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1 Introduction

The intersection of complex supply chains and climate risk presents a critical chal-

lenge to the global economy. Complex supply chains yield significant efficiency gains,

enabling firms to procure inputs from the most efficient suppliers regardless of lo-

cation. Yet, escalating climate risk raises concerns about the vulnerability of inter-

linked production networks and the resultant broader economic fragility (Barrot and

Sauvagnat, 2016; Carvalho et al., 2021; Boehm et al., 2019). Increasing climate risk

globally heightens the likelihood of natural disasters. In response, forward-looking

firms might mitigate the impact of production disruptions through production loca-

tion choices or supplier location diversification given geographic variability in climate

threats.1 These choices potentially have equilibrium impacts on wages and welfare in

riskier regions relative to safer ones. While a long literature has studied the aggre-

gate effects of catastrophic and climate risk on consumption, output, interest rates,

and risk aversion (Barro, 2009; Nakamura et al., 2013; Bilal and Känzig, 2024), less

is known about how climate change may reshape economic production and impact

welfare across regions by changing firms’ sourcing decisions.

In this paper, we provide a theoretical and quantitative analysis of the general

equilibrium consequences of supply chain restructuring in light of increased climate

risk. Our results highlight two economic implications of climate change. On the

positive side, the risks of climate change are partially mitigated as firms anticipate

climate risk and diversify their sourcing. This implies that firm-level adaptation

attenuates the impact of more volatile weather on aggregate output volatility. On the

negative side, climate change will have even larger redistributive effects across regions

than commonly believed. Regions with more climate risk will face the direct effects

of the shocks themselves, but additionally will also become less appealing to other

regions as a source of inputs. As a result, demand for products from these regions will

decline, and real wages will fall. The converse will occur in “safer” regions. In other

words, diversification amplifies the distributional effects of climate change.

Our first contribution is theoretical. We build a new multi-region general equilib-

rium model of firm sourcing under risk. In the model, firms optimally diversify the

1Indeed, a report by McKinsey Global Institute found that 71% of global firm
leaders were dual sourcing their materials in April 2022 in response to increased
weather risks https://www.mckinsey.com/capabilities/sustainability/our-insights/could-climate-
become-the-weak-link-in-your-supply-chain.
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sourcing of a single input across locations, maximizing expected profits while hedging

against location-specific supply disruptions. We show that the model is efficient, and

study the decentralized equilibrium. Firms’ diversification comes with a trade-off:

in general equilibrium, input prices are higher for places with lower climate risk, as

these regions are relatively more attractive as sourcing locations. These places might

also be geographically distant, necessitating higher trade costs.

A key feature of the model is that firms’ expected profit functions in the presence

of sourcing risk are concave in input orders. That is, firms behave as if they are

risk-averse, even in the absence of explicit managerial risk aversion.2 This implies

that firms from each region will choose to diversify their input sourcing across regions

if they face imperfectly correlated regional risk, even if regional fundamentals are

constant across space and trade is costly (a “symmetric” economy). In a comparative

statics exercise, we show that in this setting, where there is no love-for-variety trade

motive, trade still occurs due to the diversification motives of firms, as regional inputs

are differentiated by their risk profile.

Interestingly, this comparative statics exercise implies that the prices of inputs,

and therefore, of regional consumption, are higher under costly trade than autarky. A

stark insight from this exercise is that expected regional real wages can be lower under

costly trade than under autarky, but their volatility is also lower. With risk aversion

in consumer preferences, the decrease in volatility offsets the decline in expected real

wages, and diversification is welfare-improving, but aggregate output is lower.

In contrast to the comparative statics, the effects of firm diversification in a realistic

economy will depend on the variation in fundamentals across regions in addition to

risk-mitigation incentives. Our second contribution is, therefore, quantitative: we

compute expected real wages, real wage volatility, and welfare across districts in a

calibrated model, given model-implied sourcing risk. Our framework implies that,

as a result of firm sourcing decisions, real wages in each district will depend on the

geography, productivity, and climate risk of all districts.3

Quantifying this model requires overcoming several challenges. To highlight the

quantitative implications of the diversification mechanism, we require sufficiently

2Blaum et al. (2024) study firm input sourcing under shipping time risk, where firms face a similar
problem. In contrast, our focus is the multi-region general equilibrium.

