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Abstract

I incorporate quarantine, contact tracing, and random testing in the basic SEIR
model of infectious disease diffusion. A version of the model that is calibrated to known
characteristics of the spread of COVID-19 is used to estimate the transmission rate of
COVID-19 in the United States in 2020. The transmission rate is then decomposed into
a part that reflects observable changes in employment and social contacts and a residual
component that reflects disease properties and all other factors that affect the spread of
the disease. I then construct counterfactuals for an alternative employment path that
avoids the sharp employment decline in the second quarter of 2020 but also results in
higher cumulative deaths due to a higher contact rate. For the simulations, a modest
permanent increase of quarantine effectiveness counteracts the increase in deaths, and
the introduction of contact tracing and random testing further reduces deaths, although
at a diminishing rate. Using a conservative assumption on the statistical value of life,
the value of improved health outcomes from the alternative policies far outweighs the
economic gains in terms of increased output and the potential fiscal costs of these
policies.
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1 Introduction

From March to April 2020, after a number of states introduced stay-at-home orders in

response to the emerging COVID-19 pandemic, employment in the United States declined

precipitously, by about 15 percent. Upon relaxing the stay-at-home orders, employment

recovered to within 6 percent of pre-pandemic levels in the late summer of 2020. The

decline in work-related contacts and social contacts associated with these stay-at-home orders

arguably helped contain the pandemic and the number of disease-related deaths but came

at the cost of lost output. In this paper, I argue that a more targeted approach, such as

improved quarantine, contact tracing, and random testing, could have attained similar or

better disease-related outcomes for an alternative employment path that avoided the sharp

and deep decline. Furthermore, the benefits of this alternative approach, in terms of the

value of lives saved, far outweigh its potential costs.

Indiscriminate social distancing limits the spread of COVID-19 because it reduces contact

rates for all individuals, whether they are infectious or not. Quarantine is less disruptive

in that it only removes known infectious individuals. Clearly, infectious individuals who

display symptoms can be quarantined, but a feature of COVID-19 is that even individuals

who do not display symptoms can be infectious. Contact tracing can work backwards from

newly identified symptomatic individuals to identify individuals who may have been infected

but do not yet display any symptoms. Random testing of the population is another way to

identify individuals who are infectious but asymptomatic.

I study the effects of quarantine, contact tracing, and random testing in a modified

susceptible-exposed-infected-recovered (SEIR) model where I differentiate between asymp-

tomatic and symptomatic infected individuals. The modified SEIR model is calibrated to

the known characteristics of COVID-19 and is then used to infer the transmission rate of

COVID-19 from data on daily deaths. Information on employment and social mobility in-

dices is then used to separate out the impact of work contacts on the transmission rate. This

procedure suggests that the shift toward work at home—as documented in Bick, Blandin

and Mertens (2021)—had a larger impact on overall work contacts than the reduced employ-

ment in April and May 2020. I then assume an alternative employment path that avoids the

sharp decline and rebound of employment, thus avoiding the output losses associated with

the employment reductions.

The alternative employment path implies a higher overall transmission rate and more fa-

talities. We consider various combinations of improved quarantine measures, contact tracing,

and random testing to counteract the increased contact rate from the alternative employment

path. The simulations suggest that a moderate and permanent increase of the quarantine
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rate much better contains cumulative deaths over the second half of the year, even though it

is initially not as effective as the steep but temporary actual employment reductions in the

first part of the year. In particular, in the simulations, a moderate permanent increase of the

quarantine rate prevents the surge of infections and deaths at the end of the year. Adding

contact tracing and random testing yields additional reductions of cumulative deaths but

not of the same magnitude as the initial increase of quarantine effectiveness.

We provide some rough estimates of the gains from avoided output losses and deaths and

the potential fiscal costs of the simulated alternative policies. For a conservative estimate of

the statistical value of a life ($7 million), the gains from improved health outcomes, in the

range of $3.5 trillion to 5 trillion, far outweigh gains from avoided output loss, about $500

billion, and the potential fiscal costs of the program, between $60 billion and $150 billion.

One can have well-founded reservations on the use of the kind of model described here

for policy analysis, and Jewell, Lewnard and Jewell (2020) provide an extensive list of these

reservations. On the other hand, short of running actual “experiments” on an economy,

models like the one described here provide some guidance on possible outcomes for these

policy interventions.

1.1 Related work in epidemiology

We work with an augmented version of the standard SEIR model of disease diffusion with

Poisson arrival rates for health-state changes and implied exponential distributions for stage

duration. Most epidemiological work on quarantine and contact tracing models these inter-

ventions as setting aside a fraction of newly infected individuals and gradually moving them

to a quarantine state, similar to the transition between health states. The effectiveness of

these interventions is then determined by the share and speed parameters, see for example

Wearing, Rohani and Keeling (2005) or Feng (2007). Lipsitch et al. (2003) use a similar

approach to study the issue of contact tracing in the context of the SARS epidemic.

Compared with this epidemiological work, the approach I take is more direct: some

infected individuals can be identified, and they are immediately quarantined, but only a

fraction of quarantined individuals can be excluded from the infectious pool. This “targeted

quarantine” model makes the interpretation of its effectiveness more transparent.

1.2 Related work by economists using SIR-type models

There has been an outburst of work in economics on COVID-19, much of it appearing in the

CEPR online publication Covid Economics, Vetted and Real-Time Papers.1

1https://cepr.org/content/covid-economics-vetted-and-real-time-papers-0#block-block-9.
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Baqaee, Farhi, Mina and Stock (2020) are closest in spirit to this paper in that they study

the implications of alternative paths for employment and non-pharmaceutical interventions,

including quarantine, for output losses and fatalities. Their environment contains more de-

mographic and economic detail; they differentiate by age groups and industries, but their

approach to quarantine follows the standard epidemiological literature, and they interpret

contact tracing and testing as changes in the rate at which infectious individuals are quar-

antined. Baqaee et al. (2020) also find non-pharmaceutical interventions to be preferable to

employment reductions.

Berger, Herkenhoff, Huang and Mongey (2021) and Piguillem and Shi (2020) study ran-

dom testing in a SEIR-type model of targeted quarantine. Berger et al. (2021) study the

relative effectiveness of tests and argue that the frequent use of cheap low-sensitivity tests

dominates the infrequent use of expensive perfect tests. Neither of these papers considers

contact tracing.

My approach to infer the diffusion of COVID-19 from data on daily deaths is based on

Fernandez-Villaverde and Jones (2020) and Atkeson, Kopecky and Zha (2020). In a simple

SEIR model, there is a linear progression from being susceptible to possible death. Given this

structure, one can work backwards and infer current infected individuals from future deaths

in a parameterized version of the model. My approach to extract the effect of employment

changes on the transmission rate is related to Baqaee et al. (2020). My approach to estimate

the potential cost and benefits of alternative policies uses the value of a statistical life (VSL)

and is related to Greenstone and Nigam (2020) and Cutler and Summers (2020). Greenstone

and Nigam (2020) use the VSL to calculate the benefits from reduced mortality rates for

various pandemic scenarios in the large-scale pandemic model of Ferguson et al. (2020).

Cutler and Summers (2020) estimate the costs of COVID-19 from reduced output, increased

mortality, and negative health outcomes for survivors.

Finally, this paper is a substantially revised version of Hornstein (2020), which considered

a more stylized version of social distancing as a constant but temporary reduction in contact

rates in the face of a constant transmission rate. In terms of health outcomes, this paper

focuses on fatalities, whereas the pandemic model in Hornstein (2020) was intended as a

stylized version of Ferguson et al. (2020) and also considered the implications for hospital

stays and the use of intensive care units.
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Figure 1: The SIR Model
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2 The basic SIR model

Define the stock of susceptible population S, infected and infectious population I, and re-

covered population R. Total population is

N = S + I +R. (1)

Individuals transition sequentially between the states determined by Poisson processes with

given arrival rates. Assume that the disease transmission rate for a given encounter is α,

that the recovery rate from the disease is γ, and that recovered individuals are immune to

the disease. See Figure 1 for a graphic representation.

