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A The Data

Quarterly seasonally adjusted series for real GDP (‘GDPC1: Real Gross Domestic Product,

Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate’) are from

the U.S. Department of Commerce, Bureau of Economic Analysis. Quarterly seasonally

adjusted series for real chain-weighted investment, real chain-weighted consumption, and

the chain-weighted consumption deflator have been computed based on the data found

in Tables 1.1.6, 1.1.6B, 1.1.6C, and 1.1.6D of the National Income and Product Accounts.

Whereas consumption pertains to non-durables and services, investment has been computed

by chain-weighting the relevant series pertaining to durable goods; private investment in

structures, equipment, and residential investment; Federal national defense and non-defense

gross investment; and State and local gross investment. Inflation has been computed as

the log-difference of the personal consumption expenditures (PCE) deflator. A quarterly

seasonally adjusted series for total hours worked by all persons in the nonfarm business

sector (‘HOANBS: Nonfarm Business Sector: Hours of All Persons, Index 2009=100’) is

from the U.S. Department of Labor, Bureau of Labor Statistics.

A quarterly seasonally adjusted series for working age population (i.e., aged 15-64) has

been constructed by linking the series from Francis and Ramey (2009) and that from FRED

II, the Federal Reserve Bank of St. Louis’ internet data portal (‘LFWA64TTUSQ647S:

Working Age Population, Aged 15-64, Noninstitutional, non-armed forces Population for

the United States, Persons, Quarterly, Seasonally Adjusted’). Over the period of overlapping

the two series are identical, which justifies their linking.
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Monthly series for the Federal Funds rate (‘FEDFUNDS: Effective Federal Funds Rate,

Percent, Monthly, Not Seasonally Adjusted’) and the 5-year government bond yield (‘GS5:

5-Year Treasury Constant Maturity Rate’) are from the Board of Governors of the Federal

Reserve System. A monthly series for Wu and Xia’s ‘shadow rate’ is from Cynthia Wu’s

website, at: https://sites.google.com/view/jingcynthiawu. All monthly interest rate series

have been converted to the quarterly frequency by taking averages within the quarter.

We consider two sample periods, one excluding the Zero Lower Bound (ZLB) period,

1954Q3-2008Q4, and one including it, 1954Q3-2019Q4. We end the latter period in 2019Q4

in order to exclude the impact of COVID. As discussed in the main text of the paper, the

starting date for the two samples is dictated by the fact that the Federal Funds rate is

available since July 1954 (the 5-year goverment bond yield is available since April 1953).

B Unit Root and Cointegration Properties of the Data

B.1 Evidence from unit root tests

Table B.1 reports results from Elliot et al. (1996) unit root tests for the (log) levels of

the series for the two sample periods 1954Q3-2008Q4 and 1954Q3-2019Q4, and for three

alternative lag orders,  = 2, 4, and 6.

The null of a unit root cannot (near) uniformly be rejected for either sample for GDP,

consumption, investment, long- and short-term nominal interest rates, hours, and the PCE

deflator. On the other hand, as expected based on economic theory, it is uniformly rejected

for either sample for the spread between long- and short-term rates.

Table B.1 Bootstrapped p-values for Elliot, Rothenberg, and Stock

unit root tests

1954Q3-2008Q4 1954Q3-2019Q4

Series =2 =4 =6 =2 =4 =6

Log real GDP per capita 0.304 0.459 0.472 0.252 0.446 0.448

Log real consumption per capita 0.456 0.466 0.620 0.373 0.469 0.601

Log real investment per capita 0.344 0.255 0.171 0.235 0.172 0.110

Log total hours per capita 0.140 0.235 0.195 0.070 0.133 0.102

Long rate 0.501 0.429 0.545 0.603 0.544 0.668

Short rate 0.175 0.119 0.083 0.249 0.174 0.139

Log PCE deflator 0.233 0.104 0.150 0.993 0.977 0.936

PCE deflator inflation 0.095 0.098 0.179 0.006 0.025 0.085

Spread (long rate minus short rate) 0.000 0.000 0.000 0.000 0.001 0.000
 Based on 10,000 bootstrap replications. For details, see Appendix B.

Finally, turning to PCE deflator inflation, a unit root is strongly rejected for the period
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including the ZLB, whereas for the period 1954Q3-2008Q4 the rejection at the 10% level is

weaker, with the -value for =6 being equal to 0.179. It is to be noticed, however, that for

the full post-WWII sample period 1947Q2-2019Q4 rejection of a unit root is very strong,

with the -values equal to 0.000, 0.000, 0.002. In the paper we therefore work under the

assumption that inflation is I(0), and that, conceptually in line with Benati (2008), the

weak rejection of the null of a unit root for the period 1954Q3-2008Q4 is simply the figment

of a comparatively short sample largely dominated by the experience of the Great Inflation.