3For expositional simplicity, we use the term “risk” throughout the paper, but note that shocks
in our model have mean and variance effects. In our quantification, we decompose the effects of risk
into first moment (expected real wage) and second moment (volatility) effects.
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many regions and granular data on inter-regional input sourcing shares as well as

regional climate risk. Typical datasets that allow computation of bilateral sourcing

shares are for large areas (e.g., countries) with widely varied internal climate risk.

Further, the general model has no analytical solution and becomes computationally

challenging as the number of regions increase.

To address these issues, we obtain the universe of establishment-to-establishment

level transactions from a large Indian state, capturing every transaction with a

buyer–seller pair in which one establishment operates within the state while the other

can be located anywhere else in India. The data contains the precise establishment

zip code, the transaction value, product code, date, quantity (and so the unit values),

and the unique tax ID of the establishment. We use these data to construct granular

inter-district sourcing shares, and to estimate bilateral trade costs. We complement

these data using a census of manufacturing firms across the country, allowing us to

estimate location-specific productivities and labor shares. For climate risk, we ob-

tain data on grid-cell level flooding, rainfall, drought, and temperature, which we

aggregate, and we implement the model on 271 regions in India.

Using these data, we document several patterns that are consistent with our model

mechanisms. First, firms diversify the locations they source from. Buyer firms source

74% of product value– even within narrow HS8 commodity product codes– from

multiple districts. Second, firms that are diversifying buy from farther distances and

from drier regions and pay higher prices. Third, suppliers in regions that are more

exposed to climate risk tend to charge lower prices. Finally, firms located in zip codes

with higher climate risk have both more suppliers per HS8 product code and lower

sourcing shares from their own state.

An advantage of our setting is that India experiences monsoonal rainfall that

follows a somewhat predictable spatial pattern every year, although the intensity and

timing can vary. Regions across India regularly experience large flooding events that

disrupt firm supply chains. Firms operating in this environment might reasonably

consider the probability of climate-related disruptions in their operations, as suggested

by our descriptive analysis.

To discipline the magnitude of disruptions in the calibrated model, we estimate

input disruptions from event study designs that leverage the exogenous geographic

and temporal variation in flooding events. We show that the sales of flood-hit sup-

pliers fall sharply over three months but recover by five months after a flood. The
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total purchases and sales of downstream buyers decrease substantially. Firms recover

relatively quickly, and are unlikely to substitute to other suppliers, in contrast to

the supply-chain reorganization documented by Khanna et al. (2025) following the

unanticipated COVID-19 lockdowns. Our descriptive and event-study results are sug-

gestive that firms plan for climate risk by diversifying inputs, and face an input-cost

versus disruption risk trade-off in setting up supply chains. We develop a solution

method leveraging equilibrium conditions in the model to solve the model given a

distribution of disruption probabilities across regions.

Our model implies that bilateral sourcing shares are a function of all regional labor

endowments, productivities, and bilateral trade costs, as well as the risk of sourcing in

each region. Given estimates of regional labor, productivity, and bilateral trade costs,

we back out the model-implied spatially correlated regional risk to match observed

sourcing shares. To validate our framework, we project the model-implied risk on

climate observables such as rainfall, floods, temperature and dryness as well as other

risk-related variables such as state fixed effects, ruggedness, and elevation to capture

institutional and geographic features that affect firm decisions.4 We find that climate-

related risk is strongly positively correlated with the estimated risk probabilities, with

an R2 of 0.32. While not causal, the robust positive correlation is consistent with

firms taking into account several sources of risk when they form their supply chains,

a feature that has been largely ignored by the literature (an exception is Kopytov

et al. (2024) who study how supply chains adapt to supplier volatility).5

We perform several quantitative exercises in our calibrated model. First, we quan-

tify the insight from our comparative statics exercises regarding wage volatility and

trade. We find that the variance of real wages is 9.25% higher in autarky than in

our baseline model with costly trade. Expected real wages are also 3.1% higher in

autarky, on average, although for some districts expected real wages decline. With

log utility, autarky is welfare reducing, with a 7.29% average welfare decline.

We then study how regional wages change in general equilibrium under alterna-

tive disruption probabilities to capture scenarios of changing climate risk, and to

4While these parameters in the model are estimated conditional on productivity, it is well-known
that cross-sectional climate risk, globally, is negatively correlated with productivity. To mitigate
confounding, we also control for regional productivity in the projections.

