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1 Introduction

We introduce a model to explain three observations on the corporate bond market: (1)

the increase in customer-customer prearranged matches intermediated by dealers, for which

customers provide liquidity to other customers; (2) the decrease in measured illiquidity, even

though market participants indicate more difficulty in trading; and (3) the increase in the

importance of illiquidity for the yield spread. To explain these observations, we introduce a

search and matching models with elements of Lagos and Rocheteau (2009) and Hugonnier,

Lester, and Weill (2022). The model generates the three stated observations. Moreover, the

model implies the possibility of multiple equilibria and financial crises.

In the model, dealers face intermediation costs to facilitate trading. When the intermedi-

ation cost increases, customers accept to wait until they are matched with another customer.

The intermediation cost creates a customer-dealer and a customer-customer market. The

customer-dealer market represents inventory trade and the customer-customer market repre-

sents customer liquidity provision as described by Choi et al. (2023). In the customer-dealer

market, customers do not incur higher search costs. They are willing to pay a higher price

for immediacy. In the customer-customer market, customers might pay a smaller price for

the asset (or sell for a higher price), but they take longer to trade.

An important ingredient of the model is the ability of investors to choose to participate

in customer-dealer or customer-customer markets—in the spirit of Guerrieri et al. (2010),

agents direct their search in financial markets. An increase in dealer costs makes investors

look for other investors to trade, which represents customer liquidity provision intermediated

by dealers. For a large enough increase in dealer costs, this change in composition decreases

the aggregate bid-ask spread in equilibrium. Standard indicators of illiquidity rely on observed

transactions. Therefore, a decrease in the aggregate bid-ask spread implies an improvement

in standard indicators of liquidity. The model then generates a change in the structure of

the corporate bond market together with improvement of indicators of market illiquidity.

As the arrangement of customer-customer matches takes longer to be executed, the actual

frictions in the model increase. We use the model to propose a new measure of illiquidity.

The measure obtained from the model takes into account equilibrium prices, search frictions,

and the fraction of the market that engages in inventory trade or customer liquidity provision.
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After the 2007-2009 financial crisis, several regulations were enacted with the objective

of avoiding future financial crises. The US enacted the Dodd-Frank Wall Street Reform

and Consumer Protection Act in 2010. To some extent, the Dodd-Frank Act and similar

regulations in other countries accomplished their goal. This was highlighted by the ability

of the financial sector to resist the fluctuations caused by the recent pandemic. However,

the focus of academics, practitioners and government officials turned to how such regulations

affect the financial sector in normal times, when the economy is not under distress. There are

indications that the form in which trades take place in over-the-counter markets has changed

after the regulations were put in place. We propose amodel of trading in over-the-counter

markets to analyze these changes.1

The improvement in the traditional measures of market liquidity after the 2008 financial

crisis has been documented by Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018).

We confirm this finding with recent data for the BPW and Amihud liquidity measures (re-

spectively after Bao, Pan, and Wang 2011 and Amihud 2002). We focus on the corporate

bond market, a market for which over-the-counter trading is the usual method of trade. The

improvement in measured market liquidity could suggest that regulations had a minor im-

pact on financial market liquidity. However, we show that the impact of illiquidity on the

yield spread of corporate bonds increased. While markets seem to be more liquid, the cost

of illiquidity increased.2

In addition to the changes in the illiquidity measures, Bessembinder et al. (2018) and

Choi et al. (2023) report a decrease in dealer trade frequency. Especially, Choi et al. (2023)

indicate a change in the composition of the provision of liquidity. The provision of liquidity

has increasingly been made by customers rather than dealers. In practice, there is a perceived

movement of customers from dealers as final trade counterparties to other customers.

The model builds on Duffie, Gârleanu, and Pedersen (2005), Lagos and Rocheteau (2009)
1During a 2015 congressional hearing, for example, Rep. French Hill questioned the Federal Reserve Chair

at the time, Janet Yellen, on whether regulations were to blame for the deterioration of liquidity on different
bond markets. Yellen replied: “I am not ruling out the possibility that regulations could play a role here, it is
simply we have not been able to understand through a lot of different factors and we need to look at it more
to sort out just what is going on and what the different influences are, but I am not ruling that out.”

2We obtain similar findings on the importance of illiquidity for the yield spreads as Li and Yu (2023) and
Wu (2023), which worked in coincident and independent papers. Our empirical results are different in some
aspects (such as our focus on the BPW and Amihud measures) and they complement their findings. However,
our focus is on the model to explain the movements in the corporate bond market.
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(LR) and Hugonnier, Lester, and Weill (2022) (HLW). Depending on the parameters, it

implies LR or HLW as particular cases. Time is continuous. There is an asset that pays

dividends over time. There are two types of traders: customers and dealers. Dealers have

access to a competitive inter-dealer market where the asset is traded at an equilibrium price.

Customers trade in a decentralized way with dealers or with other customers. There are search

frictions when customers search for a trade counterparty. These search frictions are different

for finding another dealer or customer. In particular, the search friction to find a dealer is

smaller than the search friction to find another customer. Customers are heterogeneous in

the valuation of the asset.

Each asset has a stochastic maturity date and a stochastic issue opportunity. The het-

erogeneity in asset valuation implies gains to trade. Assets trade hands over time. We

characterize the stationary distribution of asset holdings as well as the equilibrium bid-ask

spreads. We then show that the empirical behavior of market illiquidity and its correlation

with yield spreads can be rationalized by the model when we interpret the Dodd-Frank act

as causing an increase in intermediation costs.

The increase in costs faced by dealers increases the equilibrium bid-ask spread of dealers.

Customers that do not have the asset but have a high valuation of it still trade with dealers.

They pay a high ask price because they want to find a trade counterparty fast. Similarly,

customers that have the asset but have a low valuation of the asset also look for dealers to

trade. They accept a lower bid price as they want to sell the asset fast. On the other hand,

customers that have intermediary valuations of the asset avoid trading with dealers. They

wait to be matched with other customers to avoid the surcharge in the form of large bid-ask

spreads. Empirically, Choi et al. (2023) find that matched customers in fact pay lower spreads.

We show that an increase in trade costs increases the number of customer-customer trades.

As a result, the measured bid-ask spread decreases as well as measured illiquidity measures.

The paper is organized as follows. Section 2 states the observations on the corporate bond

market after 2008. Section 3 describes the model. Section 4 characterizes the equilibrium and

defines a measure of illiquidity obtained from the model. Section 5 discusses the implications

of the model for the illiquidity measures and for the liquidity premium. Section 6 concludes.
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2 Changes in the corporate bond market

We call attention to three observations about the corporate bond market: (1) the increase in

the importance of trades customer-customer relative to trades customer-dealer (what we call

customer-customer trades are risk-free principal trades, as explained below); (2) the decrease

in the values of illiquidity measures; and (3) the increase in the liquidity premium. We

describe in detail these three observations below. Our goal with the model in section 3 is to

explain these observations.

2.1 Trade composition and perception of illiquidity

Our first observation is the change in the composition of trades and increased perception

of illiquidity in the corporate bond market. As documented by Choi et al. (2023), after

the regulations that followed the 2008 financial crisis, it is more common to find trades for

which customers are matched with other customers instead of trades for which dealers use

their inventory to provide liquidity. Dealers facilitate both forms of trade. However, when

customers are matched with other customers, customers provide liquidity. In this case, the

dealer does not use its inventory of bonds. It is a customer that provides liquidity to other

customers either as a seller or a buyer.

The changes in the composition of trades have been connected with the enactment of

regulations that affect depository institutions, such as banks, with access to the Federal

Reserve as a lender of last resort or to FDIC insurance (Adrian et al. 2017, Bao et al. 2018,

Choi et al. 2023; Duffie 2012 pointed out some risks of the new regulations). Especially,

the Volcker rule prohibits banks from engaging in proprietary trading, that is, trading that

uses the inventory of assets purchased earlier with the intention of profiting from a higher

sale price. The Volcker rule is part of the Dodd-Frank Wall Street Reform and Consumer

Protection Act. The Dodd-Frank act was enacted in July 2012. The Volcker rule was put

into effect in July 2015 after a period of transition. The objective of the Volcker rule is to

limit risk taking of protected institutions. However, as the rule prohibits proprietary trade, it

decreases incentives of maintaining an inventory of assets and increases incentives of finding

matches between customers for direct trades without changes in inventory.
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Choi et al. (2023) classify trades as being the result of a match customer-customer (DC-

DC), a match customer-dealer intermediated by an interdealer (DC-ID) and inventory trades.

They focus on over-the-counter trades in the corporate bond market. The classification is

made with TRACE data, using dealer identifiers, counterparty pair types, and the time

record of the trades. DC-DC and DC-ID trades have matches identified within a period of

15 minutes. Inventory trades are not matched with the opposing side, which implies that the

asset is held after the trade as inventory. Since 2011, they find an increase in the fraction of

customer-customer trades.

Customer-customer trades require a longer search and matching process for the execution

of the trade. Suppose that a customer contacts a dealer to sell a certain asset. This customer

demands liquidity. The conventional assumption would be that the dealer would buy the asset

and thus provide liquidity. Instead, especially for trades equal to or larger than 1 million

dollars, it is more frequent now that the dealer uses its relationships with other clients to

find a customer willing to purchase the asset. The second customer provides liquidity. This

process can take time. The whole search process initiated when the dealer was contacted

about the intention to sell from the first customer.

An evidence that customers indeed provide liquidity is that they are compensated for it

(Choi et al. 2023). Customers that buy the asset when the first contact was a demand for

sale pay smaller or even negative spreads. The same happens for customers that sell the

asset when the trade was initiated by a demand to buy. In the same direction, Giannetti

et al. (2023) find that bond mutual funds engage in more liquidity provision since 2015, and

that the performance of funds with strategies of liquidity provision has improved. Rapp and

Waibel (2023) show that regulatory costs are associated with the use of the client network for

the provision of liquidity. As we discuss below, the decrease in spreads charged to customers

implies a decrease in bid-ask spreads and an improvement of liquidity measures, even though

these DC-DC trades could take longer to be executed.

There is evidence that the search process can be costly. Transactions datasets such as

TRACE contain only the final outcome of successful transactions. It is then not possible

to measure the duration of the whole search process. Using data from electronic platforms,

Kargar et al. (2023) find that a substantial number of requests for quote are not promptly
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fulfilled. If the quote is not fulfilled initially, it takes on average from 2 to 3 days for a trade

to be finalized. Another indicator of the need match customers is the advent of electronic

platforms to facilitate matching between trade counterparties (Hendershott et al. 2021).

The Volcker rule does not allow proprietary trading, but allows trading to facilitate trans-

actions that were driven by customers. The law recognizes the role of dealers in the func-

tioning of markets. Dealers cannot transact in a way intended to make profits based on the

increase in the price of the asset, but they can profit from bid-ask spreads. As a result, a

change in the market structure, with customer liquidity provision more frequent, would imply

higher transaction costs for those trades that are executed with the inventory of dealers.

In fact, Choi et al. (2023) find that inventory trades have a transaction cost 60% higher

than before the financial crisis. According to the classification above, inventory trades do

not require a match of another dealer or customer to be executed. These trades are faster to

be finalized. Therefore, the higher transaction cost reflects a higher premium on immediacy

after the change in the market structure.

Early evidence that the new regulations affected markets was shown by Adrian et al.

(2017) and Bao et al. (2018). Adrian et al. found that the ability to intermediate customer

trades of affected institutions decreased. Bao et al. note that dealers affected by the Volcker

rule have been the main liquidity providers. They found that the illiquidity of bonds in time

of stressed bonds has increased after the Volcker rule. As stated above, there was an increase

in the fraction of liquidity provided by customers, but only with a more costly matching

procedure. Therefore, the increase in illiquidity during stress events can be explained by a

change in the structure of markets toward costly matching.

There is therefore evidence that the structure of the corporate bond market has changed

toward the prearrangement of trades between customers. This prearrangement is made to

save on inventory of securities. As a result, the complete trade from the first contact until

transaction becomes costly and protracted.

The changes in market structure, however, are not fully captured by standard measures of

illiquidity. These measures do not take into account the time for the arrangement of matches.

They use recorded prices at the final moment of the trade. We next discuss the behavior of

the illiquidity measures over time.

7



2.2 Illiquidity measures

Our second observation is the improvement of the illiquidity measures since 2008. This

improvement is surprising given the changes in the market structure, as discussed above.

Trade in over-the-counter markets has moved toward prearranged matching of customers

instead of a faster trade using existing dealer inventory. It is more frequent to observe the

provision of liquidity made by customers. Given that these trades take longer to be executed,

it is surprising to observe an improvement of measured illiquidity. As we argue later, the

source of the difference is the fact that these measures use observed trading records. We later

offer an alternative measure of illiquidity implied by the model in section 3.

We discuss the behavior of two measures of illiquidity: the γ measure, proposed by BPW,

and the Amihud measure, proposed by (Amihud, 2002). Figure 1 shows the evolution of the

measures over time.

The γ measure (BPW) is given by the covariance of subsequent price changes. The γi

measure for bond i is defined as

γi = −Cov(∆pit, ∆pit+1), (1)

where ∆pit = pit − pit−1 and pit is the logarithm of the clean price Pit of bond i on trade t.

The clean price is the bond price minus accrued interest since the last coupon payment. We

require a bond to have at least ten pairs of consecutive annualized-returns to estimate γi.

The objective of the measure is to extract a transitory component from observed prices.

This transitory component is interpreted as the impact of illiquidity, as efficient markets with

no trading frictions imply uncorrelated returns. Let pt = ft + ut, where ft corresponds to

a fundamental component, equal to the value of the asset with no market frictions, and ut

corresponds to the transitory component, uncorrelated with the fundamental value. If the

fundamental value ft follows a random-walk process, then (1) implies that γ depends only

on the transitory component ut.

In addition to γ, we estimate the Amihud measure (Amihud 2002). The Amihud measure
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for each bond is given by the average of absolute returns divided by the volume of trades,

AMDid = 1
Nid

Nid∑
j=1

|rij |
Vid

, (2)

where Nid is the number of available returns rij of bond i on day d, and Vid is the volume of

trade of bond i on day d in millions of dollars. We require at least two trades on each day to

estimate AMDid.

High Amihud measure means high price change per unit of volume, that is, high impact

or order flow. Liquid markets should not show large changes in price relative to volume.

Therefore, a high Amihud measure is interpreted as lack of market liquidity. Table 1 reports

the correlations between γ, Amihud and other variables.3

Table 1: Correlations between illiquidity measures and other variables

γ AMD Spread CDS Volume Frequency Maturity Age Turnover ZTD
γ 1.00
AMD .466 1.00
Spread .385 .444 1.00
CDS .290 .347 .816 1.00
Volume −.002 −.055 .040 .056 1.00
Frequency .047 .196 .146 .140 .420 1.00
Maturity .163 .149 .092 −.026 .097 −.052 1.00
Age .017 .109 .079 .056 −.202 −.001 −.075 1.00
Turnover .013 −.008 .125 .127 .588 .303 .110 −.209 1.00
ZTD −.051 −.198 −.080 −.088 −.199 −.356 .084 .016 −.034 1.00

Correlations between our main illiquidity measures, γ and AMD, and other commonly-used liquidity metrics,
the spread, and the CDS. Data description in appendix B. Spread is the corporate bond yield spread with
respect to the US Treasury with the same maturity (appendix B). Maturity is the issue’s time to maturity.
Maturity and age are calculated in years at the last business day of each month. Turnover is the traded volume
divided by the amount outstanding. ZTD is the percentage of zero-trading days.

We define a measure of aggregate market level illiquidity over time by taking the median,

mean or volume-weighted average of bond level measures in each cross-section. γ and AMD

increase when liquidity worsens. Both illiquidity measures strongly increased during the

financial crisis up until the first half of 2009. After the crisis, liquidity in the corporate bond

market gradually improved. The covid shock was large but brief and did not affect the trend.