Total disease transmission, M , following from meetings between the susceptible and

infected population is then,

M =

(
α
S

N

)
I, (2)

where the term in brackets is the new infections caused per infected individual. The dynamics

are described by the differential equations

Ṡ = −αIS
N
, (3)

İ = α
IS

N
− γI, (4)

Ṙ = γI. (5)

The infectious group grows at the rate

Î =

(
α

γ

S

N
− 1

)
γ.

Assume that the initial value for the population share of susceptible individuals is essentially

one, S (0) ≈ N . Then, the number of infected people is initially increasing if

R0 =
α

γ
> 1. (6)
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The ratioR0 is called the basic reproduction number because at time zero it is approximately

the average number of new infections caused by an infected individual before that individual

recovers, ∫ ∞
0

[
α
S(τ)

N
τ

]
γe−γτdτ ≈ α

γ
= R0,

where the first term in the integral is the average number of infections over a time interval

τ , and the second term is the probability of staying infectious for that time.

3 An extended SEIR model

I now extend the basic SIR model to explore the relative merits of various policy measures,

such as social distancing, quarantine, contact tracing, and random testing in a unified frame-

work. Susceptible individuals are exposed to the infection but are not immediately infectious.

Exposed individuals become infectious, but they initially do not show any symptoms. After

some time, asymptomatic infected individuals do show symptoms of the disease and can be

quarantined. Symptomatic infected individuals either recover over time and become immune,

or they die.

Introducing the exposed state into the SIR model is standard, and we do it because there

is evidence for a non-negligible latency period for the case of COVID-19. Adding an exposed

state changes the dynamics of the model, e.g., it tends to change peak infection rates, but

it usually does not affect terminal outcomes much. Getting the disease dynamics right is

important, since in the next section we will account for the spread of the disease through

the lens of the model.

We make a distinction between asymptomatic and symptomatic infectious individuals

because we want to study the role of quarantine and contact tracing as alternative policy

tools to generalized social distancing measures. Quarantine can only apply to identified

individuals, that is, symptomatic individuals. But there is reason to believe that with

COVID-19 a large share of all infected are asymptomatic. In this case, it might be useful

to identify and subsequently quarantine asymptomatic individuals through contact tracing

and random testing.

Figure 2 provides a graphic representation of the model. Susceptible individuals, S,

become exposed at the rate αI∗/N , and exposed individuals, E, become infectious without

symptoms, IA, at the rate φ. Asymptomatic individuals recover at rate γA, and they become

symptomatic at rate β. Symptomatic individuals, IS, recover or die at rates γS and δ,
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Figure 2: The Extended SEIR Model
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respectively.2 The flow terms, qE and qA, and the stocks, ET and IAT , refer to the exposed

and asymptomatic individuals who have been identified through tracing and/or random

testing as discussed below.

The effects of policy interventions, such as social distancing and quarantining known

infected individuals, are modeled through their impact on the flow of new infections. As in

the basic SIR model, the flow of new infections is proportional to the product of susceptible

individuals and infectious individuals, but quarantine can reduce the number of infectious

individuals who can meet the susceptible population. We assume that symptomatic indi-

viduals are always known and that tracing and random testing can identify some exposed

and asymptomatic individuals. Let εi denote the effectiveness of quarantine for the known

infectious population groups, i ∈ {S,AT}, and also assume that asymptomatic infected are

less infectious than symptomatic infected. The relative infectiousness of asymptomatic in-

dividuals is σ ≤ 1. The effective pool of infectious individuals who meet the susceptible

population and the inflow of newly infected individuals, I∗ and M , respectively, are3

I∗ = σ [IA + (1− εAT )IAT ] + (1− εS)IS, (7)

M = αSI∗/N. (8)

2Total deaths are small enough such that the implicit assumption of a constant population is not too
distorting.

3This version of targeted quarantine deviates from the standard model used in the epidemiological litera-
ture in the sense that identified people are added instantaneously to the quarantine pool, but some infections
seep out of that pool. The epidemiological literature I am aware of assumes that infected individuals join
the quarantine pool gradually following a Poisson process, but then quarantine is perfect. For example, Feng
(2007).
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The following system of differential equations provides the formal representation of the

process dynamics.

Ṡ = −M, (9)

Ė = M − φE − qE, (10)

İA = φE − (β + γA) IA − qA, (11)

ĖT = qE − φET , (12)

İAT = qA + φET − (β + γA) IAT , (13)

İS = β(IA + IAT )− (γS + δ)IS, (14)

Ṙ = γA (IA + IAT ) + γSIS, (15)

Ḋ = δIS. (16)

Since the cumulative number of deaths remains sufficiently small for our analysis, we ignore

the impact of deaths on the surviving population in equation (8) to keep things simple.

Social distancing is assumed to directly reduce the rate at which individuals, infectious

and susceptible, contact each other. We assume that the transmission rate can be split

in two components: the contact rate for an individual, c, that captures social distancing

interventions and individual responses to the spread of the disease, and a residual term,

ψ, that captures all other disease-related features of transmission and non-pharmaceutical

interventions. Then the transmission rate is

α = (cψ)2 . (17)

Social distancing is thus potentially a very effective way to contain the spread of the

disease since a reduction of contact rates applies to all individuals, infectious and non-

infectious. Therefore, a reduction of contact rates implies a squared reduction of transmission

rates. Social distancing is also “easy” to implement since all individuals are supposed to

reduce their contact rates, that is, no particular information is required. This indiscriminate

reduction of contact rates also makes social distancing very disruptive for the economy.

Quarantine methods, on the other hand, target individuals who are infectious, that is,

they require information on an individual’s health status. As long as the health status is

observable, that is, for symptomatic individuals, it is relatively straightforward to implement,

though not without cost. The problem with a disease like COVID-19 is that a large share of

infectious individuals—current estimates are around 50 percent—may never show symptoms.

Thus, even if one were to quarantine all symptomatic individuals, the pool of infectious

individuals would be reduced by only half. On the other hand, quarantine is somewhat more

efficient than that since symptomatic individuals are more infectious than asymptomatic
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individuals. Contact tracing and random testing are attempts to reduce the pool of infectious

individuals by quarantining asymptomatic individuals.

Tracing of asymptomatic infected individuals is modeled as follows. We assume that

at the time an asymptomatic individual becomes symptomatic, a fraction εT of the people

who this individual has infected and who are still in the exposed or asymptomatic state are

traced.4 The inflow into the pool of identified exposed and asymptomatic individuals is then

qTE = εTRATEβIA and qTA = εTRATAβIA. (18)

In appendix A.2 we show that

RATE = α
S

N

σβ

(β + γA) (β + γA + φ)
, (19)

RATA = α
S

N

σβφ

2 (β + γA)2 (β + γA + φ)
. (20)

Testing is modeled as follows. Let fN be the flow rate at which not yet identified infected

people are randomly tested. Assume that asymptomatic infected can be identified through

tests but not merely exposed individuals. Also assume that recovered individuals are not

tested. Then the share of identified asymptomatic in a random test is5

pF =
IA

S + E + IA
. (21)

The inflow of newly identified exposed and asymptomatic individuals through random testing

is

qFE = εTRATEpFfN and qFA = (1 + εTRATA) pFfN, (22)

where we allow for the possibility that previous contacts of newly identified asymptomatic

individuals are then also traced. Total inflows to the stock of identified exposed and asymp-

tomatic individuals are

qE = qTE + qFE and qAT = qTA + qFA. (23)

4 Accounting for the pandemic

I now use a quantitative version of the extended SEIR model to account for the spread of

the pandemic in the United States. First, I calibrate the parameters of the SEIR model

4We essentially assume that tracing does not require time but is instantaneous. It is straightforward to
introduce a time delay for the recovery of tracked individuals. Again, we model the effectiveness of tracing
not through the rate at which potentially traceable individuals enter the quarantine pool, but through the
size of the captured pool, see footnote 3.

