t = �
�
ert�1 � ert�1|t�1

�
+ ⌘t, (21)

where after some substitution we find that cov (e⇡t, ert) = �⇢⌃ + �"�
2
". Similarly, we have that

cov (e⇡t, ⌫t) = �⌫�
2
⌫ . Combining all expressions results in the following linear restriction on the

shock loadings of the forecast error ⌘t = �""t + �bbt + �⌫⌫t:

�⌫ =
�

�� ⇢

⌃

�2
⌫

+
1

�� ⇢

�2
"

�2
⌫

� �2
"

�2
⌫

�". (22)

This condition places a linear restriction on �" and �⌫ to guarantee that central bank projections

for inflation and the real rate co-vary as they would in the full information case. However, this
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projection condition does not uniquely determine �" and �⌫ . Moreover, �b is left unrestricted. We

can now summarize the solution in the following proposition.

PROPOSITION 1 (LIRE Equilibrium in the Fisher Economy with Exogenous Signal)

The set of stationary RE equilibria in the model (15) under LIRE with exogenous signal Zt = rt+⌫t

is characterized by:

⇡t =
�

�� ⇢
rt�1|t�1 � rt�1 + �""t + �⌫⌫t + �bbt, (23)

rt|t = (1� r) ⇢rt�1|t�1 + r⇢rt�1 + r"t + r⌫t, (24)

rt = ⇢rt�1 + "t, (25)

where:

r =
⇢2⌃+ �2

"

⇢2⌃+ �2
" + �2

⌫

, (26)

⌃ =
1

2⇢2


�
�
�2
" +

�
1� ⇢2

�
�2
⌫

�
+
q
(�2

" + (1� ⇢2)�2
⌫)

2 + 4�2
"�

2
⌫⇢

2

�
, (27)

�1 < �b < 1,�1 < �" < 1, �⌫ =
�

�� ⇢

⌃

�2
⌫

+

✓
1

�� ⇢
� �"

◆
�2
"

�2
⌫

. (28)

Proof. The result follows directly from the positive solution to the Riccati equation (19) and (20)

as well as the projection condition (22).

We can draw the following conclusion at this point. Equilibrium indeterminacy is generic in this

setting in that the endogenous forecast error is not uniquely determined and that any stationary

RE equilibrium allows for the presence of sunspot shocks. Mechanically, the optimal filter employed

by the central bank introduces a stable root into the system, associated with the Kalman gain r,

and thereby leaves the endogenous forecast error undetermined. Although policy obeys the Taylor

principle with |�| > 1, and there is a unique mapping from central bank projections to endogenous

outcomes, equilibrium is generically indeterminate in the full model, in particular, the component

that is orthogonal to the central bank’s information set.16

A second observation is that the projection condition imposes restrictions on the set of multiple

equilibria which stands in contrast to the typical indeterminacy case under full information. Opti-

mal filtering restricts how private agents coordinate on an equilibrium, that is, which equilibrium is

admissible and consistent with central bank projections. Although the e↵ects of belief shocks with

exogenous information are still unrestricted, the relationship between the fundamental real-rate

shock and the measurement error is subject to a second moment restriction on their comovement.17

16By the logic of the root-counting approach to solving linear RE models, the system needs an ‘unstable’ root
outside the unit circle to pin down the endogenous forecast error when there is one ‘jump variable’, namely inflation.
In the FIRE case, this is provided by the policy parameter |�| > 1, while the Kalman filter introduces a stable root.

17From an empirical perspective, the FIRE solution results in a reduced-form representation for inflation that is
first-order autoregressive. The LIRE solution on the other hand exhibits much richer dynamics. In particular, the
resulting inflation process can be quite persistent when the signal-to-noise ratio is small since a large �2

⌫ translates
into a small Kalman gain.
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However, this simple example is restrictive in that the central bank only observes an exogenous

process with error. In the next step, we therefore analyze an endogenous signal which creates

additional feedback within the model.

2.3.2 Equilibrium with an Endogenous Signal

We now assume that the central bank observes the inflation rate with measurement error ⌫t such

that Zt = ⇡t + ⌫t. We present the analysis in terms of the projection equation for the real rate to

facilitate comparison with the previous case:

rt|t = rt|t�1 + r
�
⇡t � ⇡t|t�1 + ⌫t

�
. (29)

This leads to the full equation system:

⇡t =
�

�� ⇢
rt�1|t�1 � rt�1 + ⌘t,

rt|t = (⇢+ r) rt�1|t�1 + rrt�1 + r⌫t + r⌘t, (30)

rt = ⇢rt�1 + "t.

While the structure of the system is the same as before under exogenous information, the key

di↵erence is the coe�cient (⇢+ r) on the lagged real rate projection. In addition, real rate

projections depend on the endogenous forecast error ⌘t. As a result, the solution for r depends

on the equilibrium law of motion for ⇡t.

To solve the model, we first derive the endogenous Kalman gain and the associated forecast

error variance. We then derive the projection condition and assess consistency with the proposed

equilibrium paths. The steady-state Kalman gain is r = cov
⇣
ert, eZt

⌘
�var( eZt), where ert = rt �

rt|t�1 and eZt = e⇡t + ⌫t. As before, we decompose the endogenous forecast error ⌘t = �""t +

�⌫⌫t + �bbt. It can be quickly verified that cov
⇣
ert, eZt

⌘
= �⇢⌃ + �"�

2
". The negative sign in

this expression reflects the inverse relationship between inflation and the real rate when the signal

is endogenous. Using e⇡t = �
�
ert�1 � ert�1|t�1

�
+ ⌘t, we find that var( eZt) can be expressed as

var( eZt) = ⌃+ �2"�
2
" + �2

b
�2
b
+ (1 + �⌫)

2 �2
⌫ .

We can now derive the following expression for the Kalman gain:

r =
�⇢⌃+ �"�

2
"

⌃+ �2"�
2
" + �2

b
�2
b
+ (1 + �⌫)

2 �2
⌫

. (31)

Although the forecast error variance ⌃ still needs to be determined as a function of the structural

parameters, we can make two observations already. First, in contrast with the exogenous signal

case the gain r can be negative for small enough �", that is, r < 0 if �" < ⇢⌃/�2
". Second,

existence of a steady-state Kalman filter implies that |⇢ + r| < 1 as long as ⌃ > 0, as shown in

Proposition 2 below. We return to a discussion of the case where rt = rt|t, so that ⌃ = 0, later in this

section. In the next step, we compute the projection error variance ⌃ = var (ert)� var
�
ert|t

�
. Using
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var (ert) = ⇢2⌃ + �2
" and var

�
ert|t

�
= rcov

⇣
ert, eZt

⌘
we can derive the following Riccati equation,

which is quadratic in ⌃:

⌃ = ⇢2⌃+ �2
" �

�
�⇢⌃+ �"�

2
"

�2

⌃+ �2"�
2
" + �2

b
�2
b
+ (1 + �⌫)

2 �2
⌫

. (32)

Finally, an equilibrium has to obey the restrictions imposed by central bank projections, namely

⇡t|t = 1
��⇢

rt|t. This implies a covariance restriction of projection errors which di↵ers from the

exogenous signal case because of di↵erent information sets. Specifically, we have that cov
⇣
e⇡t, eZt

⌘
=

1
��⇢

cov
⇣
ert, eZt

⌘
or alternatively (�� ⇢) cov (e⇡t, e⇡t + ⌫t) = cov (ert, e⇡t + ⌫t). After some rearranging

we can write this expression as:

�⌫ (1 + �⌫) = � �

�� ⇢

⌃

�2
⌫

�
�2
b

�� ⇢

�2
b

�2
⌫

+
[1� (�� ⇢) �"] �"

�� ⇢

�2
"

�2
⌫

. (33)

The condition places a quadratic restriction on all three innovation loadings � in contrast to the

linear restriction on �" and �n and unrestricted �b in the exogenous signal case. This can imply

that there are no or multiple solution to this equation, and thus for the overall equilibrium, for a

given parameterization of the model. We summarize our findings in the following proposition.

PROPOSITION 2 (LIRE Equilibrium in the Fisher Economy with Endogenous Signal)

The set of stationary RE equilibria in the model (30) under LIRE with endogenous signal Zt =

⇡t + ⌫t is characterized by the following dynamic equations:

⇡t =
�

�� ⇢
rt�1|t�1 � rt�1 + �""t + �⌫⌫t + �bbt, (34)

rt|t = (⇢+ r) rt�1|t�1 � rrt�1 + r�""t + r (1 + �⌫) ⌫t + r�bbt, (35)

rt = ⇢rt�1 + "t,

With ⌃ > 0, we have:

|⇢+ r| < 1 (36)

⌃ =
1

2

⇣
↵+

p
↵2 + 4�

⌘
, (37)

↵ = (1 + 2⇢�")�
2
" � (1� ⇢)2

⇣
�2"�

2
" + �2

b
+ (1 + �⌫)

2 �2
⌫

⌘
, (38)

� =
⇣
�2
b
+ (1 + �⌫)

2 �2
⌫

⌘
�2
", (39)

r =
�⇢⌃+ �"�

2
"

⌃+ �2"�
2
" + �2

b
+ (1 + �⌫)

2 �2
⌫

, (31)

�⌫ (1 + �⌫) = � �

�� ⇢

⌃

�2
⌫

� 1

�� ⇢

�2
b

�2
⌫

+

✓
1

�� ⇢
� �"

◆
�"

�2
"

�2
⌫

. (33)

Proof. Equations (37), (38) and (39) follow directly from solving the quadratic equation for ⌃ > 0

in (32). The expression for the Kalman gain r in (31) and the restrictions from the projection
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condition in (33) restate earlier results. The requirement that with ⌃ > 0 we must have |⇢+r| < 1

is an application of Theorem 3 in Appendix A. In this specific example, the result that |⇢+ r| < 1

can be derived as follows: Consider the candidate value r = 0 for the Kalman gain; in this case

we would have ⌃ = Var (rt). The optimal Kalman gain seeks to minimize ⌃ and the optimal

value of ⌃ must thus be (weakly) smaller than Var (rt) = �2
"/(1� ⇢2) and finite. With the optimal

Kalman gain, projections are given by (35) and the process for the projection errors r⇤t = rt � rt|t

is r⇤t = (⇢ + r)r⇤t�1 + "t � r(⌘t + ⌫t). Recall that ⌃ ⌘ Var (r⇤t ). We can thus conclude that for

0 < ⌃ < 1 the optimal Kalman gain must be such that |⇢+ r| < 1.

Proposition 2 describes the set of solutions under indeterminacy. With |⇢+ r| < 1 the equation

system has only stable roots and therefore lacks a restriction to determine the endogenous forecast

error uniquely. As in the case of an exogenous signal, the projection condition that ensures internal

consistency of central bank and private sector expectation formation restricts the set of multiple

equilibria. Specifically, an equilibrium with ⌃ > 0 does not exist when no innovation loadings can

be found to ensure existence of a steady-state Kalman filter that is consistent with the projection

condition. Moreover, the set of solutions is restricted over the parameter space by the nonlinear

Riccati equation for the forecast error variance, by non-negativity constraints on variances and by

ruling out complex solutions.18

In contrast to the exogenous signal case, feedback between filtering and model solution is central

to equilibrium determination. Filtering depends on the information set, the result of which a↵ects

equilibrium outcomes and the content of the information set. This fixed-point problem has been

noted before, at least as early as Sargent (1991). We go beyond this insight by showing that

equilibrium determination is substantially di↵erent from the standard linear RE case. A solution

may not exist even when the root-counting criterion for existence of an equilibrium indicates a

su�cient number of stable roots in standard FIRE settings. While the root-counting approach

for given r could indicate non-existence, uniqueness or indeterminacy, it is the second-moment

restrictions due to the less informed agent’s filtering problem that determine equilibrium. In that

sense, indeterminacy is generic in a LIRE environment since existence of a stable Kalman filter

introduces a stable root into the dynamic system. At the same time, the second-moment restrictions

resulting from the projection condition restrain belief shock loadings, which stands in stark contrast

to the case of indeterminacy in a FIRE scenario.

2.4 Additional Results

The remainder of this section provides further insights and intuition for key results arising from our

framework. First, we consider a case where the RE equilibrium under LIRE can appear determinate

in the sense that the Kalman gain implies an explosive root that pins down the forecast error. In a

second exercise, we show that the simple model implies an upper variance bound for the dynamics

18Section 4 provides a full set of numerical solutions for this simple example.
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of the model. We discuss additional results in the Supplementary Appendix. These include a

comparison with the framework of Svensson and Woodford (2004) that shares similarities with our

approach, and a derivation of the model solution for an alternative monetary policy rule.

2.4.1 Equilibrium with ⌃ = 0 and an Explosive Root

The determinacy properties of a full-information, linear RE model depend on the number of unstable

eigenvalues in the dynamic system. In a standard root-counting approach (for instance, Blanchard

and Kahn, 1980), the equilibrium is unique if the number of explosive roots matches the number of

forward-looking, or jump, variables. With fewer explosive roots, the equilibrium is indeterminate

and non-existent otherwise. In the simple example model there is one jump variable, inflation, as

evidenced by the presence of the endogenous forecast error ⌘t; in order to achieve determinacy,

this jump variable should be matched by an explosive root. We consider whether this possibility

can arise in our simple model given the two types of information sets. The respective dynamic RE

equation systems are given in Propositions 1 and 2.

In the exogenous-signal case, Proposition 1 establishes that the Kalman gain lies between zero

and one, 0 < r < 1.19 Consequently, the projection equation is a stable di↵erence equation and

the absence of an unstable root means that ⌘t is not pinned down uniquely. While the projection

condition restricts the set of equilibria in terms of the loadings on the stochastic disturbances, there

is a multiplicity of solutions to this problem and indeterminacy is generic in this setting.