Figure 1 show the aggregate measures for the corporate bond market γ and AMD over time.
3Additional measures of illiquidity are given, among others, by Mahanti et al. (2008) and Dick-Nielsen

et al. (2012). Mahanti et al. present a liquidity measure based on the accessibility of the issues. Dick-Nielsen
et al. introduce a measure computed by an average of different illiquidity measures.
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Figure 1: Time series of γ and AMD illiquidity measures. Periods: (1) May 2010, when the
Dodd-Frank bill passed the U.S. Senate, and the European debt crisis deepened with the
ECB announcement of the Securities Market Programme and Greece’s bailout; (2) August
2011, when the U.S. had its credit rating downgraded; and (3) December 2015, when the Fed
raised interest rates for the first time since the financial crisis.
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It is possible to identify significant events in the corporate debt market that create local

peaks in the time-series of the illiquidity measures. Two of these local peaks can be associated

with events related to credit and regulatory changes reminiscent of the financial crisis. The

first local peak can be associated with the passing of the Dodd-Frank bill by the US Senate

and the deepening of the European debt crisis around May 2010, when Greece agreed to a

bailout and the European Central Bank announced the Securities Market Programme. The

second local peak occurs around the downgrade of the US credit rating in August 2011. The

third peak in illiquidity follows the decision of the Federal Reserve in December 2015 to raise

interest rates. This increase in interest rates was the first increase after a period of 7 years

of low interest rates close to zero.

Different from the previous events, the decision of the FOMC to raise rates is not a credit

event. Its effects on corporate bond liquidity can be understood by the microstructure of

the corporate bond market. The predominance of over-the-counter trading in the corporate

bond market provides dealers with an important role in supplying liquidity. To pursue their

activity, dealers must hold inventory, thereby incurring costs and risk. The ability with

which liquidity suppliers can manage their inventories affects market liquidity (Comerton-

Forde et al. 2010). The increase in illiquidity in this period is also consistent with the

changes in liquidity provision discussed above and the funding liquidity channel discussed in

Brunnermeier and Pedersen (2009) and in Boudt et al. (2017).

As interest rates rise, it becomes more costly and riskier for dealers to maintain corpo-

rate bonds in their inventories. Fleming and Remolona (1999) state that the release of major

macroeconomic changes by the FOMC worsens liquidity as it affects inventory controls. Chor-

dia et al. (2001) show that an increase in short term interest rate negatively impacts liquidity

because of the increase in inventory costs. Anderson and Stulz (2017) show that bond illiquid-

ity is higher around extreme VIX changes more recently than it was before the crisis. These

results indicate that an increase in interest rates should have a higher impact on illiquidity

for riskier bonds. In accordance with this view, figure 2 shows that the Fed tightening had a

higher impact on illiquidity for high yield bonds.

According to our first point, liquidity provision by dealers has been replaced by customer

liquidity provision. On the other hand, rather than a measured decrease in liquidity, the
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Figure 2: γ and AMD illiquidity measures after the 2008 financial crisis according to the
corporate bond rating. Description of the selected periods in Fig 1.
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Figure 3: Median γ (left) and median Primary Dealers monthly net positions in corporate
debt instruments (right). Primary Dealers net positions in billions of U.S. Dollars; data from
the New York Fed. Description of the selected periods in Fig 1.
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indicators or illiquidity show a declining trend. Figure 3 shows the decrease in inventories to-

gether with a decrease in the liquidity measures. The figure shows the net position of Primary

Dealers in corporate debt instruments (commercial papers, bonds, notes and debentures) and

illiquidity over time. We explain this apparent paradox with the model of section 3.

Also used as a measure of liquidity, turnover has declined after the 2008 financial crisis.

We calculate daily turnover for an individual bond by dividing the amount traded in each

day by the amount outstanding at the end of the corresponding month. We then define the

monthly turnover measure for an individual bond by the median of its daily turnover. Figure

4 shows the median turnover of all bonds as an aggregate measure (the behavior looks similar

for the mean turnover). The figure also shows the moving average of 12 months.

The turnover rate decreased consistently after August 2009. The turnover 12-month

average decreased from 13.8% in August 2009 to 7.8% in August 2017. This decline is

consistent with the decrease in inventories as discussed above. As we show later, the decline

in turnover is consistent with our results in Proposition 3, which states that an increase

in intermediation costs, such as the one induced by the Dodd-Frank regulations, leads to a

decrease in turnover.
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16

18

Turnover

Moving average (12 months)

Figure 4: Monthly turnover (mean from daily values). Turnover has decreased since 2009.
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2.3 Liquidity premium

Our third observation is the increase in the premium on illiquidity. We measure illiquidity

with monthly data on γ and AMD. We regress yield spreads on the illiquidity measures and

bond characteristics as controls such as risk (CDS), volume, and maturity. We find that

the coefficient on γ increased 5.7 times from 2007 to 2021 and that the coefficient on AMD

increased 4.6 times in the same period (table 2).4

We run a Fama-MacBeth regression (Fama and MacBeth 1973) of corporate yield spreads

on γ and AMD. In the first step, we estimate N cross-sectional regressions for each month,

where N is the number of issues. In the second step, we average the coefficients over the

T periods in the sample. The t-statistics are calculated with standard errors corrected for

serial correlation by Newey-West (Newey and West 1987). Our sample implies 115 monthly

cross-sections from a sample of 3,073 bonds and 139,168 bond-month observations, as stated

in appendix B. We estimate the coefficients for the complete period December 2007–June

2021 and the following four sub-periods: (1) the financial crisis period from December 2007

to December 2009; (2) the post-crisis period from January 2010 to November 2015; (3) the

rate normalization period from December 2015 to February 2020; and (4) the COVID-19

pandemic period from March 2020 to June 2021. Table 2 summarizes our results. As the

results with γ and AMD are consistent with each other, we focus our discussion on the

illiquidity measure γ.

We start our analysis by looking at the full sample period. Taken individually, the co-

efficients on the illiquidity measures are smaller only to the variables reflecting the issuer’s

coupon and credit quality (CDS and credit rating). The first three lines show the results

with the illiquidity measures and CDS taken individually. Illiquidity is an important element

for customers to consider in the corporate bond market.

The inclusion of controls maintains the economic and statistical significance of illiquidity.

The coefficient on AMD for the regression with all controls (line 5 of table 2) implies that an

increase of one standard deviation of the AMD of an issue increases corporate yield spreads
4Li and Yu (2023) and Wu (2023), in independent work, also find an increase in the coefficients related to

illiquidity. They use the bid-ask spread as a measure of illiquidity. Wu (2023) use monthly data, as we do. Li
and Yu (2023) uses quarterly data; they find an increase of four times of the coefficient on the bid-ask spread.
We find a larger increase in the coefficient on illiquidity using γ and AMD and monthly data.

14



Table 2: Corporate Yield Spreads on γ, AMD and controls

γ AMD CDS EqVol. Cpn IG Call Volume Freq. Maturity Age Turnover ZTD Constant Adj.R2 Obs.

Panel A: Complete Period, December 2007–June 2021
.429 1.41 .181 196, 345

[11.01] [7.86]
.278 1.37 .149 196, 345

[9.58] [8.09]
.787 .664 .646 196, 345

[32.11] [8.32]
.143 .535 .548 .175 −.851 −.042 −.467 .423 .010 .004 .010 .370 .297 .791 196, 345

[9.61] [20.38] [9.12] [11.93] [−9.20] [−1.82] [−4.39] [8.68] [2.01] [.70] [5.73] [6.40] [3.04]
.098 .537 .579 .179 −.862 −.058 −.410 .281 .015 −.005 .012 .603 .237 .792 196, 345

[8.70] [19.59] [9.71] [11.33] [−9.26] [−2.11] [−3.96] [6.12] [2.39] [−1.05] [6.79] [6.66] [2.49]

Panel B: Crisis, December 2007–December 2009
.151 3.33 .085 16, 687

[4.56] [6.19]
.102 3.28 .052 16, 687

[3.96] [7.58]
.935 1.48 .744 16, 687

[20.33] [5.75]
.042 .758 .877 .290 −1.32 −.188 −.295 .009 −.046 .058 .009 .720 .638 .791 16, 687

[4.37] [16.19] [5.86] [4.97] [−3.07] [−2.16] [−1.02] [.18] [−3.13] [3.09] [1.84] [3.74] [1.28]
.036 .764 .876 .300 −1.32 −.233 −.196 −.062 −.048 .045 .010 1.28 .544 .792 16, 687

[3.62] [10.42] [6.26] [5.77] [−3.89] [−2.42] [−.56] [−1.60] [−2.88] [4.27] [3.06] [3.56] [1.40]

Panel C: Post-Crisis, January 2010–November 2015
.327 1.20 .169 90, 727

[10.37] [18.13]
.211 1.21 .120 90, 727

[9.85] [17.22]
.827 .446 .668 90, 727

[67.56] [18.52]
.098 .541 .392 .146 −.692 −.049 −.424 .460 .018 −.003 .008 .157 .228 .801 90, 727

[9.50] [23.55] [5.97] [16.05] [−14.86] [−2.01] [−4.51] [13.67] [7.43] [−1.81] [6.26] [3.00] [3.85]
.069 .547 .419 .148 −.709 −.065 −.411 .377 .023 −.010 .009 .317 .187 .800 90, 727

[8.64] [22.93] [6.19] [16.83] [−15.27] [−2.86] [−4.66] [14.99] [10.38] [−4.22] [8.30] [6.78] [3.12]

Panel D: Rate Normalization, December 2015–February 2020
.606 .858 .225 68, 997

[16.40] [23.32]
.368 .818 .192 68, 997

[10.20] [22.42]
.644 .592 .584 68, 997

[19.13] [25.85]
.225 .440 .569 .150 −.738 .010 −.393 .535 .026 −.011 .011 .390 .199 .776 68, 997

[13.06] [16.52] [5.63] [19.55] [−16.23] [0.97] [−1.75] [6.15] [23.51] [−8.08] [2.58] [8.58] [2.57]
.150 .432 .622 .154 −.754 .008 −.328 .326 .033 −.021 .013 .585 .132 .778 68, 997

[9.06] [16.38] [6.22] [18.94] [−16.70] [0.76] [−1.45] [3.43] [36.09] [−7.77] [3.19] [10.27] [1.74]

Individual bond yield spreads regressed on the illiquidity measures γ and AMD and other variables for dif-
ferent periods. Coefficients estimated using Fama-MacBeth and standard errors corrected by Newey-West.
T-statistics reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD
multiplied by 103. EqVol. is the annualized volatility of the issuer’s equity returns and Cpn is the issue’s
coupon. IG is 1 if the bond is Investment Grade and 0 otherwise. Call is 1 if the bond is callable and 0
otherwise. Volume is calculated as the total $ amount traded ×10−11. Frequency in thousands of trades.
Maturity and Age calculated in years at the last business day of the month. Turnover is the monthly median
of daily volume divided by amount outstanding and ZTD is the percentage of zero-trading days. Adj. R2 is
the time series average of cross-sectional adjusted-R2’s.
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Table 2: Corporate Yield Spreads on γ, AMD and controls (continued)

γ AMD CDS EqVol. Cpn IG Call Volume Freq. Maturity Age Turnover ZTD Constant Adj.R2 Obs.

Panel E: COVID-19 Pandemic, March 2020–June 2021
.748 .1.11 .242 19,934

[11.38] [5.18]
.566 .878 .293 19,934

[13.53] [5.49]
.832 .592 .591 19,934

[14.88] [4.22]
.239 .463 .658 .208 −1.19 .049 −1.17 .544 .015 −.003 .021 .708 .383 .799 19,934

[8.62] [6.10] [5.49] [8.47] [−10.97] [1.30] [−5.50] [4.53] [2.65] [−.45] [6.75] [4.03] [5.50]
.165 .474 .686 .203 −1.16 .038 −.999 .246 .020 −.010 .022 .870 .315 .801 19,934

[4.54] [4.99] [5.32] [7.82] [−9.49] [.89] [−4.58] [2.29] [4.99] [−1.82] [8.00] [5.22] [3.66]

Individual bond yield spreads regressed on the illiquidity measures γ and AMD and other variables for dif-
ferent periods. Coefficients estimated using Fama-MacBeth and standard errors corrected by Newey-West.
T-statistics reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD
multiplied by 103. EqVol. is the annualized volatility of the issuer’s equity returns and Cpn is the issue’s
coupon. IG is 1 if the bond is Investment Grade and 0 otherwise. Call is 1 if the bond is callable and 0
otherwise. Volume is calculated as the total $ amount traded ×10−11. Frequency in thousands of trades.
Maturity and Age calculated in years at the last business day of the month. Turnover is the monthly median
of daily volume divided by amount outstanding and ZTD is the percentage of zero-trading days. Adj. R2 is
the time series average of cross-sectional adjusted-R2’s.

28 basis points. This increase is equivalent to 13% of the average yield spread. The results

are even more substantial for γ. An increase of one standard deviation in the γ of an issue is

associated with an increase in the yield spread of 40 basis points. This increase corresponds

to 18% of the average yield spread.5

Turnover also shows a robust, positive coefficient, contrasting with that of volume. In

some sense this result is intriguing given that volume is an element of the turnover and that

the two measures, as a result, have a strong correlation. As shown in table 1, volume and

turnover have a correlation of 0.727. One explanation, which is consistent with our model,

is that turnover better captures search frictions since trade volume can increase artificially

with the amount of bonds outstanding while turnover corrects for such changes.

Credit risk, captured by the CDS spread, is the most relevant pricing factor of corporate

spreads. An increase of 100 basis points to an issuer’s CDS is associated with an increase

in yield spreads of 59 basis points. The credit quality of an issuer is not exclusively priced

by its CDS. The credit rating also plays an important role in the pricing of yield spreads.

Investment grade bonds have spreads substantially lower, by 85 basis points, than their lower
5We consider the one standard deviation change to be the time series average of cross-sectional standard

deviations within each interval. According to table 3, for the complete period, one standard deviation of γ
corresponds to 3.931. Similarly, we consider the average yield spread to be the time series mean of cross-
sectional averages within that period. These and other metrics are detailed in table 3.
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grade peers.6

Among the additional controls, trade frequency, in particular, yields a positive coefficient.

That is, bonds that trade more frequently have on average higher spreads. In contrast, volume

traded has a negative slope. These results combined indicate that bonds with larger average

size per trade have on average tighter spreads.7

We now analyze yield spreads and illiquidity over time. As shown in table 2, the coefficient

on illiquidity has been increasing over time. So, although the illiquidity measures have been

decreasing over time, their importance on the credit spread has been increasing. We relate

this observation to the changes in regulations with the Dodd-Frank act. Illiquidity is most

relevant both in its ability to explain the variation of yield spreads and in its contribution to

basis points in relative terms.

The explanatory power of illiquidity is larger for later periods. In terms of absolute

basis points, a one standard deviation increase to an issue’s illiquidity is associated with an

increase of about 30 basis points to yield spreads during the monetary tightening period.

This value compares to 50 basis-points during the financial crisis and 18 basis-points during

the post-crisis period.

Although the impact of a one standard deviation increase in illiquidity is smaller in

absolute terms after the rate normalization (30 versus 50 basis points during the financial

crisis), the impact is higher in relative terms. The higher impact in relative terms occurs

because the corporate yield spreads decreased during the period. A one standard deviation

increase in bond illiquidity is associated with an increase in the average yield spread of 12%

during the financial crisis and 11% in the post-crisis periods. After the normalization, an

increase of one standard deviation in bond illiquidity is associated with an increase in the

average yield spread of 18%.
6See, for example, Forte and Pena (2009) for the role of CDS for corporate bonds.
7In the same direction, Chordia et al. (2000) find a positive correlation between spreads and the number

of individual transactions, and a negative correlation between spreads and individual volume.
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3 Model

3.1 Environment

Our model describes over-the-counter markets as an economy in which agents take decisions

under search frictions. It builds on the literature initiated by Duffie et al. (2005).

Agents, time, goods and assets There are two types of agents in the economy: a

measure one of infinitely-lived customers and a measure one of infinitely-lived dealers. Time

is continuous and infinite. All agents discount the future at rate r > 0, and have access to a

transferable utility technology. There is an endogenous supply s ≥ 0 of assets. A unit of the

asset pays a unit flow of dividend goods, which cannot be traded—that is, the agent holding

an asset consumes its dividend good. Customers can hold either zero or one unit of the asset,

and dealers do not hold assets. We refer to customers holding an asset as owners, and to

those not holding an asset as non-owners.