5This potentially overstates the effectiveness of random testing with incomplete quarantine to the extent
that the infectious pool also contains symptomatic individuals.
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based on available evidence on how COVID-19 spreads in the population. Then, I use the

parametric model to infer the path of the transmission rate from observations of smoothed

daily death rates.

4.1 Calibration

I select the model parameters based on three surveys of the epidemiological profile of COVID-

19: the fact sheet posted by the Robert Koch Institut (RKI), and the summary of evidence

in Ferguson et al. (2020) (F) and in Bar-On, Flamholz, Phillips and Milo (2020) (B).6

References to the surveys cover either the surveys’ summary of the literature or particular

studies cited in the surveys.

• The latency period from infection to becoming infectious, TE→A, is about 3 days, (B).

• The incubation period from infection to the onset of symptoms, TE→S, is about 6 days,

(RKI) and (F).

• There is a wide range of estimates for the prevalence of asymptomatic infections. (RKI)

references studies that put the share of asymptomatic infections in a range from 20

percent to 90 percent.7 (F) argues that 40 percent to 50 percent of infected are never

identified, mainly because they are asymptomatic. We set the probability of never

becoming symptomatic, pA→R, at 40 percent.

• The (RKI) suggests that contagiousness for light to moderate disease progression de-

clines after 10 days, (F) puts it at 6.5 days, and (B) at 3.5 days. We set the average

duration of infectiousness, TAS, at 8 days.

• The infection fatality rate (IFR) is not well estimated, (B) puts in a range between 0.3

percent and 1.3 percent. We assume it to be pAD = 0.01.

• Asymptomatic infections are between 30 percent (F) and 40 percent (RKI) less infec-

tious than symptomatic infections. We set σ = 0.6.

• As for the effectiveness of quarantine, (F) assumes that two-thirds of symptomatic

individuals self-isolate after one day. Since our quarantine does not involve any time

delay, we assume that the baseline quarantine effectiveness, εS, is 50 percent.

6The RKI COVID-19 fact sheet is available at
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges Coronavirus/Steckbrief.html.

7The lower bound is based on a meta study of at-risk population groups, and the upper bound is based
on serological studies that test for the presence of coronavirus antibodies in population samples.
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In appendix A.1, we derive the average latency period, incubation period, duration of

infectiousness, recovery probability from an asymptomatic infection, and IFR:

TE→A =
1

φ
(24)

TE→S =
1

φ
+

1

β + γA
(25)

pA→R =
γA

γA + β
(26)

TAS =
1

β + γA

(
1 +

β

γS + δ

)
(27)

pE→D =
β

β + γA

δ

δ + γS
. (28)

We infer the parameters (φ, γA, β) from (TE→A, TE→S, pA→R) using equations (24), (25),

and (26). The remaining parameters (δ, γS) follow from (TAS, pE→D) using equations (27)

and (28). Table 1 summarizes the implied parameter values and observations used in their

derivation.

Table 1: Baseline Calibration

Observation Parameter
TE = 3 days φ = 0.33
TE→S = 6 days γA = 0.13
pA→R = 40% β = 0.20
TAS = 8 days γS = 0.12
pE→D = 1% δ = 0.0020

Finally, we note that we have not used two pieces of information from (RKI) in our

calibration of the disease process. First, asymptomatic individuals cause about 45 percent

of all infections. Second, 95 percent of individuals that eventually become symptomatic do

so within 10-14 days. We can calculate these statistics for our calibration and find that they

are quite close to the (RKI) statistics, 35 percent and 98 percent, respectively.

4.2 Inferred transmission rates

We now use the calibrated model to infer the transmission rate in the United States from the

observed daily deaths for the period from March 2020 to December 2020. For this purpose,

we assume that there is no contact tracing or random testing, that is, only symptomatic

individuals are quarantined. From the flowchart of the model, Figure 2, we can see that in

this case, there is a singular flow from exposure to death. This means that we can work
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Figure 3: Daily Deaths
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Note: The black line represents reported daily deaths, and the red line represents a Gaussian moving average
of daily deaths with a symmetric forty-one-day window. The shaded area denotes the period after cumulative
daily deaths exceed twenty-five.

our way backwards from daily deaths to initial infections that resulted in these deaths.8

This is the approach Fernandez-Villaverde and Jones (2020) and Atkeson et al. (2020) use

to estimate transmission rates and effective reproduction numbers.

In the online-only Technical Appendix to this paper, Hornstein (2021), we describe the

algorithm that uses daily data on deaths to recover the stocks of preceding susceptible,

exposed, and (a)symptomatic infectious individuals and the transmission rate. Suffice it to

say that the stock of exposed individuals becomes a function of up to fourth order changes of

daily deaths. This means that unless the path for daily deaths is very smooth, the inferred

transmission rate will be exceedingly volatile and can be negative.

8Note that such a simple mechanical approach is not possible if daily deaths were the outcome of more
than one distinct progression of the disease.
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Actual daily deaths are extremely volatile—the black line in Figure 3—with a clear

weekend seasonal in reported daily deaths. We therefore smooth the daily death data using

a Gaussian moving average which filters out high frequency movements, the red line in Figure

3.9

We infer the transmission rate through the model’s interpretation of smoothed observed

daily deaths. The transmission rate is determined by the meetings of susceptible and in-

fectious individuals, relative to the total size of the population. In the United States, as

in most other countries, reported COVID-19-related deaths are concentrated in the adult

population.10 Furthermore, there is some evidence that younger children are less likely to

transmit the coronavirus, e.g., Lewis (2020). Thus, an argument could be made to normalize

the transmission rate with respect to the working age population. Qualitatively, the results

do not depend on the normalization, but since the working age population is much smaller

than the total population, the transmission rate inferred from the working age population

measure is noticeably higher.11 We follow the literature and use total population.

In Figure 4, we plot the log-level of the square root of the transmission rate, the black

line.12 The transmission rate declines rapidly in the first month after the first COVID-19-

related deaths have been observed.13 In particular, the transmission rate declines before

California issues the first state wide stay-at-home order on March 19. The transmission rate

precedes the path of daily deaths bottoming out in May, increasing again in the summer,

declining in early fall, and then increasing in late fall and winter.

Associated with inferred transmission rates from daily deaths in Figure 4, are the time

paths for the population shares of susceptible, exposed, (a)symptomatic individuals, cumu-

lative deaths, and also the effective reproduction rate, the black lines in Figure 5. At its first

peak in early April, about 0.5 percent of the population are infectious, Panels C&D, but

that share declines relatively fast before it increases again in mid-summer and reaches a new

higher peak in December. Given the calibration, at any point in time, somewhat less than

half of infectious individuals are asymptomatic, Panel C, and about one-fourth of infected

individuals are not yet infectious, Panel B. Associated with the transmission rate is the

effective reproduction number in Panel F. The reproduction number is initially quite high,

9To be precise, we use the MATLAB routine smoothdata with the gaussian option and a symmetric
thirty-one-day window. Essentially, the Gaussian moving average is a moving average with weights that
correspond to a normal probability density function.

10As of January 2021, more than 99.8 percent of all deaths are among those 17 years and older. See
https://covid.cdc.gov/covid-data-tracker/#demographics. Accessed 1/6/2021.

11The Census estimates U.S. working age population, that is, those aged 16 and older, to be 263.5 million,
as opposed to a total population of 329.5 million.

12We plot the transmission rate for the period once cumulative deaths exceed twenty-five. Prior to that,
the inferred transmission rate tends to be very large and volatile, even using smoothed daily deaths.

13A point emphasized by Atkeson et al. (2020).
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Figure 4: Transmission Rate
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Note: The solid black line represents the inferred transmission rate, 0.5 lnα, the solid red line represents
the aggregate measured contact rate, ln c, and the solid blue line represents the residual component, lnψ.
All rates are in log levels. The red and black dashed lines represent the alternative measured contact and
transmission rates based on the alternative employment rate. The shaded area denotes the period for which
the hypothetical alternative employment rate deviates from the actual employment rate. The left-hand side
boundary of the shaded area is the seventy-ninth day of the year, March 19, and the right-hand side boundary
is the 278 day of the year, October 4.
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above four, but rapidly declines to values below two in April and then fluctuates between 0.5

and two for the rest of the year, being elevated toward the end of the year when infections

and deaths are increasing. At the end of the year, cumulative deaths make up about 0.095

percent of the population.