B.2 Evidence from cointegration analysis

Turning to the cointegration properties of the data, basic economic theory suggests that,

within the present context, we should expect at least three cointegration relationships:

one between the short- and the long-term nominal interest rates, and two between GDP,

consumption, and investment.

Table B.2 provides evidence that this is indeed the case. The table reports boot-

strapped p-values1 for Johansen’s trace and maximum eigenvalue tests for three bivariate

systems featuring GDP and consumption, GDP and investment, and a short- and a long-

term nominal rate. For all systems evidence of cointegration is very strong, with the largest

-value across all systems being equal to just 0.0044.

Table B.2a Bootstrapped p-values for Johansen’s cointegra-

tion tests

Trace tests:

Log real GDP per capita and

log real consumption per capita 3.0e-4

log real investment per capita 0.0021

Federal Funds rate / Wu-Xia shadow rate and 5-year

government bond yield 0.0014

Maximum

eigenvalue tests:

Log real GDP per capita and

log real consumption per capita 3.0e-4

log real investment per capita 0.0044

Federal Funds rate / Wu-Xia shadow rate and 5-year

government bond yield 0.0011
 Based on 10,000 bootstrap replications of Cavaliere et al.’s (2012)

procedure.  1948Q1-2019Q4.  1954Q3-2019Q4.

1Bootstrapping has been implemented as in Cavaliere et al. (2012). Cavaliere et al. (2012), Benati

(2015), and especially the Online Appendix of Benati et al. (2021) provide extensive Monte Carlo evidence

on the excellent performance of this bootstrapping procedure.
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Turning to the 7-variables systems, Table B.2 reports bootstrapped p-values for the

corresponding tests for the two samples.2 For the period 1954Q3-2008Q4 both the trace

and the maximum eigenvalue tests point towards three cointegration vectors, whereas for

the period 1954Q3-2019Q4 they point respectively towards four and three cointegration

vectors. Accordingly, in the paper we proceed under the assumption that in both samples

the 7-variables system features three cointegration vectors, and, as discussed there, we center

the prior for the matrix encoding the cointegration vectors around the three cointegration

relationships suggested by economic theory.

Table B.2b Bootstrapped p-values for Johansen’s cointegration

tests for the 7-variables systems

Trace tests of the null of no cointegration against

the alternative of h or more cointegration vectors:

Period h = 1 h = 2 h = 3 h = 4 h = 5

1954Q3-2008Q4 0.040 0.034 0.052 0.600

1954Q3-2019Q4 0.002 0.001 0.002 0.069 0.342

Maximum eigenvalue tests of

h versus h+1 cointegration vectors:

0 versus 1 1 versus 2 2 versus 3 3 versus 4 4 versus 5

1954Q3-2008Q4 0.142 0.057 0.030 0.782

1954Q3-2019Q4 0.066 0.014 0.009 0.349
 Based on 10,000 bootstrap replications of Cavaliere et al.’s (2012) procedure.

C The Real Business Cycle Model Used in the Monte Carlo

Exercise of Section 5.2

Here follows a detailed description of the real business cycle (RBC) model we use as data-

generation process (DGP) in the Monte Carlo exercise of Section 5. In essence, the model is

that described in Galí’s (2015) Chapter 2, augmented with habit-formation in consumption

and a unit root in technology (and therefore in the natural level of output), and featuring

the possible presence of hysteresis effects (as discussed below). Whenever possible we follow

Galí’s own notation. Households solve the following problem

∗0 ≡ Max


0

∞X
=0



"
ln( − −1)− 

1+


1 + 

#
(D.1)

subject to

 + = −1 + −  (D.2)

2Again, bootstrapping has been implemented based on Cavaliere et al.’s (2012) methodology.
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where  and  are real consumption and hours worked, respectively; 01 is the habit-

formation parameter;  is the price of consumption goods;  is the stock of nominal bonds;

 is the price, at time , of a nominal bond paying 1 dollar at time +1;  is the nominal

wage;  are nominal lump-sum taxes; and the rest of the notation is obvious. The two

first-order conditions (FOCs) are



 =






∙
1

 − −1
− 



+1 − 

¸
(D.3)

and



∙


 − −1
+1



¸
= 

∙
1 + 

+1 − 
− 



+2 − +1

¸
(D.4)

With no habit-formation (i.e., with =0) the two FOCs collapse to those found in Galí

(2015), i.e.