5In an alternative exercise, we parameterize the regional risk as a function of climate-related
variables and other risk-related variables related to institutional quality and local development and
estimate the relevant parameters. Our quantitative results remain very similar.
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highlight our new channel. We use the correlation between flood, heat, dryness, and

precipitation risk with our estimated district-level risk probabilities to infer how these

probabilities would change given IPCC projections of climate risk. We then compute

expected real wages, input prices, and wage volatility under the scenario of climate

evolving as projected, holding all other long-run changes, such as productivity growth,

constant. We find that the average risk of districts increases by 1.1pp, but there is

wide heterogeneity. Expected real wages decline on average by 1.96%, their volatility

increases slightly by an average of 0.15%. Welfare decreases on average by 2.01%.

Around 37% of districts see expected real wage increases.

Our quantification highlights the distributional consequences of adaptation to cli-

mate risk. In the counterfactual, initially better-off districts largely see welfare in-

creases, while initially worse-off districts experience welfare declines. We decompose

the changes into the direct effects of changing risk and equilibrium effects of adap-

tation. Regions where risk is increasing bear the direct effects of shocks, but also

see downward pressure on wages due to firms’ adaptation away from them. We show

that for regions that are experiencing an increase in risk, the economy’s adaptation

is welfare-decreasing. In sum, our model and quantification show that firm sourcing

decisions help mitigate the effects of climate shocks and have quantitatively impor-

tant general equilibrium implications for real wages in safer regions relative to riskier

ones.

Related literature. A growing literature studies how climate change shapes

economic activity, assessing how the distribution of economic activity changes within

and across regions, and countries (Desmet et al., 2021, Jia et al., 2022, Cruz and Rossi-

Hansberg, 2024, Hsiao, 2023, Bilal and Rossi-Hansberg, 2023, Balboni, 2025, Farrokhi

and Lashkaripour, 2024, Nath, 2024, Bilal and Känzig, 2024). Another branch of

the literature studies the effects of extreme weather events on firms’ employment

and location decisions, as well as on FDI, using empirical studies or stylized theories

(Indaco et al., 2020, Gu and Hale, 2023, Pankratz and Schiller, 2024). Both this paper

and Castro-Vincenzi (2024) examine how changes in disruption probabilities from

extreme weather events shape firms’ investments to mitigate risks—this paper through

supplier diversification and Castro-Vincenzi (2024) via plant relocation. However,

Castro-Vincenzi (2024) focuses on modeling in detail the industry equilibrium of the

global car industry, whereas this paper solves for the full general equilibrium of a

multi-region economy under any distribution of location-specific risk.

5



Our theoretical and quantitative results are related to Kopytov et al. (2024), who

study supply chain adaptation to supplier volatility, and to Pellet and Tahbaz-Salehi

(2023), who study the implications of rigidities in supply chains that arise due to in-

complete information. Similar to the rigid inputs in Pellet and Tahbaz-Salehi (2023),

firms in our model place orders for intermediate inputs prior to shock realization,

and cannot adjust orders ex-post. In contrast to these papers, our model features

households in multiple regions that cannot trade shares of the different firms, and

the incentive to mitigate volatility arises from the concavity of firm profits. As a

result, in our framework, aggregate volatility decreases in trade openness, as firms

mitigate risk, reminiscent of the findings in Caselli et al. (2019). However, expected

real wages can be lower under costly trade compared to autarky. This parallels the

results in these papers that aggregate output is also lower due to diversification away

from volatile suppliers. In our setting, eliminating trade barriers permits both ex-

pected real wages to be higher and aggregate volatility to be lower, maximizing the

benefits of diversification. At the micro level, our firm problem is similar to Blaum

et al. (2024), but our model delivers strong implications for how wages across space

are shaped by regional risk in general equilibrium, and can be used to infer the risk

that firms assign to different sourcing locations.

Supply chain fragility and resilience have received increased attention in the litera-

ture following recent global events such as the Ukraine war and the Covid-19 pandemic

(Grossman et al., 2023, 2024; Korovkin et al., 2024; Khanna et al., 2025). Our data

for calibration are similar to Khanna et al. (2025), but we emphasize the general equi-

librium consequences of the adaptation of supply chains to climate risk, which are not

studied in that paper. Indeed, we provide some empirical evidence suggesting firms’

supply chain responses to climate-related risk vary qualitatively and quantitatively

from their responses to an unanticipated, temporary shock like COVID-19.