5 Experiments

Various measures affect the transmission rate of COVID-19 and the way the pandemic

spreads: from simple non-pharmaceutical interventions, such as hand washing and wearing

face masks, to extended social distancing measures, such as scaling back certain economic

activities. This section uses the previously derived framework to focus on the effects of the

sharp reduction in employment in spring 2020 and possible alternatives to this approach. For

this purpose, we first construct a simple model that maps employment and other social inter-

actions into an aggregate contact rate. We then remove the aggregate contact rate from the

inferred transmission rate and obtain a residual transmission rate. By construction, the resid-

ual transmission rate captures all other social distancing measures and non-pharmaceutical

interventions in addition to disease-related characteristics that are not captured by the ag-

gregate contact rate. We then replace the observed employment decline with an alternative

employment path that converges gradually to the levels of fall 2020 employment and avoids

the sharp decline and recovery in the spring and summer. Obviously, the increased contact

rates from this alternative employment path would have increased fatalities. Then, we ask

what alternative quarantine policy could have contained fatalities. Finally, we ask if contact

tracing or random testing could have improved on this outcome.

While the construction of our counterfactual experiments is straightforward, there is an

obvious qualification to the results we obtain. We are combining the counterfactual paths

for work contacts and COVID-19 containment policies with the residual transmission rate

path, but the latter incorporates behavioral responses to the actual path of fatalities. To

the extent that our experiments yield different paths for fatalities, one would expect that

residual contact rates change. In particular, the endogenous response of contact rates would

dampen the impact on fatalities in the counterfactual.

5.1 Measured contact rates

How much of the observed variation in transmission rates can we attribute to measured

variations of contact rates, in particular, contact rates related to employment? To answer

this question, we construct an index that aggregates information on employment and mobility

indices. Our approach is a simplified version of Baqaee et al. (2020).
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Figure 5: Policy Interventions
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Note: The black lines represent the baseline outcome using the inferred transmission rate. The red lines
represent the outcome for the alternative transmission rate and no change in quarantine effectiveness, εS =
0.5. The blue lines represent the outcome for the alternative transmission rate and increased quarantine
effectiveness, εS = 0.7. The shaded area denotes the period for which the alternative transmission rate
deviates from the inferred transmission rate, see notes to Figure 4.
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We first construct work-related contacts from monthly payroll employment data and the

Bick et al. (2021) survey of workplace locations. Based on survey data that are patterned

on the monthly CPS, Bick et al. (2021) argue that the share of the U.S. workforce that is

working from home increased from about 8 percent in February 2020 to about 30 percent in

May 2020 and then declined to about 20 percent in the fall.14 We define work contacts as the

product of payroll employment and the share of those working away from home. Essentially,

we assume that different contact rates apply to those working at home and those working

away from home.

The employment series and the share of those working away from home are plotted in

Figure 6.a.15 Despite the large decline of employment early in the pandemic, about 15

percent at its trough in April, the 25 percent decline of those working away from home

dominates the decline in work contacts. Work contacts decline persistently over the year by

20 percent, two-thirds due to the decline in the share of those working away from home.

We combine the work contact index with a social contact index related to non-work

activities away from home by aggregating Google mobility indices for shopping and recreation

activities.16 Social contacts started to increase in early March but then dropped off sharply,

preceding the drop-off in work contacts by about a week, Figure 6.b. These social contacts

recovered somewhat faster than work contacts in the summer, but they also did not return to

their pre-pandemic levels, and they declined in the fall when daily deaths started to increase

again.

Aggregate contacts are defined as the sum of contacts from three activities, ‘Home’ (H),

‘Work’ (W), and ‘Social’ (S),

ct =
∑

i∈{H,S,W}

xitc
i, (29)

with fixed weights, ci, and the normalized social and work indices as activity measures

relative to pre-pandemic levels, xit. Home contacts are fixed at one, xHt = 1.

We obtain the contact weights from a survey on social contacts in Europe.17 Mossong et

al. (2008), Figure 2, display the average distribution of contacts for the pool of all countries.

14Parker, Horowitz and Minkin (2020) report a similar pattern in Pew survey data.
15We interpolate the two monthly series using piece-wise cubic splines and normalize each series at one on

February 15, 2020.
16We average the daily Google mobility indices starting February 15 for Retail and Recreation locations,

Grocery and Pharmacy locations, and Transit Stations. We then calculate a seven-day moving average of
the average Google index and normalize the series to one on February 15.

17The survey covers eight European countries in 2005 and 2006. The purpose of the study was to “deter-
mine patterns of person-to-person contact relevant to controlling pathogens spread by respiratory or close-
contact routes,” Mossong, Hens, Jit, Beutels, Auranen, Mikolajczyk, Massari, Salmaso, Tomba, Wallinga,
Heijne, Sadkowska-Todys, Rosinska and Edmunds (2008).

17



Roughly, the allocation of contacts among activities is: ‘Other’ 15 percent, ‘Leisure’ 15

percent, ‘School’ 12 percent, ‘Home’ 25 percent, ‘Work’ 20 percent, ‘Multiple’ 8 percent, and

‘Transport’ 5 percent. We drop ‘School’ contacts and combine all other groups except ‘Home’

and ‘Work’ into ‘Social’, now 35 percent. That leaves us with 25 percent H, 20 percent W,

and 35 percent S, and we re-normalize the weights so that they add up to one.

The aggregate contact index is displayed as the red line in Figure 6.b. Since constant

home contacts receive a weight of one-third in our weighting scheme, aggregate contacts do

not fall as much as either work or social contacts.

We now split the transmission rate into a part that is due to the measured contact rates

and an unexplained residual term, ψ,

0.5 lnα = ln c+ lnψ, (30)

the red and blue lines in Figure 4, respectively. According to this procedure, the impact

of reduced social contacts and employment on the transmission rate is limited: changes in

these contacts account for about one-third of the decline in the overall transmission rate. We

will now use our calibrated model to study what could have happened if social distancing

policies had been less restrictive and had been accompanied by other non-pharmaceutical

interventions such as efficient quarantine, contact tracing, or random testing.

5.2 Alternative employment path

We take the sharp decline of employment in March and April, followed by a partial recovery

by October, as the main employment impact of stay-at-home orders. Taking the partial

recovery by the fall as given, we essentially assume that many of the employment losses in

the hospitality and recreation sector were unavoidable without a vaccine.

The alternative employment path we propose has employment gradually converge to its

fall 2020 values, starting in mid-March, the dashed purple line in Figure 6.a.18 Since social

contacts are correlated with market activity, we assume that social contacts follow a similar

path, with the same beginning and end points, the dashed cyan line in Figure 6.b. Combining

the time paths for work and social contacts yields the aggregate contact index, the dashed red

line in Figure 6.b. Combining the alternative contact index with the residual transmission

rate we now have the transmission rate, associated with the alternative employment path,

the dashed red and black lines, respectively, in Figure 4.

Avoiding the sharp decline in employment doubles the eventual fatalities in the calibrated

model. The red lines in Figure 5 plot the time paths for the population shares of susceptible,

18The alternative employment path is a cubic spline that connects March 19, when California issued the
first statewide stay-at-home order, with October 4, when employment has apparently stabilized.
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Figure 6: Measured Contact Rates
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Note: In Panel (a), the purple line is total nonfarm payroll employment, the green line is the fraction of
those employed that are working away from home, and the blue line is employment away from home, also
in Panel (b). In Panel (b), the magenta line is social contacts not at home and not at work, and the red line
is an index of all contacts. All series are normalized to one on February 15, 2020. The construction of the
contacts is described in the text. The solid lines represent observed variations in contacts, and the dashed
lines represent hypothetical time paths for contacts as described in the text. The shaded area highlights the
time period for which the hypothetical contacts deviate from actual contacts.
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exposed, and (a)symptomatic individuals, and cumulative deaths for the transmission rates

implied by the alternative employment path. The number of infectious individuals on the

alternative path more than triples relative to the baseline path and so do cumulative deaths

during the time the alternative path deviates from the baseline path. Because there are so

many more infections on the alternative path, the population share of susceptible individuals

declines to about 80 percent, as opposed to staying above 90 percent for the baseline path.