 =





1


and 1 = 

∙


+1+1

¸
(D.5)

As for the firms we exactly follow Galí (2015), with the only difference pertaining to the

process for technology. Firms produce output () via the production function  = 
1−
 ,

with 01 being the Cobb-Douglas parameter,  being technology, and the capital stock

being constant and normalized to 1. Maximization of profits,  −, produces the

FOC



= (1− )1−

 (D.6)

As for the logarithm of technology,  = ln(), we postulate that it evolves according to

 = −1 +  + ̃−1 (D.7)

with  ∼ (0 2), ̃ being the transitory component of output (to be discussed below),

and  ≥ 0 capturing the possible presence of hysteresis effects. If  = 0 there is no hystere-
sis, whereas if   0 positive (negative) transitory fluctuations of output cause subsequent

permanent increases (decreases) in the level of technology. This specification, which is con-

ceptually the same as the one used by Jordà et al. (2020), is designed to capture, in a very

simple and stripped-down fashion, the notion that positive (negative) deviations of GDP

from potential (here, deviations of output from its stochastic trend ) may have a posi-

tive (negative) impact on potential GDP itself. Although we could have considered more

complex formalizations of the notion of hysteresis, we chose to use (D.7) because for our

own purposes (i.e., performing Monte Carlo simulations) it is perfectly appropriate. Finally,

since there is no investment, no government expenditure, and no foreign sector,  = .

5



Since  is I(1), log-linearization of the FOCs and of the production function requires the

preliminary stationarizazion of the relevant variables. We define the stationarized variables

̃ ≡ 


and Ω̃ ≡

³




´


 (D.8)

with ̃ and ̃ being the log-deviations of ̃ and Ω̃ from the steady-state, so that ̃ is the

component of output that is driven by the transitory disturbances (discussed below). With

̃ and Ω̃ defined as in (D.8), the production function and the three FOCs can be trivially

stationarized. Then, log-linearization of the stationarized production function and of the

three stationarized FOCs produces the following four log-linear relationships characterizing

the dynamics of the economy in a neighborhood of the steady-state,

̃ − (1− ) = 0 (D.9)

̃ +  −  = 0 (D.10)

− + +1| +  +  − ̃ − +1| + ̃+1| = 0 (D.11)

 − ̃ −  +
1

(1-)(1-)

£
(1 + 2)̃ − ̃+1| − ̃−1 + ∆

¤
= 0 (D.12)

where  ∼ (0) is the log-deviation of  from the steady-state,  ≡ -−1 = ln()-

ln(−1) is inflation,  is a transitory demand disturbance, and  and  are two transitory

supply disturbances, with

 = −1 +  (D.13)

 = −1 +  (D.14)

 = −1 +  (D.15)

with  ∼ (0 2), 

 ∼ (0 2), 


 ∼ (0 2), |  |  1, and where the rest of the

notation is obvious. The logarithm of technology, , evolves according to (D.7). Monetary

policy is characterized by a standard Taylor rule with smoothing,

 = −1 + (1− ) (D.16)

where the notation is obvious. Finally, we augment the model with an additive disturbance

to the log of the production function,  ∼ (0 2), with =0.005.

By defining the state vector as

 = [  ̃  ̃∆    +1| ̃+1| +1| ̃+1|]
0 (D.17)
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and augmenting the system with the definition of the four rational expectations forecast

errors

 = |−1 +  (D.18)

̃ = ̃|−1 + 
̃
 (D.19)

 = |−1 +  (D.20)

̃ = ̃|−1 + ̃ (D.21)

the system can be put into the ‘Sims canonical form’ (see Sims, 2002) and solved.

We calibrate the structural parameters as follows: =0.99, =1/3, =0.8, =1, =0.9,

=1.5, and =0.007.
3 Of the three transitory AR(1) disturbances, two of them (

and ) are supply-side, and one () is demand-side. The AR parameters are calibrated

to ===0.75, whereas the standard deviations of the disturbances’ innovations 

 ,

 , and  (all zero-mean, and normally distributed) are set to =0.001, =0.005 and

=0.045. Based on this calibration the permanent technology shock (

 ) explains exactly

1/3 of the forecast error variance (FEV) of log GDP on impact, and with =0 it explains

slightly more than 96 percent of GDP’s FEV 15 years ahead. These figures are broadly in

line with the evidence produced by the structural VAR literature: for example, as for the

fraction of the FEV of GDP explained by permanent shocks on impact see Table I.2 of

Cochrane (1994). Further, based on these values of the structural parameters the demand-

side disturbance  is quite close to being the only driver of the transitory component of

output, so that the identifying restrictions in Table 1 of the paper are, for practical purposes,

correct. Finally, as for  in the Monte Carlo exercise we consider a grid of values, from =0

(no hysteresis) to =0.1256, for which the technology shock  and the demand-side shock

 both explain virtually half of the frequency-zero variance of output.