Preferences Customers are heterogeneous in the utility ν that they derive from consuming

the dividend flow of the asset. We refer to ν as the customer utility type. Types are fixed

over time, common knowledge, independent across customers, and initially drawn from the

cumulative distribution F . The distribution F has support R, and a continuous density

f(·) > 0. Moreover, we assume that
∫

ν2f(ν)dν < ∞ and that there is no free disposal of

assets. The assumption that the distribution of types has unbounded support is convenient

because we do not have to consider corner solutions. However, we can obtain our main

results also with a bounded support [
¯
ν, ν̄] if we assume that the density is sufficient low at

the extremes. Similarly, the assumption of no free disposal can be replace with the assumption

that the measure of agents with ν < 0 is sufficiently low.

Decentralized market There is a decentralized asset market in the style of Duffie et al.

(2005), where trade occurs in one of two ways: customers can chose to search for a dealer,

as in LR, or to search for another customer, as in HLW. Customers cannot search for both

simultaneously. The contact rate is λD when searching for a dealer, and λC/2 > 0 when

searching for another customer. Hence, customers searching for a dealer will meet one at
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rate λD, whereas those searching for another customer will meet one at rate λC (with arrival

rate λC/2 > 0, the customer finds another customer, and with arrival rate λC/2 > 0 another

customer finds him). Customers searching for other customers do not meet a customer

searching for dealers. We refer to trades between customers without dealer intermediation as

CC trades, and trades intermediated by dealers as DC trades.

The inter-dealer market Dealers have access to a competitive inter-dealer market where

assets are traded at an endogenous price p. When a dealer meets a customer, the dealer

bargains over the possible gains from trade coming from either buying an asset from the

customer, and reselling it at price p, or buying it at the price p, and selling it to the customer.

However, there is an intermediation cost τ ≥ 0 that has to be paid by the dealer if the dealer

buys or sells that asset, even if the asset only stays in the balance sheet for an infinitesimal

amount of time. As a result, the net price by which the dealer sells an asset is p − τ , and the

net price by which the dealer buys an asset is p + τ .

Bargaining Customers trade with dealers using a Nash bargaining protocol where the

bargaining power of the customer is θD ∈ [0, 1], and customers trade with other customers

using a Nash bargaining protocol where the bargaining power of the non-owner is θn
C ∈ [0, 1],

and the bargaining power of the asset owner is θo
C = 1 − θn

C .

We assume the following relation between search and bargaining parameters:

Assumption 1. λDθD > max{λCθo
C , λCθn

C}.

Assumption 1 guarantees that customers are better off searching for dealers than searching

for other customers when the intermediation cost τ is equal to zero. That is, in the absence

of intermediation costs, the dealers have a superior technology for trade.

Asset supply Assets mature and customers produce new assets following two Poisson

distributions. With Poisson arrival rate µ > 0, the asset matures. Which means that the

asset disappears from the economy. With Poisson arrival rate η > 0, a customer can issue a

new asset at no cost. Similar to Bethune et al. (2022), the existence of asset maturity and

issuance implies that a steady state with positive trade emerges even without time-varying
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types. Adding time-varying types in our model is not as straightforward as it would be in

their model, however, and we discuss this later in the paper.

3.2 Value functions and reservation value

We now describe how agents evaluate future payoffs and assets. We focus on steady-state

equilibria and omit time subscripts. Let Φo(ν) and Φn(ν) denote the cumulative distribution

of owners and non-owners. Since each owner holds exactly one unit of the asset, the measure

of assets is s =
∫

dΦo. Let {Ωo
D, Ωo

C} and {Ωn
D, Ωn

C} be two partitions of R. The set Ωo
D

represents the owners that search for dealers and Ωo
C represents the set of owners that search

for non-owners. Analogously, Ωn
D represents the set of non-owners that search for dealers and

Ωn
C represents the set of non-owners that search for owners. We denote the search partitions

of customers by P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C}, and assume that customers of the same type make

the same search decisions.

Denote the value functions of owners and non-owners searching for a dealer by V o
D(ν)

and V n
D(ν) and the value functions of owners and non-owners searching for other customers

by V o
C(ν) and V n

C (ν). The value function of customers is the maximum between the search-

ing choices. That is, V o(ν) = max{V o
D(ν), V o

C(ν)} and V n(ν) = max{V n
D(ν), V n

C (ν)}. The

reservation value of a customer, ∆(ν), is the compensation that makes a customer indifferent

between holding and not holding an asset. That is, ∆(ν) = V o(ν) − V n(ν).

Searching for dealers The value function of an owner of type ν searching for dealers is

rV o
D(ν) = ν − µ∆(ν) + λDθD max{(p − τ) − ∆(ν), 0}. (3)

The first term of the value function, ν, is the utility flow of holding the asset. The second

term, −µ∆(ν), is the loss of the reservation value due to asset maturity. The third term,

λDθD max{(p− τ)−∆(ν), 0}, is the profit of an owner when meeting a dealer. When trading

with a dealer, an owner sells the asset if the inter-dealer price for the asset minus the inter-

mediation cost cost τ is larger than the reservation value of the owner. If the owner sells the

asset, the gains from trade are (p − τ) − ∆(ν) and the owner keeps a share θD of it. If the

owner does not sell the asset, the gains from trade are zero.
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The value function of a non-owner of type ν searching for dealers is

rV n
D(ν) = η∆(ν) + λDθD max{∆(ν) − (p + τ), 0}. (4)

The first term of the value function, η∆(ν), is the gain of the reservation value obtained

from an issuance opportunity. The second term, λDθD max{∆(ν) − (p + τ), 0}, is the profit

of an non-owner when meeting a dealer. An non-owner buys an asset from a dealer if the

inter-dealer asset price plus the intermediation cost is smaller than the reservation value of

the non-owner. If the non-owner buys the asset, the gains from trade are ∆(ν) − (p + τ) and

the non-owner keeps a share θD of it. If the non-owner does not buy the asset, the gains from

trade are zero.

Searching for customers The value function of an owner of type ν searching for a non-

owner is

rV o
C(ν) = ν − µ∆(ν) + λCθo

C

∫
Ωn

C

[∆(ν̃) − ∆(ν)]1{∆(ν̃)>∆(ν)}dΦn(ν̃). (5)

The first term of the value function, ν, is the utility flow of holding the asset. The second

term, −µ∆(ν), is the loss of the reservation value because of asset maturity. The third term is

the expected profits of an owner when meeting a non-owner. When trading with a non-owner

of type ν̃, an owner of type ν sells the asset if the reservation value of his counterparty, ∆(ν̃),

is higher than the reservation value of the owner. That is, if ∆(ν̃) > ∆(ν). The gains from

trade are ∆(ν̃) − ∆(ν) and the owner keeps a share θo
C of it. We obtain the expected value of

the gains from trade by integrating it in ν̃ over Ωn
C using the distribution of owners Φn(ν̃).

The value function of a non-owner of type ν searching for an owner is

rV n
C (ν) = η∆(ν) + λCθn

C

∫
Ωo

C

[∆(ν) − ∆(ν̃)]1{∆(ν)>∆(ν̃)}dΦo(ν̃). (6)

The first term of the value function, η∆(ν), is the expected gain of reservation value because

of an asset issuance. The second term is the expected profit of a non-owner when searching

for an owner. When trading with an owner of type ν̃, a non-owner of type ν buys the asset

if his reservation value, ∆(ν), is higher than the reservation value of the owner. That is, if
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∆(ν) > ∆(ν̃). The gains from trade are ∆(ν) − ∆(ν̃) and the non-owner keeps a share θn
C of

it. We obtain the expected value of the gains from trade by integrating it in ν̃ over Ωo
C using

the distribution of owners Φo(ν̃).

Value functions, reservation value and the optimal searching choice The value

functions V o and V n of a customer type ν satisfy

V o(ν) = max{V o
D(ν), V o

C(ν)} and V n(ν) = max{V n
D(ν), V n

C (ν)}, (7)

and the reservation value function satisfies

∆(ν) = V o(ν) − V n(ν). (8)

We characterize the search partition P = {Ωo
D, Ωo

C , Ωn
D, Ωn

C} in the following way. For Ωo
D,

an owner searches for a dealer if it yields higher value than searching for a non-owner. In the

same way, for Ωn
D, a non-owner searches for a dealer if it yields higher value then searching

for an owner. We have

Ωo
D = {ν ∈ R; V o

D(ν) ≥ V o
C(ν)} and Ωn

D = {ν ∈ R; V n
D(ν) ≥ V n

C (ν)}. (9)

Analogously,

Ωo
C = {ν ∈ R; V o

C(ν) > V o
D(ν)} and Ωn

C = {ν ∈ R; V n
C (ν) > V n

D(ν)}, (10)

where we assume that customers search for dealers when indifferent between searching for a

dealer or other customers, and search for other customers only when they are strictly better

off doing so than searching for dealers. For the equilibrium class that we consider, this

assumption is without loss of generality because there is a measure zero of customers that

are indifferent between the two and trade in equilibrium.
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3.3 Inter-dealer market clearing

The interdealer market clears when the measure of owners finding dealers to sell an asset is

equal to the measure of non-owners finding dealers to buy an asset. That is,

λD

∫
Ωo

D

1{∆(ν)<p−τ}dΦo(ν) = λD

∫
Ωn

D

1{∆(ν)>p+τ}dΦn(ν). (11)

The left-hand side describes the measure of owners that want to sell the asset at the inter-

dealer market price net of the intermediation cost, p − τ , and find a dealer. The right-hand

side have an analogous description for the sellers that want to buy an asset at the inter-dealer

market price added the intermediation cost, p + τ . As the search intensity parameter is the

same for potential sellers and buyers, this parameter cancels out from the formula. We will

use this equation to find the equilibrium price p∗ in this market.

3.4 The distribution of assets

The cumulative distribution of owners is given by Φo and the cumulative distribution of

non-ownersis given by Φn. The change over time of the distribution of owners Φo satisfies

Φ̇o(ν) = ηΦn(ν) − µΦo(ν)

− λD

∫ ν

−∞
1{ν̃∈Ωo

D,∆(ν̃)<p−τ}dΦo(ν̃) + λD

∫ ν

−∞
1{ν̃∈Ωn

D,∆(ν̃)>p+τ}dΦn(ν̃)

− λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ,ν̂∈Ωn
C ,∆(ν̂)>∆(ν̃)}dΦn(ν̂)dΦo(ν̃)

+ λC

∫ ν

−∞

∫ ∞

ν
1{ν̃∈Ωo

C ,ν̂∈Ωn
C ,∆(ν̃)>∆(ν̂)}dΦo(ν̂)dΦn(ν̃), (12)

where Φ̇o(ν) = 0 for all ν in an steady-state equilibrium. On the right-hand side of (12), the

first term accounts for the inflow of owners that issue an asset. The second term accounts

for the outflow of owners because of asset maturity. The third and fourth terms account for

owners searching for dealers. The third term for the outflow of owners with type below ν

searching for dealers and that sell their asset and the fourth for the inflow of non-owners with

type below ν searching for dealers and that buy an asset. The fifth and sixth terms account

for customers searching for other customers. The fifth term for the outflow of owners with

type below ν searching for other costumers, and that sell their asset to non-owners of type
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above ν. The sixth term for the inflow of non-owners with type below ν searching for other

costumers, and that buy an asset from owners of type above ν.

We will see that the last term in equation (12) will be equal to zero in equilibrium. The

reason is that, in equilibrium, the reservation value function ∆ is monotonically increasing

in the utility type ν. As a result, the measure of non-owners with type ν̃ and owners with

type ν̂ such that ∆(ν̃) > ∆(ν̂) and ν̃ < ν̂ is equal to zero.

As the measure of customers, F , is exogenous, the measures of owners and non-owners

satisfy the equilibrium condition

Φo(ν) + Φn(ν) = F (ν). (13)

All assets in the economy are held by owners. So, the stock of assets is s = Φo(∞).

3.5 Equilibrium

We define a symmetric stationary equilibrium in the following way.

Definition 1. An equilibrium is a family of value functions, reservations value, price, distri-

butions and partitions, {V o, V n, ∆, p, Φo, Φn, P} satisfying equations (3)–(13).

An equilibrium can be a complicated object. To simplify it further, let ΩC = Ωo
C = Ωn

C =

(νl, νh) and ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞). Notice that we can have Ωo
C = Ωn

C as we

have some customers of type ν holding the asset and other customers of the same type that

do not hold the asset. Define the following class of equilibrium.

Definition 2. A symmetric stationary equilibrium {V o, V n, ∆, p, Φo, Φn, P} is regular if

ΩC = Ωo
C = Ωn

C = (νl, νh) and ΩD = Ωo
D = Ωn

D = (−∞, νl] ∪ [νh, ∞) for some νl, νh ∈ R

satisfying νl ≤ νh with strict inequality if τ > 0, and the reservation value ∆ is continuous

and strictly increasing.

We use the notation {V o, V n, ∆, p, Φo, Φn, νl, νh} instead of {V o, V n, ∆, p, Φo, Φn, P} when

referring to a regular equilibrium since νl and νh characterize P. Figure 5 illustrates the

partition of a regular equilibrium.

What motivates looking for an equilibrium with the characteristics of a regular equilibrium

is the following. Customers with type close to each other, inside ΩC = (νl, νh), choose to
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ν

ΩC

Trade with other customers

... ...

ΩD

Trade with dealers

νl νh

Figure 5: Partition {ΩD, ΩC} in a regular equilibrium.

trade among themselves to avoid the cost τ that has to be paid when trading with dealers

because they do not gain much from trading to justify the cost. Customers with extreme

types, that is, outside ΩC = (νl, νh), are in a hurry to trade and they are willing to cover

higher dealer cost. These customers have very low or very high values for ν. Customers of

type ν ≤ νl that hold the asset search for dealers to sell their asset. Customers of type ν ≥ νh

that do not have the asset search for dealers to buy an asset.

We also impose that νl < νh when the intermediation cost is strictly positive, τ > 0.

The reason is that we can always build an equilibrium where customers do not search for

costumers because they expect other customers to do the same. In this case, the probability

of finding a customer is zero so customers may as well search for dealers. The assumption

that νl < νh if τ > 0 rules out equilibria built on this sort of weak inequality. In the next

section, we characterize a regular equilibrium and provide conditions that it exists.

4 Equilibrium

A regular equilibrium has two blocks. Given νl and νh, customers type ν ∈ ΩD = (−∞, νl] ∪

[νh, ∞) act as in LR. Customers type ν ∈ ΩC = (νl, νh) act as in HLW. We can solve these

two blocks separately using the tools developed in these papers.

The challenge is to characterize νl and νh that are consistent with the equilibrium equa-

tions (9) and (10). That is, to find νl and νh such that customers searching for dealers, with
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low types ν ≤ νl or high types ν ≥ νh, are not better off searching for other customers.

Analogously, that customers searching for customers, with intermediary types νl < ν < νh,

are not better off searching for dealers.

4.1 Solving the LR block

The reservation value of a type-ν customer searching for a dealer is ∆(ν) = V o
D(ν) − V n

D(ν).

The value functions, V o
D(ν) and V n

D(ν), of a type-ν customer searching for a dealer when

holding and not holding an asset are stated in equations (3) and (4). Taking the difference

between the two equations to isolate ∆(ν) yields the following lemma.

Lemma 1 (Reservation value, dealer market). Consider a regular equilibrium {V o, V n, ∆,

p, Φo, Φn, νl, νh} and the set of utility types ΩD = (−∞, νl] ∪ [νh, ∞). Then, the reservation

value ∆(ν) satisfies

∆(ν) =


σD[ν + λDθD(p − τ)], ν ≤ νl

σD[ν − λDθD(p + τ)], ν ≥ νh

(14)

where

σD = 1
r + η + µ + λDθD

. (15)

Moreover, ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ .

The derivative of the reservation value with respect to ν is given by σD. As HLW, we can

interpret σD as the local surplus at ν. It captures the trade surplus generated if the asset of

an agent type ν is transferred to an agent type ν + dν. The local surplus is independent of

ν for all ν /∈ (νl, νh). That is, because all agents that search for a dealer face the same price

after bargaining and intermediation costs, the trade surplus in this case is constant.

In addition to the interpretation above, we interpret σD as an indicator of market friction.

To see this, suppose that there are no search frictions when the agent searches for a dealer.