Fewer susceptible individuals then means lower effective reproduction rates at the end of

the year and fewer additional infections and deaths. Nevertheless, cumulative deaths at the

end of the year make up about 0.19 percent of the population, twice the number actually

realized.

5.3 Alternative policies: quarantine, contact tracing, testing

We now consider three alternative policies that might be put in place for the alternative

employment path: more efficient quarantine, contact tracing, and finally random testing.

Increased quarantine effectiveness keeps cumulative fatalities low in the longer run, although

in the short run, fatalities increase faster than in the baseline case. Contact tracing re-

duces fatalities somewhat, but the reductions, even from a perfectly effective contact tracing

scheme, are limited when combined with a more effective quarantine program. Finally, the

reductions of fatalities from even large-scale random testing programs are limited.19

5.3.1 Quarantine

Quarantine is assumed to be 50 percent effective in our baseline calibration, that is, half

of symptomatic individuals are assumed to (self)quarantine. We now consider the case

when quarantine effectiveness is permanently increased to 70 percent for the alternative

employment path.

A more efficient permanent quarantine regime does not prevent the increase of fatalities

relative to the baseline case in the short run, but it substantially reduces cumulative fatalities

in the long run. The blue lines in Figure 5 plot the time paths for the population shares

of susceptible, exposed, and (a)symptomatic individuals, and cumulative deaths for the

transmission rates implied by increased quarantine for the alternative employment path.

With the higher quarantine effectiveness, the number of infectious individuals now only

doubles relative to the baseline path for the first thirty days, and so do cumulative deaths.

But after seventy days, the number of infectious individuals is less than in the baseline case,

and cumulative deaths level out. In fact, with the higher permanent quarantine rate, the

19For each policy parameter, we consider a permanent increase from the baseline calibration value to its
alternative value. We assume that the increase is spread out over forty days, starting March 19, 2020.
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Table 2: Effectiveness of Quarantine, Tracing, and Random Testing

(1) (2) (3) (4) (5) (6) (7) (8)
εQ εT f

0.000 0.250 0.500 0.750 1.000 0.001 0.010 0.100
0.500 0.187 0.181 0.176 0.171 0.166 0.153 0.148 0.110
0.600 0.101 0.097 0.094 0.090 0.087 0.071 0.069 0.054
0.700 0.063 0.060 0.058 0.057 0.055 0.042 0.041 0.034
0.800 0.044 0.043 0.041 0.040 0.039 0.029 0.028 0.024
0.900 0.033 0.032 0.031 0.030 0.029 0.022 0.021 0.018
1.000 0.026 0.025 0.024 0.024 0.023 0.017 0.016 0.014

Note: Cumulative deaths at end of sample, December 31, 2020, as a percent of popu-
lation for given alternative transmission path and variations of quarantine effectiveness,
εQ, tracing effectiveness, εT , and testing rate, f . Rows represent different values of the
common quarantine effectiveness, εQ = εS = εAT . Columns 1 through 5 represent vari-
ations of the tracing effectiveness parameter in the absence of random testing, f = 0.
Columns 6 through 8 represent variations of the testing rate for a fixed tracing effec-
tiveness, εT = 0.5. The testing rate f denotes the daily fraction of population that is
randomly selected for testing.

pool of infected individuals becomes so small that infections are not increasing in the late

fall as the transmission rate and the effective reproduction number is increasing again.

Increasing quarantine effectiveness permanently from 50 percent to 70 percent reduces

cumulative deaths on the alternative employment path at the end of the year by two-thirds,

Table 2, column 1. This represents about two-thirds of the cumulative deaths on the baseline

path, and most of that reduction is attained at the end of the year when increased quarantine

effectiveness contains the spike in transmission rates. But even a more limited permanent in-

crease of quarantine effectiveness to 60 percent contains cumulative deaths on the alternative

employment path at the same level as the baseline path. Increasing quarantine effectiveness

beyond 70 percent further reduces cumulative deaths at a diminishing rate.

5.3.2 Contact tracing

Contact tracing, as defined in equations (19) and (20), is assumed to instantaneously identify

and quarantine a fraction of the individuals who a newly symptomatic individual has infected.

It follows that contact tracing can only be effective as long as quarantine is effective.

Our model suggests that the reductions of cumulative deaths from contact tracing are

limited, even though about half of infectious individuals are asymptomatic. We display

end-of-year cumulative deaths for various combinations of quarantine and contact tracing
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efficiencies in Table 2, columns 1 through 5.20 As we can see, the most that contact tracing

can achieve, if it is perfectly efficient, is to reduce cumulative deaths by about 10 percent

for any level of quarantine effectiveness considered. Contact tracing that quarantines half of

the identified infected individuals reduces cumulative deaths by about 5 percent.

In our environment, even perfect contact tracing captures only a small fraction of the

asymptomatic infectious individuals. Figure 7 replicates Figure 5 for the alternative em-

ployment path with more effective quarantine, εS = 0.7, without and with perfect contact

tracing, εT = 0 and 1. As we can see, only a small fraction of asymptomatic individuals,

maybe a tenth, is identified and quarantined.

The reason why contact tracing has limited effects can be understood as follows. From

equation (20) the maximal measure of asymptomatic individuals that can be traced from

newly symptomatic individuals is

RATAβIA = α
S

N

σβ

(β + γA) (β + γA + φ)
βIA. (31)

Compare this inflow into the pool of traced asymptomatic individuals with the inflow into

the pool of asymptomatic individuals from new infections

α
S

N
I∗ ≈ α

S

N
[σ + (1− εQ)] IA, (32)

where the approximation is based on about equal numbers of asymptomatic and symptomatic

individuals.21 From our calibration, the scale factors in equations (31) and (32) are 0.3 and

1.3, respectively. Thus, inflows into the pool of traced asymptomatic individuals are less

than one-fourth of the inflows into the pool of asymptomatic individuals. Which explains

why contact tracing, even in the best of cases, cannot track that many infected individuals.22

5.3.3 Testing

Early on in the pandemic, daily tests covered less than 0.05 percent of the population, but

at the end of 2020, daily tests covered about 0.7 percent of the population. Within the

framework of this paper, this ten-fold increase may attain most of the gains that could be

obtained from random testing.23

20We assume that the quarantine effectiveness for traced asymptomatic and exposed individuals is the
same as for symptomatic individuals.

21We have also ignored the time delay coming from the exposed state.
22In appendix A.4, we consider alternative calibrations that increase the share and the relative infectious-

ness of asymptomatic infectious individuals. Neither alternative calibration increases the effectiveness of
contact tracing.

23We should note that throughout the pandemic, tests were predominately used for the confirmation of
symptomatic cases or suspected infections, not random testing.
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Figure 7: Contact Tracing
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Note: The blue lines represent the outcome for the alternative transmission rate and increased quarantine
effectiveness, εS = 0.70, but no contact tracing. The red lines represent the outcomes when perfectly effective
contact tracing is added, εT = 1.0. The dashed lines in panels B and C represent the traced and quarantined
asymptomatic individuals, and the solid lines represent the unidentified and not quarantined individuals.
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In Table 2, columns 6 through 8, we display end-of-year cumulative deaths for various

combinations of quarantine effectiveness and testing rate, given the alternative employment

path and a 50 percent tracing effectiveness. Relative to no random tests, Table 2, column

5, randomly testing 0.1 percent of the population every day reduces cumulative deaths by

one-fourth to one-third when quarantine effectiveness exceeds 70 percent. Increasing the

daily testing rate to 1 percent of the population does not reduce cumulative deaths much

more, but increasing the daily testing rate to 10 percent of the population cuts cumulative

deaths in half relative to no testing.