D Evidence Based on Stationary VARs

As mentioned in Section 3 in the main text of the paper, in spite of the results from unit

root tests, the notion that interest rates and hours per capita are I(1) may be questioned

on conceptual grounds. In this Appendix we therefore discuss evidence from stationary

Bayesian VARs for either 1 = [∆  -   

  


 ]

0 or 2 = [∆  -

   

  


 ]

0, where the notation is the same as in the main text; ∆ and∆ are
3The value for  is close to Watson’s (1986, p. 60) estimate of the standard deviation of shocks to

the stochastic trend of log real GDP (0.0057). The rationale is that, within the present context,  is the

random-walk component of log real GDP.
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the log-differences of real GDP and real consumption per capita; - is the spread between

long- and short-term nominal interest rates; and 

 is the cointegration residual between

 and . To anticipate, these results are in line with those based on cointegrated SVARs in

the main text of the paper, with hysteresis effects estimated to have been small to negligible

for the sample including the ZLB period, and possibly nil for the sample excluding it.

Before proceeding it is worth clarifying the following issue. For the reasons discussed,

e.g., by Cochrane (1994)–i.e., by the Permanent Income Hypothesis (PIH) consumption is

very close to the unit root component of GDP–in what follows we pay special attention to

the role played by H shocks in driving the long-horizon variation of consumption. Since the

cointegrated system features both  and , based on the estimated VECMs it is possible

the explore the role played by H shocks in driving long-horizon variation in both variables.

Based on the stationary VARs, on the other hand, this is not possible. In particular, based

on the VAR for 1 it is only possible to explore this issue for , since at the frequency

zero  is obtained by rescaling  via the cointegration residual 

 . This is why, within

the present context, we are compelled to consider two alternative systems for 1 and 2.

It is also a key reason why, overall, our preference goes to the evidence produced by the

cointegrated SVARs.

For either 1 or 2 we estimate the following stationary VAR

 = 0 +1−1 + +− +  (D.1)

where the notation is obvious, and  = 1, 2. We estimate the Bayesian VARs as in Uhlig

(1998, 2005). Specifically, we exactly follow Uhlig’s approach in terms of both distributional

assumptions (the distributions for the VAR’s coefficients and its covariance matrix are

postulated to belong to the Normal-Wishart family) and of priors. For estimation details

the reader is therefore referred to either the Appendix of Uhlig (1998), or to Appendix B

of Uhlig (2005).

We jointly impose the zero long-run restrictions, and the short- and long-run sign restric-

tions, based on the methodology proposed by Arias et al. (2018). We impose the short-run

sign restrictions both on impact and for the subsequent either four or eight quarters. Since

the two sets of results are qualitatively the same, in what follows we only report and discuss

those based on imposing the restrictions for eight quarters, but the alternative set of results

is available upon request. For each draw from the posterior distribution of the reduced-form

VAR we consider 100 random rotation matrices that we draw based on Arias et al.’s (2018)

algorithm. We set the number of Gibbs-sampling iterations in the algorithm to 10.
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D.1 ‘Simple’ Evidence from Stationary VARs

Figures A.10 and A.11 show the median and the 16-84 and 5-95 percentiles of the posterior

distributions of the impulse-response functions (IRFs) to BQ and H shocks, and the fractions

of forecast error variance (FEV) of the variables explained by the shocks, for the sample

including the ZLB period, and without imposing restrictions on the long-run impact of H

shocks on the price level. Figures A.12 and A.13 show results for the sample excluding the

ZLB period. Finally, Figures A.14-A.17 show the corresponding set of results obtained by

imposing restrictions on the long-run impact of H shocks on the price level. Exactly as for

the results based on the cointegrated SVARs, a common feature that uniformly pertains to

all Figures A.10-A.17 is a large extent of uncertainty.