The case of an endogenous information set is di↵erent. We can define r⇤t = rt � rt|t as the error

from the projection onto the current information set and rewrite the equation slightly:

r⇤t = (⇢+ r) r
⇤
t�1 + "t � r⌫t � r⌘t. (40)

This is a first-order di↵erence equation driven by a linear combination of stochastic terms: the

exogenous real-rate innovation "t, the exogenous measurement error ⌫t, and the endogenous forecast

error ⌘t. The stability of the di↵erence equation for r⇤t hinges on |⇢+ r| < 1. As demonstrated in

Proposition 2, for Var (r⇤t ) = ⌃ > 0, |⇢+ r| < 1 is assured by the existence of a solution to the

Kalman filter.

Now suppose that |⇢+ r| > 1. In this case, the only stationary solution is r⇤t = 0 and thus ⌃ =

0, which is achieved by letting ⌘t =
1
r
"t � ⌫t, so that the endogenous forecast error is determined

as a function of fundamentals alone.20 We can verify the proposed solution by substituting the

expression into the projection equation (35), which yields rt = ⇢rt�1+"t. Substituting the solution

into the inflation equation (34) leads to ⇡t =
⇢

��⇢
rt�1+

1
r
"t�⌫t, so that the loadings in the forecast

error decomposition ⌘t = �""t + �bbt + �⌫⌫t are �" = 1/ (�� ⇢), �⌫ = �1, and �b = 0. The latter

19When the central bank only observes linear combinations of exogenous variables, the Kalman filtering problem
can be solved independently from the rest of the model since the measurement equation contains only exogenous
variables.

20From the perspective of the private sector the measurement error is a fundamental innovation in that it is a
primitive of the model and a↵ects outcomes in any equilibrium.
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simply restates that belief shocks do not a↵ect equilibrium outcomes when the standard eigenvalue

condition for an equilibrium holds, namely that the number of unstable roots equals the number

of jump variables.

The proposal equilibrium perfectly reveals one of the exogenous drivers rt, while providing no

signal about other shocks. In contrast, the equilibrium inflation rate depends on the measurement

error ⌫t and is not perfectly revealed to the central bank. The full-information solution is ⇡FI
t =

⇢

��⇢
rt�1 +

1
��⇢

"t. Comparing the LIRE and FIRE solution we therefore find that ⇡LI
t = ⇡FI

t � ⌫t,

which suggests that r = Cov (r̃t, ⇡̃t + ⌫t)/Var (⇡̃t + ⌫t) = Cov ("t, ⌘t + ⌫t)/Var (⌘t + ⌫t) = ��⇢.21

The root of the projection equation is thus ⇢+r = � > 1, which validates our original conjecture.

This equilibrium in the LIRE model with an endogenous information set is special in the sense

that it superficially appears like the unique equilibrium in a FIRE setting: the solution is not

a↵ected by sunspot shocks while the forecast error is pinned down by matching the numbers of

explosive roots and jump variables. It is not, however, a unique equilibrium in the sense that there

is only one solution to the dynamic equation system for a given set of parameters. This is because

the gain r is endogenous and, as such, there can be other equilibria with a di↵erent gain. This

special equilibrium is thus one of many multiple equilibria.22 However, as discussed in section I.2

of the Supplementary Appendix, the existence of the special equilibrium is germane to the simple

structure of this example economy, and typically does not extend to more general models.

2.4.2 Variance Bounds

The projection condition ensures that expectation formation of the di↵erent types of agents in the

model is mutually consistent. As it turns out, this condition also provides bounds on the variances

of the model’s endogenous variables. Specifically, we show that the special equilibrium discussed

above has the highest inflation variance of all equilibria in the LIRE setting despite having the

plausibly desirable property that it is not driven by belief or sunspot shocks.23

The RE solution in the space of central bank projections is ⇡t|t = 1
��⇢

rt|t. This implies the

projection condition cov
⇣
e⇡t, eZt

⌘
= 1

��⇢
cov

⇣
ert, eZt

⌘
for information set Zt, whereby we focus on

the case Zt = ⇡t + ⌫t. Expanding terms we find:

var(e⇡t) + cov (e⇡t, ⌫t) =
1

�� ⇢
cov (e⇡t, ert) , (41)

21Formally, the proposed solution when |⇢+ r| > 1 corresponds to an unstable, non-positive solution of the Riccati
equation in (32). In this particular case, the non-positive solution of the Riccati equation is exactly equal to zero.

22It is somewhat akin to the result described in Lubik and Schorfheide (2003), where an indeterminate equilibrium
without sunspots is observationally equivalent to a corresponding determinate equilibrium. However, in their case,
this sunspot equilibrium without sunspots belongs to a set of equilibria that are continuous in the parameter space
whereas the special equilibrium is discretely di↵erent from the set of equilibria in Proposition 2.

23Following Taylor (1977), Blanchard (1979) proposed to select equilibria based on a minimum variance criterion.
The variance bounds presented here, suggest that the minimum-variance equilibrium is not an equilibrium driven
solely by fundamental shocks, but an equilibrium where fluctuations are at least in part due to non-fundamental
belief shocks.
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where we have made use of the fact that cov (ert, ⌫t) = 0. Collecting terms, we can write:

var(e⇡t) = cov

✓
e⇡t,

1

�� ⇢
ert � ⌫t

◆
. (42)

Using the Cauchy-Schwarz inequality the upper bound on the inflation projection error variance is

given by:

var(e⇡t)  var

✓
1

�� ⇢
ert � ⌫t

◆
=

✓
1

�� ⇢

◆2

var(ert) + �2
⌫ . (43)

Since ⇡t = e⇡t + ⇡t|t�1 and ⇡t|t�1 =
1

��⇢
rt|t�1, we can derive the expression:

var(⇡t) = var(e⇡t) +

✓
1

�� ⇢

◆2

var(rt|t�1) + 2cov
�
e⇡t, rt|t�1

�
, (44)

whereby the covariance is zero under optimal projections. Similarly, var(rt) = var(ert)+var(rt|t�1).

Substituting these expressions and collecting terms results in the following upper bound for the

inflation variance:

var(⇡t) 
✓

1

�� ⇢

◆2

var(rt) + �2
⌫ = �2

⌫ +
�2
"

(1� ⇢2) (�� ⇢)2
. (45)

The first term in the expression is the measurement error variance �2
⌫ , while the second term

is the variance under FIRE with solution ⇡t =
1

��⇢
rt. In the special equilibrium, the solution for

inflation is ⇡S
t = 1

��⇢
rt � ⌫t, with variance var(⇡S

t ) = �2
⌫ + �

2
"

(1�⇢2)(��⇢)2
. This expression is equal

to the upper bound above. This implies that the inflation variance in the special equilibrium is

the highest inflation variance of any equilibria under LIRE with an endogenous information set,

i.e., var(⇡t)  var(⇡S
t ). Moreover, the variance bound is a direct implication of the projection

condition. It may seem counterintuitive that an equilibrium in which sunspots do not matter

exhibits more volatility than a sunspot equilibrium. In fact, it also runs counter to the comparable

scenario in a standard determinacy analysis where sunspot shocks under a multiple equilibrium add

excess volatility. At the same time, it highlights the di↵erent nature of equilibrium determination

in our framework.

2.4.3 Closed-form Solutions with an Alternative Information Set

Even in the simple Fisher economy presented above, closed-form solutions are di�cult to obtain

due to the intricate fixed-point problem of the imperfect-information equilibrium. We now present

a variant of the Fisher economy with a particular information set that enables us to derive a number

of results in closed form. In contrast to the case discussed above, the specification of the simple

example shown here features only amplification but no additional persistence of inflation due to

belief shocks.

As before, the model combines an exogenous AR(1) process for the real rate with a Fisher

equation and a Taylor rule that responds to the central bank’s inflation projection:
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it = rt + Et⇡t+1 , it = �⇡t|t , |�| > 1 ,

rt = ⇢ rt�1 + "t "t ⇠ iidN(0,�2
") , |⇢| < 1 ,

and the projection condition requires ⇡t|t = rt|t/(� � ⇢). As before, we express the endogenous

forecast error as a linear combination of fundamental and belief shocks. Collecting terms yields the

following characterization of the inflation process:

⇡t+1 = �(rt � rt|t) +
⇢

�� ⇢
rt + ⌘t+1 (46)

with ⌘t+1 ⌘ ⇡t+1 � Et⇡t+1

= �""t+1 + �⌫⌫t+1 + �bbt+1 , bt+1 ⇠ iidN(0, 1) , (47)

We now assume that the central bank’s information set is characterized by a bivariate signal,

which includes a perfect reading of the real rate and a noisy signal of current inflation:

Zt =


rt

⇡t + ⌫t

�
with ⌫t ⇠ iidN(0,�2

⌫) (48)

) rt|t = rt ) ⇡t|t =
1

�� ⇢
rt , (49)

In light of (49), the inflation dynamics specified in (46) simplify to

⇡t+1 =
⇢

�� ⇢
rt + ⌘t+1 . (50)

Before determining the shock loadings �", �⌫ , and �b of the endogenous forecast error ⌘t, we can

already note that one-step-ahead expectations of inflation, Et⇡t+1 = rt/(� � ⇢), are identical to

the full-information case so that the e↵ects of indeterminacy will be limited to changes in the

amplification of shocks, without consequences for inflation persistence.

In light of (50), we can conclude that the history of Zt spans the same information content as

the history of

W t =


"t

(1 + �⌫) ⌫t + �b bt

�
. (51)

W
t spans Zt since, with |⇢| < 1, "t spans rt, and since observing (1 + �⌫) ⌫t + �b bt adds the same

information to the span of "t as observing ⇡t + ⌫t.

Conveniently, the signal vectorW t consists of two mutually orthogonal elements that are serially

uncorrelated over time. As a result, projections onto W
t can be decomposed into the sum of

projections onto its individual elements. The projection condition (49) then requires ⌘t|t = "t|t/(��
⇢), and with "t|t = "t, we can conclude that

�" =
1

�� ⇢
. (52)
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In addition we have ⇡⇤
t ⌘ ⇡t�⇡t|t = �⌫ ⌫t+ �b bt, and thus E

�
�⌫ ⌫t + �b bt

��Zt
�
= 0, which implies

the following restriction on �⌫ and �b:

Cov
�
�⌫ ⌫t + �b bt

�� (1 + �⌫) ⌫t + �b bt
�
= �⌫(1 + �⌫)�

2
⌫ + �2

b
= 0 . (53)

) �⌫ = �1

2
±

s
1

4
�

�2
b

�2
⌫

(54)

Real solutions to (54) require |�b| < 0.5�⌫ leading to a continuum of solutions with �⌫ 2 [�1, 0].

While there is a unique solution for the shock loading �", as given in (52), there are multiple

solutions for �⌫ and �b as characterized by (54).

Equilibrium dynamics of inflation are described by (46) and (47) together with (52) and (54).

Collecting terms, inflation evolves according to:

⇡t =
1

�� ⇢
rt + �⌫ ⌫t + �b bt (55)

where �⌫ and �b are restricted by (54). In light of the projection condition (53), the variance of

inflation is given by

Var (⇡t) =

✓
1

�� ⇢

◆2

Var (rt) + |�⌫ |�2
⌫ . (56)

Since �⌫ is bounded by one in absolute value, there is an upper bound for the inflation variance

equal to Var (rt)/(�� ⇢)2 + �2
⌫ .

A key feature of this example is that belief shock loadings are not generally zero, and non-

fundamental belief shocks can a↵ect equilibrium outcomes. In addition, there is an upper bound

on belief shock loadings. The upper bound on belief shock loadings stems from the projection

condition and is unique to our imperfect information framework. When indeterminacy arises in

full-information models, there are no such bounds on the scale with which belief shocks can a↵ect

economic outcomes.

In the absence of measurement error on inflation, �⌫ = 0, the outcomes in our simplified example

collapse to the full-information solution ⇡t = rt/(�� ⇢) and equilibria are continuous with respect

to the full-information case as �⌫ approaches zero. For any measurement error variance, the range

of possible equilibria includes the case where outcomes are identical to the full-information case,

with �⌫ = �b = 0.

2.5 Discussion

At the core of our simple model is that the Taylor principle is not satisfied under imperfect informa-

tion even though it holds in the corresponding set-up with full information.24 The Taylor principle

24In our simple example economy, the Taylor principle requires |�| > 1, as discussed, among others, by Woodford
(2003). For more general interest rate rules, Bullard and Mitra (2002) study requirements on interest-rate rule
coe�cients to ensure determinacy in the New Keynesian model.
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prescribes a su�ciently strong response of the nominal policy rate to actual inflation. Deviating

from it leads to sunspot-driven movements in private sector expectations that the central bank can-

not invalidate through its actions. Even though there is a unique mapping between central bank

projections of outcomes and economic conditions, actual outcomes remain indeterminate in our

framework. In standard models such as Clarida, Gali and Gertler (2000) or Lubik and Schorfheide

(2004) indeterminacy arises because the central bank conducts a policy that does not satisfy the

Taylor principle. In contrast, in our limited information setting the central bank applies the Taylor

principle with respect to its reaction to projections derived from an optimal filter, which then leads

to an insu�ciently strong reaction of policy to actual inflation. The source of the indeterminacy

thus lies in the interaction of expectations formed under the two information sets.

When outcomes are not uniquely determined by economic fundamentals, there is a role for

belief shocks to drive economic fluctuations. The term “belief shocks” refers to a set of economic

disturbances that matter since people believe that they do. In general, these disturbances are

otherwise unrelated to economic fundamentals.25 We can think of the implications of belief shocks

in terms of the following thought experiment. Suppose that the realization of a sunspot leads the

private sector to believe that inflation is higher than warranted by economic fundamentals. This

implies a reassessment of the nominal interest-rate path and a higher it in compensation for higher

expected inflation. At this point, the behavior of the central bank is crucial. If the Taylor principle

holds under FIRE, it would raise the policy rate by proportionally more than the private-sector’s

sunspot-driven belief. If the Taylor principle does not hold, the central bank raises the policy

rate by proportionally less and thereby validates the original belief. Consequently, next period’s

expected inflation is a fraction � of this period’s inflation rate, see equation (6), so that the resulting

equilibrium is indeterminate and subject to belief shocks.