5.4 The costs and benefits of alternative policies

Cutler and Summers (2020) have calculated the net-cost of COVID-19 from impaired health

and lost lives and output at $16.1 trillion, about 90 percent of 2019 GDP. We use their

approach to calculate the benefits and costs of the alternative policies described in the pre-

vious section. We estimate the gains from increasing quarantine effectiveness to 70 percent,

combined with a 50 percent effective contact tracing scheme and a daily testing of 1 percent

of the population to be $4.9 trillion, close to a quarter of 2019 GDP. Increasing the effec-

tiveness of quarantine and contact tracing to 100 percent, if it was feasible, would result in

additional net gains of $2 trillion, another 9 percent of GDP. Almost all of the gains are

associated with reductions in loss of life and improved health outcomes of survivors.

We estimate the GDP gains from the alternative employment path assuming that labor

productivity on the alternative path is the same as on the actual path. We calculate the

GDP gain as roughly half a trillion dollars, about 2.5 percent of 2019 GDP. Our procedure

is likely to overstate the potential GDP gains from the alternative employment path since

labor productivity increased substantially in the 2020 downturn: employment losses were

concentrated in low productivity sectors, such as hospitality and leisure. As we now show,

this is unlikely to matter much since benefits from improved health outcomes far outweigh

the gains from increased GDP.

Greenstone and Nigam (2020) and Cutler and Summers (2020) use the VSL to evaluate

the benefits from reduced mortality rates. The VSL represents a person’s willingness to pay

for a reduced probability of death and is a concept used by U.S. federal agencies to evaluate

the benefits of policies. For example, the EPA uses an inflation adjusted 2020 VSL for an

adult U.S. citizen of $11.5 million (Greenstone and Nigam 2020, p. 14). I follow Cutler and

Summers (2020), who on the one hand, use a more conservative estimate of $7 million for

the VSL, but on the other hand assume that for every death there are seven survivors who

suffered severe infections, the negative health effects of which are equivalent to a 35 percent
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reduction of their VSL. The net effect of these assumptions is that a death is valued at $24

million.

Finally, the assumptions on the cost of quarantine, contact tracing, and random testing

are as follows. For quarantine, we assume that an identified infected individual is quarantined

for two weeks and gets reimbursed for lost income and expenses. The average weekly income

in the BLS Covered Employment and Wages for the first quarter of 2020 was $1,200, and

we assume that a quarantined individual receives a weekly per diem of $1,000. Thus, the

total cost per quarantined individual is $4,400.24 Cutler and Summers (2020) assume that a

contact tracing program would cost $25 billion, which we treat as a fixed cost, independent

of how many cases will be traced.25 We assume that the unit cost of a random test is $100.26

Table 3 restates the impact on cumulative deaths from alternative policies in Table 2

in terms of the benefits from improved health outcomes and the cost of attaining them.

The first thing to notice is that the output gains from the alternative employment path are

roughly one-tenth the value of the improved health outcomes for quarantine effectiveness at

70 percent or higher. Even if we did not consider permanent health damages to survivors

of severe infections and scaled back the value of a death by two-thirds, improved health

outcomes would still be twice as valuable than the gains from increased output. Second, the

costs of attaining these outcomes are about a fourth of the increased output, and they are

decreasing as quarantine effectiveness increases since the number of infected individuals who

need to be quarantined declines. Third, even though reductions of cumulative deaths from

contact tracing and random testing on top of effective quarantine are limited, the value gain

from these reductions in deaths still exceeds the gains from increased output.

6 Conclusion

I have studied the effectiveness of alternative policies to contain the spread of a pandemic

in a SEIR model that is calibrated to the characteristics of COVID-19. In particular, the

model allows for asymptomatic infectious individuals, an approach that suggests the use of

contact tracing, conditional on having an effective quarantine policy in place. When the

model’s disease transmission is matched to the 2020 U.S. experience, I find that permanent

24This cost does not include any resources used to verify that individuals indeed stay quarantined. On the
other hand, we assume that all quarantined individuals receive the payment and not just the ones in excess
of the baseline quarantine rate.

25This cost corresponds to scaled versions of the cost of contact tracing programs in South Korea and
Taiwan.

26On October 15, 2020, the Centers for Medicare and Medicaid services announced that Medicare would
reimburse high throughput COVID-19 tests at $100, https://www.cms.gov/newsroom/press-releases/cms-
changes-medicare-payment-support-faster-covid-19-diagnostic-testing.
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Table 3: Costs and Benefits of Alternative Policies

(1) (2) (3) (4) (5) (6) (7) (8)
εQ εT f

0.000 0.250 0.500 0.750 1.000 0.001 0.010 0.100

A. GDP gain from alternative employment path, $ 0.509 Trillion

B. Benefit from improved health outcome, Trillions of $s
0.500 -6.560 -6.093 -5.652 -5.236 -4.843 -3.850 -3.384 -0.409
0.600 0.290 0.594 0.872 1.127 1.362 2.668 2.863 4.049
0.700 3.332 3.505 3.662 3.807 3.941 4.986 5.068 5.616
0.800 4.790 4.906 5.013 5.112 5.203 6.004 6.051 6.388
0.900 5.657 5.744 5.824 5.899 5.967 6.595 6.627 6.860
1.000 6.237 6.306 6.369 6.427 6.481 6.985 7.008 7.178

C. Cost of improved health outcome, Trillions of $s
0.500 0.108 0.107 0.106 0.104 0.103 0.106 0.186 0.999
0.600 0.078 0.077 0.076 0.075 0.074 0.073 0.155 0.974
0.700 0.063 0.062 0.062 0.061 0.061 0.061 0.143 0.965
0.800 0.056 0.055 0.055 0.055 0.054 0.056 0.138 0.961
0.900 0.051 0.051 0.050 0.050 0.050 0.052 0.134 0.958
1.000 0.048 0.047 0.047 0.047 0.046 0.050 0.132 0.956

Note: This table displays the benefits and costs associated with the alternative policies
considered in Table 2. Panel A displays the GDP gains from the alternative employment
path, Panel B displays the benefits from reduced cumulative deaths and other COVID-19-
related health outcomes, and Panel C displays the costs associated with the quarantine,
tracing, and testing programs as described in the text.
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improvements of quarantine effectiveness, together with contact tracing and possibly random

testing, can substantially lower cumulative deaths. These policies contain fatalities, even for

an alternative employment path that avoids the sharp drop in March and April 2020.

Using standard VSL assumptions, we show that the gains from reduced fatalities could

be up to one third of GDP, an order of magnitude larger than the gains from improved

employment outcomes and the potential fiscal costs of the programs. We have not tried to

find an optimal policy, but the results from our more limited analysis suggest that if such an

analysis were to use standard VSL for fatalities, the reduction of fatalities rather than the

containment of output losses would likely be the primary objective.

We should qualify the statement on the potential gains from these policies for at least

two reasons. First, apart from the proposed changes in employment paths, we assume that

any other behavioral responses to the pandemic remain unchanged. For example, if in our

simulations, alternative policies reduce cumulative deaths, individuals are assumed not to

let down their guard and return to their previous pattern of social interaction. Second, we

have not considered the potentially large losses due to the disruptions of schooling. For

example, Fernald, Li and Ochse (2021) argue that reduced educational attainment due to

the pandemic can lower the level of GDP by up to 0.5 percentage points for the next sixty

years. If we use a one percent discount rate, that would mean a 15 percent reduction in the

present value of GDP, which is large but still only half of the potential benefits from reduced

fatalities.
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Mossong, Joël, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk,

Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, Janneke

Heijne, Malgorzata Sadkowska-Todys, Magdalena Rosinska, and W. John Edmunds,

“Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases,”

PLOS Medicine, 3 2008, 5 (3).

Parker, Kim, Julia Horowitz, and Rachel Minkin, “How the Coronavirus Outbreak Has –

and Hasn’t – Changed the Way Americans Work,” Technical Report December 2020.

Piguillem, Facundo and Liyan Shi, “Optimal COVID-19 Quarantine and Testing Policies,”

EIEF Working Papers Series 2004, Einaudi Institute for Economics and Finance (EIEF)

2020.