A large research agenda emphasizes the importance of international trade in in-

puts and the macroeconomic consequences of such trade using quantitative models

with supply chains (Yi, 2003, Johnson and Noguera, 2012, Caliendo and Parro, 2015,

Antràs et al., 2017, Huo et al., 2024). Some papers study the transmission of natural

disasters through trade and supply chain links (Barrot and Sauvagnat, 2016; Boehm

et al., 2019; Carvalho et al., 2021). Our focus is on quantifying the general equilib-

rium economy-wide consequences of firm supply chain adaptation to the (changing)

probability of disruptions, rather than firm responses to the incidence of a disruption.
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In contrast to our emphasis on the responses of firms to climate risk, a related litera-

ture develops quantitative trade models to study the role of trade in contributing to

climate change (Garcia-Lembergman et al., 2025).

Finally, our paper contributes to research studying trade under risk (e.g. Helpman

and Razin, 1978, Svensson, 1988, Esposito, 2022, Allen and Atkin, 2022, Adamopoulos

and Leibovici, 2024, among others). Balboni et al. (2024) and Blaum et al. (2024)

provide evidence of firm adaptation in Pakistan and the US, respectively. These

papers provide empirical evidence that complements our quantitative model studying

the general equilibrium implications of supply chain diversification under risk.

The rest of our paper is structured as follows. Section 2 sets up the model, derives

analytical results, and performs comparative statics. Section 3 calibrates the model,

discusses our data, shows descriptive patterns, and outlines our solution approach.

Section 4 contains the climate change counterfactuals. Section 5 concludes.

2 Model

We develop a multi-region general equilibrium model of firm sourcing under risk

and perform comparative statics. The model is static, for analytical simplicity and

tractability, as rich geographic variation and a large number of locations is neces-

sary for illustrating the diversification motive to local disruptions.6 We present the

decentralized equilibrium in this section, but note that the model is efficient as we

demonstrate in Appendix A.3 where we solve the social planner’s problem.

2.1 Setting

The economy consists of I regions. Each region i is endowed with Li workers, a

unit continuum of final goods producers who produce nontraded final goods, and

competitive intermediate goods producers. Labor is immobile across regions.

Timing. The model is static and consists of two stages. In the first stage, final goods

producers in each location i place their orders for intermediate inputs from location

j, Mji. In the second stage, inputs are produced, origin-specific sourcing disruption

6As our emphasis is on understanding the steady state GE consequences of a spatial distribution
of risk and not about the incidence of a specific disruption, a static model is appropriate. That said,
our model can be used to study the immediate ex-post response to the incidence of a disruption, as
we do in Section 4.2.
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shocks, χ = {χj}, j ∈ I are realized, and then inputs are delivered, final goods firms

choose their labor inputs and produce, households supply labor and consume, and all

markets clear at equilibrium prices.

Households. The representative household in region i supplies labor Li inelastically

to firms in i and chooses a consumption aggregate of the non-traded regional final

goods, qi(χ), to maximize

max
qi(ω,χ)

log

([∫
ω∈[0,1]

qi(ω,χ)
σ−1
σ dω

] σ
σ−1

)
(1)

subject to the budget constraint,∫
ω∈[0,1]

pi(ω,χ)qi(ω,χ) = Yi(χ) ≡ wi(χ)Li +Πi(χ) ∀χ ∈ G(χ), (2)

where pi (ω,χ) is the price of final good qi (ω,χ), Yi(χ) is total income in region i, and

σ > 1 is the elasticity of substitution. Total income Yi(χ) consists of labor income,

wi(χ)Li, and aggregate profits rebated to the household from firms, Πi(χ).

The Lagrange multipliers λi(χ) = 1
Yi(χ)

of the state-specific budget constraints

measure how much an extra unit of income contributes to utility in different states

of the world. These multipliers define the stochastic discount factor firms use to

compare profits across different states of the world.

Intermediate goods producers. In each region, there are a continuum of compet-

itive suppliers of tradable intermediate inputs, M̄i, with production function M̄i =

ziℓ
M
i , where zi is their productivity and ℓMi is the labor used in the production of

intermediates. The price of intermediates in i is equal to their constant marginal

cost, pMi (χ) = wi(χ)
zi

, where wi(χ) corresponds to the wages in that region. Notice

that intermediates M̄i are produced before the realization of shocks, but their price

is potentially stochastic.