In the model, when λD → ∞. In this case, ∆(ν) is constant in ν at p − τ or p + τ and so

σD = 0. Higher values of σD are associated with higher search frictions. We will later find

an analogous value of search frictions for the customer-customer market.

We now turn to the distributions of owners and non-owners Φo and Φn. From Lemma 1,

owners of type ν ≤ νl always sell to dealers whereas non-owners of type ν ≥ νh always buy
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from dealers. Moreover, non-owners of type ν ≤ νl are inactive. They have a small reservation

value ∆(ν). It neither compensates for them paying the price asked by dealers nor searching

for other customers. It does not compensate searching for other customers because they

would have to find a customer with the asset and with an even smaller reservation value so

that this other customer would like to sell the asset. In the same way, owners of type ν ≥ νh

are inactive. Their high reservation value does not compensate the bid price made by dealers.

It also unlikely that this owner could find another customer with even higher reservation value

that would like to purchase the asset. So, they do not search for other customers. Therefore,

non-owners of type ν ≤ νl and owners of type ν ≥ νh are inactive.

Lemma 2 (Distributions, dealer market). A regular equilibrium {V o, V n, ∆, p, Φo, Φn, νl,

νh} is such that the cumulative distribution of owners satisfies

Φo(ν) = F (ν) − Φn(ν) = ηF (ν)
η + µ + λD

, (16)

for all ν ≤ νl, and

Φo(ν) = F (ν) − Φn(ν) = η

η + µ
− (η + λD)[1 − F (ν)]

η + µ + λD
(17)

for all ν ≥ νh. Moreover, νl and νh satisfy

ηF (νl) = µ[1 − F (νh)] and Φo(νl) + Φn(νh) = µ

η + µ
. (18)

It is useful to define ν∗ = F −1[
µ/(µ + η)

]
. When νl = νh = ν∗, all customers trade with

dealers and ν∗ is the marginal customer—customers type ν > ν∗ buy assets and customers

type ν < ν∗ sell assets. When we decrease νl below ν∗, reducing the measure of customers

that sell assets, we have also to increase νh in order to keep the market clearing in the

inter-dealer market. That is, the asset inflow into the market,

λDΦo(νl) = λD
ηF (νl)

η + µ + λD
,
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equals the asset outflow from the market,

λD[Φn(∞) − Φn(νh)] = λD

[
µ

η + µ
− Φn(νh)

]
= λD

µ[F (∞) − F (νh)]
η + µ + λD

= λD
µ[1 − F (νh)]
η + µ + λD

.

4.2 Solving the HLW block

For customers searching for other customers, the value functions and reservation values are

obtained in the following way. For the value functions, from equations (5) and (6), the value

function of a type ν ∈ ΩC customer holding an asset satisfies

rV o
C(ν) = ν − µ∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃), and (19)

rV n
C (ν) = η∆(ν) + λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃). (20)

Combined with the definition of reservation value, ∆(ν) = V o
C(ν) − V n

C (ν), given in equation

(8), the equations above imply the following lemma.

Lemma 3 (Reservation value, customer-customer market). A regular equilibrium {V o, V n,

∆, p, Φo, Φn, νl, νh} satisfies

∆(ν) = ∆(νl) +
∫ ν

νl

σC(ν̃)dν̃ (21)

for all ν ∈ (νl, νh), and

σC(ν) = 1
r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} . (22)

for almost all ν ∈ (νl, νh).

The trade surplus between a seller of type ν and buyer of type ν + dν is approximately

equal to σC(ν)dν, thus providing us with the interpretation discussed in HLW of σC(ν)dν

as the local surplus. The function σC(ν) discounts the additional utility dν by the discount

rate r, the likelihood that the asset will mature µ, the loss in the likelihood of issuing an

asset η, and the loss in option value from either meeting another buyer with higher valuation

λCθo
C

[
Φn(νh) − Φn(ν)

]
, or finding another seller with lower valuation, λθn

C

[
Φo(ν) − Φo(νl)

]
.
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We now turn to the distributions Φo, Φn among customers searching other customers.

Lemma 4 (Distributions, customer-customer market). A regular equilibrium {V o, V n, ∆, p,

Φo, Φn, νl, νh} is such that the cumulative distribution of owners satisfies

Φ̃o(ν) = F (ν) − F (νl) − Φ̃n(ν)

− µ+η+λC [F (νh)−F (ν)−sC ]
2λC

+

√
{µ+η+λC [F (νh)−F (ν)−sC ]}2+4λCη

[
F (ν)−F (νl)

]
2λC

, (23)

ν ∈ (νl, νh), where Φ̃o(ν) ≡ Φo(ν) − Φo(νl) and Φ̃n(ν) ≡ Φn(ν) − Φn(νl), and

sC ≡ Φo(νh) − Φo(νl) = η

µ + η

[
F (νh) − F (νl)

]
. (24)

Figure 6 shows a representation of the reservation value as function of the utility type

ν. Lemma 1 implies that ∆(ν) is linear for ν ≤ νl and ν ≥ νh. Moreover, ∆(νl) ≤ p − τ

and ∆(νh) ≥ p + τ . That is, owners with ν ≤ νl choose sell to dealers and non-owners with

ν ≥ νh choose to buy from dealers. Lemmas 3 and 4 imply the nonlinear shape of ∆ in

(νl, νh). Customers that trade with dealers have ν ≤ νl. Customers that trade with other

customers have ν ∈ (νl, νh).

ν

∆(ν)

νl νh

∆(νl)

∆(νh)

Figure 6: Reservation value as function of the customer type, ∆(ν). Customers that trade
with dealers have ν ≤ νl. Customers that trade with other customers have ν ∈ (νl, νh).
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4.3 Solving for νl and νh

The results in sections 4.1 and 4.2 establish necessary conditions for the equilibrium objects

V o, V n, ∆, p, Φo, Φn, s, νl and νh—that is, equations (4)–(24). In those equations, the equi-

librium objects can all be written as functions of νl and νh. In this section, we provide

necessary conditions on νl and νh and also show that these conditions, combined with equa-

tions (4)–(24), are not only necessary but also sufficient for a regular equilibria, and therefore

it provides a full characterization.

Lemma 5. A regular equilibrium {V o, V n, ∆, p, Φo, Φn, νl, νh} satisfies

2τλDθD =
∫ νh

νl

σC(ν) − σD

σD
dν. (25)

Moreover,

p = ∆(νl) + τ + λCθo
C

λDθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= ∆(νh) − τ − λCθn
C

λDθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (26)

Lemmas 2 to 5 establish necessary conditions that are satisfied in all regular equilibria.

In the proposition below, we show that these conditions are not only necessary but sufficient.

Therefore they fully characterize a regular equilibrium.

Proposition 1. If a family {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular equilibrium, the family

{∆, p, Φo, Φn, νl, νh} satisfies equations (14)–(26). Reversely, if {∆, p, Φo, Φn, νl, νh} satisfies

equations (14)–(26), then {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular equilibrium where the value

functions V o and V n are constructed using equations (3)–(7).

Proposition 1 gives us an easy way to solve for an equilibrium. Given νl and νh, we can

substitute our solutions for Φo, Φn and σC into equation (25) to write then as functions of νl

and νh. We then define the function g : (−∞, ν∗] → [ν∗, ∞) as g(νl) = F −1 [(µ − ηF (νl))/µ],

which uses the results in Lemma 2, to define implicitly νh as a function of νl. That is,

νh = g(νl). An equilibrium νl then solves

G(νl) = τ, (27)
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where G : (−∞, ν∗] → R is given by

G(νl) ≡ 1
2λDθD

∫ g(νl)

νl

σC(ν; νl, νh) − σD

σD
dν, (28)

Note that the function G satisfies G(ν∗) = 0 and G(νl) > 0 for νl sufficiently small.

After obtaining a νl that satisfies G(νl) = τ , we can then obtain all the other equilibrium

objects using equations (3)–(7) and (14)–(26). Moreover, as the first part of proposition 1

establishes sufficiency, all regular equilibrium can be obtained in this way.

An important result is that proposition 1 does not imply uniqueness. We can have

multiple equilibria because G may not be monotone. The intuition is the following. When

many customers decide to search for customers instead of for dealers, then the probability of

matching is higher and the gain of searching for customers increases. More customers search

for customers if they are convinced that others will follow this strategy. This behavior can

lead to multiple equilibria. But we can show that it only happens when intermediation costs

are sufficiently high.

Proposition 2. There exists τ̄ > 0 such that a regular equilibrium is unique for τ ∈ [0, τ̄).

Proposition 2 establishes that strategic complementarity is not strong enough to generate

multiplicity when the intermediation cost τ is close to zero. Assumption 1 implies that

searching for dealers is in general preferable than searching for customers. If τ is small

enough, no matter how many customers search for customers, it is still preferable to search

for dealers. Multiplicity only happens if τ is large enough so that the measure of customers

searching for customers affects the decision to search for dealers or for customers.

Figure 7 shows the different types of equilibria. The figure shows the results from simula-

tions with r = 0.05, µ = η = 0.3, θD = θn
C = θo

C = 0.5, λD = 3 and λC = 1. The distribution

of utility types, in panel 7a, is a combination of three normal distributions.8 Panel 7b shows

the function G and characterizes the equilibrium νl for given values of τ . The equilibrium is

unique around τ1 and τ3. For τ = τ1, the equilibrium νl is unique and approximately equal

to 4.6. For τ = τ3, it is for νl around 0.7. For τ = τ2, we have three equilibria associated

with νl approximately equal to 1.5, 2 and 2.5.
8f(ν) = 0.45N(2, 0.25) + 0.1N(5, 0.25) + 0.45N(8, 0.25).
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(a) Density of types f (b) Function G

Figure 7: Economy with different equilibrium patterns according to the intermediation cost τ .
Small customer-customer market for τ1. Large customer-customer market for τ3. Multiplicity
of equilibria for τ2.

An interpretation of G is that it is a proxy for the expected difference in valuation of an

owner with νl that wants to sell the asset and a non-owner with νh that wants buy the asset,

both using CC trades. A large difference in valuation, high G, implies that a non-owner might

need to pay a substantial amount to the owner to acquire the asset. If G is high relative to

τ , it is better to switch from CC to DC trade. A buyer might pay p + τ net of bargaining in

a DC trade, but it would still be smaller than the expected price to pay in a CC trade. This

case is such that G(νl) > τ . A switch from CC to DC implies an increase in νl and a smaller

interval (νl, νh).

G(νl) decreases with νl if the valuation of agents that engage in CC trades gets closer to

each other as νl increases. This is the case in figure 7 around τ3. Consider an increase in τ .

It would decrease the gain of DC trades. The equilibrium νl would decrease and the set of

CC trades would increase. Similarly, an increase in λC would make CC trades more effective.

It would imply a downward shift in G. For τ = τ3, it would decrease νl and increase the set

of CC trades. We can apply the same reasoning to changes around τ1.

The G function in this example, however, increases for certain values of νl as (νl, νh)

includes the higher density of utility types around 2 and 8 in the limits of the interval.

Surprisingly, an increase in τ2 would increase the equilibrium around ν∗
l = 2. The measure of

customers trading with dealers would increase with the intermediation cost τ . Similarly, an
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increase in λC , which makes CC trades more effective, would shift G downward and decrease

the set of CC trades.

These effects are related with the instability of equilibrium for νl = 2. For this equilibrium,

suppose that a small set of agents to the left of νl = 2 switch their decisions from DC trades to

CC trades. The set of agents in CC trades would increase to (νl − ϵ, ν ′
h), where ν ′

h = g(νl − ϵ).

We would then have G(νl − ϵ) < G(νl) < τ2, which implies that it is beneficial for an agent

to the left of νl − ϵ also to switch from DC to CC trades. All agents to the left would

behave in the same way, which would increase further the set of agents in CC trades, until

the equilibrium with νl around 0.7 is reached.

At τ = τ2 and νl around 1.5, the equilibrium is stable. A switch from DC to CC trades

of a small set of agents to the left of νl = 1.5 would increase G. It would be better to return

to DC trades. The same reasoning can be applied to a switch from CC to DC trades to the

right of νl = 1.5 and also to the other stable equilibrium for τ = τ2 around νl = 2.5.

A stable equilibrium is therefore associated with a region in which G is decreasing and

an unstable equilibrium with a region in which G is increasing. A small perturbation in the

set of agents in CC or DC trades in regions where G is decreasing would make agents return

to the previous decision of the counterparty. However, in regions where G is increasing, such

perturbation would make agents switch the trading counterparty permanently toward a new

equilibrium. For these reasons, when necessary to derive results, we focus on the region where

G is decreasing and so of a stable equilibrium.

4.4 A measure of illiquidity

The interpretation of σD and σC as measures of trade distortions leads to a natural definition

of a measure of illiquidity. σD and σC are the derivatives of the reservation value ∆ with

respect to ν. As discussed above, σD and σC given in (15) and (22) increase if the trade

distortions increase. If λD or λC go to infinity, which means that there are no search frictions,

then σD or σC go to zero.

A natural measure of illiquidity obtained from the model is therefore given by a weighted

average of the frictions faced by all investors in the market. That is, define a measure of
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illiquidity by

σ =
∫ ∞

−∞
σi(ν) dF (ν), (29)

where σi(ν) = σD(ν) when ν ∈ (−∞, νl] ∩ [νh, +∞) and σi(ν) = σC(ν) when ν ∈ (νl, νh).

Given the expressions of σD and σC in (15) and (22), we see that the measure of illiquidity

depends on the interest rate and characteristics of the asset (µ and η) as well as on the

measure of investors that engage in different forms of trades.

5 Turnover, illiquidity, and liquidity premium

Several indicators are used to measure illiquidity in financial markets. Here we focus on

turnover and the bid-ask spread. We also discuss the liquidity premium—that is, the com-

pensation required to induce investors to purchase an asset that is less liquid.

Turnover is defined by the ratio of the volume of assets traded over a certain period to

the amount outstanding of the asset. High turnover ratio indicates high trading activity and

is associated with liquidity. Denote turnover by T . The value of turnover implied by the

model is given by

T ≡
λD {Φo(νl) + [Φn(∞) − Φn(νh)]} + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)∫

Φo(ν) dν

=
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃) dΦo(ν)

η/(η + µ)
. (30)

The volume of assets sold by customers to dealers is λDΦo(νl) and the volume of assets

bought by customers from dealers is λD[Φn(∞) − Φn(νh)]. As market clearing implies that

λDΦo(νl) = λD[Φn(∞) − Φn(νh)], we have that the total volume of bonds traded between

customers and dealers is 2λDΦo(νl). The total volume of bonds traded between customers is

λC
∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν). Finally, the amount of bonds outstanding is s =

∫
dΦo(ν) = η

η+µ .

Another measure of liquidity is the difference between the bid and ask prices. That is,

the difference between the bid on the asset made by the dealer when the customer wants to

sell an asset and the price asked by the dealer when the customer wants to buy an asset.

In our model, we define the bid-ask price as |pbuy − psell|, where psell is the value received

by the customer when the customer sells the asset, and pbuy is the value paid by the customer
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when the customer purchases the asset. Usually, psell < pbuy.9 A common interpretation is

that the market is less liquid when |pbuy − psell| increases. We now calculate the value of

|pbuy − psell| as implied by the model, and show that this is not always the case.