A similar intuition holds in the LIRE case, with a subtle but crucial wrinkle that captures

the core of our framework. We assume that the central bank follows a projection-based policy

rule as in Svensson and Woodford (2004). This is arguably common central bank practice as real-

time data are generally noisy and an informative signal needs to be extracted. The policy rule is

it = �⇡t|t with |�| > 1. The central bank’s inflation projection is therefore ⇡t|t = (�� ⇢)�1 rt|t so

that it = � (�� ⇢)�1 rt|t. In the case of an exogenous signal with a real rate projection equation

rt|t = rt|t�1 + r
�
rt � rt|t�1 + ⌫t

�
, the implied policy rule is then:

it =
�

�� ⇢
rt|t�1 + r

�

�� ⇢

�
rt � rt|t�1 + ⌫t

�
. (57)

The source of indeterminacy in this case is that policy responds only to movements in exogenous

variables and the measurement error. The interest rate therefore evolves autonomously of the

remainder of the model with no feedback from an endogenous variable. This stems, of course, from

the fact that the central bank’s information set only contains real-time real rate observations and

25The use of the term “beliefs” is conceptually distinct from the “projections” described as part of our imperfect
information setup, where projections are the result of the policymaker’s optimal signal extraction e↵orts.
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is thus almost akin to an interest-rate peg, which even in a FIRE model implies indeterminacy. In

contrast to the FIRE case, the central bank responds to projected inflation which, consistent with

the projection condition, the central bank knows to be a function of real rate projections. However,

when the signal is exogenous, the projections do not contain a signal from actual inflation; instead,

they reflect the average comovement between inflation and the signal in equilibrium. Therefore,

monetary policy cannot invalidate beliefs that arise along a particular inflation trajectory.

These basic insights also apply to the case of an endogenous information set as presented in

Proposition 2. We can derive an implied policy rule as before:

it =
�

�� ⇢
rt|t�1 + r

�

�� ⇢

�
⇡t � ⇡t|t�1 + ⌫t

�
, (58)

where the central bank observes current inflation with error. The resulting feedback from inflation

movements to real rate projections implies that current inflation matters for the interest rate path

so that the e↵ective policy coe�cient is r�/(�� ⇢) instead of �. Since r is likely small and also

within the unit circle it implies that the Taylor principle in terms of feedback from actual inflation

to the policy rate is not satisfied as the response is less than proportional.26

Continuing our thought experiment, a sunspot-driven increase in inflation also a↵ects the

central-bank’s projection process. Signal extraction is imperfect in the sense that the central bank

adjusts its inflation projection somewhat upward as it cannot fully distinguish between the signal

and the sunspot noise. Because of the size of the Kalman gain the resulting e↵ective interest rate

increase is smaller than would be warranted so that the sunspot-driven belief is validated. At the

same time, the central bank’s projection is consistent with the Taylor principle as it observes data

subject to measurement error in its limited information set; whereas the private sector is aware of

the actual data and takes into account the e↵ective policy feedback in setting expectations.27

Equilibrium determination in our framework is conceptually di↵erent from the standard linear

RE model. In the latter, the parameter space can typically be divided in three distinct regions

of determinacy, indeterminacy, and non-existence. Given a specific parameterization the model

solution is thus placed in one of the regions so that a reduced-form representation can be obtained.

The set of multiple equilibria can be parameterized using the approach of Lubik and Schofheide

(2003) or Farmer, Khramov, and Nicolò (2015) which then can be used to describe adjustment

dynamics. This set of equilibria is essentially unrestricted. Although our imperfect information

model shares some similarities, the key di↵erence is that there is no corresponding partition of the

parameter space. Equilibrium indeterminacy is generic in the sense that a root-counting approach

would generally imply indeterminacy and would not pin down the forecast forecast errors uniquely,

with the exception of the special case as discussed above.

At the same time, an equilibrium for a given parameterization may not exist because it is

inconsistent with the projection condition or conditions derived from the computation of the gain

26This qualitative observation is borne out quantitatively by the numerical exercises in section 4.
27In this sense, our framework is similar to the set-up in Lubik and Matthes (2015) where learning about the

economy in a real-time environment with measurement error and an optimal policy choice can engender indeterminacy.
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coe�cients while fulfilling the criteria of the root-counting approach. Again, this insight reflects

the fact that in this imperfect information environment the solution of a linear RE system depends

on second moments of that system which in turn are endogenous to the model solution. However,

the set of multiple equilibria under LIRE is restricted by the projection condition in stark contrast

to the standard case. We leave it to the numerical analysis in section 4 to assess the quantitative

implications.

3 General Framework

We now introduce the general modelling framework, of which the analysis in the previous section is

an introductory example. We begin by laying out a general class of expectational linear di↵erence

systems that feature conditional expectations of two types of agents with possibly di↵erent infor-

mation sets. After reviewing rational expectations outcomes under full information, we turn to the

imperfect information case, where one of the agents (“the policymaker”) is strictly less informed

than the other (“the private sector”).

3.1 An Expectational Di↵erence Equation with Two Information Sets

We consider linear, time-invariant equilibria that solve a system of linear expectational di↵erence

equations of the following form:

EtSt+1 + ĴSt+1|t = ASt + ÂSt|t +Ai it (59)

it = �iit�1 +�JSt+1|t +�ASt|t (60)

St =


Xt

Y t

�
(61)

where it denotes a vector of policy instruments (typically a scalar) and Xt and Y t are vectors of

backward- and forward-looking variables, respectively.28 There are Nx backward- and Ny forward-

looking variables as well as Ni policy instruments. As in Klein (2000) and Svensson and Woodford

(2004), the backward-looking variables are characterized by exogenous forecast errors, "t:

Xt � Et�1Xt = Bx" "t "t ⇠ N(0, I) (62)

where the number of independent, exogenous shocks N" may be smaller than the number of

backward-looking variables, Nx, while Bx" is assumed to have full rank (i.e. Bx" has N" indepen-

dent columns). As in Klein (2000), we also assume that the initial value of the backward-looking

variables, X0, is exogenously given. In contrast, forecast errors for the forward-looking variables,

28Throughout, vectors and matrices will be denoted with bold letters; notice, however, that our use of lower- and
uppercase letters does not distinguish between matrices and vectors. In most applications, it is likely to be a scalar,
but nothing in our framework hinges on this assumption and so we use the generic vector notation, it, throughout.
In our context, keeping the policy instrument separate from Xt and Y t will be useful since it will always be assumed
to be perfectly known and observable to both public and central bank.
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denoted

⌘t ⌘ Y t � Et�1Y t, (63)

are endogenous and remain to be determined as part of the model’s RE solution.29

The pair of linear di↵erence equations (59) and (60) is intended to capture the interdependent

decision making of two kinds of agents.30 Both agents form rational expectations, but conditional

on di↵erent information sets, that will be described further below: One agent has access to full

information about the state of the economy; in the applications considered in our paper, this

would be a representative agent for the private sector also referred to as “the public”. Private

sector decisions are represented by (59), which also depends on the setting of a policy instrument it

chosen by the other agent. The second agent is an imperfectly informed policymaker. In light of our

applications, we synonymously refer to the policymaker also as “central bank.” The policymaker

sets it according to the rule given in (60). By definition, the policymaker must know the current

value and history of her instrument choices. Moreover, all variables entering the policy rule (60)

are expressed as expectations conditional on the central bank’s information set, denoted St+1|t and

St|t.

The policymaker is supposed to form rational expectations based on an information set that is

characterized by the observed history of a signal, denoted Zt, as well as knowledge of all model

parameters.31 For any variable V t, and any lead or lag h, EtV t+h denotes expectations based on

full information whereas

V t+h|t ⌘ E(V t+h|Zt) Z
t = {Zt,Zt�1,Zt�2, . . .} (64)

denotes conditional expectations under the central bank information set.32 For further use, it will

be helpful to introduce the following notation for innovations Ṽ t and residuals V ⇤
t :

Ṽ t ⌘ V t � V t|t�1 , V
⇤
t ⌘ V t � V t|t = Ṽ t � Ṽ t|t . (65)

Henceforth we will use the term “shocks” in reference to martingale di↵erence sequences defined rel-

ative to the full information set, and the term “innovations” when referring to martingale di↵erence

sequences with respect to the central bank’s information set.

By construction, central bank actions, it, are spanned by the history of observed signals, such

that we always have it = it|t; note that it merely reflects information contained in Z
t and need

not be added to the description of the measurement vector, even though the policy instrument will

29Note that there are in principle Ny endogenous forecast errors; though, as will be seen shortly, their variance-
covariance matrix need not have full rank.

30In our setup, equations ( 59) and ( 60) serve as primitives. In principle, each of these equations could represent a
mere behavioral characterization or, alternatively, a description of optimal decision making in the form of a (linearized)
first-order condition as in Svensson and Woodford (2004), for example.

31There is common knowledge about the structure of the economy and all model parameters.
32For notational convenience, knowledge of model paramters is suppressed when describing the information sets

underlying conditional expectations.
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not be explicitly listed as part of the measurement vector Zt. The measurement vector has Nz

elements, and each is a linear combination of backward- and forward-looking variables:

Zt = HSt = HxXt +HyY t . (66)

The measurement vector may also be a↵ected by “measurement errors” — disturbances to the

measurement equation that would otherwise be absent from a full-information version of the model.

Such measurement errors are assumed to have been lumped into the vector of backward-looking

variables, Xt.33

3.2 Full Information Equilibrium

Our setup nests the case of full information when St+h|t = EtSt+h 8h � 0, which holds, for

example, when H = I such that Zt = St. The full-information system can easily be solved using

familiar methods like those of Sims (2002), Klein (2000), or King and Watson (1998). We stack all

variables, including the policy control, into a vector St that is partitioned into a vector of Ni +Nx

backward-looking variables, X t, and a vector of Ny +Ni forward-looking variables, Y t:34

St =


X t

Y t

�
where X t =


it�1

Xt

�
Y t =


Y t ,
it

�
(67)

Using S 0
t =

⇥
i
0
t�1 S

0
t i

0
t

⇤
, the dynamics of the system under full information are then characterized

by the following expectational di↵erence equation:

2

4
I 0 0
0 I + Ĵ 0
0 �J 0

3

5

| {z }
J

EtSt+1 =

2

4
0 0 I

0 A+ Â Ai

��i ��H I

3

5

| {z }
A

St (68)

Throughout, we focus on environments where a unique full-information solution exists, and

assume that the following assumption holds:

ASSUMPTION 1 (Unique full-information solution) The pencil |J z�A|, with J and A

as defined in (68), is a regular pencil and has Ni+Nx roots inside the unit circle and Ny+Ni roots

outside the unit circle.35

As shown in Klein (2000) or King and Watson (1998), Assumption 1 ensures the existence of

a unique equilibrium under full information.36 The solution has the following form, and can be

33By construction, we have then Zt|t = HSt|t = Zt and thus H Var
�
St|Zt

�
H

0 = 0.
34The presence of the lagged policy control in X t serves to handle the case of interest-rate smoothing, �i 6= 0,

and can otherwise be omitted. In the case of interest rate smoothing, it�1 enters the system as a backward-looking
variables. In the setups of Klein (2000) or King and Watson (1998), it is required that all backward-looking variables
be placed at the top of St.

35The pencil is regular if there is some complex number z such that |J z �A| 6= 0.
36In the case of the simple Fisher economy in section 2, the root-counting condition was satisfied by requiring that

the central bank’s interest-rate rule satisfied the Taylor principle, responding more than one-to-one to fluctuations in
inflation.
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computed, for example, using the numerical methods of Klein (2000):

EtX t+1 = P X t , Y t = G X t , G =


Gyi Gyx

Gii Gix

�
. (69)

where P is a stable matrix.37 Certainty equivalence holds, and the decision-rule coe�cients P and

G do not depend on the shock variances encoded in Bx" and, of course, not on the measurement

loadings H either.38 Equilibrium dynamics in the full-information case are then summarized by:

St+1 = T̄ St + H̄"t+1 , T̄ =


P 0
GP 0

�
, H̄ =

2

664

0
I

Gyx

Gix

3

775Bx" , (70)

where T̄ is stable because P is, and the endogenous forecast errors are given by ⌘t = GyxBx" "t.

3.3 Expectation Formation in Imperfect Information Equilibria

In the imperfect-information case, we are interested in linear equilibria, driven by normally dis-

tributed disturbances, so that a Kalman filter delivers an exact representation of the true conditional

expectations. Hence, we make the following assumption:

ASSUMPTION 2 (Jointly normal forecast errors) The endogenous forecast errors are a lin-

ear combination of the N" exogenous errors, "t, and Ny so-called belief shocks, bt, that are mean

zero and uncorrelated with "t:

⌘t = �""t + �bbt (71)

Moreover, exogenous shocks and belief shocks are generated from a joint standard normal distribu-
tion,

wt ⌘

"t

bt

�
⇠ N

✓
0
0

�
,


I 0
0 I

�◆
(72)

As a corollary, exogenous and endogenous forecast errors are joint normally distributed as well:


"t

⌘t

�
⇠ N

✓
0
0

�
,


I �0

"

�" ⌦⌘

�◆
, with ⌦⌘ = �b�

0
b
+ �"�

0
" . (73)

The matrix of belief shock loadings �b need not have full rank so that linear combinations of en-

dogenous and exogenous forecast errors might be perfectly correlated.