Let pMji (χ) denote the price of intermediates from j used in i. We assume iceberg

trade costs τji between regions. No arbitrage in shipping implies that the factory-gate

price and price at time of intermediate usage are related: pMji (χ) = τjip
M
j (χ).

Final goods firms. Each region i contains a unit continuum of homogeneous final

goods producers that produce differentiated varieties ω. Final goods are not tradable
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across regions. The constant returns to scale production function of the firms is

qi(ω,χ) = ϕiℓi(ω,χ)
βxi(ω,χ)

1−β , (3)

where ϕi is the productivity of final goods’ producers in location i, ℓi(ω,χ) is the

firm’s labor input, and the firm uses a single intermediate, xi(ω,χ), which can be

sourced from each region j ∈ I as perfect substitutes:

xi(ω,χ) =
∑
j∈I

xji (ω,χ). (4)

In this simple single intermediate input case, intermediates are differentiated across

regions only by their risk profile.7 For compact notation, for the rest of the paper, we

suppress the explicit dependence of variables on χ except where necessary for exposi-

tional clarity. All equilibrium variables except M̄i remain potentially stochastic.

Second stage. In the second stage, final goods firms have already placed their

orders of intermediates Mji (ω), shocks χ have been realized, and production takes

place. The second-stage profit maximization problem of a final goods firm in i is

max
qi,{xji}Ij=1,ℓi

[
YiPσ−1

i

] 1
σ qi (ω)

σ−1
σ − wiℓi(ω) (5)

such that xi (ω) =
∑
j∈I

xji(ω) (6)

xji(ω) ≤ χjMji(ω) ∀ j , (7)

and the production function (3). Here, Yi is income, and Pi is the price index in

region i. χj ≤ 1, j ∈ I are the shock realizations. We assume the shocks destroy some

of the orders of inputs, Mji, that have been placed in the region in the first stage,

and so if a shock materializes, the firm receives fewer inputs than its order. This

captures a general notion of risk: risk is associated with a disruption of the quantity

of inputs that arrive for production for reasons that can include climate-associated

shocks such as rainfall or floods, but could also include the likelihood of other sources

7Appendix E.2 considers a CES aggregate of differentiated inputs, featuring love-for-variety mo-
tives for trade in addition to diversification due to variation in the risk profile of inputs. For analytical
simplicity, we use the single-input case for our baseline.
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of production disruptions. In our quantitative exercises, we will focus on climate-

related risk. We assume the stochastic shocks are origin-specific, and so they affect

orders of inputs from all buying regions. As the shocks are not idiosyncratic, they

will potentially affect aggregate outcomes.8

Note that as second-stage profits (5) are monotonically increasing in input usage

xi(ω), the firm will always optimally use all available inputs that are delivered of its

orders Mji (ω). In other words, Equation (7) will always hold with equality.

The first order conditions of the firm’s second stage problem (5) pin down a firm’s

optimal choices of labor li, as well as its price pi, quantity qi, and profits πi as a

function of the vectors of first stage orders Mi = {Mji}Ij=1 and origin-specific shocks,

χ = {χj}Ij=1. In particular, the expression of profits for a firm in region i, suppressing

the variety index ω for concise exposition, is:

πi(Mi;χ) =

[
σ(1− β) + β

β(σ − 1)

] [
β(σ − 1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i

∑
j∈I

χjMji

(1−β)(σ−1)


1
β+σ(1−β)

.

(8)

First stage. In the first stage, prior to the realization of shocks, final goods pro-

ducers in all locations choose their orders Mji of inputs to maximize expected profits.

Firms have rational expectations and make their input sourcing decisions based on the

true joint distribution of origin-specific disruption shocks, G(χ).9 While the model

can readily accommodate alternative belief structures, the assumption of rational ex-

pectations is useful for our estimation approach. We consider an alternative belief

structure in Section 4.2.

The firm’s problem in stage one is

max
Mi≥0

Eχ

[
λi

(
πi(Mi;χ)−

∑
j∈I

pMji Mji

)]
, (9)

where pMji is the order cost of inputs from j in i, and πi(Mi;χ) is as in Equation 8.

8These origin-specific shocks can alternatively be viewed as a disruption to all trade
costs/transport routes with the shocked region (Balboni et al., 2024).