In a regular equilibrium, the average price paid by customers buying from dealers is

pbuy
D =

∫ ∞
νh

[θD(p + τ) + (1 − θD)∆(ν)]dΦn(ν)
Φn(∞) − Φn(νh)

=
∫ ∞

νh

(1−θD)ν+(r+η+µ+λDθD)(p+τ)
r+η+µ+λDθD

dΦn(ν)
Φn(∞) − Φn(νh)

= p + τ +
∫ ∞

νh

(1−θD)ν
r+η+µ+λDθD

dΦn(ν)
Φn(∞) − Φn(νh)

, (31)

and the average price paid by customers buying from customers is

pbuy
C =

∫ νh
νl

∫ ν
νl

[θn
C∆(ν) + θo

C∆(ν̃)]dΦo(ν̃)dΦn(ν)∫ νh
νl

∫ ν
νl

dΦo(ν̃)dΦn(ν)
. (32)

So the average price paid by customers is

pbuy = P[buy from dealer]pbuy
D + P[buy from customer]pbuy

C

=
λD[Φn(∞) − Φn(νh)]pbuy

D + λC
∫ νh

νl

∫ ν
νl

dΦo(ν̃)dΦn(ν)pbuy
C

λD[Φn(∞) − Φn(νh)] + λC
∫ νh

νl

∫ ν
νl

dΦo(ν̃)dΦn(ν)
(33)

Similarly, the average price received by customers selling to dealers is

psell
D =

∫ νl
−∞[θD(p − τ) + (1 − θD)∆(ν)]dΦo(ν)

Φo(νl)

=
∫ νl

−∞
(1−θD)ν+(r+η+µ+λDθD)(p−τ)

r+η+µ+λDθD
dΦo(ν)

Φo(νl)
= p − τ +

∫ νl
−∞

(1−θD)ν
r+η+µ+λDθD

dΦo(ν)
Φo(νl)

, (34)

and the average price received by customers selling to customers is

psell
C =

∫ νh
νl

∫ νh
ν [θn

C∆(ν̃) + θo
C∆(ν)]dΦn(ν̃)dΦo(ν)∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν)

. (35)

9For example, if the customer sells the asset to a dealer, psell is the bid made by the dealer to buy the
asset. If the customer purchases the asset from a dealer, pbuy is the price asked by the dealer for the asset.
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So the average price received by customers selling assets is

psell = P[sell to dealer]psell
D + P[sell to customer]psell

C

=
λDΦo(νl)psell

D + λC
∫ νh

νl

∫ νh
ν dΦn(ν̃)dΦo(ν)psell

C

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
. (36)

The bid-ask spread is then given by

BA ≡ pbuy − psell = λDΦo(νl)(pbuy
D − psell

D )
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)

=
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
. (37)

The second and third equalities above are obtained using the inter-dealer market clearing

condition and the structure of the customer-customer market. The inter-dealer market clear-

ing condition implies that Φo(νl) = Φn(∞) − Φn(νh). As every asset sold by a customer is

bought by another customer in the customer-customer market, we have that psell
C = pbuy

C .

5.1 The impact of τ on turnover

In regions with a unique equilibrium, an increase in intermediation cost decreases the measure

of customers trading with dealers. As dealers under our assumptions have a more efficient

matching technology, this force tends to decrease turnover when intermediation costs increase.

We call this the dealer-efficiency impact on turnover. However, there is another force. When

an asset is intermediated by dealers, there is not a long chain of trades to allocate the asset.

The asset goes from an investor with ν ≤ νl to a dealer, then another dealer, and then to

an an investor with ν ≥ νh. In customer-to-customer trades, the asset can potentially be

allocated by a long chain of customers until it gets to an investor with very high νh and ceases

to be traded. The length of this chain tends to increase turnover when intermediation costs

increase and more investors chose customer-customer trade. We call this the customer-chain

impact on turnover.

Proposition 3. The turnover is always decreasing in τ in a neighborhood of τ = 0. Moreover,

if the search technologies satisfy λC ≤ λD ≤
√

2−1√
2 (η + µ), then the turnover is decreasing in
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τ in all regions with a unique equilibrium.

For low intermediation costs (τ close to zero), the dealer-efficiency impact on turnover

dominates the customer-chain impact. Turnover decreases when the intermediation cost

increases. In this case, the measure of investors choosing customer-customer trade is small.

It takes too long to form a chain of trades and the asset is likely to mature before it is

formed. For τ not close to zero, it is possible that the customer-chain impact on turnover

dominates the dealer-efficiency impact. For this to happen, the search technology has to

be sufficiently efficient so that assets do not mature, or possible buyers get an issuance

opportunity, before the asset is traded and the chain is formed. Formally, we show that

whenever λC ≤ λD ≤
√

2−1√
2 (η +µ) the dealer-efficiency impact dominates the customer-chain

impact on turnover.

5.2 The impact of τ on bid-ask spreads

There are two ways in which an increase in the intermediation cost of dealers, τ , impacts the

bid-ask spread: the intensive margin and the extensive margin.

On the intensive margin, customers have to compensate dealers for their costs to interme-

diate the trade. As a result, an increase in τ implies an increase in the bid-ask spread charged

by dealers. On the extensive margin, the higher bid-ask spread charged by dealers drive cus-

tomers to trade with other customers instead of trading with dealers (customer matching).

Since we assume that trading with customers is slow but has zero intermediation cost for

customers, the extensive margin reduces the average bid-ask spread.

These two forces move the bid-ask spread in opposite directions and therefore the impact

of τ on the average bid-ask spread is ambiguous. However, we find that an increase in τ

from τ = 0 implies an initial increase in the bid-ask spread, which could be interpreted as a

decrease in liquidity. The intensive margin dominates in this case. On the other hand, for

a high enough value of τ , the bid-ask spread decreases. In this case, the extensive margin

dominates. The bid-ask spread would decrease, which could be interpreted as an improvement

in liquidity.

Proposition 4. The following holds regarding the behavior of bid-ask spreads.

i. There exists τ̃ > 0 such that the bid-ask spread is increasing in τ for all τ ∈ [0, τ̃).
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ii. There exist τ0, τ1 > 0, with τ0 < τ1, and associated regular equilibria E0 and E1, such

that the bid-ask spread in E0 is strictly bigger than the bid-ask spread in E1.

Proposition 4 has two parts. Part 1 asserts that, for small intermediation costs, the bid-

ask spread has the expected behavior—a higher costs for dealers to intermediate transactions

increases the bid-ask spread in the market. Part 2 shows that, on the other hand, the bid-ask

spread is not monotone in τ . This result is illustrated in Figure 8.

The intuition for Proposition 4 is the following. When τ is not very high, most trades are

DC trades. In this case, an increase in τ increases the trading cost for most customers. This

force increases the average bid-ask spread, which is the first part of the proposition. However,

as stated in the second part of the proposition, if τ increases enough, many customers stop

trading with dealers and the bid-ask spread actually decreases. In fact, the bid-ask spread

converges to zero as τ goes to infinity.

τ

BA(τ)

0 τ1 τ2 τ3

Figure 8: An increase in the intermediation cost parameter τ1 increases the bid-ask spread.
τ2 implies multiplicity of equilibrium. An increase in τ3 implies a decrease in the bid-ask.

Figure 8 shows a possible relation between the bid-ask spread and τ . It is compatible

with the function G in figure 7b. For small values of τ , the bid-ask spread is increasing in

τ . For intermediary values of τ , there can be multiplicity of equilibrium and corresponding

multiplicity of bid-ask spreads. For large values of τ , the bid-ask spread is decreasing τ .

A decreasing bid-ask spread as the intermediation cost τ increases is a result of the higher

number of customer-customer transactions.
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5.3 The impact of τ on liquidity premium

The presence of bid-ask spreads in financial markets raises concerns about the potential for

increased customer trading costs, which could lead to lower prices or wider spreads. We refer

to the increase in prices implied by higher illiquidity as the liquidity premium.

In our model, the liquidity premium is best measured as a function of σD and σC of

customers, as discussed in section 4.4. However, these parameters are not directly observable

in practice. Instead, we employ empirical measures of illiquidity, such as those proposed by

Bao et al. (2011).

One challenge with these empirical measures is that they capture the overall bid-ask

spread in the market. As discussed in the previous section, this spread can either narrow

or widen due to a composition effect when intermediation costs increase. We show here

that increases in dealer intermediation costs can mechanically inflate or deflate the liquidity

premium due to their reliance on the bid-ask spread.

To understand this non-monotonic relationship, consider two economies, A and B, char-

acterized by identical parameters θD, λC , λD, µ, η, and r. Assume that θo
C = θn

C = θC = 1
2 ,

µ = η, τA = τ , and τB = τ + dτ , where dτ ≥ 0 is a small perturbation and ν̄A > ν̄B.

Furthermore, suppose that both economies possess a unique equilibrium, implying the exis-

tence of strictly decreasing functions GA(νl) and GB(νl) associated with economies A and

B, respectively. This uniqueness of equilibrium allows us to define the bid-ask spread as a

function of the intermediation cost, resulting in BAA = BA(τ) and BAB = BA(τ + dτ).

As discussed previously, the empirical measures of illiquidity employed in practice partially

capture the bid-ask spread. Let’s assume that the illiquidity measure is given by the following

equation:

L(τ) = L̄(τ) + αBA(τ)

where L̄(τ) represents other aspects of illiquidity that increase with intermediation costs,

implying L̄′(τ) > 0, and α > 0 determines the proportion of the bid-ask spread captured by

the illiquidity measure. Consequently, the liquidity premium can be expressed as

LP (τ) = pA(τ) − pB(τ + dτ)
L̄(τ + dτ) + BA(τ + dτ) − BA(τ) − L̄(τ)

, (38)
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where pA(τ) and pB(τ + dτ) denote equilibrium prices in economies A and B.

Proposition 5. Assume that L̄′(τ) = dL̄ > 0 and dτ > 0 is sufficiently small. Then, the

liquidity premium is non-monotone in τ . Moreover, the liquidity premium for low τ is lower

than the liquidity premium for high τ . That is, LP (0) < limτ→∞ LP (τ) = ν̄A−ν̄A

dL̄ dτ
.

Proposition 5 underscores the inherent non-monotonic relationship between liquidity pre-

mium and intermediation costs, which extends to any measure that captures bid-ask spreads.

This proposition also yields a key prediction of the model: as an economy transitions from low

to high intermediation costs, the liquidity premium tends to increase. This non-monotonic

behavior in the liquidity premium stems from its dependence on measures that capture the

bid-ask spread.

6 Conclusions

We propose a model to explain structural changes observed in the corporate bond market

since the 2008 financial crisis. It has been identified that a larger fraction of trades executed

in a way that dealers do not need to maintain asset inventory. In these trades, customers

provide liquidity to other customers. These trades happen more frequently for larger amounts.

They take longer to be executed. At the same time, standard measures of illiquidity show a

decrease in illiquidity since 2008 whereas investors require a higher illiquidity premium. The

model explains these at first sight conflicting observations.

The model combines Lagos and Rocheteau (2009) and Hugonnier, Lester, and Weill (2022).

Lagos and Rocheteau study trades between customers and dealers. Hugonnier, Lester, and

Weill study trades between customers and customers. We combine the two models two include

the decision of a customer to trade with a dealer with another costumers. Both models study

decisions on OTC markets with search frictions, as in Duffie et al. (2005).

In the model, τ represents the intermediation cost paid by dealers. We interpret the

regulations in Dodd-Frank, which include increased capital requirements, increased report-

ing requirements, and increased restrictions on trading activities, as an increase in τ . The

regulations made it more expensive for dealers to provide liquidity. We then examine the

equilibrium outcomes from the model.
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When the intermediation cost of dealers increases, customers seek liquidity from other

customers, increasing the number of customer-customer trades and decreasing the number

of customer-dealer trades. In the context of the model, the measure of customers in the

customer-customer market increases. The average bid-ask spread, which considers the final

transaction prices, decreases. However, the average trade becomes more costly. A measure of

illiquidity based on final prices would imply a decrease in illiquidity, as we find empirically.

The model allows us to propose a new measure of illiquidity. This measure takes into

account the distortions caused by the search frictions, as well as the bargaining power, number

of customers engaged in customer-customer or customer-dealer trades and other variables. An

increase in the measure of agents that engage in customer-customer trades increases the value

of this comprehensive measure of illiquidity.

The model implies the possibility of multiple equilibria and financial crises. Depending

on τ , there can be an equilibrium with a small number of customer-customer trades and an

another one with a large number of customer-customer trades. This is so because the decision

to direct search on one market or the other depends on the expected number of agents that

engage in the same activity. Both equilibria are stable. A movement from one equilibrium to

another would cause abrupt changes in the market that can be perceived as financial crises.

The 2008 financial crisis generated a strong response in financial regulations. Our results

indicate a way to connect the changes in regulations with changes in the structure of financial

markets. Especially, in the structure of a market heavily based on over-the-counter trades

such as the corporate bond market.
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A Proofs

Proof of Lemma 1

Proof. Take the difference between equations (3) and (4) to obtain

r∆(ν) = ν − µ∆(ν) − η∆(ν)

+ λDθD max{p − τ − ∆(ν), 0} − λDθD max{∆(ν) − p − τ, 0}, (39)
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which implies that

=⇒ ∆(ν) = ν + λDθD [p + τ + max{∆(ν), p − τ} − max{∆(ν), p + τ}]
r + ν + µ + λDθD

(40)

for all types ν ∈ (−∞, νl] ∪ [νh, ∞). Equation (40) is associated with a functional operator

satisfying all Blackwell’s conditions for a contraction. Then, by the contraction mapping

theorem, there is a unique function ∆ satisfying the equation (40). Also note that if τ = 0,

then the results follow directly from equation (40). So we focus on the case with τ > 0.

Since ∆ is strictly increasing and continuous, we must have that ∆(νl) ≤ p − τ . To see

this, notice first that, if p − τ < ∆(νl) < p + τ , then the customer would not trade with

a dealer because of transaction costs, as the reservation value of a potential seller is higher

than the highest bid price of a dealer, p − τ , and the reservation value of a potential buyer

is smaller than the lowest ask price of a dealer, p + τ . The last terms in equations (3) and

(4) would be zero. Therefore, searching for a dealer is equivalent to be inactive. In this case,

the customer would be better off searching for customers type ν ∈ (νl, νh) to obtain a share

of the gains from trade. This implies that νl /∈ ΩD, which is a contradiction. Implicit in this

argument is the fact that the densities of Φo and Φn are bounded away from zero in the set

(νl, νh) because of issuance and maturity (see proof of Lemma 2), and νl ̸= νh (which holds

by assumption on a regular equilibrium with τ > 0).

Moreover, if ∆(νl) ≥ p + τ , then either p − τ < ∆(ν) < p + τ for some customer type

ν ∈ ΩD or ∆(ν) ≥ p + τ for all customer type ν ∈ ΩD. The first cannot hold because again

it would imply ν /∈ ΩD. The second would be inconsistent with inter-dealer market clearing

because all customers searching for a dealer would want to buy assets as their reservation

value would be greater than or equal to the highest ask price.