37A stable matrix has all eigenvalues inside the unit circle.
38As noted before, our imperfect information setup would include measurement errors as part of the vector or

backward-looking variables, Xt. The measurement errors would a↵ect endogenous variables of the system only via
H, which does not play a role in the full information solution. But, also when computing a full-information solution,
there is no harm including measurement errors in Xt: The corresponding columns of Gyx — as generated, for
example, by the procedures of Klein (2000) or King and Watson (1998)— are set to zero in this case.
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Assumption 2 nests properties of the full-information case, where - under the maintained assumption

of a unique full-information equilibrium - endogenous forecast errors are a linear combination of the

exogenous errors, and could be perfectly recovered by a regression of ⌘t on "t. Joint normality of

exogenous and endogenous errors then follows directly from the assumed normality of the exogenous

errors. While Assumption 2 allows for part of ⌘t to be unrelated to the exogenous errors, this part

takes the form of additive belief shocks that are normally distributed. In a linear equilibrium,

where (71) holds, the belief shocks a↵ect outcomes only via the product �b bt; thus, without loss of

generality, bt can be normalized to have a variance-covariance matrix equal to the identity matrix.39

For now, we treat the shock loadings �" and �b as given and characterize a class of equilibria

where central bank expectations are represented by a Kalman filter. Afterwards, we turn to solution

methods that determine values for �" and �b consistent with these equilibria. Throughout this

paper, we limit attention to a particular class of equilibria referred to as “stationary, linear and

time-invariant equilibria,” that are formally defined as follows:

DEFINITION 1 (Stationary, linear, time-invariant equilibrium) In a stationary, linear,

and time-invariant equilibrium, forward- and backward-looking variables, Y t and Xt, as well as

the policy instrument, it, are stationary and their equilibrium dynamics satisfy the expectational

di↵erence system described by (59) and (60).40 All expectations are rational, and the imperfectly

informed agent’s information set is described by (66). In addition, Assumption 2 holds, which

means that the forecast errors of the forward-looking variables are a linear combination of funda-

mental shocks and belief shocks, with time-invariant loadings �" and �b, as in (71), and normally

distributed belief shocks bt.

As argued next, in such an equilibrium, conditions are in place to ensure that the central bank’s

conditional expectations, as defined in (64) can be represented by a Kalman filter. The measurement

equation of the central bank is given by (66). The state equation of the central bank’s filtering

problem is given by

St+1 + ĴSt+1|t = ASt + ÂSt|t +Ai it +Bwt+1 , with B =


Bx" 0
�" �b

�
, (74)

which combines the expectational di↵erence equation (59) with the implications of Assumption 2

for the endogenous forecast errors. The appearance of projections St+1|t and St|t in (74) lends this

state equation a slightly non-standard format. However, when expressed in terms of innovations, the

filtering problem can be cast in the canonical “ABCD” form, studied, among others, by Fernández-

39Note further that Assumption 2 could equivalently by restated by assuming that "t and ⌘t are joint normally
distributed zero-mean shocks. The linear relationship in (71) between endogenous and exogenous shocks then follows
from a regression of ⌘t on "t, which characterizes the distribution of ⌘t conditional on "t. Viewed from this perspective,
the belief shocks, bt, emerge as the standardized regression residual that is orthogonal to "t.

40Note that all of the linear equilibria considered in this paper are driven by normally distributed shocks, leading
to normally distributed outcomes, such that covariance stationarity also implies strict stationarity. Hence, we will
not distinguish between both concepts and merely refer to stationarity.
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Villaverde, Rubio-Ramı́rez, Sargent and Watson (2007):41

S̃t+1 = A

⇣
S̃t � S̃t|t

⌘
+Bwt+1 , (75)

Z̃t+1 = C

⇣
S̃t � S̃t|t

⌘
+Dwt+1 , (76)

with C = HA , D = HB , since Z̃t+1 = HS̃t+1 . (77)

To ensure a well-behaved filtering problem, we impose the following assumption on the shocks

to the central bank’s measurement vector Dwt = Zt � Et�1Zt.

ASSUMPTION 3 (Non-degenerate shocks to the signal equation) Shocks to the central

bank’s measurement equation have a full-rank variance-covariance matrix; that is |DD
0| 6= 0.

A necessary condition for Assumption 3 to hold is that the signal vector has not more elements

than the sum of endogenous and exogenous forecast errors: Nz  N" +Ny  Nx +Ny.

Together with Assumption 3, certain conditions on A, B, and H known as “observability” and

“unit-circle controllability” ensure the existence of a steady state Kalman filter; details are provided

in the appendix. As shown in (74), B depends on the yet to be determined shock loadings �", �b.

Further below, we will discuss how the conditions for the existence of a steady state filter impose

only weak restrictions on these shock loadings.

ASSUMPTION 4 (Su�cient condition for existence of a steady-state Kalman filter)

The equilibrium shock-loadings �", �b of the endogenous forecast errors ⌘t are such that A, B

and H are detectable and unit-circle controllable as stated in Definition 5 of the appendix.

In general, central bank projections, St|t can be decomposed into central bank forecasts made

in the previous period, St|t�1, and an update reflecting the innovations in measurement vector.

When a steady-state filter exists, the expectational update is linear and a constant Kalman gain

matrix relates the projected innovations in the state vector, S̃t|t, to innovations in the measurement

vector, Z̃t:

St|t = St|t�1 + S̃t|t with S̃t|t = KZ̃t , and K = Cov (S̃t, Z̃t)
⇣
Var (Z̃t)

⌘�1
. (78)

As shown in the appendix, the Kalman gain matrix, K, is given by the solution of a standard

Riccati equation involving A, B and H. To remain consistent with the equilibrium properties laid

out in Definition 1, we limit attention to the case when a steady-state Kalman filter exists, which

enables us to represent the central bank’s conditional expectations as a recursive system of linear

projections with time-invariant coe�cients.

41The innovations form is obtained by projecting both sides of (74) onto Z
t and subtracting these projections

from (74). When doing so, note that the policy instrument it is the central bank’s decision variable and thus always
in the central bank’s information set. Notice that the innovations form given by (75) and (76) is identical to the
innovations form of a state space system with St+1 = ASt + Bwt+1 in place of (74) while maintaining (66) as
measurement equation, as noted also by (Baxter, Graham and Wright 2011).
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PROPOSITION 3 (Existence of steady-state Kalman filter) When Assumptions 3 and 4

hold, a steady state Kalman filter exists that describes the projection of innovations in the state

vector, S̃t|t = KZ̃t with a constant Kalman gain K as in (78). Moreover, the variance-covariance

matrix of projection residuals is constant, Var
�
St|Zt

�
= Var (S⇤

t ) = ⌃⇤. Existence of a steady

state Kalman filter ensures that innovations S̃t = St � St|t�1 and residuals S
⇤
t = St � St|t are

stationary. Innovations to the measurement equation, Z̃t, are stationary as well.

Proof. See Theorem 3 of Appendix A. The stationarity of Z̃t = HS̃t follows then from the

stationarity of S̃t.

Equation (78) describes the update from policymaker forecasts, St|t�1, to current projections,

St|t. What remains to be characterized is the transition equation from policymakers’ projections

St|t to their forecasts, St+1|t, which is restricted by the linear di↵erence equations (59) and the

rule (60) for the policy instrument it. Since the policy instrument may depend on its own lagged

value via �i 6= 0 in (60), we construct the transition from St|t to St+1|t based on the vector St,

which includes St and it�1, as defined in (67).

Conditioning down (59) and (60) onto the information set of the policymaker, Z
t, yields a

system of expectational linear di↵erence equations in St that is akin to the full-information system

shown in (68), except for the use of policymaker projections in lieu of full-information expectations:

JSt+1|t = ASt|t (79)

with J , and A as defined in (68) above. In a stationary equilibrium consistent with Definition 1,

St is stationary, and so is its projection St|t. When the equilibrium is linear and time-invariant,

the projections St|t must follow

St+1|t = T St|t , with (JT �A)St|t = 0 for some stable matrix T . (80)

T spans a stable, invariant subspace of the matrix pencil |J z�A|. In principle, several choices of

T could satisfy this criterion. To see this, think of any T whose columns include a (sub)set of stable

eigenvectors of the pencil plus columns of zeros. The simple example of Section 2, is characterized

by a dynamic system with only two non-zero eigenvalues, and a single, one-dimensional stable

subspace of the associated matrix pencil. In this case, there is a single choice of T consistent with

the equilibrium, and it is identical to the full-information transition matrix T̄ .

In addition, JT � A must be orthogonal to the space of projections St|t. Before discussing

further the determination of T , note that in a linear equilibrium with normally distributed shocks

with a given linear transformation from projections St|t into forecasts St+1|t, the Kalman filter

represents conditional expectations of St (and thus also St).

PROPOSITION 4 (Kalman filter represents conditional expectations) When the condi-

tions for Proposition 3 hold, and for a given stable transition matrix T between policymaker pro-

jections and forecasts as in (80), the steady state Kalman filter represents conditional expectations
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St|t = E
�
St|Zt

�
in a linear, time-invariant stationary equilibrium. For a given sequence of inno-

vations in the measurement vector, Z̃t, the Kalman filter implies the following, stationary evolution

of projections:

St+1|t+1 = T St|t +KZ̃t+1 , with K =

2

664

0
Kx

Ky

Ki

3

775 (81)

Proof. In a linear, time-invariant stationary equilibrium shocks are jointly normal and propa-

gate linearly so that the sequences of St and Zt are joint normally distributed, so that conditional

expectations are identical to mean-squared-error optimal linear projections. By the law of iter-

ated projections, we can decompose E
�
St+1|Zt+1

�
= E

�
St+1|Zt

�
+ E

⇣
S̃t+1|Z̃t+1

⌘
and we have

E
�
St+1|Zt

�
= T St|t based on (80). E

⇣
S̃t+1|Z̃t+1

⌘
= KZ̃t+1 follows from Proposition 3. Kx and

Ky are appropriate partitions of K as defined in (78) and Ki = Cov
⇣
ĩt, Z̃t

⌘⇣
Var

⇣
Z̃t

⌘⌘�1
.42 The

upper block of K, corresponding to the Kalman gain coe�cients for the lagged policy instrument,

are zero since it�1 = it�1|t�1 and thus ĩt�1|t = it�1|t � it�1|t�1 = 0.

3.4 A Class of Imperfect Information Equilibria

As noted above, there can be multiple solutions for T in (80). As an application of certainty

equivalence, a valid choice for T is T̄ , known from the full-information solution given in (70).43

In the full-information case, and under the maintained assumption that Assumption 1 holds, T̄

characterizes the unique solution to the di↵erence equation JEtSt+1 = ASt.

In the imperfect information case, T need not be a unique solution. However, the multiplicity

of equilibria highlighted in our paper does not stem from the implications of choosing di↵erent T .

We rather focus solely on equilibria based on T = T̄ , which is consistent with the approach of

Svensson and Woodford (2004) who assume that equilibrium is unique in a setup similar to ours.44.

In order to ensure T = T̄ , we follow Svensson and Woodford (2004) and impose the following

condition:45

DEFINITION 2 (Projection Condition) The projection condition restricts the mapping be-

tween projected backward- and forward-looking variables to be identical to the full-information case:

Y t|t = GX t|t , and X t+1|t = PX t|t . (82)

where G and P are the unique solution coe�cients in the corresponding full-information case.

42The value for Ki could be computed based on the policy rule (60) and the dynamics of St; however, further
below we utilize a more direct approach.

43To verify the validity of T̄ as a solution to (79), note that T̄ solves (68) and that (79) represents the same
di↵erence equation, when projected onto Z

t.
44Applications that build on Svensson and Woodford (2004) are, for example, Dotsey and Hornstein (2003), Aoki

(2006),Nimark (2008b), Carboni and Ellison (2011).
45Note that (80) corresponds to their equation (42), and that our projection condition (82) corresponds to their (42),

(45), (46), and (47).
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The projection condition is an equilibrium condition that imposes a linear mapping between

projections of backward- and forward-looking variables. In particular, the projection condition

imposes a second-moment restriction on the joint distribution of the innovations X̃t, Ỹ t.46 As a

second-moment restriction, the projection condition restricts only co-movements of the innovations

on average but not for any particular realization of X̃t and Ỹ t. The upshot of the projection

condition (82) is the following restriction between Kalman gains of forward- and backward-looking

variables:

Y t|t = Gyx Xt|t + Gyi it�1|t =) Ỹ t|t = Gyx X̃t|t () (Ky � Gyx Kx) Z̃t = 0 , (83)

where Ky and Kx denote the corresponding partitions of the Kalman gain, K, defined in (78).47

Since (83) must hold for every Z̃t, the projection condition implies a restriction on the Kalman

gains, summarized in the following proposition.

PROPOSITION 5 (Projection Condition for Kalman gains) The projection condition (82)

holds only if the Kalman gains satisfy Ky = Gyx Kx.

Proof. As noted in (83), a necessary condition for the projection to hold is (Ky � Gyx Kx) Z̃t =

0 for all realizations of Z̃t, which has a joint normal distribution. Assumption 3 implies that

Var (Z̃t) = C Var (S⇤
t )C

0 +DD
0 is strictly positive definite, so that the distribution of Z̃t is non-

degenerate. For (83) to hold, we must have Ky = Gyx Kx.

Kalman gains are multivariate regression slopes.48 As a result of Proposition 5, the projection

condition imposes a linear restriction on covariances between Ỹ t, X̃t, and Z̃t, i.e. Cov (Ỹ t, Z̃t) =

Gyx Cov (X̃t, Z̃t).

Henceforth we only consider equilibria that are stationary, linear and time-invariant according

to Definition 1 and that satisfy the projection condition laid out in Definition 2. In such equilibria,

the dynamics of forward- and backward-looking variables, as well as the policy instrument, are

characterized by a state vector that tracks both projections and actual values of the vector St,

which contains backward- and forward-looking variables as well as the policy instrument. In fact,

the joint vector of St and St|t does not need to tracked in its entirety: First, St includes the policy

instrument it, which lies in the space of central bank projections, and need not be tracked twice.

Thus, the state of the economy can be described by St — which di↵ers from St in omitting it

— and St|t. Second, the state of the economy is equivalently described by S
⇤
t = St � St|t and

St|t. Third, when the projection condition (82) is satisfied, we need only track X t|t rather than

S
0
t|t =

h
X

0
t|t Y

0
t|t

i
, since Y t|t = GX t|t. Properties of the resulting equilibria are summarized in

the following theorem.