9In our quantification of the model, we assume that these shocks are binary, occurring with
probability ρi in each location i, and we permit spatially-correlated shocks.
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The first order conditions of this problem are

Eχ

λi

χjΘi

[∑
j∈I

χjMji

] −1
β+σ(1−β)

− pMji

 ≤ 0 ∀ j , (10)

where Θi =
[
(1−β)

β

] [
β(σ−1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[[
YiPσ−1

i

]
ϕσ−1
i

] 1
β+σ(1−β) is a function of

equilibrium aggregates that are potentially stochastic, as Yi, wi, and Pi might depend

on the shock realizations across regions.

These first-order conditions highlight that when placing an order for intermediate

inputs of a given origin j, firms equate expected marginal benefits and marginal

costs. Moreover, this optimality condition elucidates under which circumstances the

firm does not source from a particular location. This occurs if the expected marginal

benefit from placing an infinitesimal order in location j, with optimal orders elsewhere,

is strictly smaller than its expected price, pMji (χ).

Proposition 1 Ex-ante profits are concave in orders of inputs Mji.

Proof. See Appendix C.

This property of the firm’s problem, which arises from the firm’s inability to ad-

just input orders ex-post, together with downward-sloping final demand for the firm’s

good, is important for the firm’s optimal sourcing strategy. Interestingly, it implies

that the firms behave as if they are risk-averse when placing their input orders to

maximize expected profits, even without explicit risk aversion in managerial prefer-

ences. As a result, the “risk aversion” from the concavity in profits implies firms will

optimally diversify sourcing locations.

As discussed above, our baseline model for analytical simplicity does not feature

standard love-for-variety motives for diversification. However, while the assumption of

a single input perfectly substitutable across origins is stark, even in this setting inputs

sourced from different locations are differentiated by their risk profiles. Appendix E.2

shows that the concavity of firm profits continues to hold with a CES aggregator of

inputs from different origins, featuring love-for-variety effects in addition to variation

in risk profiles. Our baseline assumption permits sharp analytical insights and allows

us to focus purely on the risk-diversification motive.10

10With a finite elasticity of substitution, firms would choose to source from all locations, inconsis-
tent with the data on sourcing shares, which features many zeros. Here, the diversification motive
implies they source more at the intensive margin from each region. To match the observed sourcing
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2.2 General Equilibrium

In the second stage, shocks are realized, inputs are delivered across regions, and goods

and labor markets clear. The labor market clearing condition for region i is

Li −
M̄i

zi︸ ︷︷ ︸
L̃i, Final goods labor

=

β(σ − 1)

σ

1

wi

[
YiPσ−1

i

] 1
σ

ϕi

∑
j∈I

χjMij

1−β


σ−1
σ


σ

β+σ(1−β)

, (11)

where L̃i is the labor used in the production of final goods in i, and M̄i

zi
is the labor

used in the production of M̄i =
∑J

j=1 τijMij intermediates to ship to all regions j ∈ I

from region i. Goods markets clear in each region, implying that the region’s income

is equal to its expenditure:

Yi = wiLi +Πi , (12)

where Πi are the aggregate profits in i of the final goods firms as in Equation (5) less

their intermediate goods order costs

Πi =

∫
πi(ω)dω −

∫ ∑
j

pMij Mij(ω)dω. (13)

Notice that we assume firms pay for their orders of intermediate inputs, not for the

fraction they receive after the shock. This particular decentralization achieves the effi-

cient allocation (Appendix A.3) and therefore we abstract from alternative contracting

structures that may introduce additional distortions.11 Additionally, Equation (11)

implies that the full quantity of intermediates ordered in stage 1 is produced. This

implies that the shocks “destroy” a fraction of produced inputs.12 The equilibrium

of the economy is formally defined in Appendix A.1.

Features of the equilibrium. As all firms in a region are homogeneous, under the

unit mass of firms assumption, the regional price index Pi = pi, and aggregate profits

shares with zeros, the model would have to have fixed costs of sourcing, rendering it intractable.
11In the data we use for calibration in Section 3.4, we do not observe actual contracts between

firms, so we choose a tractable setup that achieves the efficient allocation.
12We assume all inputs ordered are produced. In Section 3, we will show event studies where

there is a decline in the shipped sales of affected firms. Our model is consistent with this pattern as
the event studies are based on the value of shipments after a shock. Our data do not speak to the
unobserved quantity of inputs produced or the payments firms have made for their input orders.
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Πi = πi. We can then characterize several features of the equilibrium.