Therefore, we must have ∆(νl) ≤ p − τ . An analogous argument applies for νh in the

opposite direction. That is, ∆(νh) ≥ p + τ . With ∆(νl) ≤ p − τ and ∆(νh) ≥ p + τ , we can

solve for the max relations in equation (40), which then implies equation (14). ■

Proof of Lemma 2
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Proof. First note that equation (12) implies

Φ̇o(∞) = ηΦn(∞) − µΦo(∞) (41)

as, when ν goes to infinity, both the inflow and outflow from trading goes to zero. Then,

from Φ̇o(∞) = 0 and equation (13), we have that

η[F (∞) − Φo(∞)] − µΦo(∞) = 0 ⇐⇒ Φo(∞) = η

η + µ
, (42)

which characterizes the total supply of assets s = Φo(∞), equal, by definition, to the measure

of owners. This also establishes that the measure of non-owners is given by

Φn(∞) = F (∞) − Φo(∞) = 1 − Φo(∞) =⇒ Φn(∞) = µ

η + µ
. (43)

Consider now the case ν ≤ νl. According the law of motion for Φo, given by equation

(12), we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(ν), (44)

as no customer with ν̃ ≤ ν ≤ νl will either search for other customers or purchase the asset

from a dealer. Substituting Φn(ν) = F (ν) − Φo(ν) and setting Φ̇o(ν) = 0 implies

Φo(ν) = ηF (ν)
η + µ + λD

, ν ≤ νl. (45)

Consider now the case ν ≥ νh. In this case, it is useful to work with the measure of

non-owners of type above ν, Φn(∞) − Φn(ν). Using equations (13) and (12), we have

0 = Φ̇n(∞) − Φ̇n(ν) (46)

= −η[Φn(∞) − Φn(ν)] − λD[Φn(∞) − Φn(ν)] + µ[Φo(∞) − Φo(ν)] (47)

= −η[1 − s − F (ν) + Φo(ν)] − λD[1 − s − F (ν) + Φo(ν)] + µ[s − Φo(ν)] (48)

= −(η + λD)[1 − F (ν)] + (η + µ + λD)[s − Φo(ν)] (49)

=⇒ s − Φo(ν) = (η + λD)[1 − F (ν)]
η + µ + λD

. (50)

46



As s = η
η+µ , we have

Φo(ν) = η

η + µ
− (η + λD)[1 − F (ν)]

η + µ + λD
, ν ≥ νh. (51)

Now let us show that ηF (νl) = µ[1 − F (νh)]. According to the market clearing condition

(11) and Lemma 1,

Φo(νl) =
∫ ∞

−∞
1{ν∈Ωn

D,∆(ν)>p+τ}dΦn(ν) =⇒ Φo(νl) = Φn(∞) − Φn(νh). (52)

We know that Φo(νl) = ηF (νl)
η+µ+λD

. Moreover,

Φn(∞) − Φn(νh) = F (∞) − Φo(∞) − [F (νh) − Φo(νh)]

= 1 − s −
[
F (νh) − η

η + µ
+ (η + λD)[1 − F (νh)]

η + µ + λD

]
= µ[1 − F (νh)]

η + µ + λD
. (53)

Thus, ηF (νl) = µ[1 − F (νh)]. Finally, the result that Φo(νl) = µ
η+µ − Φn(νh) comes from

equation (52) and the fact that Φn(∞) = F (∞) − Φo(∞) = 1 − η
η+µ = µ

η+µ . ■

Proof of Lemma 3

Proof. By taking the difference between equations (19) and (20), we know that the reservation

value satisfies

∆(ν) =
ν + λC

∫ νh
ν θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃) − λC
∫ ν

νl
θn

C [∆(ν) − ∆(ν̃)]dΦo(ν̃)
r + µ + η

. (54)

Moreover, because ∆ is continuous and monotone, equation (54) implies that ∆ is Lipschitz

continuous in the interval (νl, νh). To see this, note that we can rearrange equation (54) to

show that ∣∣∣∣∆(ν + t) − ∆(ν)
t

∣∣∣∣ ≤
∣∣∣∣1 + 2λC supx f(x)[∆(νh) − ∆(νl)]

r + µ + η

∣∣∣∣
for all ν and ν + t in the interval (νl, νh), where f is the density of the distribution F . Given

that ∆ is Lipschitz continuous in the interval (νl, νh), ∆ is differentiable almost everywhere

in the interval (νl, νh) and satisfies ∆(ν) = ∆(νl) +
∫ ν

νl
σC(ν̃)dν̃, where σC(ν) denote the
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derivative of ∆. Using this result, take the derivative on both sides of equation (54) to obtain

σC(ν) = 1 − λCθo
C [Φn(νh) − Φn(ν)]σC(ν) − λCθn

C [Φo(ν) − Φo(νl)]σC(ν)
r + µ + η

. (55)

We then obtain σC(ν) by rearranging the equation above. ■

Proof of Lemma 4

Proof. We have ˙̃Φo(ν) = Φ̇o(ν) − Φ̇o(νl). From equation (12), we have

˙̃Φo(ν) = ηΦ̃n(ν) − µΦ̃o(ν) − λC

∫ ν

νl

∫ νh

ν
dΦn(ν̂)dΦo(ν̃)

= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)
[
Φn(νh) − Φn(ν)

]
= ηΦ̃n(ν) − µΦ̃o(ν) − λCΦ̃o(ν)

[
F (νh) − F (ν)

]
+ λCΦ̃o(ν)

[
Φ̃o(νh) − Φ̃o(ν)

]
= η

[
F (ν) − F (νl)

]
− Φ̃o(ν)

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
− λCΦ̃o(ν)2. (56)

We can then solve the quadratic equation above with ˙̃Φo(ν) = 0 to obtain equation (23).

Equation (24) is obtained by the solution of the quadratic equation for ν = νh. ■

Proof of Lemma 5

Proof. In a regular equilibrium, customers of type νl are indifferent between searching for

dealers or customers. The reason is that equations (3)–(6) and the continuity of ∆ imply the

continuity of V o
C , V n

C , V o
D and V n

D . As a result,

rV o
C(νl) = νl − µ∆(νl) + λC

∫ νh

νl

θo
C [∆(ν) − ∆(νl)]dΦn(ν)

= νl − µ∆(νl) + λCθo
C

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν)

= νl − µ∆(νl) + λDθD[p − τ − ∆(νl)] = rV o
D(νl). (57)

Which implies that

p = ∆(νl) + τ + λCθo
C

λDθD

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (58)
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And similarly,

rV n
C (νh) = η∆(νh) + λC

∫ νh

νl

θn
C [∆(νh) − ∆(ν)]dΦo(ν)

= η∆(νh) + λCθn
C

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν)

= η∆(νh) + λDθD[∆(νh) − p − τ ] = rV n
D(νh). (59)

Which implies that

p = ∆(νh) − τ − λCθn
C

λDθD

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν). (60)

Equalizing the above two price equations and using lemma 3 we obtain

2τλDθD = λDθD

∫ νh

νl

σC(ν)dν

− λCθn
C

∫ νh

νl

∫ νh

ν
σC(ν̃)dν̃dΦo(ν) − λCθo

C

∫ νh

νl

∫ ν

νl

σC(ν̃)dν̃dΦn(ν). (61)

Applying integration by parts in the last two terms we obtain

2τλDθD = λDθD

∫ νh

νl

σC(ν)dν

− λC

∫ νh

νl

{
θn

C

[
Φo(ν) − Φo(νl)

]
+ θo

C

[
Φn(νh) − Φn(ν)

]}
σC(ν)dν. (62)

From the definition of σC(ν), we have λC{θo
C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]
} =

1
σC(ν) − (r + µ + η). Substituting above and rearranging implies

2τλDθD =
∫ νh

νl

[(r + µ + η + λDθD)σC(ν) − 1]dν. (63)

As r + µ + η + λDθD = 1/σD, we obtain

2τλDθD =
∫ νh

νl

σC(ν) − σD

σD
dν. (64)

This concludes the proof. ■
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Proof of Proposition 1

Proof. The necessity of equations (14)–(26) are established in Lemmas 2–5. So let us fo-

cus on the sufficiency. Consider a family {∆, p, Φo, Φn, νl, νh} satisfying equations (14)–

(26) and value functions V o and V n constructed using equations (3)–(7) given the family

{∆, p, Φo, Φn, νl, νh}. Let us show that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is a regular

equilibrium—that is, it satisfies equations (3)–(13) and definition 2.

Equations (3)–(7): These equations are satisfied by the construction of V o and V n.

Equations (9)–(10): First let us show that V o
D(ν) ≥ V o

C(ν) for all ν ≤ νl.

V o
D(ν) ≥ V o

C(ν) ⇐⇒ λDθD[(p − τ) − ∆(ν)] ≥ λCθo
C

∫ νh

νl

[∆(ν̃) − ∆(ν)]dΦn(ν̃)

⇐⇒ (p − τ) − ∆(ν) ≥ λCθo
C

λDθD

∫ νh

νl

[∆(ν̃) − ∆(νl)]dΦn(ν̃)

+ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].

From equation (26) we know that λCθo
C

λDθD

∫ νh

νl
[∆(ν̃) − ∆(νl)]dΦn(ν̃) = (p − τ) − ∆(νl), therefore

V o
D(ν) ≥ V o

C(ν) ⇐⇒ ∆(νl) − ∆(ν) ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][∆(νl) − ∆(ν)].

Assumption 1 implies that λCθo
C

λDθD
∈ (0, 1). From the equations (16) and (17) we have that

Φn(νh) − Φn(νl) = µ[F (νh)−F (νl)]
η+µ ∈ [0, 1). Using equation (14) in Lemma 1, we have that

V o
D(ν) ≥ V o

C(ν) ⇐⇒ νl − ν ≥ λCθo
C

λDθD
[Φn(νh) − Φn(νl)][νl − ν].

We can then see that V o
D(ν) ≥ V o

C(ν) holds. Moreover, it holds with strictly inequality for all

ν < νl. The proofs that V n
D(ν) ≥ V n

C (ν) for all ν ≤ νl; V o
D(ν) ≤ V o

C(ν) for all ν ∈ (νl, νh); and

V n
D(ν) ≤ V n

C (ν) for all ν ∈ (νl, νh) are analogous.
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Equation (8): Let us start with ν ≤ νl. In this case we have that V o(ν) = V o
D(ν) and

V n(ν) = V n
D(ν) based on equation (9). Then, from equations (3) and (4) we have that

V o(ν) − V n(ν) = ν + λDθD(p − τ) − (η + µ + λDθD)∆(ν)
r

= (r + η + µ + λDθD)∆(ν) − (η + µ + λDθD)∆(ν)
r

= ∆(ν).

The result for ν ≥ νh is analogous. For ν ∈ (νl, νh) we have that

r[V o(ν) − V n(ν)] = ν − (η + µ)∆(ν) + λC

∫ νh

ν
θo

C [∆(ν̃) − ∆(ν)]dΦn(ν̃)

− λC

∫ ν

νl

θn
C [∆(ν) − ∆(ν̃)]dΦo(ν̃)

Replacing equation (21) and applying integration by parts we get

r[V o(ν) − V n(ν)] = ν − (η + µ)∆(νl) − (η + µ)
∫ ν

νl

σC(ν̃)dν̃

+ λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ − λC

∫ ν

νl

θn
C [Φo(ν̃) − Φo(νl)]σC(ν̃)dν̃

= ν − (η + µ)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

−
∫ ν

νl

{η + µ + λCθn
C [Φo(ν̃) − Φo(νl)]} σC(ν̃)dν̃

= ν − (η + µ)∆(νl) + λC

∫ νh

ν
θo

C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃

− ν + νl −
∫ ν

νl

{r + λCθo
C [Φn(νh) − Φn(ν̃)]} σC(ν̃)dν̃

= νl − (r + η + µ)∆(νl) + λC

∫ νh

νl

θo
C [Φn(νh) − Φn(ν̃)]σC(ν̃)dν̃ + r∆(ν).

Now we can replace equation (26) to obtain

r[V o(ν) − V n(ν)] = νl − (r + η + µ)∆(νl) + λCθo
C [p − τ − ∆(νl)] + r∆(ν)

= νl + λCθo
C(p − τ) − (r + η + µ + λCθo

C)∆(νl) + r∆(ν) = r∆(ν),

where the last equality we obtained using equation (14) applied to ∆(νl).
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Equation (11): The left-hand side of Equation (11) is given by

λD

∫
Ωo

D

1{∆(ν)<p−τ}dΦo(ν) = λD

∫ νl

−∞
dΦo(ν) = λDΦo(νl).

The right-hand side is

λD

∫
Ωn

D

1{∆(ν)>p+τ}dΦn(ν) = λD

∫ ∞

νh

dΦn(ν) = λD [Φn(∞) − Φn(νh)] .

Therefore, we have market clearing if, and only if, Φo(νl) = Φn(∞) − Φn(νh). This equation

holds because, from equation (17), Φo(∞) = η
η+µ =⇒ Φn(∞) = 1 − Φo(∞) = µ

η+µ , and, from

equation (18), µ
η+µ − Φn(νh) = Φo(νl).

Equation (12): First, consider ν ≤ νl. Then, equation (12) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(ν) = ηF (ν) − (η − µ − λD)Φo(ν).

Equation (16) states that Φo(ν) = ηF (ν)
η−µ−λD

. Thus, Φ̇o(ν) = ηF (ν) − ηF (ν) = 0. Consider

now ν ≥ νh. Then, equation (12) is given by

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) + λD[Φn(ν) − Φn(νh)]

= (η + λD)F (ν) − (η + µ + λD)Φo(ν) − λD[Φo(νl) + Φn(νh)].

Using equations (17) and (18) we then have

Φ̇o(ν) = (η + λD)F (ν) + (η + λD)[1 − F (ν)] − η(η + µ + λD)
η + µ

− λDµ

η + µ

= η + λD − η(η + µ) + λD(η + µ)
η + µ

= η + λD − (η + λD) = 0.

Finally, let us consider ν ∈ (νl, νh). In this case we have

Φ̇o(ν) = ηΦn(ν) − µΦo(ν) − λDΦo(νl) − λC [Φo(ν) − Φo(νl)][Φn(νh) − Φn(ν)]

= η[Φn(ν) − Φn(νl)] − µ[Φo(ν) − Φ0(νl)] + ηΦn(νl) − µΦo(νl) − λDΦo(νl)

− λC [Φo(ν) − Φo(νl)][F (νh) − F (ν)] + λC [Φo(ν) − Φo(νl)][Φo(νh) − Φo(ν)].
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We have shown that ηΦn(νl) − µΦo(νl) − λDΦo(νl) = 0 when considering the case ν ≤ νl. By

using this result and the notation Φ̃o(ν) = Φo(ν) − Φ0(νl) and sC = Φ̃o(νh), we obtain

Φ̇o(ν) = η[F (ν) − F (νl)] − (η + µ)Φ̃o(ν)

− λCΦ̃o(ν)[F (νh) − F (ν)] + λCΦ̃o(ν)Φ̃o(νh) − λCΦ̃o(ν)2

= η[F (ν) − F (νl)] − (η + µ)Φ̃o(ν)

− Φ̃o(ν) {η + µ + λC [F (νh) − F (ν) − sC ]} − λCΦ̃o(ν)2.

The distribution Φ̃o(ν), as defined in equation (23), is the positive root of the equation above.

Therefore, Φ̇o(ν) = 0.

Equation (13): This is directly stated in equations (16), (17) and (23).

We showed that the family {V o, V n, ∆, p, Φo, Φn, νl, νh} is an equilibrium. That is, that

it satisfies equations (3)–(13). It is easy to see that it must also be a regular equilibrium

because equation (26) implies that νl ≤ νh with strict inequality if τ > 0, and equations (14)

and (21) imply that ∆ is continuous and strictly increasing. ■

Proof of Proposition 2

Proof. First note that equation (26) is necessarily satisfied by all regular equilibrium. There-

fore, it suffices to show that in a neighborhood of τ = 0, there is a unique pair (νl, νh)

satisfying equation (26) for all τ in this neighborhood. Equation (26) can be rewritten as

G(νl) = 1
2λDθD

∫ g(νl)

νl

[
σC(ν; νl, g(νl))

σD
− 1

]
dν = τ.

When τ = 0, then G(νl) = τ implies that νl = g(νl) = νh = ν∗. That is because
σC(ν;νl,g(νl))

σD
− 1 is bounded away from zero. To see this notice that

σC(ν; νl, g(νl))
σD

− 1 > 0

⇔ r + µ + η + λDθD

r + µ + η + λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]} > 1

⇔ λDθD > λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
.
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But note that λC

{
θo

C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
< λC max{θo

C , θn
C} < λDθD,

which implies that σC(ν;νl,g(νl))
σD

− 1 is bounded away from zero. As a result, we can only

have G(νl) = 0 if the limits in the integral are the same. Then, since G(·) is continuous, it

suffices to show that it is strictly monotone in a neighborhood (ν̄l, ν∗]. Note also that G(·) is

differentiable and that

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
−

[
σC(νl; νl, g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν; νl, g(νl))

∂νl
+ g′(νl)

∂σC(ν; νl, g(νl))
∂νh

]
dν.

The first term on the right-hand is negative since g′(νl) = − ηf(νl)
µf(g(νl)) , andσC(ν;νl,g(νl))

σD
− 1 is

bounded away from zero. Moreover, using the definition of σC , we can bound it above by

− 1
2λDθD

[
r + η + µ + λDθD

r + η + µ + λC max{θo
D, θn

D}
− 1

]
.

Therefore, to establish that G′(νl) < 0 in a neighborhood of (ν̄l, ν∗] we just have to show that

the second term converges to zero when νl ↗ ν∗. Since g(νl) → ν∗ when νl ↗ ν∗, it suffices

to show that the terms inside the integral, ∂σC(ν;νl,g(νl))
∂νl

and ∂σC(ν;νl,g(νl))
∂νh

, are bounded. We

can write the first term as below.

∂σC(ν; νl, g(νl))
∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

[
Φn(νh) − Φn(ν)

]
+ θn

C

[
Φo(ν) − Φo(νl)

]}
∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

[
Φn(νh) − Φn(νl) + Φn(νl) − Φn(ν)

]
+ θn

CΦ̃o(ν)
}

∂νl

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

µ[F (νh)−F (νl)]
η+µ − θo

C [F (ν) − F (νl)] + Φ̃o(ν)
}

∂νl

= −σC(ν; νl, g(νl))2λC

{
θo

C

ηf(νl)
η + µ

+ ∂Φ̃o(ν)
∂νl

}
.