46In addition to Y t and Xt, Yt and X t also contain the current and lagged policy instrument, respectively.
However, the projection condition does not impose a direct restriction on innovations in the policy instrument since
it = it|t and thus ĩt�1|t = it�1|t � it�1|t�1 = 0.

47That means K =
⇥
K

0
x K

0
y

⇤0
so that Kx = Cov (X̃t, Z̃t)

⇣
Var (Z̃t)

�1
⌘
, and Ky = Cov (Ỹ t, Z̃t)

⇣
Var (Z̃t)

�1
⌘
.

48Please recall that Ky = Cov (Ỹ t, Z̃t)Var (Z̃t)
�1

and Kx = Cov (X̃t, Z̃t)Var (Z̃t)
�1

.
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THEOREM 1 (Di↵erence System Under Imperfect Information) Consider the model rep-

resented by the system of di↵erence equations (61) and (60) in St =
⇥
X

0
t Y

0
t

⇤0
with a measurement

vector that is linear in St as defined in (66). In addition, let Assumptions 1, 2, 3, and 4 hold and

consider stationary, linear, time-invariant equilibria that satisfy the projection condition, as stated

in Definitions 1 and 2. In this case, equilibrium dynamics are characterized by the evolution of the

following vector system:

St+1 ⌘


S
⇤
t+1

X t+1|t+1

�
=


(A�KC) 0

KxC P

�

| {z }
A

St +


(I �KH)

KxH

� 
Bx" 0
0 I

� 
"t+1

⌘t+1

�
(84)

where K0
x =

⇥
0 K

0
x

⇤
, C as defined in (77), and P known from the unique full-information solution

in (69).

Proof. Outcomes for St can be decomposed into St = S
⇤
t + St|t. It remains to show that St|t can

be constructed from St. In addition, we need to show that the policy instrument it = it|t can also be

constructed from the proposed state vector St. Recalling the definitions of St, X t and Y t in (61),

and (67), the projection condition then implies that

St|t =


Xt|t
Y t|t

�
=


0 I

Gyi Gyx

�

| {z }
GS

X t|t , it =
⇥
Gii Gix

⇤
| {z }

Gi

X t|t , with X t|t =


it�1

Xt|t

�
,

where block matrices are partitioned along the lines of X t|t above. The various co�cient matrices

G·· are known from the full-information solution given in (69).

The dynamics of S
⇤
t+1, as captured by the top rows of S, follow from the innovation state

space (75), (76) as well as the steady state Kalman filter described in Appendix A. The dynamics

of X t+1|t+1, as captured by the bottom rows of S, follow from (81) together with the projection

condition (82) and the dynamics of Z̃t given in (76).

The Kalman gain Kx, defined in Proposition 4, depends on the equilibrium distribution of

endogenous forecast errors ⌘t. According to Assumption 2, ⌘t is a linear combination of exogenous

shocks "t and belief shocks bt with endogenous shock loadings �" and �b that are yet to be

determined so as to satisfy the projection condition stated in Definition 2. Before turning to the

determination of the shock loadings �" and �b of the endogenous forecast errors, a few critical

results already emerge.

The state vector St follows a first-order linear di↵erence system given in (84). The stability of

the system depends on the eigenvalues of its transition matrix A. The transition matrix A depends

on the Kalman gain K, which depends on the yet to be determined shock loadings �" and �b of

the endogenous forecast errors ⌘t. Nevertheless, as argued next, the existence of a steady-state

Kalman filter allows us to conclude that A, is stable.
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COROLLARY 1 (Stable Transition Matrix) Provided that a steady-state Kalman filter ex-

ists, the transition matrix A in (84) is stable. The eigenvalues of A are given by the eigenvalues of

P, which is stable and known from the full-information solution (69), and A�KC, whose stability

is assured by the existence of the steady-state Kalman filter.

Proof. The stability of P follows from Assumption 1 and the resulting solution of the full-

information case in (114). The stability of A � KC follows from Theorem 3 in Appendix A.

The upshot of Corollary 1 is that the usual root-counting arguments do not pin down the shock

loadings �" and �b of the endogenous forecast errors ⌘t+1 in (84), since A is a stable matrix for

any choice of �" and �b consistent with the existence of a steady state Kalman filter. Moreover,

the projection condition does typically not place su�ciently many restrictions on �⌘" and �⌘b to

uniquely identify the shock loadings:

COROLLARY 2 (Generic Indeterminacy) With A stable, the endogenous forecast errors are

only restricted by the projection condition given in Definition 2. The shocks loadings of the endoge-

nous forecast errors, �" and �b, have Ny ⇥ (N" +Ny) unknown conditions. Stated as in (83), the

projection condition imposes only Ny ⇥ Nz restrictions. However, a necessary condition for As-

sumption 3 to hold is Nz  N" +Ny. As a result, the projection condition cannot uniquely identify

the shock loadings �" and �b.

Among others, Theorem 1 rests on the assumption of joint detectability and unit-circle control-

lability of (A,B,H) where B depends on the endogenous shock loadings �" and �b while A and H

are primitives of the model setup. The detectability condition can thus be verified independently

from solving for �" and �b. An addition, as described in the appendix (see Proposition 8), a full

rank of

B =


Bx" 0
�" �b

�

is su�cient to ensure unit-circle controllability . As part of the model setup, Bx" is supposed

to have full rank. Consequently, the criterion of a full rank of B is satisfied when the belief

shock loadings �b have full rank, and thus �b 6= 0. Non-zero belief shock loadings are a hallmark

of equilibrium indeterminacy. While the projection condition places restrictions on �b, non-zero

belief shock loadings are thus a su�cient condition for the existence of a steady state Kalman filter,

which in turn assures the stability of A.

Before turning to approaches to compute �" and �b that are consistent with the projection

condition, we summarize the construction of an equilibrium for a given solution of the endogenous

forecast errors.

THEOREM 2 (Equilibria under Imperfect Information) Consider the di↵erence system un-

der characterized in Theorem 1 and let ⌘t = �""t + �bbt with shock loadings �" and �b such that
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the projection condition (82) is satisfied. Equilibrium outcomes are then characterized as follows:

St =
⇥
I Gs

⇤
St it =

⇥
0 Gi

⇤
St St+1 = A St + B wt+1 , (85)

with St ⌘

S

⇤
t

X t

�
, wt+1 ⌘


"t+1

bt+1

�
, and B ⌘


(B �KD)

KXD

�
. (86)

where B and D encode the shock loading �" and �b as stated in (77); Kx, Gs and Gi are defined

in the proof of Theorem 1. Block matrices are partitioned along the lines of St as stated above.

Proof. The proof follows straightforwardly from Theorem 1.

3.5 Determination of the Endogenous Forecast Errors

As described by Sims (2002) and Lubik and Schorfheide (2003), restrictions for the endogenous

forecast errors ⌘t emanate from explosive roots in the dynamic system. In our imperfect information

case, further restrictions result from the projection condition stated in Definition 2. As noted in

Corollary 1 above, the transition matrix A is always stable in a time-invariant equilibrium with a

steady-state Kalman filter. Restrictions on ⌘t can only result from the projection condition; but

as discussed in Corollary 2, the projection condition does generally not provide su�ciently many

restrictions to pin down ⌘t uniquely.

The determination of shock loadings �", �b for the endogenous forecast errors that are consistent

with the projection condition poses an intricate fixed problem between shock loadings and Kalman

gains. As noted already by Sargent (1991), the Kalman gains are endogenous equilibrium objects

when the observable signals reflect information contained in endogenous variables. In contrast, the

Kalman filtering problem can be solved independently of the equilibrium dynamics of the system,

when the signal vector consists only of exogenous variables.

In (66), the central bank’s measurement vector is generically described as a linear combination

of backward- and forward-looking variables, Zt = HxXt+HyY t. To facilitate the analysis, we now

delineate two cases: one where the signal depends on endogenous variables (specifically, choosing

Hy = I) as well as the case where the signal solely reflects exogenous variables (Hy = 0 and Xt

exogenous).

3.5.1 Endogenous Signal

In (66), the signal observed by the central bank involves a linear combination of forward- and

backward-looking variables, such that the signal depends at least in part on endogenous variables.

When considering this case, and to simplify some of the algebra, we limit ourselves to signal vectors

that have the same length as the vector of forward-looking variables (Y t) and that have no rank-

deficient loading on Y t. All told, we assume that Hy in (66) is square and invertible. In this case,

Hy can be normalized to the identity matrix.49 In the endogenous-signal case, we thus consider

49Consider the case of a signal Ẑt = ĤxXt+ĤyY t where Ĥy is square and nonsingular. The information content

provided by Ẑt is equivalent to what is spanned by Zt = Ĥ
�1
y Ẑt with Hx = Ĥ

�1
y Ĥx.
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signal vectors of the form

Zt = HxXt + Y t and thus H =
⇥
Hx I

⇤
. (87)

Note that the endogenous-signal setup also includes the case where each forward-looking variable

is observed with error, as inZt = Y t+⌫t where ⌫t is an exogenous measurement error to be included

among the set of backward-looking variables in Xt.

In the context of the simple example described in section 2, we provided an analytical charac-

terization of the fixed point problem posed by the endogenous-signal case. However, even in this

stylized example the fixed point proved intractable to solve analytically. Instead, we have derived a

fast numerical procedure to solve for shock loadings �", �b that are consistent with the projection

condition for this case.

Our numerical approach combines elements of standard techniques for solving linear RE models

with a fast algorithm to solve the non-linear fixed-point problem for the Riccati equation embedded

in the Kalman filter while ensuring consistency with the projection condition. For a given intial

guess of �", �b, the procedure returns values that are consistent with the projection condition;

di↵erent starting values then generate typically di↵erent result values. Details of our algorithm are

described in Appendix B.

3.5.2 Exogenous Signal

For the case of an exogenous signal, we derive two general results: First, the projection condition

does not restrict the belief shock loadings of the endogenous forecast errors, �b, when the signal

is exogenous. Second, we derive an analytical expression for the restrictions on the loadings of the

endogenous forecast errors on fundamental shocks (including the measurement errors) that result

from the projection condition.

To consider the case of a purely exogenous signal, we need to distinguish between endogenous

and exogenous components of the vector of backward-looking variables Xt. Let Xt be partitioned

into exogenous variables, denoted X
1
t , and endogenous variables (like the lagged inflation rate in

case of a Phillips Curve with indexation), denoted X
2
t .

Exogeneity of X1
t places zero restrictions on the system matrices in (59), and its dynamics are

reduced to

X
1
t = A

11
xxX

1
t�1 +B

1
x" "t (88)

where A
11
xx and B

1
x" are appropriate sub-blocks of A and Bx".50. The signal is then given by

Zt = HxX
1
t . (89)

50Consistent with (59) , the endogenous component of Xt generally evolves according to

X
2
t = A

21
xx X

1
t�1 +A

22
xx X

2
t�1 +A

2
yx Y t�1 + Â

21
xx X

1
t�1|t�1 + Â

22
xx X

2
t�1t�1 + Â

2
yx Y t�1|t�1 +B

2
x" "t ,

where A
21
xx, A

22
xx, A

2
yx, Â

21
xx, Â

22
xx, Â

2
yx, and B

2
x" are appropriate sub-blocks of A, Â and Bx", respectively.
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For ease of notation, we consider henceforth the case where the entire vector of backward-

looking variables is exogenous; that means Xt = X
1
t . (Our first result in this section, the lack of

restrictions on �b, extends also to the case when Xt contains an endogenous component, that is,

however, not reflected by the signal.) The signal extraction problem is then given by the following

system:

Xt = AxxXt�1 +Bx""t , (90)

Zt = HxXt , (91)

where Axx denotes the appropriate sub-block of A in (59).

Existence of steady state Kalman filter is assured by joint detectability and unit-circle control-

lability of (Axx,Bx",H), which does not depend on the equilibrium solution of the system and thus

a weaker condition than what is required by Assumption 4. Henceforth, existence of a steady-state

Kalman filter is assumed, resulting in a constant gain matrix Kx such that Axx(I � KxHx) is

stable.

A defining feature of the exogenous-signal case is that the signal extraction problem can be

solved independently from the dynamics of the forward-looking variables, Y t and Kx and Var (X⇤
t )

are determined solely by (90) and (91). We have X
⇤
t = Xt � KxZt = (I � KxHx)X̃t and can

thus write

X̃t = AxxX
⇤
t�1 +Bx" = Axx(I �KxHx)X̃t�1 +Bx""t (92)

Moreover, when Xt = X
1
t , application of the projection condition translates the Kx into a

given Kalman gain for the forward-looking variables: Ky = GyxKx, where Gyx is known from the

full-information solution of the model. The innovation dynamics of the forward-looking variables

are then restricted by the following transition equation:

Ỹ t+1 = ÃyxX̃t�1 +AyyỸ t�1 + ⌘t+1 with Ãyx = Ayx � (Ayx +AyyGyx)KxHx (93)

where the endogenous forecast errors, ⌘t, remain to be derived. As before, we seek ⌘t = �⌘" "t +

�⌘b bt, with loadings �⌘" and �⌘b that satisfy the projection condition.

In addition, in order to ensure stationarity of Ỹ t, Ayy has to be a stable matrix or further re-

strictions need to be imposed on ⌘t. In our discussion of the general case, as part of Assumption 4,

we imposed the requirement that (A,H) are detectable. As discussed in Appendix A, this require-

ment is tantamount to letting the signal vector load on any linear combinations of backward- and

forward-looking variables associated with potentially unstable dynamics. In the present context of

a signal that does not load on Y t, detectability of (A,H) boils down to the requirement that Ayy

is a stable matrix.