Wearing, Helen J., Pejman Rohani, and Matt J. Keeling, “Appropriate Models for the

Management of Infectious Diseases,” PLOS Medicine, July 2005, 2 (7).

29



A Appendix

Detailed derivations for the statistics defined in this appendix can be found in the online-only

Technical Appendix to this paper, Hornstein (2021).

A.1 Calibration

Here we define certain statistics that are used in the calibration of the model.

The probability that an exposed individual eventually becomes symptomatic is

pE→S =

∫ ∞
0

{∫ τ

0

[
φe−φs

] [
βe−β(τ−s)

] [
e−γA(τ−s)] ds} dτ,

where the first term is the probability that the individual becomes asymptomatic infectious

at s and then becomes symptomatic at τ , without recovering. This can be solved as

pE→S =
β

γA + β
. (A.1)

The average time for an exposed individual to become symptomatic, conditional on even-

tually becoming symptomatic, is

TE→S =

∫ ∞
0

τ

{∫ τ

0

[
φe−φs

] [
βe−β(τ−s)

] [
e−γA(τ−s)]

pE→S
ds

}
dτ,

where the term in curly brackets is the probability of becoming symptomatic at τ , conditional

on eventually becoming symptomatic. This can be solved as

TE→S =
1

φ
+

1

γA + β
. (25)

Note that this can be rewritten as

TE→S =
1

φ
+

β

γA + β

1

β
= TE + pA→STA→S = TE + TA,

where the first term is the average time spent being latent, and the second term is the

probability of becoming symptomatic times the average time it takes to become symptomatic

from asymptomatic.

The probabilities that an infected individual becomes symptomatic or recovers before

becoming symptomatic are

pA→S =
β

γA + β
(A.2)

pA→R =
γA

γA + β
. (26)
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The average duration of infectiousness, that is, the average time spent in states A and S

is

TAS =

∫ ∞
0

{
τ
[
γAe

−γAτ
] [
e−βτ

]
+

(
τ +

1

γS + δ

)[
e−γAτ

] [
βe−βτ

]}
dτ,

where the first term in the integral represents being asymptomatic for duration τ , followed by

a recovery, and the second term of the integral represents being asymptomatic for duration

τ , followed by being symptomatic with an average duration 1/ (γS + δ). This expression

simplifies to

TAS =
1

β + γA
+

β

β + γA

1

γS + δ
= TA + pA→STS, (27)

which is the average duration of being asymptomatic plus the average duration of being

symptomatic times the probability of becoming symptomatic.

The infection fatality rate (IFR), that is, the probability of dying when symptomatic is

pS→D =

∫ ∞
0

(
δe−δτ

)
e−γSτdτ =

δ

δ + γS
.

The probability of dying, conditional on being infected, is equal to the probability of mak-

ing the transition from asymptomatic to symptomatic times the probability of dying when

symptomatic

pE→D = pA→SpS→D =
δ

δ + γS

β

β + γA
. (28)

A.2 Reproduction rate with quarantine and contact tracing

A symptomatic individual who is not quarantined infects on average RS = α (S/N)RS

individuals until he recovers or dies, with

RS =
∫∞
0
τ
[
(e−γsτ )

(
δe−δτ

)
+ (γSe

−γsτ )
(
e−δτ

)]
dτ =

1

γS + δ
.

An asymptomatic individual who is not quarantined infects on average RA = α (S/N)RA

until she recovers or becomes symptomatic, with

RA =
∫∞
0
στ
[
(e−γAτ )

(
βe−βτ

)
+ (γAe

−γAτ )
(
e−βτ

)]
dτ = σ

1

γA + β
.

An asymptomatic individual who is quarantined with rates εQA and εQS infects on average

RAS = α (S/N)RAS until he recovers or becomes symptomatic, with

RAS (εQA, εQS) = (1− εQA)RA + (1− εQS)
β

γA + β
RS.
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Let R̄AS (εT , εQA, εQS) denote the expected infection factor for a latent individual (the indi-

vidual of interest) before knowing whether the individual will be traced

R̄AS (εT , εQA, εQS) = εTRAS (εQA, εQS) + (1− εT )RAS (0, εQS) .

Consider an individual who is latent, traced with efficiency εT , and quarantined with

rates εQA and εQS. The individual of interest may have been infected by (1) a symptomatic

individual that was not quarantined, there are (1− εQS) IS of them; (2) an asymptomatic

individual that was traced, but not quarantined, there are (1− εQA) IAT of them; and (3) an

asymptomatic individual that was not yet traced, there are IA of them. We want to calculate

the average of new infections coming from this individual until she recovers or dies.

• Case 1 and 2: Since infectious individuals are only traced at the time they become

symptomatic, the individual of interest will never be traced. Therefore, the expected

number of new infections coming from the infected individual is

RAS (0, εQS) = α (S/N)RAS (0, εQS);

• Case 3: The expected number of new infections coming from the infected individual

when the infecting individual was asymptomatic is RE = α (S/N)RE, with RE =∫ ∞
0

[
γAe

−(γA+β)τ0
]

[RAS (0, εQS)] dτ0

+

∫ ∞
0

[
βe−(γA+β)τ0

] [
e−φτ0

]
R̄AS (εT , εQA, εQS) dτ0

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [
e−(γA+β)(τ0−s)

] [
σ (τ0 − s) + R̄AS (εT , εQA, εQS)

]
ds

}
dτ0

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
γAe

−(γA+β)t
]

[σt] dt

]
ds

}
dτ0

+

∫ ∞
0

[
βe−(γA+β)τ0

]{∫ τ0

0

[
φe−φs

] [∫ τ0−s

0

[
βe−(γA+β)t

]
[σt+ (1− εQS)RS] dt

]
ds

}
,

where the five components of case 3 are

• Case 3.1: The infecting individual recovers at τ0, and the infected individual is not

traced;

• Case 3.2 through 3.5: The infecting individual becomes symptomatic at τ0, and

– Case 3.2: The infected individual never became asymptomatic;

– Case 3.3: The infected individual became asymptomatic at s and stayed so until

τ0;
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– Case 3.4: The infected individual became asymptomatic at s and recovered at

s+ t;

– Case 3.5: The infected individual became asymptomatic at s and symptomatic

at s+ t.

The probabilities for the components of case 3 are

pE1 =
γA

γA + β
,

pE2 =
β

γA + β + φ
,

pE3 =
βφ

2 (γA + β + φ) (γA + β)
,

pE4 =
1

2

βφγA

(γA + β)2
· 1

γA + β + φ
,

pE5 =
1

2

φβ2

(γA + β)2
· 1

(γA + β + φ)
.

The expected infections for the components of case 3 are

RE1 =
γA

γA + β
RAS (0, εQS) ,

RE2 =
β

γA + β + φ
R̄AS (εT , εQA, εQS) ,

RE3 =pE3

[
σ

2 (γA + β)
+ R̄AS (εT , εQA, εQS)

]
,

RE4 =
βφγAσ

4 (γA + β + φ) (γA + β)3
,

RE5 =
β

γA
[RE4 + pE4 (1− εQS)RS] ,

and

RE =
5∑
i=1

RE,i.

A newly infected individual then infects on average R = α (S/N)R individuals where

R =
[(1− εQA) IAT + (1− εQS) IS]RAS (0, εQS) + IARE

(1− εQA) IAT + (1− εQS) IS + IA
.

A.3 Traceable individuals

We consider an asymptomatic infectious individual who is quarantined once he becomes

symptomatic. For this case, we calculate the average number of exposed and infectious

asymptomatic individuals that this individual has created.
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By the time an asymptomatic individual becomes symptomatic, on average that individ-

ual has infected α (t)S(t)/N(t)RAT other individuals, where

RAT =

∫ ∞
0

(στ)
(
βe−βτ

) (
e−γAτ

)
dτ = σ

β

(β + γA)2
.