The IRFs require little comment, since they are near-uniformly as expected (for GDP,

consumption, investment, and the price level this is obviously the product of the restrictions

that are being imposed). For example, at essentially all horizons the response of either the

short rate, or the long-short spread to either shock is uniformly insignificant at the two,

and often even at the one standard deviations level. Different from the evidence produced

by cointegrated SVARs, the response of hours is estimated to be transitory for either shock.

Focusing on the price level, the IRFs for the two samples obtained without imposing re-

strictions on the long-run impact of H shocks are in line with the corresponding evidence

produced by cointegrated SVARs. In particular,

first, for the sample including the ZLB (Figure A.10) a non-negligible mass of the pos-

terior distribution of the IRF to H shocks lies below zero. Further, at the frequency zero,

the long-run impact of H shocks on the price level is estimated to be negative for 50.9

percent of the draws. As discussed in the main text, this suggests that the data provide

some support to the notion, discussed in Section 2 (see the panel labelled as ‘Hysteresis

II’ in Figure 1), that a positive (negative) H shock may counterintuitively have a negative

(positive) long-run impact on the price level.

Second, for the sample excluding the ZLB (Figure A.12), at the 15 years horizon 69.6

percent of the draws are associated with a negative impact of H shocks on prices, whereas

at the frequency zero the corresponding fraction is equal to 85.3 percent. As discussed

in the main text, a possible interpretation is that in this sample H shocks are (virtually)

absent, and that this result is simply the figment of the fact that our identifying restrictions

impose upon the data their very existence by ‘brute force’ (see the discussion there). This

explanation is compatible with the fact that, as we show in Section 5 in the main text,

spuriously identifying hysteresis when the DGP features none by construction is, in fact,
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quite likely.

Table D.1 Fractions of frequency-zero variance of GDP and consumption

explained by H shocks (median and 16-84 and 5-95 percentiles)

Restricting the long-run impact of H shocks on the price level:

No Yes

1954Q3-2019Q4

GDP 0.325 [0.070 0.759] [0.013 0.944] 0.249 [0.038 0.740] [0.005 0.947]

consumption 0.280 [0.052 0.723] [0.011 0.929] 0.240 [0.033 0.735] [0.005 0.945]

1954Q3-2008Q4

GDP 0.140 [0.024 0.474] [0.004 0.768] 0.025 [0.003 0.116] [0.000 0.267]

consumption 0.094 [0.015 0.333] [0.002 0.624] 0.024 [0.003 0.109] [0.000 0.249]

Turning to the frequency zero, Table D.1 reports the median and the 16-84 and 5-

95 percentiles of the posterior distributions of the fractions of long-run variance of GDP

and consumption explained by H shocks. Once again, estimates are characterized by a

remarkable extent of uncertainty, which, as mentioned in the man text, is intrinsic to the

investigation we are performing. Ignoring this issue, and focusing on the median estimates,

the following facts emerge from Table D.1:

first, in line with the evidence from cointegrated SVARs, the estimates for consumption

are most of the time smaller than those for GDP. The exception is the period excluding the

ZLB period when restricting the long-run impact of H shocks on the price level, for which

the estimates for GDP and consumption are virtually identical.

Second, focusing on consumption, which by the PIH and the evidence in Cochrane (1994)

should be regarded as likely producing more reliable and informative results, evidence clearly

suggests that estimates for the sample excluding the ZLB are dramatically lower than those

for the full sample. E.g., the median estimates for the samples including and excluding the

ZLB period are equal to 0.280 and 0.094, respectively, when not imposing restrictions on the

long-run impact of H shocks on the price level, whereas they are equal to 0.240 and 0.024

when imposing such restrictions. This shows that for the sample excluding the ZLB period

hysteresis effects are very small to negligible, and they only appear when also considering

the years including the financial crisis and the Great Recession.

Third, restricting the long-run impact of H shocks on prices consistently produces smaller

estimates of the fraction of the unit root of either GDP or consumption explained by H

shocks.

Overall, the evidence produced by stationary VARs points towards a non-negligible

extent of hysteresis, equal to 24 or 28 percent of the frequency-zero variance of GDP for

10



the sample including the ZLB period. For the sample excluding the ZLB period estimates

are significantly smaller.