If only the weaker requirement of detectability of (Axx,Hx) is to be imposed, note that the

innovation system (92) and (93) has the form of a typical linear rational expectations system as

analyzed, among others, by Klein (2000) and Sims (2002). As shown there, when Ayy is not a

stable matrix, linear combinations of ⌘t associated with unstable dynamics of Ỹ t need to be set to
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zero. However, as illustrated in the simple example of Section 2, this is typically not su�cient to

uniquely determine equilibrium outcomes.51

The projection condition requires Cov (Ỹ t, Z̃t) = GyxCov (X̃t, Z̃t). Due to the exogeneity of

Z̃t — and thus Cov (bt, Z̃t) = 0 — this covariance restriction does not a↵ect admissible belief shock

loadings �⌘b.52

PROPOSITION 6 (Unrestricted Belief-Shock Loadings When the Signal is Exogenous)

When the signal is exogenous, as given by (90) and (91), there are no restrictions on �⌘b in a sta-

ble, linear, time-invariant equilibrium (Definition 1) where the projection condition (Definition 2)

holds.

Proof. Formally, we can decompose Ỹ t into two pieces: a component, Ỹ
"

t , that reflects the history

of fundamental shocks "
t and another component, Ỹ

b

t , solely driven by belief shocks.

Ỹ t+1 = Ỹ
"

t+1 + Ỹ
b

t+1 (94)

Ỹ
"

t+1 ⌘ ÃyxX̃t�1 +AyyỸ
"

t�1 + �⌘""t+1 (95)

Ỹ
b

t+1 ⌘ AyyỸ
b

t�1 + �⌘bbt+1 (96)

with the evolution of X̃t given by (92) and Ãyx as defined in (93). When the measurement vector is

exogenous, it is uncorrelated with belief shocks at all leads and lags. Accordingly, the central bank’s

information set does not contain any signal about bt+h, for any h, E(bt+h|Zt) = 0. Likewise, Ỹ
b

t is

orthogonal to Zt, E(Ỹ b
t|Z̃t) = 0 for any �⌘b. As a consequence, �⌘b does not a↵ect the projection

condition (83), Y t|t = Gyx Xt|t.

As can be seen from the proof of Proposition 6, the underlying argument rests on the orthog-

onality between the exogenous signal vector Xt and the belief shocks bt. The argument easily

extends to the more general case when the vector of backward-looking variables Xt contains both

exogenous and endogenous components X1
t and X

2
t as described in the previous section.

Finally, for the case when Xt = X
1
t , we can derive simple expressions to construct fundamental

shock loadings �⌘" that satisfy the projection condition. Let W̃ t ⌘ Ỹ
"

t � GyxX̃t and note that

the projection condition requires W̃ t|t = 0 and thus W̃ t = W̃
⇤
t .
53 Equivalently, the projection

condition requires Cov (W̃ t, Z̃t) = ⌃wxH
0 = 0 with ⌃wx ⌘ Cov (W̃ t, X̃t). Based on (90) and (95),

51Note that (93) describes the innovation dynamics of the forward-looking variables, which do not directly depend
on the policy rule coe�cients �· in (60). Since the policy instrument always lies in the space of observations of the
policymaker, it drops out of the innovations dynamics of the forward-looking dynamics. However, in monetary policy
models with interest rate rules, it is the appropriate choice of policy coe�cients that creates many possibly unstable
dynamics (which cannot be part of a stationary equilibrium) and just a single stationary outcome.

52Notice that the result also goes through, when part of the vector of backward-looking variables was endogenous,
as long as the signal remains exogenous.

53In light of Proposition 6, we can neglect the e↵ects of belief shocks and W̃ t has been defined with reference to
Ỹ

"
t , as defined in the proof to Proposition 6.
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and with Awx = Ayx � GyxAxx +AyyGyx, the dynamics of W̃ t are given by

W̃ t+1 = AwxX
⇤
t�1 +AyyW̃ t�1 + (�⌘" � GyxBx")"t+1 (97)

⌃wx = Awx⌃
⇤
xxA

0
xx +Ayy⌃wxA

0
xx (I �KxHx)

0 + (�⌘" � GyxBx")B
0
x" (98)

where ⌃⇤
xx = Var (X⇤

t ) is known from solving the steady-state Kalman filter. The only unknowns

in (98) are ⌃wx and �⌘" and we seek to find �⌘" such that ⌃wxH
0
x = 0.

Valid values of ⌃wx must lie in the nullspace of H 0
x. Specifically, given a (Nx�Nz)⇥Nx matrix

N such that NH
0 = 0.54 we can construct valid candidates for ⌃wx by choosing an arbitrary

Ny ⇥ (Nx �Nz) matrix G and let ⌃wx = GN .

For a given candidate ⌃wx = GN , �⌘" must thus satsfy the following condition:

�⌘"B
0
x" = f(G) (99)

where f(G) ⌘ GN + GyxBx"B
0
x" �Awx⌃

⇤
xxA

0
xx �AyyGNA

0
xx (I �KxHx)

0 (100)

The ability to solve (99) for �⌘" depends on the dimension of the problem. When Nx = N", the

number of exogenous variables is identical to the number of exogenous shocks, and Bx" is invertible.

When |Bx"| 6= 0 it is straightforward to solve (99) for �⌘" given an arbitrary G:

�⌘" = f(G)(B0
x")

�1 . (101)

In case of Nx > N", there is not necessarily a �⌘" that solves (99) for any G. Instead, G needs

to be chosen such that f(G)
�
I �Bx"(B

0
x"Bx")�1

B
0
x"

�
= 0, which can be obtained numerically.55

For such a choice of G, a valid �⌘" is given by �⌘" = f(G)Bx"(B
0
x"Bx")�1.

4 Quantitative Analysis

We now solve and analyze our modelling framework quantitatively. We first present results for the

simple example economy of Section 2 before turning to a New Keynesian economy that is widely

used for the analysis of monetary policy. Both applications consider central bank information

sets that are spanned by endogenous signals as discussed in section 3.5. When the central bank’s

measurement vector reflects endogenous variables, analytical solutions are di�cult to obtain and

we therefore rely on a numerical procedure.

4.1 Quantitative Results for the Simple Example Model

An analytical characterization of equilibria in the simple example economy under exogenous and

endogenous information sets are provided in Propositions 1 and 2 in section 2. Nevertheless,

54A matrix N such that NH
0 = 0 can readily be obtained from the SVD decomposition of H = USV

0 where
U and V are orthonormal, S =

⇥
S1 0

⇤
and S1 is a Nz ⇥ Nz diagonal matrix. Partition V conformably into

V =
⇥
V 1 V 2

⇤
such that H = US1V

0
1. Since V is orthonormal we have V

0
2V 1 = 0. Choosing N = V

0
2 then

ensures NH
0 = 0.

55Note that, as introduced in (62), Bx" has full rank which ensures that |B0
x"Bx"| 6= 0.
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analytical bounds on parameters for existence of a solution remain di�cult to derive, especially

in the case of an endogenous information set. In this section, we provide further insight into the

mechanics and implications of our framework by solving the model numerically. Our numerical

solution algorithm combines elements of standard techniques for solving linear RE models with a

fast algorithm to solve the non-linear fixed-point problem for the Riccati equation embedded in

the Kalman filter and the projection condition. Specifically, the numerical algorithm searches for

shock loadings �", �⌫ , and �b that satisfy the projection condition in the endogenous signal case.

Further details can be found in Appendix B.

We consider the baseline case of the policy rule it = �⇡t|t where the endogenous information set

Zt = ⇡t+⌫t. For purposes of illustration, we set the policy parameter � = 1.5 and assume that the

real rate follows an AR(1) process with persistence ⇢ = 0.9 and a unit innovation variance �2
" = 1.

Initial experimentation shows that in this simple example the measurement error on inflation has

to be large for an equilibrium to exist. We therefore set the variance of the i.i.d. measurement

error ⌫t to �2
⌫ = 2.52.56 We generate 2000 starting points from which our algorithm is able to find

valid equilibria in 99 percent of all cases. Each equilibrium is associated with a triple (�", �b, �⌫)

of loadings on the shocks in the forecast error decomposition. The fact that there are multiple

such loadings for the parameter space simply reflects that the RE solution is indeterminate. In

section I.1 of the Supplementary Appendix, we explore the bounds of the existence region for this

parameterization numerically.

We plot impulse responses to each shock for the entire set of equilibria in Figure 1, while impulse

responses for a specific equilibrium as an example are displayed in Figure 2. For reference, we also

plot the impulse responses for the FIRE specification. In the latter case, a unit innovation to the

real rate raises inflation by 1/ (�� ⇢) = 5/3 which then decays at the constant rate ⇢. The interest

response follows the same pattern. This simply reflects the Fisher e↵ect in that a higher real rate

requires a higher nominal rate and in turn a higher inflation rate. The unique FIRE equilibrium

has zero response to the measurement error since the model is not defined as having such error,

but also to the belief shock since the solution is unique under the given parameterization.

Under LIRE, however, the set of equilibria is notably di↵erent. On impact, a unit innovation

in the real rate can either lead to an increase or a decrease in inflation over a range of about

(�1.9, 1.7) depending on which indeterminate equilibrium the economy is in. Similarly, the nominal

rate response can be positive or negative. In e↵ect, in di↵erent LIRE equilibria, inflation and the

nominal rate can comove positively or negatively. Figure 2 displays impulse response for one of

the possible LIRE equilibria where, in contrast to the FIRE solution, inflation and the nominal

interest rate comove negatively. While the nominal rate follows the real rate increase, inflation can

fall on account of a negative loading �" on the forecast error (see Proposition 2). The figure also

shows that a unit measurement error shock lowers inflation and the nominal rate which indicates a

negative loading on ⌫t in the solution, �⌫ < 0 (see Proposition 2). Therefore, no equilibrium exists

56As discussed in section 2, the variance of the belief shock �2
b is normalized to unity without loss of generality.
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for positive �⌫ .
57 In contrast, the responses to the belief shock are symmetric and unrestricted,

similar to the case of an exogenous information set.58

Figure 3 reports the autocorrelation function (ACF) and the standard deviation relative to

the full information scenario.59 As shown in the upper row of panels, the FIRE solution displays

the typical autocorrelation pattern of a first-order autoregressive process. Comparing the set of

outcomes under LIRE against the unique FIRE equilibrium, the persistence of inflation is generally

lower and its serial correlation decays much more rapidly under LIRE, whereas for the nominal rate

the ACF closely resembles that under FIRE. Since it = �⇡t|t =
�

��⇢
rt|t the nominal rate behaves

like the real rate projection. Given the solution in Proposition 2, this implies that the Kalman

gain r is in a tight neighbourhood around zero. The lower panel of the figure shows ranges of

relative standard deviations of outcomes under LIRE relative to the respective FIRE outcomes. The

interest rate under LIRE is generally less volatile than its FIRE counterpart despite the presence of

two additional shocks. The lower interest-rate volatility echoes our discussion in section 2 that the

e↵ective response to inflation under LIRE after taking into account the filtering problem constitutes

a violation of the Taylor principle. In the LIRE case, imperfect information prevents the central

bank from moving the policy rate aggressively in response to actual inflation. Instead, optimal

filtering leads to attenuation of the policy response, the flipside of which is heightened inflation

volatility.

4.2 Quantitative Results for a New Keynesian Model

We now specify and solve a standard New Keynesian model often used in monetary policy analysis

under the assumption that the monetary authority has a limited information set. Akin to the

simple example model, we assume that there is a private sector, a household, that has the same

information set as households in the full information version of the model. We also assume that

the central bank only observes noisy measurements of inflation and the level of real GDP. Finally,

the central bank follows a monetary policy rule in which it reacts to its best estimate of inflation

and the output gap.

Specifically, we assume that the model includes a New Keynesian Phillips curve with a backward-

looking component in inflation ⇡t:

(1� ��)⇡t = �Et⇡t+1 + �⇡t�1 + xt, (102)

where 0  � < 1 denotes the degree of indexation and governs inflation persistence. xt is the

output gap and the sole driver of inflation in this model. Its evolution is captured by a variant of

57This is confirmed by Figure 2 in the Supplementary Appendix
58The findings are reminiscent of the observation by Lubik and Schorfheide (2004) that changes in comovement

patterns are a hallmark of equilibrium indeterminacy and thereby allow econometricians to identify di↵erent sets of
equilibria. Moreover, their observation that indeterminate equilibria do impose some restrictions on the behavior of
the economy in response to fundamental shocks thus carries over to our framework.

59Moments are computed via simulation for 20,000 periods with the first 1,000 periods discarded as burn-in to
avoid dependence on initial conditions.
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the Euler-equation which relates output to the real rate and policy actions:

xt = Etxt+1 �
1

�
(it � Et⇡t+1 � rt) . (103)

� > 0 is the intertemporal substitution elasticity and governs the responsiveness of output growth

to interest rate movements. The term in parentheses is the gap between the actual real rate of

interest (it � Et⇡t+1) and its natural rate rt. Similar to Laubach and Williams (2003), we assume

that rt is related to expected growth in potential real GDP yt:

rt = �Et�yt+1. (104)

Furthermore, we assume that �yt follows an autoregressive process of order one:

�yt = ⇢y�yt�1 + "y
t
, (105)

where the innovation "y
t
is i.i.d. Gaussian with zero mean and finite variance �2

y, namely "y
t
⇠

N
�
0,�2

y

�
.

The central bank follows the feedback rule:

it = �⇡⇡t|t + �xxt|t, (106)

where we assume that the policy coe�cients �⇡ and �x are such that in the FIRE counterpart

of this model the equilibrium is unique. As before, xt|t denotes the output gap projection given

information available to the central bank at time t. The signal extraction problem is thus somewhat

more involved than in the simple example. The central bank not only has to infer the true level

of output from its noisy signal, but it also has to infer the best estimate of the output gap from

the available data. We choose this specification as it arguably mirrors more closely the practice of

many central banks, including the Federal Reserve.