The first term in parenthesis is bounded. The second term is obtained by applying the implicit

function theorem to equation (56) and it yields

∂Φ̃o(ν)
∂νl

= −
ηf(νl)

[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

,
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which is also bounded. Similarly for∂σC(ν;νl,g(νl))
∂νh

,

∂σC(ν; νl, g(νl))
∂νh

= −σC(ν; νl, g(νl))2λC

∂
{

θo
C

µ[F (νh)−F (νl)]
η+µ − θo

C [F (ν) − F (νl)] + Φ̃o(ν)
}

∂νh

= −σC(ν; νl, g(νl))2λC

{
θo

C

µf(νh)
η + µ

+ ∂Φ̃o(ν)
∂νh

}
.

Again, the first term in parenthesis is bounded. The second term is

∂Φ̃o(ν)
∂νh

= −
µf(νh)λCΦ̃o(ν)

η+µ{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

,

which is also bounded. Therefore, G(·) is strictly monotone in a neighborhood (ν̄l, ν∗] with

G′(ν) < 0 in this neighborhood. If we then define the neighborhood [0, τ̄), where τ̄ = G(ν̄l),

we can conclude that there is a unique regular equilibrium for any τ ∈ [0, τ̄). ■

Proof of Proposition 3

Proof. We know that there exists neighborhood [0, τ̄) of τ = 0 that regular equilibrium is

unique. Moreover, because G(ν∗) = 0, we must have G′(νl) ≤ 0 for any νl < ν∗ with an unique

equilibrium in a neighborhood around it. To see this note that if G′(νl) > 0 for an νl with

G(νl) = τ , then there exists ν ′
l > νl such that G(ν ′

l) > G(νl). But then G(ν ′
l) > G(νl) ≥ G(0)

and we can conclude by continuity that there must be another ν ′′
l with G(ν ′′

l ) = τ . This is a

contradiction since we started assuming that there is an unique regular equilibrium at νl.

Consider then any (τ0, τ1) and (ν0
l , ν1

l ) such that all τ ∈ (τ0, τ1) is associated with a

unique regular equilibrium at some νl(τ) ∈ (ν0
l , ν1

l ). Since these regular equilibrium are

characterized by G(νl) = τ and G′(νl) ≤ 0, we must then have that νl(τ) is decreasing

in τ for all τ ∈ (τ0, τ1). Therefore, to obtain that the turnover is decreasing in τ in the

neighborhood (τ0, τ1), it suffices to show that it is increasing in νl.

From equation (30) we have that

T =
2λDΦo(νl) + λC

∫ νh
νl

∫ νh
ν dΦn(ν̃)dΦo(ν)

η
η+µ

=
2λDΦo(νl) + λC

∫ νh
νl

Φ̃o(ν)dΦ̃n(ν)
η

η+µ

.

From equation (16) we have Φo(νl) = ηF (νl)
η+µ+λD

, which is increasing in νl with its derivative
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given by ∂Φo(νl)
∂νl

= ηf(νl)
η+µ+λD

. For the second term we have that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= −�������

Φ̃o(νl)ϕn(νl) + g′(νl)Φ̃o(νh)ϕn(νh)

+
∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν.

Again for the first term inside the integral

dΦ̃o(ν)
dνl

= ∂Φ̃o(ν)
∂νl

+ g′(νl)
∂Φ̃o(ν)

∂νh
= −ηf(νl){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Now we can apply the implicit function theorem to equation (56) and obtain that

ϕo(ν) = [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.

Thus,

dϕo(ν)
dνl

= −
2λCηf(ν) dΦ̃o(ν)

dνl[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

+ λCf(ν)
dΦ̃o(ν)

dνl

[{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]
[{

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

]2

− λCf(ν)
2λCΦ̃o(ν)dΦ̃o(ν)

dνl[{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

]2

=
λCf(ν) dΦ̃o(ν)

dνl
−2λCϕo(ν) dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

=
λC [ϕn(ν)−ϕo(ν)] dΦ̃o(ν)

dνl{
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

.

Also note that from the above we obtain ϕn(ν) and dϕn(ν)
dνl

from the identity f(ν) = ϕo(ν) +

ϕn(ν). Then we obtain that

ϕn(ν) = f(ν) − [η + λCΦ̃o(ν)]f(ν){
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

=

[
{µ + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]
} + λCΦ̃o(ν)

]
f(ν){

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

.
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Now we can write that

∂
∫ νh

νl
Φ̃o(ν)dΦ̃n(ν)

∂νl
= g′(νl)Φ̃o(νh)ϕn(νh) +

∫ νh

νl

dΦ̃o(ν)
dνl

ϕn(ν) + dϕn(ν)
dνl

Φ̃o(ν)dν

= −Φ̃o(νh) ηf(νl)
µ + η + λCΦ̃o(νh)

− ηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.

With this equation in hand we now can show that dT
dνl

≥ 0, which is equivalent to show that

2λDηf(νl)
η + µ + λD

≥

λCΦ̃o(νh)ηf(νl)
µ + η + λCΦ̃o(νh)

+ λCηf(νl)
∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν,

which happens if, and only if,

2λD

η + µ + λD
≥

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν.

Note that

{
µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν) = µ + η + λC

[
Φ̃n(νh) − Φ̃o(ν) + Φ̃o(ν)

]
.
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Then we have that

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]
µ+η+λC

[
Φ̃n(νh)−Φ̃o(ν)+Φ̃o(ν)

] dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

−
∫ νh

νl

ϕo(ν)
{

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}
−λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]}2 dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν −
∫ νh

νl

d

dν

[
Φ̃o(ν)

µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]]
dν

=
∫ νh

νl

f(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν − Φ̃o(νh)
µ + η + λCΦ̃o(νh)

.

So again it suffices to show that

2λD

η + µ + λD
≥

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

ϕn(ν)+ λC [ϕo(ν)−ϕn(ν)]Φ̃o(ν){
µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν){

µ+η+λC

[
F (νh)−F (ν)−Φ̃o(νh)

]}
+2λCΦ̃o(ν)

dν =

λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

+ λC

∫ νh

νl

f(ν)
µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]dν − λCΦ̃o(νh)
µ + η + λCΦ̃o(νh)

⇐⇒ 2λD

η + µ + λD
≥

∫ νh

νl

λCf(ν)
µ+η+λC

[
Φ̃n(νh)−Φ̃n(ν)+Φ̃o(ν)

]dν

⇐⇒
∫ νh

νl

[
2λD

η + µ + λD
− λC [F (νh) − F (νl)]

µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]]
dF (ν) ≥ 0.

First note that the above inequality holds in a neighborhood of τ = 0 because it implies that

νl ≈ νh. Moreover, if λC ≤ λD ≤
√

2−1√
2 (η + µ), we must have that

2λD

η + µ + λD
≥ λC [F (νh) − F (νl)]

µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

]
holds. We can see this by comparing the two functions 2x

η+µ+x and ax
η+µ+bx , where a =

F (νh) − F (νl) and b = Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν). Both functions are strictly increasing in x,

and equal zero at x = 0. Moreover, the derivative of the first function is strictly greater than
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the derivative of the second one for x ≤
√

2−1√
2 (η + µ), which implies that

2λD

η + µ + λD
>

λD[F (νh) − F (νl)]
µ + η + λD

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

] ≥ λC [F (νh) − F (νl)]
µ + η + λC

[
Φ̃n(νh) − Φ̃n(ν) + Φ̃o(ν)

] .

This concludes the proof. ■

Proof of Proposition 4

Proof. The bid-ask spread, defined in equation (37), is

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
.

To see the first part note that for τ = 0 we know that νl = νh = ν∗ and the equilibrium is

unique. So we can take the derivative of BA in equation (37) with respect to τ evaluated

at τ = 0 and show that it has to be strictly positive. Given that all the functions are

differentiable, we must have this derivative strictly positive in a neighborhood of τ = 0.

We have that

dBA

dτ
= ∂BA

∂τ
+ ∂BA

∂νl
× ∂νl

∂τ
.

For the first term in the right-hand side we have

∂BA

∂τ
= 2λDΦo(νl)

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
,

which implies that ∂BA
∂τ = 2 when evaluated at τ = 0 since in this case νl = νh = ν∗. For the

second term we have that

∂BA

∂νl

∣∣∣∣τ=0,
νl=ν∗

= λD(1 − θD)

d
dνl

[∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

]
λDΦo(νl)[

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2

− λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

d
dνl

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]

[
λDΦo(νl) + λC

∫ νh
νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
]2 .
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Note that

d

dνl

[∫ ∞

νh

νdΦn(ν) −
∫ νl

−∞
νdΦo(ν)

]
= d

dνl

[∫ ∞

νh

νµf(ν)
η + µ + λD

dν −
∫ νl

−∞

νηf(ν)
η + µ + λD

dν

]
= −νhµf(νh)g′(νl) − νlηf(νl)

η + µ + λD
= [νh − νl]ηf(νl)

η + µ + λD
,

which is zero when evaluated at νl = νh = ν∗. Moreover,

d

dνl

[
λDΦo(νl) + λC

∫ νh

νl

∫ ν

νl

dΦn(ν̃)dΦo(ν)
]

is positive in a neighborhood of τ = 0 since this is basically turnover, which we showed in

the previous proof that is increasing in νl in a neighborhood of τ = 0. Thus, ∂BA
∂νl

∣∣∣τ=0,
νl=ν∗

≤ 0.

We also have shown that ∂νl
∂τ < 0 in a neighborhood of τ = 0. Therefore, we have that

dBA

dτ

∣∣∣∣τ=0,
νl=ν∗

= ∂BA

∂τ

∣∣∣∣τ=0,
νl=ν∗︸ ︷︷ ︸

= 2 + ∂BA

∂νl

∣∣∣∣τ=0,
νl=ν∗︸ ︷︷ ︸

≤0

× ∂νl

∂τ

∣∣∣∣τ=0,
νl=ν∗︸ ︷︷ ︸

≤0

> 0.

This proves the first part of the proposition. Namely, that the bid-ask spread is increasing in

τ in a neighborhood of τ = 0.

In order to show the second part of the proposition, it suffices to show that BA converges

to zero as τ converges to infinity. First lets us show that νl converges to −∞ when τ converges

to infinity.

In equilibrium we must have that

G(νl) = 1
2λDθD

∫ g(νl)

νl

σC(ν; νl, νh) − σD

σD
dν = τ.

The term σC(ν;νl,νh)−σD

σD
is bounded below by λDθD−λC max{θn

C ,θo
C}

η+µ+λDθD
, and above by λDθD

η+µ+λDθD
.

Therefore, as τ converges to infinity, in order to obtain an equilibrium we must have νl

converging to −∞, and νh = g(νl) converging to ∞.
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Consider now the formula for the bid-ask spread,

BA =
2λDΦo(νl)τ + λD(1 − θD)

∫ ∞
νh

νdΦn(ν)−
∫ νl

−∞ νdΦo(ν)
r+η+µ+λDθD

λDΦo(νl) + λC
∫ νh

νl

∫ ν
νl

dΦn(ν̃)dΦo(ν)
.

We can see that
∫ ∞

νh
νdΦn(ν) −

∫ νl
−∞ νdΦo(ν) converge to zero since

∫ ∞
−∞ ν2f(ν)dν is bounded.

To show that Φo(νl)τ = ηF (νl)τ
η+µ+λD

converges to zero is not as simple because F (νl) converges

to zero and τ converges to infinity. But note that

lim
τ↗∞

F (νl)τ = lim
τ↗∞

τ

1/F (νl)
= lim

τ↗∞

1
f(νl)dνl

dτ /F (νl)2
= lim

νl↘−∞

G′(νl)F (νl)2

f(νl)
.

And, as we have established in the of Proposition 2,

G′(νl) = 1
2λDθD

{
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
−

[
σC(νl; νl, g(νl))

σD
− 1

]}
+ 1

2λDθD

∫ g(νl)

νl

1
σD

[
∂σC(ν; νl, g(νl))

∂νl
+ g′(νl)

∂σC(ν; νl, g(νl))
∂νh

]
dν.

So we only need to show that each of the terms above, when multiplied by F (νl)2

f(νl) , converges

to zero as νl converges to −∞. Let us start showing that F (νl)2

f(νl) converges to zero. Note that

0 ≤ lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

∫ νl

−∞
|νl|f(ν)dν ≤ lim

νl↘−∞

∫ νl

−∞
|ν|f(ν)dν = 0,

where the equality in the end comes from the fact that
∫

ν2f(ν)dν is finite. Therefore we can

conclude that limνl↘−∞ νlF (νl) = 0. But then

0 = lim
νl↘−∞

−νlF (νl) = lim
νl↘−∞

−νl

1/F (νl)
L’Hôpital= lim

νl↘−∞

−1
−f(νl)/F (νl)2 = lim

νl↘−∞

F (νl)2

f(νl)
.

Now let us look the individual terms of G′(νl). We have that

lim
νl↘−∞

F (νl)2

f(νl)

[
σC(νl; νl, g(νl))

σD
− 1

]
= 0
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because
[

σC(νl;νl,g(νl))
σD

− 1
]

is bounded. We have that

lim
νl↘−∞

F (νl)2

f(νl)
g′(νl)

[
σC(g(νl); νl, g(νl))

σD
− 1

]
= lim

νh↗−∞

[1 − F (νh)]2

f(νh)

[
σC(νh; g−1(νh), νh)

σD
− 1

]
= 0

because again
[

σC(νh;g−1(νh),νh)
σD

− 1
]

is bounded and we can show that limνh↗−∞
[1−F (νh)]2

f(νh) = 0

in the same fashion that we showed that limνl↘−∞
F (νl)2

f(νl) = 0. Moreover,

0 ≤
∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν =
∫ g(νl)

νl

σC(ν; νl, g(νl))2λC

{
θo

C

ηf(νl)
η + µ

− ∂Φ̃o(ν)
∂νl

}
dν

=
∫ g(νl)

νl

θo
C

λCησC(ν; νl, g(νl))2

η + µ
+

λCησC(ν; νl, g(νl))2
[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

 f(νl)dν

≤
∫ g(νl)

νl

θo
C

λCησC(ν; νl, g(νl))2

η + µ
+

λCησC(ν; νl, g(νl))2
[
1 + λCΦ̃o(ν)

η+µ

]
{

µ + η + λC

[
F (νh) − F (ν) − Φ̃o(νh)

]}
+ 2λCΦ̃o(ν)

 f(ν)dν

which is bounded because the term in brakets is bounded and
∫ g(νl)

νl
f(ν)dν ≤ 1. Therefore,

we have that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

∂σC(ν; νl, g(νl))
∂νl

dν = 0.

The proof that

lim
νl↘−∞

F (νl)2

f(νl)

∫ g(νl)

νl

g′(νl)
∂σC(ν; νl, g(νl))

∂νh
dν = 0.

is analogous. With that, we can conclude that limτ↗∞ BA = 0, which implies the second

part of Proposition 4, and concludes the proof. ■

Proof of Proposition 5

Proof. First not that, due to the assumed symmetry in the parameters, we have that pA(τ) =
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σDν̄A and pB(τ + dτ) = σDν̄A. Therefore, the liquidity premium can be written as

LP (τ) = ν̄A − ν̄B

dL̄ + BA(τ + dτ) − BA(τ)
.

We have shown in the proof of Proposition 4 that dBA
dτ > 0 in a neighborhood of τ = 0,

which implies that BA(τ + dτ) − BA(τ) > 0 and LP (τ) < ν̄A−ν̄B

dL̄
.