D.2 Evidence From the Monte Carlo-Based Approach

Figure A.18 shows the median and the 16-84 and 5-95 percentiles of the Monte Carlo dis-

tributions of the Kolgomorov-Smirnov (KS) statistics for the two samples excluding and

including the ZLB, respectively. Based on the stationary VARs featuring ∆ and ∆ we

report individual statistics for GDP and consumption, respectively, whereas we eschew in-

vestment because, by construction, its frequency-zero behavior is (up to a scale factor)

identical to that of  and , respectively. Once again, evidence is characterized by a sig-

nificant extent of uncertainty. Abstracting from this, and focusing on the median estimates,

two facts emerge from the two figures:

first, for the sample excluding the ZLB period evidence uniformly suggests that the

most likely value of the extent of hysteresis is zero. This is starkly apparent based on

consumption, which, for the reasons discussed in the main text, should be regarded as the

most reliable.

Second, for the full sample period evidence clearly points towards a non-negligible extent

of hysteresis, equal to about 10 percent of the frequency-zero variance of GDP based on the

VAR featuring ∆, and to nearly 30 percent based on the VAR featuring ∆.
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Figure A.1  Theoretical impulse-response functions for the RBC model 
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Figure A.2  Theoretical fractions of forecast error variance for the RBC model 
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Figure A.3  Monte Carlo evidence on recovering the RBC model’s true IRFs and fractions of forecast 
                error variance with no hysteresis, conditional on the correct identification scheme  
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Evidence Based on the 7-Variables 
Bayesian Cointegrated VARs 
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Figure A.4  Impulse-response functions to H and BQ shocks, based on the 
                7-variables cointegrated VAR (excluding the ZLB period) 
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Figure A.5  Fractions of forecast error variance explained by H and BQ shocks, based 
                on the 7-variables cointegrated VAR (excluding the ZLB period)  
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Figure A.6  Impulse-response functions to H and BQ shocks, based on the 7-variables  
                cointegrated VAR, imposing restrictions on the long-run impact on prices  
                (including the ZLB) 
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Figure A.7  Fractions of forecast error variance explained by H and BQ shocks, based on the 7-variables 
                cointegrated VAR, imposing restrictions on the long-run impact on prices (including the ZLB)  
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Figure A.8  Impulse-response functions to H and BQ shocks, based on the 7-variables  
                cointegrated VAR, imposing restrictions on the long-run impact on prices 
                (excluding the ZLB period) 
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Figure A.9  Fractions of forecast error variance explained by H and BQ shocks, based on the 7-variables 
                cointegrated VAR, imposing restrictions on the long-run impact on prices (excluding the 
                ZLB period) 
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Evidence Based on the 7-Variables 
Stationary Bayesian VARs 
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Figure A.10  Impulse-response functions to H and BQ shocks, based on the 7-variables 
                  stationary Bayesian VAR (including the ZLB period) 
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Figure A.11  Fractions of forecast error variance explained by H and BQ shocks, based  
                  on the 7-variables stationary Bayesian VAR (including the ZLB period) 
 
 
 
 



 36

 
 
 
 

 
 
 

 

Figure A.12  Impulse-response functions to H and BQ shocks, based on the 
                 7-variables stationary Bayesian VAR (excluding the ZLB period) 
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Figure A.13  Fractions of forecast error variance explained by H and BQ shocks, based 
                  on the 7-variables stationary Bayesian VAR (excluding the ZLB period) 
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Figure A.14  Impulse-response functions to H and BQ shocks, based on the 7-variables stationary 
                  Bayesian VAR, imposing restrictions on the long-run impact on prices (including the 
                  ZLB period) 
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Figure A.15  Fractions of forecast error variance explained by H and BQ shocks, based on the 7-variables 
                  stationary Bayesian VAR, imposing restrictions on the long-run impact on prices (including 
                  the ZLB period) 
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Figure A.16  Impulse-response functions to H and BQ shocks, based on the 7-variables stationary 
                  Bayesian VAR, imposing restrictions on the long-run impact on prices (excluding the 
                  ZLB period) 
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Figure A.17  Fractions of forecast error variance explained by H and BQ shocks, based on the 7-variables 
                  stationary Bayesian VAR, imposing restrictions on the long-run impact on prices (excluding 
                  the ZLB period) 
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Figure A.18  Median and selected percentiles of the Monte Carlo distribution of the Kolgomorov-Smirnov statistic  
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Evidence on the Convergence 
of the Markov Chain 
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Figure A.19  Evidence on the convergence of the Markov chain for the 7-variables cointegrated VAR: 
                  Geweke’s (1992) inefficiency factors of the draws for each individual parameter 
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Figure A.20  Evidence on the autocorrelation of the draws for the 5-variables stationary Bayesian 
                  VAR: Geweke’s (1992) inefficiency factors of the draws for each individual parameter 
 
 
 
 