The average number of individuals that the infectious individual has infected and that are

not yet infectious at the time the individual becomes symptomatic is α (t)S(t)/N(t)RATE,

where

RATE =

∫ ∞
0

σpEE (τ)
[
βe−(β+γA)τ

]
dτ,

and the term in brackets is the probability that the infectious individual has been asymp-

tomatic for duration τ , and pEE (τ) denotes the fraction of individuals that were infected

by the infectious individual over the interval τ and that have not yet become infectious at

the time the individual becomes symptomatic. The probability that an individual that was

infected time s ago and has not yet become infectious is e−φs. Thus

pEE (τ) =

∫ τ

0

e−φsds =
1

φ

(
1− e−φτ

)
and

RATE = σ
β

(β + γA) (β + γA + φ)
. (19)

The average number of individuals who an infectious individual has infected and that are

infectious but asymptomatic at the time the individual becomes symptomatic is α (t)S(t)/N(t)RATA,

where

RATA =

∫ ∞
0

[
σ

∫ τ

0

pEA (s) ds

] [
βe−(β+γA)τ

]
dτ

and pEA (s) denotes the fraction of individuals that were infected time s ago, have become

infectious in the meantime but have not yet recovered or become symptomatic. Thus

pEA (s) =

∫ s

0

φe−φve−(γA+β)(s−v)dv =
φ

φ− γA − β
[
1− e−(φ−γA−β)s

]
and

RATA = σ
φβ

2 (β + γA)2 (β + γA + φ)
. (20)

The average number of individuals that the infectious individual has infected and that

have become symptomatic or recovered at the time the individual becomes symptomatic is

α (t)S(t)/N(t)RATR, where

RATR =

∫ ∞
0

σ

∫ τ

0

pER (s) dτ
[
βe−(β+γA)τ

]
dτ
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and pER (s) denotes the fraction of individuals that were infected time s ago and that have

recovered or become symptomatic,

pER (s) =

∫ s

0

φe−φv
[
1− e−(γA+β)(s−v)] dv

and

RATR =
σβφ

2 (β + γA)2 (β + γA + φ)
= RATA.

A.4 Robustness

In section 5.3.2, we have shown that the effectiveness of contact tracing turns out to be

limited even though the environment is consistent with a large share of asymptomatic infected

individuals. The environment was calibrated to match what is known about the spread of

COVID-19, but the uncertainty about how the disease spreads is large. We now consider

some alternative selections of parameter values and how they affect the effectiveness of

contact tracing. One would expect that contact tracing becomes relatively more effective if

there are relatively more asymptomatic infectious individuals or if asymptomatic individuals

become relatively more infectious. The following two experiments suggest that neither of

the two alternative calibrations increase the efficiency of contact tracing.

Table A1 reports results from alternative calibrations that increase the probability that

asymptomatic infectious recover before they show symptoms. The top panel replicates the

information from Table 2, columns 1 through 5, with baseline calibration pA→R = 0.4. The

next two panels increase the recovery probability to 60 and 80 percent. For each of the two

alternative calibrations we re-estimate the implied transmission rate. As we can see from

comparing the upper left-hand side cells of each panel, εQ = 0.5 and εT = 0.0, the alternative

employment path yields only slightly different cumulative deaths at the end of year for the

different calibrations. Notice that without contact tracing, increasing quarantine efficiency

has less of an impact when the share of asymptomatic infectious is larger, moving down col-

umn 1 of each panel in Table A1. Also, for any given quarantine efficiency, increasing contact

tracing efficiency has a smaller impact on end-of-year cumulative deaths as the recovery prob-

ability increases. Essentially, once an infectious individual becomes symptomatic, fewer of

the individuals who he infected are still around to be traced if asymptomatic individuals are

recovering faster.

Table A2 reports results for alternative calibrations that increase the relative infectious-

ness of asymptomatic individuals. The top panel replicates the information from Table 2,

columns 1 through 5, with baseline calibration σ = 0.6. The next two panels increase the

relative infectiousness to 80 and 100 percent. We again re-estimate the implied transmis-

sion rate for each of the two alternative calibrations. Again, the alternative employment
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Table A1: Share of Asymptomatic

(1) (2) (3) (4) (5)
εQ εT

0.000 0.250 0.500 0.750 1.000
pA→R=0.40

0.500 0.187 0.181 0.176 0.171 0.166
0.600 0.101 0.097 0.094 0.090 0.087
0.700 0.063 0.060 0.058 0.057 0.055
0.800 0.044 0.043 0.041 0.040 0.039
0.900 0.033 0.032 0.031 0.030 0.029
1.000 0.026 0.025 0.024 0.024 0.023

pA→R=0.60
0.500 0.190 0.187 0.184 0.182 0.179
0.600 0.107 0.106 0.104 0.102 0.101
0.700 0.069 0.068 0.067 0.066 0.065
0.800 0.050 0.050 0.049 0.048 0.048
0.900 0.039 0.039 0.038 0.038 0.037
1.000 0.032 0.031 0.031 0.030 0.030

pA→R=0.80
0.500 0.189 0.189 0.188 0.188 0.187
0.600 0.125 0.125 0.124 0.124 0.123
0.700 0.088 0.088 0.088 0.087 0.087
0.800 0.068 0.068 0.068 0.068 0.067
0.900 0.056 0.056 0.056 0.056 0.055
1.000 0.048 0.048 0.047 0.047 0.047

Note: Cumulative deaths at end of sample, December 31, 2020, as a percent of population
for given recovery probability of asymptomatic individuals, pA→R, its implied alternative
transmission path, and variations of quarantine efficiency, εQ, and tracing efficiency, εT ,
and no testing, f = 0. See also Table 2.
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Table A2: Infectiousness of Asymptomatic

(1) (2) (3) (4) (5)
εQ εT

0.000 0.250 0.500 0.750 1.000
σ=0.60

0.500 0.187 0.181 0.176 0.171 0.166
0.600 0.101 0.097 0.094 0.090 0.087
0.700 0.063 0.060 0.058 0.057 0.055
0.800 0.044 0.043 0.041 0.040 0.039
0.900 0.033 0.032 0.031 0.030 0.029
1.000 0.026 0.025 0.024 0.024 0.023

σ=0.80
0.500 0.188 0.180 0.173 0.166 0.159
0.600 0.109 0.103 0.098 0.094 0.090
0.700 0.070 0.067 0.064 0.061 0.059
0.800 0.050 0.048 0.046 0.044 0.042
0.900 0.039 0.037 0.035 0.034 0.033
1.000 0.031 0.029 0.028 0.027 0.026

σ=1.00
0.500 0.188 0.178 0.170 0.162 0.154
0.600 0.115 0.108 0.102 0.096 0.091
0.700 0.076 0.072 0.068 0.064 0.061
0.800 0.056 0.053 0.050 0.047 0.045
0.900 0.043 0.041 0.039 0.037 0.035
1.000 0.035 0.033 0.031 0.030 0.028

Note: Cumulative deaths at end of sample, December 31, 2020, as a percent of population
for given relative infectiousness of asymptomatic individuals, σ, its implied alternative
transmission path, and variations of quarantine efficiency, εQ, and tracing efficiency, εT ,
and no testing, f = 0. See also Table 2.

path yields slightly different end-of-year cumulative deaths for each calibration. Notice that

without contact tracing, increasing quarantine efficiency has less of an impact when the

asymptomatic are more infectious since asymptomatic individuals are not quarantined and

are relatively more infectious, moving down column 1 of each panel in Table A2. On the

other hand, for any given quarantine efficiency, increasing contact tracing efficiency now has

a larger impact on end-of-year cumulative deaths as the relative infectiousness increases.

37


	Hornstein_GSEIR_WP_20210511.pdf
	Introduction
	Related work in epidemiology
	Related work by economists using SIR-type models

	The basic SIR model
	An extended SEIR model
	Accounting for the pandemic
	Calibration
	Inferred transmission rates

	Experiments
	Measured contact rates
	Alternative employment path
	Alternative policies: quarantine, contact tracing, testing
	Quarantine
	Contact tracing
	Testing

	The costs and benefits of alternative policies

	Conclusion
	Appendix
	Calibration
	Reproduction rate with quarantine and contact tracing
	Traceable individuals
	Robustness