We have also show that limτ↗∞ BA = 0. Since we know that BA(τ) > 0 in a neighbor-

hood of τ = 0, this implies that dBA
dτ < 0 in for some τ , which implies that BA(τ + dτ) −

BA(τ) < 0 and LP (τ) > ν̄A−ν̄B

dL̄
. Moreover, because

lim
τ↗∞

BA(τ + dτ) − BA(τ) = lim
τ↗∞

BA(τ + dτ) − lim
τ↗∞

BA(τ) = 0,

we have that limτ↗∞ LP (τ) = ν̄A−ν̄B

dL̄
. This concludes te proof. ■

B Data

We use corporate bonds transactions data from the TRACE Enhanced (ETRACE) database

from January 2005 to June 2021. This initial data set provides us with a total of 171,140,493

trades as well as with 283,250 uniquely-identifiable bonds.10

We use a procedure based in Dick-Nielsen (2009) and Dick-Nielsen (2014) to filter out

errors, cancellations, reversals and double counting as well as transactions missing individual

CUSIP identification. We subsequently drop trades missing yield information and trades

that are either on a when-issued basis, in a non-secondary Market, with a special condition,

automatic give-ups, or in equity-linked notes.11

10The Trade Reporting and Compliance Engine (TRACE) is the “FINRA-developed vehicle that facilitates
the mandatory reporting of over-the-counter secondary market transactions in eligible fixed income securities.”
The bond transactions report was implemented in different phases. It started with Phase I, on July 2002, for
investment grade bonds and with issue size greater than or equal to $1 bi, and it continued later with the
requirements expanded in Phase II in 2003. The complete implementation occurred in 2005, with Phase III.
The report of corporate bond transactions is mandatory for all broker-dealers FINRA members. Therefore,
Phase III virtually contains complete coverage of all public transactions. For consistency of the selection into
the dataset, our dataset focus on Phase III. The Enhanced TRACE differs from the Standard TRACE in that
it discloses more detailed information in individual transactions, e.g., actual trade size.

11To remove any potentially erroneous trades still remaining in the database, we also add a price filter for
trades with prices deviating more than 25% from the daily average. This procedure cleans only about 0.1%
of the trades.
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To avoid having many bonds in our sample that trade only momentarily, we add the fol-

lowing two conditions: (1) the bond must have existed in ETRACE for at least one complete

year; and (2) the bond must have traded at least 75% of its relevant trading days (BPW and

Anderson and Stulz 2017). Bonds must also have sufficient trades to satisfy the conditions,

as defined in the following section, necessary to calculate their individual illiquidity measures.

Having applied all these trade-based criteria, we are left with 55,753,160 transactions in 5,410

unique issues.

We use Bloomberg to collect bond information on issuance and maturity dates, provisions,

coupons, currency denomination, amount outstanding, and ratings. We use the amount

outstanding of each issue at the last business day of each month. A bond is defined as

investment grade if its rating is greater than or equal to BBB– from S&P and Fitch or Baa3

from Moody’s. We first use the rating from Standard & Poor’s; if this rating is unavailable, we

use the rating from Fitch; and if this rating is unavailable, we use the rating from Moody’s.12

We exclude trades that took place outside the range of issuance and maturity dates of an

issue, and bonds for which the outstanding amount at the last business day of that specific

month was zero. Defaulting bonds are eliminated from the sample for as long as they are

considered in default, and so are bonds with missing information. We only keep in our sample

callable or non-provisional, fixed-rate bonds issued in the US. Callable bonds comprise a

significant portion of our sample. Removing these bonds would negatively impact the quality

of our results. Instead, we control our results for callability by introducing a dummy to our

model. At this stage, our sample consists of 45,026,565 trades in 4,255 individual bonds.

We calculate the individual yield spread as the difference between the yield of the corpo-

rate bond and the yield of the government bond with the same maturity, as in BPW. The

constant maturity yield curve is obtained from the Federal Reserve Bank of St. Louis FRED

dataset. We use linear interpolation to calculate the yield of the government bond matching

the exact maturity of the corporate bond. The monthly cross-sectional yield spread of a

corporate bond is then calculated as the average daily spread in the month.

We use the Eikon dataset to collect each issuer’s daily 5-year Credit Default Swap (CDS)

quotes, which we use to proxy for the issuer’s credit risk. Our measure of credit risk for each
12Although we use a different order based on data availability, this process is similar to Dick-Nielsen et al.

(2012).
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Figure 9: 5-Year Credit Default Swaps and yield spreads for individual corporate bond issues
in the sample.

monthly cross-section is the average of the issuer’s end-of-day CDS spreads. As this data is

sufficiently large for the bonds in our database from December 2007, we redefine our sample

period to begin in December 2007. We use stock prices to calculate the annualized equity

return volatility of each issuer. Bonds missing CDS and equity volatility data are excluded

from our dataset. We collect the daily stock prices of the issuers from CRSP.

Our final bond sample consists of 32,435,392 trades in 3,073 unique issues, which are

distributed over a period of 115 months starting from December 2007. In total, we have

139,168 combinations of bond-month observations. The number of observations varies be-

tween monthly cross-sections depending on, among other things, newly-issued and matured

bonds, trade frequency, and issues satisfying our selection criteria in the observed cross-

section. Our final sample is predominantly composed by investment grade bonds.

We separate our sample period in three time intervals characterized by different macroe-

conomic conditions: (1) the financial crisis period from December 2007 to December 2009;

(2) the post-crisis period with historically low interest rates from January 2010 to November

2015; and (3) the monetary tightening period from December 2015 to June 2017. Figure 9

shows the CDS and the yield spreads over time of the bonds in the sample. Table 3 presents

a summary of our data together with the illiquidity measures described in the next section.
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Table 3: Summary statistics

Complete Period Crisis Post-Crisis Monetary Tightening
Dec ‘07–June ‘17 Dec ‘07–Dec ‘09 Jan ‘10–Nov ‘15 Dec ‘15–June ‘17

Observations 139,168 17,165 91,424 30,579
Investment Grade 87% 86% 87% 87%
N. of Bonds 3,073 1,134 2,688 1,905
Callable 33% 33% 33% 31%
N. of Firms 416 227 388 310
N. of Trades 32,435,392 6,078,875 20,192,250 6,164,267

Mean Median SD Mean Median SD Mean Median SD Mean Median SD
γ 2.225 1.044 3.931 5.776 2.623 11.648 1.284 .639 1.842 1.067 .480 1.586
AMD (×103) 2.933 1.755 3.945 6.497 3.789 9.603 2.003 1.255 2.386 1.717 .947 2.325
Spread 2.163 1.543 2.179 4.160 2.856 4.634 1.598 1.202 1.387 1.646 1.090 1.909
CDS (×10−2) 1.674 1.063 2.008 2.712 1.529 3.837 1.385 .972 1.375 1.390 .789 1.969

This table reports a summary of our sample variables together with a summary of the main variables calculated.
The observations are the bond-month combinations. The mean, median and standard deviation are the time-
series averages of the respective cross-sectional measures within each sub-period. Spread is the corporate bond
yield spread detailed in section B. γ and AMD are the illiquidity measures detailed in section B.

C Additional empirical results

C.1 The determinants of bond illiquidity

Given the importance of bond-level illiquidity for the yield spread, we now study the deter-

minants of illiquidity for a particular bond. We regress our illiquidity measures on a list of

varying characteristics such as CDS, time to maturity, age, volume, frequency and issuer’s

equity return volatility and credit rating. We also make use the intrinsic characteristics of a

bond such as coupon paid, issuance size and whether the bond is callable or not. Our model

consists in regressing pooled OLS estimations with two-dimensional clustered standard errors.

Our results have strong statistical and economical significance as we discuss next. Results

are reported in table 4.

We find that the credit risk of the issuer and the time to maturity are the most important

characteristics of a particular bond to explain variations in illiquidity of an issue. Illiquidity

is positively correlated to both credit risk and time to maturity.

When the CDS of an issuer widens by 100 basis points, we find that the γ’s of its bonds

increases by .901. This increase corresponds to about 40% of the average γ reported in table

3. Similarly, we find that one additional year in time to maturity increases γ by .165, which

corresponds to 7% of the average γ.
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Table 4: γ and AMD on bond characteristics

γ AMD

CDS .817 .901 .697 .719
[6.75] [6.50] [7.89] [6.93]

Maturity .161 .165 .128 .139
[11.02] [11.84] [7.87] [9.29]

Age −.002 .117
[−.12] [5.42]

Coupon .078 .079
[2.14] [2.17]

Volume −.750 −2.01
[−3.78] [−7.32]

Frequency .510 3.24
[2.15] [12.82]

ln(Issuance Size) −.787 −1.17
[−8.31] [−8.59]

EqVol. .481 .308
[1.38] [1.70]

IG 2.18 2.19
[5.05] [6.78]

Call −.318 −.053
[−3.08] [−.50]

Constant .526 .666 2.27 1.39 1.57 5.01
[4.26] [6.15] [3.28] [10.17] [13.06] [5.94]

Adj.R2 .089 .032 .142 .111 .035 .226
Obs. 139, 168 139, 168 139, 168 139, 168 139, 168 139, 168
Bond-level illiquidity measures regressed on bond characteristics. We run a pooled OLS regression with
standard-errors clustered by bond and month. T-statistics in square brackets. γ and AMD are the illiquidity
measures detailed in section B. AMD is multiplied by 103. Maturity is the issue’s time to maturity. Maturity
and age are calculated in years at the last business-day of each month. Volume is calculated as the total $
amount traded ×10−11 and frequency is in thousands of trades. Issuance size is in $ millions. EqVol. is the
issuer’s annualized equity return volatility. IG is 1 if the bond is Investment Grade and 0 if otherwise. Call is
1 if the bond is callable and 0 if otherwise.
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The variables representing trading activity, that is, volume and frequency, show contrast-

ing results. Bonds with greater volume are more liquid, but so are bonds that trade less

frequently. These results support the view that bonds with larger average size per trade are

potentially more liquid. Callable bonds show as more liquid for both γ and AMD than issues

with no embedded options.

The results for the credit rating and coupon are surprising. We find that investment-grade

bonds have substantially higher γ’s. This contrasts with the time-series measures observed

in figure 2, which shows, instead, that investment-grade bonds have smaller γ’s. Once CDS

and credit quality are considered simultaneously, as in table 4, we obtain that the effect of

credit quality on γ captured more strongly by the CDS than by the credit rating. This effect

occurs because high-yield bonds have, on average, significantly higher CDS spreads than

investment-grade issues. The coupon paid also presents a non-intuitive positive slope, which

implies that bonds that pay higher coupons are less liquid.

The results for γ and AMD point in general to the same direction. An exception is

the coefficient for age, negative, not statistically significant, for γ, but positive and strongly

significant for AMD. A positive coefficient for age indicates a market preference for on-the-run

securities as oppose to older, off-the-run issues from the same firm. This finding is consistent

with the on-the-run and off-the-run spread (see, for example, Krishnamurthy 2002).

In summary, our results indicate that the main determinants of illiquidity of a particular

bond are credit risk and time to maturity. We address in the next section whether corporate

bond liquidity can be affected by aggregate factors, common to all bonds.

C.2 Commonality in liquidity

We now investigate which factors affect aggregate liquidity of corporate bonds. We analyze

factors such as financial stability, economic conditions, the term structure, and market volatil-

ity. To avoid having our results driven by few issues with exceptionally high illiquidity, we

focus on market illiquidity as measured by the median γ and AMD of individual bonds.13

We proxy financial conditions by the NFCI Index, for which historical data is retrieved

from the Chicago Fed database.14 The volatility measures for the equities market and the
13BPW also consider the median as aggregate market liquidity for similar reasons.
14The National Financial Conditions Index (NFCI) captures “financial conditions in money markets, debt
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benchmark 10-year Treasury interest rate are respectively given by the Cboe’s VIX and

TYVIX indices. We retrieve historical data for both indices from FRED.15 Additionally,

we retrieve from FRED historical the difference between the 10-year and 2-year constant

maturity Treasury rates as a measure of the slope of the yield curve. The corporate debt

net position data of Primary Dealers is retrieved from the NY Fed and monthly medians are

used as observations. We use the sum of individual bonds total volume traded and number of

transactions as an indication of market volume and frequency. We regress monthly changes in

aggregate market illiquidity on monthly changes in financial, economic and market measures.

When financial conditions tighten (NFCI increases), we find that corporate bond market

liquidity decreases. Aggregate financial conditions are closely related with corporate bond

market liquidity. Table 5 reports the results across different market illiquidity measures.

About changes in the term structure of interest rates. We find that a higher slope of the

yield curve is associated with an increase in corporate bond market illiquidity. When the

yield curve steepens, corporate bond liquidity lowers.

Another important element contributing to corporate bond market illiquidity is the bal-

ance sheet of Primary Dealers. The net position of Primary Dealers in corporate debt instru-

ments is positively correlated to market illiquidity. The results are similar for γ and AMD.

This result supports the evidence that the post-crisis liquidity provision in corporate debt

instruments has been shifting from traditional Primary Dealers to other market players.

Volatility in equity markets yields a positive slope, as expected. However, its statistical

significance weakens in the presence of control variables. We find that illiquidity increases

with the VIX. Alternatively, the volatility of interest rates, proxied by the benchmark 10-

year Treasury note, has a negative slope. When TYVIX is regressed alone, the coefficient is

positive but with a small t-statistics of .13 and a nearly null adjusted-R2.

We observe a relation between trading activity measures and illiquidity at the aggregate

level similar to the observed at the individual bond level. Illiquidity decreases with volume

and increases with frequency. Although presenting a negative sign, volume, however, is not

statistically significant for γ as it is for AMD.

and equity markets and the traditional and ‘shadow’ banking systems.”
15In FRED, the data for the Cboe’s 10-Year US Treasury Note Volatility Index, TYVIX, is referred to by

its legacy ticker, VXTYN.
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Table 5: Monthly changes in aggregate market illiquidity on monthly changes in macro variables

∆γ ∆ AMD

Aggr. by Median Mean Vol. Weight Median Mean Vol. Weight

∆NFCI 2.14 1.73 5.48 4.82 3.30 2.57 1.49 1.73 2.99 2.69 2.07 1.69
[4.32] [8.10] [6.11] [6.97] [1.92] [1.59] [7.98] [8.62] [7.20] [6.78] [8.56] [5.38]

∆VIX .051 .012 .113 .008 .062 .004 .031 .012 .062 .006 .045 .009
[2.51] [1.97] [2.16] [.62] [1.44] [.15] [2.45] [1.91] [2.32] [1.01] [2.15] [.93]

∆YCurve 1.00 .622 1.00 .468 .451 .578 .420 .622 .463 .206 .576 .463
[1.95] [3.74] [1.08] [.85] [.63] [.77] [2.24] [4.72] [.94] [.66] [2.92] [2.58]

∆PrimaryDealers .015 .012 −.022 .015 .006 0
[2.49] [1.57] [−1.08] [2.61] [1.18] [.00]

∆TYVIX −.091 −.043 .420 −.091 −.154 −.025
[−4.83] [−.28] [1.16] [−4.82] [−3.81] [−.45]

∆Volume −.190 −.626 .374 −.190 −.838 −.480
[−1.71] [−1.19] [.44] [−1.64] [−2.37] [−2.84]

∆Frequency .434 1.04 −.143 .434 .970 .517
[2.41] [1.65] [−.21] [2.28] [2.56] [2.24]

Constant .012 −.003 −.031 .036 −.005 .037 .019 −.006 −.019 .004 −.007 .031 .008 −.015 −.002 .002 −.013 −.009
[.66] [−.09] [1.98] [.91] [−.07] [.98] [.25] [−.08] [−.22] [.24] [−.22] [2.17] [.33] [−.25] [−.08] [.18] [−.42] [−.47]

Adj.R2 .401 .394 .734 .471 .236 .540 .111 .034 .182 .471 .283 .678 .478 .234 .732 .422 .265 .534
Results of changes in aggregate market illiquidity on changes in macro variables. The market illiquidity can be aggregated by the median, mean or volume-
weighted average of individual illiquidity measures within each of the 115 monthly cross-sections covered in our sample. Therefore, we have 114 observations
of monthly changes in aggregate market liquidity. Coefficients are estimated using OLS and standard errors are corrected by Newey-West. T-statistics are
reported in square brackets. γ and AMD are the illiquidity measures detailed in section B. AMD is multiplied by 103. NFCI is the Chicago Fed’s National
Financial Conditions Index. VIX and TYVIX are respectively the Cboe’s volatility indices for the equities market and the benchmark 10-year Treasury
Note. YCurve is the yield curve slope measured as the spread between the 10-year and the 2-year constant maturity yields. PrimaryDealers is the monthly
median of corporate debt net positions in billions of U.S. dollars of Primary Dealers reported by the NY Fed. Volume is the total $ amount traded in a
month ×10−13 and Frequency the total number of trades in a month ×10−5.
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