We introduce two measurement errors in inflation and the level of output, ⌫⇡t and ⌫xt , re-

spectively. The measurement errors are jointly normally distributed and serially and mutually

uncorrelated with variances �2
⇡ and �2

x. The level of GDP is by construction equal to the growth

rate in potential GDP plus the sum of lagged potential GDP and the current output gap. The

measurement error to the level of GDP thus acts like an error to the output gap. This specification

implies the following measurement vector Zt:60

Zt =


⇡t + ⌫⇡t

�yt + yt�1 + ⌫xt + xt

�
, with


⌫⇡t
⌫xt

�
⇠ N

✓
0,


�2
⇡ 0
0 �2

x

�◆
. (107)

We calibrate the model by choosing standard parameter values in the literature (see Table

1). We set the intertemporal substitution elasticity to � = 1 to maintain comparability with the

60As written, the measurement vector Zt contains the level of output and thus a unit root. However, this unit
root a↵ects only the measurement dynamics and not the linear di↵erence system of the New Keynesian model, given
by (102), (103) and (106). The conditions for the existence of a steady state Kalman Filter, described in Appendix A,
remain satisfied. Since central bank projections are conditioned on the infinite horizon history of Zt, the measurement
vector could equivalently be written in terms of output growth.
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simple example, while � = 0.99. The indexation parameter is chosen as � = 0.25 which roughly

replicates observed inflation persistence. The policy coe�cients �⇡ and �x are set to 2.5 and 0.5

which guarantees the existence of equilibria in a wide neighborhood of the parameterization. We

calibrate the measurement error processes largely in line with the empirical findings in Lubik and

Matthes (2016). For inflation, we choose the standard deviation of our measurement error to

match their estimated unconditional standard deviation for the inflation error.61 For real GDP, we

assume that log GDP is measured with iid error. This automatically induces autocorrelation in

the measurement error for the log-di↵erence of GDP, consistent with their findings.62

Figure 4 reports impulse response functions under FIRE and LIRE for the fundamental shock

to potential GDP growth in the left column, next to the two measurement errors and the two belief

shocks, denoted ⌘⇡ and ⌘x. Each row shows the response of the model’s endogenous variables.

Solid blue lines indicate the responses under FIRE while the lines, or areas, in red capture the

responses for di↵erent equilibria under LIRE. As the only shock under FIRE that a↵ects outcomes

the innovation to potential GDP growth increases the natural real rate via the expectations channel.

This prompts a rise in the policy rate and reduces expected output gap growth on impact due to a

fall in the current output gap. As actual production ramps up to close the gap, inflation declines

from its initial peak, which is driven by the relative reduction in supply on impact.

Under LIRE the impulse responses to the fundamental innovation are qualitatively similar to the

FIRE responses although they show a somewhat richer dynamic adjustment pattern. Figure 5 shows

impulse responses for a single LIRE equilibrium that are fairly close to their FIRE counterparts.

We also note that the FIRE response is in parts an envelope to the area of responses associated with

indeterminate LIRE equilibria, a pattern we also observe in the simple model. In the Supplementary

Appendix, we report results from a specification where the measurement errors are small so that

the signal content of incoming data is high. While this specification still implies indeterminate

equilibria under LIRE, the impulse responses to the fundamental shock essentially coincide with

the FIRE ones. Moreover, the responses to the other shocks are an order of magnitude smaller

and would likely be hard to detect in data. This distinguishes our framework from more standard

indeterminacy results where the range of equilibria is considerably wider.63

The next two columns in Figure 4 show the responses to the measurement error shocks. A

positive shock to ⌫⇡t prompts the central bank to adjust its inflation projection upwards. This

stimulates a contemporaneous rise in the policy rate and generally lowers the output gap due to a fall

61In their paper, the measurement error in inflation is estimated to be mildly autocorrelated, with a point estimate
of around 0.1 for the autoregressive coe�cient. The switch from an autoregressive measurement error process to iid
seems innocuous.

62In that case the standard deviation of the measurement error in the log-di↵erence is twice the standard deviation
of the measurement error in levels. We match the standard deviation of the iid measurement error to half of the
unconditional standard deviation of the estimated measurement error for GDP growth. Standard deviations of all
shocks are expressed in annualized percentages.

63In addition, in the New Keynesian model the impulse responses do not extend over the zero line and thereby
doe not o↵er varying comovement patterns under indeterminacy as is the case in the simple example or in Lubik and
Schorfheide (2004).
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in current GDP. The inflation rate falls because of the contractionary central bank policy response

to the inflation mismeasurement. This pattern is also evident from Figure 5. However, there are

equilibria where this pattern is overturned with a considerably smaller, even negative, interest rate

response. What drives these di↵erences are the di↵erent values of the endogenous Kalman gain

associated with various indeterminate equilibria. That is, equilibria exist where the responsiveness

of inflation projections to measurement error is small enough so that the standard adjustment

dynamics in response to output gap movements and their projections dominate. Responses to the

output measurement error follow a similar but less pronounced pattern. A positive innovation ⌫xt
leads to an upward revision of output gap projections and an interest rate hike, followed by a

decline in current output and a rise in prices. Adjustment patterns to both measurement errors

exhibit slowly adjusting and oscillating dynamics.

Finally, the last two columns in Figure 4 show the responses to the belief shocks, which are

identical and symmetric.64 The graphs confirm the results of Lubik and Schorfheide (2003) and

Farmer, Khramov, and Nicolò (2015) that sunspot shocks have a representation that map into

belief shocks; that is, they a↵ect expectations directly, but to which expectational variable the

belief shocks are appended do not a↵ect outcomes for any given equilibrium. To that point, we

show two sample responses to belief shocks for alternative equilibria in Figure 5. Moreover, the

set of impulse response functions is symmetric around the zero line since the response to a sunspot

shock in each equilibrium is only determined up to its sign. Nevertheless, we can still trace out the

e↵ect of, for instance, a positive belief shock to inflation such as in the fourth column of the figure.

Suppose consumers believe inflation to be higher than initially anticipated, the belief being

driven by the realization of a sunspot that is interpreted as fundamental. This leads the central

bank to raise its inflation projection somewhat, but not fully given its filtering problem. The

policy rate rises, but not to the full extent required to invalidate consumers’ beliefs. This would

occur if the policy response were such that it raised the real rate by enough to reign in increased

spending and thus rising prices. Although the central bank obeys the Taylor principle, the wedge

between private sector and central bank expectations generated by the filtering process is su�cient

for indeterminacy to arise. The less than aggressive interest-rate response thereby leads to output

gap movements that validate beliefs to the extent that inflation rises by enough.

As in the simple model, we compute autocorrelation functions and relative standard deviations

for the New Keynesian model which are reported in Figure 6. The upper panel shows the ACFs

for the three key variables in the model. What is notable and to some extent di↵erent from the

simple model is that the ACFs now cluster tightly around the corresponding ACF under FIRE.

This highlights that the implications of the simple example are somewhat stark in terms of how

indeterminacy impacts outcomes. A similar impression is conveyed by the range of relative standard

deviations in the lower panel. We find the same pattern as in the simple model, namely higher

inflation volatility and a slightly lower interest rate volatility which reflects the less aggressive policy

64Small di↵erences between the red areas in the two columns arise solely because of numerical discrepancies.
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response under FIRE.

Overall, the conclusion from our quantitative analysis of the two models is that multiple equi-

librium scenarios under LIRE are pervasive and introduce deviations from fundamental outcomes

driven by measurement error and beliefs. These deviations a↵ect the behavior of model variables

in a qualitatively significant manner, but the quantitative importance appears limited. To what

extent these two types of environments can be distinguished in aggregate data is an important

question which is beyond the scope of this paper.

5 Determinate Outcomes Without Optimal Projection

This section describes an alternative class of policy rules that satisfies the same, if not simpler, in-

formational requirements as (60), but also leads to unique equilibrium outcomes. In this alternative

class, policy reactions are characterized as responses to incoming data, Zt, instead of responses to

optimal projections that are endogenously determined. Our general framework considers reaction

functions for the policy instrument that, as in (60), respond to optimal projections of backward-

and forward-looking variables. Rules of this form could, for example, be motivated by noting that

a given rule is deemed desirable under full information and pointing to a certainty equivalence

argument. In fact, based on reasoning along those lines, Svensson and Woodford (2004) derive

optimal reactions in a form consistent with (60).

A central message of this paper, however, is to note that the interaction of the policymaker’s

filtering and private-sector agents’ forward looking behavior, embodied by the linear di↵erence

system in (59), lead to a multiplicity of equilibria that is generally inherent in the class of models

studied here. Rules of the form in (60) commit the policymaker only in her responses to projected

input variables, but not in her responses to incoming data. The policymaker’s projections are

rational expectations, and the sensitivity of those expectations to incoming data depends on the

signal-to-noise ratio of the central bank’s observables in equilibrium, which results in the potential

for multiple equilibria.

We adapt the general environment described in section 3 as follows: Under full information, the

policy rule responds only to forward-looking variables and lagged policy instruments:65

it = �iit�1 +�yY t (108)

An example of such a rule is an outcome-based Taylor rule, while policy rules with stochastic

intercept are excluded. Forward-looking behavior of the private sector is characterized by an

expectational di↵erence system similar to (59) except that, for simplicity, central-bank projections

are assumed to enter (at most) only via the policy rule, that is:

EtSt+1 = ASt +Aiit , (109)

65We continue to use notation introduced in section 3; policy instruments are denoted it, forward- and backward-
lookign variables, Y t and Xt, and the joint vector of Y t and Xt is St.
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where St continues to denote the stacked vector of backward- and forward-looking variables. As

before, we assume the values of the policy-rule coe�cients �i and �y to be such that, when the

reaction function (108) is combined with the di↵erence system in (109), there is a unique full-

information rational expectations equilibrium.

The measurement vector Zt conveys a noisy signal of every forward-looking variable:66

Zt = Y t + ⌫t ⌫t ⇠ N(0,⌦⌫⌫) (110)

A policymaker could also consider to simply replace Y t by its noisy signal. That is, the policy-

maker could set the policy instrument according to:

it = �iit�1 +�y (Y t + ⌫t) . (111)

The economy is then described by the expectational di↵erence system (109) and the policy rule (111).

Importantly, equilibrium does not hinge on any signal extraction e↵orts and its determination can

be studied using standard methods as described in section 3 3.2. In particular, the only di↵erence

between the full-information system consisting of (108) and (109) and the “signal-rule system”,

described by (109) and (111), is the presence of additional, exogenous driving variables in the form

of ⌫t. Both systems share an identical transmission of endogenous variables.

Since we assume that the full-information system given by (108) and (109) satisfies the condi-

tions for a unique equilibrium, it follows directly that the “signal-rule system” of (109) and (111)

also has a unique equilibrium. In particular, using notation introduced above in our characteri-

zation of full-information outcomes for the general case, equilibrium outcomes have the following

form:

Y t = GyxXt + Gyiit�1 + Gy⌫⌫t (112)

EtXt+1 = PxxXt +Pyiit�1 +Px⌫⌫t (113)

where Gyx, Gyi, Pxx, Pyi are conformable partitions of the full-information solution matrices P

and G, with values identical to (69).67

The ability to achieve equilibrium uniqueness might initially appear to be an attractive feature.

However, the dependence of endogenous outcomes on signal noise in (112) and (113) can lead to

potentially highly undesirable fluctuations caused by measurement noise. E↵ectively, while main-

taining the requirement that policy can only respond to observables spanned by Z
t, determinacy

is achieved under the “signals rule” by committing policy to respond to incoming noise with the

same sensitivity as it does to Y t. In particular, in the context of the Fisher-example described

66For simplicity, we continue to assume that ⌫t is serially uncorrelated, though equilibrium uniqueness will not
depend on this property.

67The full-information coe�cient matrices known from (69) can be partitioned as follows:

P =


Pii Pix

Pix Pxx

�
, and G =


Gyi Gyx

Gii Gix

�
. (114)
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in section 2, we have Gy⌫ = 0 and Xt is purely exogenous. With this particular configuration,

the variance bounds established in section 2 indicates that any admissible equilibrium under the

corresponding projections-based policy rule, that is it = �iit�1 + �yY t|t, generates less-variable

outcomes, at least in this particular example.

As described in the Supplementary Appendix, the variance bound derived in the simple example

of section 2 also extends to the general case, where we have Var (Y t)  GyxVar (Xt)G
0
yx+Var (⌫t).

As a result, the di↵erence between the variance-covariance matrix of outcomes for the forward-

looking variables under the projection-based rule and its counterpart generated by the signal-based

rule is positive semi-definite; so that any quadratic loss function over Y t would at least weakly

prefer outcomes under the projections-based rule.

6 Conclusion

This paper studies the implications of imperfect information for equilibrium determination in linear

dynamic models when di↵erently informed agents interact. We introduce a single deviation from

full information rational expectations: one group of agents is strictly less informed than another.

By doing so, we di↵erentiate between types of agents that have di↵erent information sets, but where

each agent forms rational expectations conditional on available information. The implications of

this model structure are stark. We show that indeterminacy of equilibrium is generic in this

environment, even if the corresponding full information setting implies uniqueness.

More concisely, even a small amount of noise in this environment, despite the best intentions

and optimal filtering of a less informed agent, can produce outcomes where there is a sunspot

component to economic fluctuations. Our paper thereby contributes to a recent literature on

informational frictions in rational expectations models. Specifically, we discuss the implications

for the conduct of monetary policy in a simple model of inflation determination and a richer New

Keynesian model. In addition to markedly changing equilibrium outcomes qualitatively, our results

show that quantitative di↵erences to the full information benchmark can be economically significant.

Throughout our analysis, we have maintained the assumption that the policymaker’s limited

information set is nested inside the public’s information set, which allows us to treat the private

sector as a representative agent. The indeterminacy issues identified by our paper should, however,

also extend to richer informational environments as long as the policymaker cannot perfectly observe

forward-looking choice variables of the private sector. The key condition behind our indeterminacy

results is that the policymaker does not respond one-for-one to belief shocks of the private sector

when forward-looking choice variables of the private agents are only imperfectly observed by the

policymaker.

The findings in this paper suggest various avenues for further investigation. For example,

our framework has strong implications for empirical research: The general model under limited

information has a state-space representation like any other linear dynamic framework so that a

likelihood function can be constructed. The key di↵erence and main complication with respect
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to standard frameworks is that the solution of the model is not certainty equivalent. Conditional

on the Kalman gains the model implies a standard representation, but the gains are equilibrium

objects and depend on second moment properties of the solution. This can be taken into account

in solution and estimation, albeit at the cost of posing non-trivial computational challenges.68

Nevertheless, empirical work can be facilitated by the distinction between actual outcomes and

policymaker projections made in our framework. Conditional on the limited information set of the

policymaker the model is simply a linear RE model that is una↵ected by the computational issues

in the full model. Data on projections could therefore be used to estimate the model only over the

space of central bank projections, which would help sharpen inference for the model parameters.

While we illustrate our framework with examples of monetary policy with an imperfectly in-

formed central bank, it is not limited to applications in monetary policy. In section 3 we show that

indeterminacy is a generic feature for a general class of economies where private-sector behavior

is characterized by a set of expectational linear di↵erence equations, exogenous driving processes

are Gaussian, policy is described by a linear rule that responds to the policymaker’s projections of

economic conditions, and the projections are rational.

A related issue is the choice of the information set. In our examples, we endowed the central bank

with specific information sets. Alternatively, one could imagine a scenario where the policymaker

chooses an optimal information set that minimizes the impact of sunspot shocks and possibly

reduces the incidence of multiplicity. This direction has relevance for policy as central banks

operate in a real-time environment fraught with measurement error and regularly face judgment

calls on the importance of incoming data.

An important extension should be to look beyond a given class of linear policy rules, as con-

sidered here, and model the optimal policy choice for a given set of preferences. Such an exercise

could also consider how a desirable policy could be implemented with a suitable policy rule, which

requires an analysis of equilibrium selection in the presence of indeterminacy.

Appendix

A The Steady State Kalman Filter

This section describes details of the steady-state Kalman filter for the innovations state space (75)

and (76) when Assumption 3 holds. Existence of a steady-state Kalman filter relies on finding an

ergodic distribution for S
⇤
t (and thus S̃t) with constant second moments ⌃ ⌘ Var (S⇤

t ). When

a steady-state filter exists, a constant Kalman gain, K relates projected innovations of S̃t to

68An alternative empirical approach would be to assume exogenous and constant gains which could nevertheless
deliver insights for policy implications in a non-optimal environment. In addition, alternative empirical techniques
might also be informative such as impulse response function matching that do not necessarily rely on the full solution
of the system.
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innovations in the signal, S̃t|t = KZ̃t with:69

K = Cov
⇣
S̃t, Z̃t

⌘⇣
Var

⇣
Z̃t

⌘⌘�1
=

�
A⌃C

0 +BD
0� �

C⌃C
0 +DD

0��1
. (115)

The dynamics of S⇤
t are then characterized by

S
⇤
t+1 = (A�KC) S⇤

t + (B �KD)wt+1 (116)

Existence of a steady-state filter depends on finding a symmetric, positive (semi) definite solution

⌃ to the following Riccati equation:

⌃ = (A � KC)⌃(A � KC)0 +BB
0

= A⌃A
0 +BB

0 �K
�
C⌃C

0 +DD
0�

K
0

= A⌃A
0 +BB

0 �
�
A⌃C

0 +BD
0� �

C⌃C
0 +DD

0��1 �
A⌃C

0 +BD
0�0 (117)

Intuitively, the Kalman filter seeks to construct mean-squared error optimal projections St|t that

minimize ⌃. A necessary condition for the existence of a solution to this minimization problem

is the ability to find at least some gain K̂ for which A � K̂C is stable; otherwise, S
⇤ would

have unstable dynamics as can be seen from (116). Thus, existence of the second moment for the

residuals, Var (S⇤
t ) = ⌃ � 0, is synonymous with a stable transition matrix A�KC.

Formal conditions for the existence of a time-invariant Kalman filter have been stated, among

others, by Anderson and Moore (1979), Anderson, McGrattan, Hansen and Sargent (1996), Kailath,

Sayed and Hassibi (2000), and Hansen and Sargent (2007). Necessary and su�cient conditions for

the existence of a unique and stabilizing solution that is also positive semi-definite depend on the

“detectability” and “unit-circle controllability” of certain matrices in our state space. We restate

those concepts next.

DEFINITION 3 (Detectability) A pair of matrices (A,C) is detectable when no right eigen-

vector of A that is associated with an unstable eigenvalue is orthogonal to the row space of C. That

is, there is no non-zero column vector v such that Av = v� and |�| � 1 with Cv = 0.

Detectability alone is already su�cient for the existence of some solution to the Riccati equation

such that A�KC is stable; see (Kailath et al. 2000, Table E.1). Evidently, detectability is assured

when A is a stable matrix, regardless of C. To gain further intuition for the role of detectabil-

ity, consider transforming St into “canonical variables” by premultiplying St with the matrix of

eigenvectors of A — this transformation into canonical variables is at the heart of procedures for

solving rational expectations models known from Blanchard and Kahn (1980), King and Watson

(1998), Klein (2000), Sims (2002). Detectability then requires the signal equation (76) to provide

some signal (i.e. to have non-zero loadings) for any unstable canonical variables.70

69See also (78) in the paper.
70Specifically, letA = V ⇤V

�1 with⇤ diagonal be the eigenvalue-eigenvector factorization ofA so that the columns
of V correspond to the right eigenvectors of A. Define canonical variables S

C
t ⌘ V

�1
St. The signal equation can

then be stated as Zt = CV S
C
t and detectability requires the signal equation to have non-zero loadings on at least

every canonical variable associated with an unstable eigenvalue in ⇤.
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To establish existence of a solution to the Riccati equation that is unique and positive semi-

definite, we follow Kailath et al. (2000) and require unit-circle controllability, defined as follows.

DEFINITION 4 (Unit-circle controllability) The pair (A,B) is unit-circle controllable when

no left-eigenvector of A associated with an eigenvalue on the unit circle is orthogonal to the column

space of B. That is, there is no non-zero row vector v such that vA = v� with |�| = 1 and vB = 0.

In our state space, with BD
0 6= 0, shocks to state and measurement equation are generally

correlated. Unit-circle controllability is thus applied to the following transformations of A, B:71

A
C ⌘ A�BD

0 �
DD

0��1
C B

C ⌘ B

⇣
I �D

0 �
DD

0��1
D

⌘
(118)

Based on these definitions, the following theorem restates results from Kailath et al. (2000) in

our notation:

THEOREM 3 (Stabilizing Solution to Riccati Equation) Provided Assumption 3 holds, a

stabilizing and positive semi-definite solution to the Riccati equation (117) exists when (AC ,BC)

is unit-circle controllable and (A,C) is detectable. The steady-state Kalman gain is such that

A � KC is a stable matrix; moreover, the stabilizing solution is unique.72

Proof. See Theorem E.5.1 of Kailath et al. (2000); related results are also presented in Anderson

et al. (1996), or Chapter 4 of Anderson and Moore (1979).

In our context, with C = HA and D = HB, the conditions for detectability and unit-circle

controllability can also be restated as follows.

PROPOSITION 7 (Detectability of (A,H)) With C = HA, detectability of (A,C) is equiv-

alent to detectability of (A,H)

Proof. When (A,C) are detectable, we have Cv 6= 0 for any right-eigenvector of A associated

with an eigenvalue � on or outside the unit circle, |�| � 1. With C = HA we then also have

Cv = HAv = Hv� 6= 0 , Hv 6= 0

Furthermore, with C = HA and D = HB, the above expressions for A
C and B

C can be

transformed as follows:

A
C = (I � P

C)A and B
C = (I � P

C)B with P
C ⌘ BH

0 �
HBB

0
H

0��1
H. (119)

P
C is a non-symmetric, idempotent projection matrix with HP

C = H.73

71Notice that B
C = BMD where MD = I � D

0 (DD
0)�1

D is a projection matrix, which is symmetric and
idempotent, MD = MDMD, and orthogonal to the row space of D.To appreciate the role of MD, consider the
following thought experiment: MD construct the residual in projecting the shocks of the system o↵ the shocks in
the signal equation, wt � E(wt|Dwt) = MD

wt.
72There may be other, non-stabilizing positive semi-definite solutions.
73An idempotent matrix is equal to its own square, that is P

C = P
C
P

C , and the eigenvalues of an idempotent
matrix are either zero or one and we have |PC | = 0.
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PROPOSITION 8 (Unit-circle controllability of (A(I � P
C),B)) With C = HA and D =

HB, unit-circle controllability of (AC ,BC) is equivalent to unit-circle controllability of (A(I �
P

C),B) with P
C defined in (119).

Proof. Suppose (AC ,BC) are unit-circle controllable. Let ṽ ⌘ v(I � P
C) and note that left-

eigenvectors of A
C associated with eigenvalues on the unit circle cannot be orthogonal to P

C

(otherwise we would have vA
C = 0). Accordingly, vAC = v� with |�| = 1, vBC 6= 0 and v 6= 0

is equivalent to ṽA(I �P
C) = ṽ� with |�| = 1, ṽ 6= 0 ṽB 6= 0. The converse reasoning applies as

well.

As discussed in the main text, an upshot of Proposition 8 is that a su�cient condition for

unit-circle controllability of (AC ,BC) is for B to have full rank.

Finally, for convenience, we define the the joint concept of detectability and unit-circle control-

lability for the triplet (A,B,H).

DEFINITION 5 (Joint detectability and unit-circle controllability) The triplet A,B,H

is detectable and unit-circle controllable when (A,H) is detectable and (A(I�P
C),B) is unit-circle

controllable, where P
C is defined in (119).

B Endogenous Forecast Errors when the Signal is Endogenous

This section of the appendix describes an algorithm to solve numerically for the endogenous forecast

errors in the endogenous-signal case of our general setup, described in section 3. Our numerical ap-

proach combines elements of standard techniques for solving linear RE models with a fast algorithm

to solve the non-linear fixed-point problem for the Riccati-equation embedded in the Kalman-filter

while ensuring consistency with the projection condition. The algorithm searches for shock load-

ings �⌘" and �⌘b that satisfy the projection condition for a Kalman filter that is consistent with

equilibrium outcomes of endogenous and exogenous variables.

As described in section 3, the endogenous-signal case considers a measurement equation of the

form

Zt = HxXt + Y t . (87)

By construction, we have Zt = Zt|t and thus Y ⇤
t = �HxX

⇤
t , so that the innovation system given

by (75) and (76) can then be simplified as follows:

X̃t+1 = ÃX
⇤
t + B̃wt+1 (120)

Z̃t+1 = C̃X
⇤
t + D̃wt+1 (121)

with Ã = Axx �Axy Hx (122)

B̃ =
⇥
Bx" 0

⇤
(123)

C̃ = Hx (Axx �Axy Hx) +Ayx �Ayy Hx (124)

D̃ =
⇥
(HxBx" + �⌘") �⌘b

⇤
(125)
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where Axx, Axy, etc. denote suitable sub-matrices of A; and D̃ embodies a given guess of �⌘" and

�⌘b.

For a given D̃, the Kalman-filtering solution to this system generates a Kalman gain Kx

which can be used to form projections X̃t|t = KxZ̃t. What remains to be seen is whether this

guess for D̃ also satisfies the projection condition. The projection condition requires Ky = GyxKx.

Together with the projection condition, the measurement equation (87) implies I = HxKx+Ky =

(Hx + Gyx)Kx. All told, we need to find shock loadings that support a gainKx such that LKx = I

where L = Hx + Gyx.

We employ a numerical solver that searches for a D̃ that generates a Kalman gain Kx such

that LKx = I. Given a solution for D̃ that satisfies the projection condition LKx = I, we can

then back out �" and �b based on (125).
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Figure 1: IRFs of Various Equilibria in Fisher economy

Note: Impulse response functions (IRF) for the Fisher economy model under full information

(blue) as well as various limited-information equilibria (red). Each row represents the

response of a specific variable to the shocks in the model whereas each column represent

the responses of the endogenous variables to a specific shock.
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Figure 2: Example IRF from an Equilibrium in the Fisher economy
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Note: Impulse response functions (IRF) for the Fisher economy model under full information

(blue) as well as an example from the limited-information equilibria (red).
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Figure 3: Second moments of limited-information equilibria in Fisher economy

Note: Top panels show moments of endogenous variables for the Fisher economy model

under full information (blue) as well as various limited information equilibria (red). Bottom

panel reports ranges of relative standard deviations of outcomes under limited information

relative to the full-information outcomes.
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Figure 4: IRFs of Various Equilibria in New Keynesian model

Note: Impulse response functions (IRF) for the New Keynesian model under full information

(blue) as well as various limited-information equilibria (red). Each row represents the

response of a specific variable to the shocks in the model whereas each column represent

the responses of the endogenous variables to a specific shock. An example of the IRF of

one of the limited-information equilibira is show in Figure (5).

iv



Figure 5: IRF in New Keynesian model: Example of a limited information equilibrium
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Note: Impulse responses for one example (red) of the limited-information equilibria of the

New Keynesian model shown in Figure 4. (Full-information IRF in blue.)
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Figure 6: Second moments of limited-information equilibria in New Keynesian model

Note: Top panels show moments of endogenous variables for the New Keynesian model

under full information (blue) as well as various limited information equilibria (red). Bottom

panel reports ranges of relative standard deviations of outcomes under limited information

relative to the full-information outcomes.
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Table 1: Parameters for NK model

Symbol Description Value

� Discount Factor 0.99

� Substitution Elasticity 1.00

� Labor Elasticity 1.00

� Inflation Indexation 0.25

�⇡ Policy Coe�cient 2.50

�x Policy Coe�cient 0.50

⇢y AR(1) - Coe�cient 0.75

�y StD. Output Growth 0.30

�⇡ StD. Measurement Error 0.80

�x StD. Measurement Error 1.39

 Composite Parameter 0.17

Note: Parameter values for the numerical analysis of the NK model. Values are standard

in the literature.
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