Lemma 1 Aggregate profits are a constant fraction of labor income Πi =
1

σ−1
wiLi.

Further, aggregate expenditure on materials in i is given by∑
j

pMij Mij = (1− β)wiLi, (14)

and aggregate income in location i is given by,

Yi =
σ

σ − 1
wiLi. (15)

Proof. See Appendix A.2.

Lemma 2 The aggregate labor demand of final goods producers is inelastic, indepen-

dent of the realization of shocks, χ, and is a constant share of the aggregate labor

endowment,

L̃i = βLi. (16)

Proof. See Appendix A.2.

To understand the intuition behind Lemma 2, consider the case of firms in a region

facing negative shocks in their sourcing locations at the start of stage 2. Due to input

disruptions, all else equal, the demand of final goods producers for labor falls. But in

equilibrium, this decline is exactly offset by the increase in final goods prices and real

wage declines, as aggregate consumer demand is downward-sloping. The net effect is

that the aggregate labor demand from final goods producers remains unaffected.

Equation (16) shows that equilibrium wages must be such that the remaining

workers are used by the intermediate inputs sector in stage 1. This implies that

equilibrium wages wi and input prices pMi are such that stage 1 firm input orders

demand (1− β)Li to produce M̄i so that labor markets clear.

Lemma 3 Let labor in region 1 be the numeraire. Equilibrium relative wages wi are

deterministic. This implies that aggregate income in location i is also deterministic.

Proof. See Appendix A.2.

Lemma 3 follows immediately from the discussion above. There is a unique wage wi

in each location such that equilibrium input orders placed by firms in stage 1 require

13



(1− β)Li, the labor not used in final goods production in stage 2, to be produced.13

This result is not imposed by assuming wages are predetermined or fixed in stage 1.

Rather, since aggregate labor demand from final goods producers is perfectly inelastic

and independent of realized shocks, the equilibrium vector of regional wages, wi,

must be determined entirely by conditions prevailing before uncertainty is resolved.

Consequently, there exists exactly one deterministic wage vector that clears regional

labor markets, equating the labor demand of intermediate goods producers with the

labor supply net of the invariant labor requirements for final goods production.

This simplifies the analysis substantially: while wages could potentially vary across

states of the world, by Lemmas 1-3, wages, input prices, nominal income, and profits

are deterministic. The only aggregate variable that is stochastic, varying with the

realization of shocks, is the ideal price index, Pi, implying real wages and real incomes

are stochastic.

In the ex-post general equilibrium, the expression for Θi, which is part of the

marginal contribution to profits of a marginal unit of Mji (Equation 5), is given by

the following expression:

Θi = (1− β)wiLi

(∑
j∈I

χjMji

)− (1−β)(σ−1)
β+σ(1−β)

. (17)

This implies that Θi is stochastic from the perspective of firms in stage 1.

Ex-Ante General Equilibrium As pointed out above, the vector of relative wages

is deterministic and determined at the first stage, and intermediate goods producers

employ (1− β)Li workers in input production. In turn, due to the linear technology

assumption, it must be the case that in equilibrium, the production of intermediates

in each location is equal to M̄i = (1− β)ziLi. In the equilibrium of this economy, the

vector of wages, {wi}Ii=1, must be such that total demand from intermediate goods

producers in each region exactly equals this amount.

From trade balance and optimal total intermediate expenditure conditions, we

13Another way to see this result is that, even though wages could vary across states of the world,
Lemma 2 shows that aggregate labor demand by final-goods producers is state-invariant. Hence,
each region faces a single labor-market-clearing condition rather than state-contingent ones, and one
deterministic wage vector suffices to clear markets.
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derive the following equilibrium system, generating the equilibrium wage vector:

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
ℓ
wℓτℓi
zj

Mℓi({wi}Ii=1)
∀ j ∈ I, (18)

where crucially, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a

function of the vector of wages, the parameters of the model, and the probability

distribution of the shocks and satisfies the following system of nonlinear inequali-

ties:14

(1− β)wjLjE

χi

(
I∑

i=1

χiMij

)−1
 ≤ wiτij

zi
∀ i, j ∈ I. (19)

These expressions are the result of substituting the formula for Θi provided in

Equation 17 and the marginal cost pricing equation for intermediates in the firms’ first

order conditions in Equation 10. This completes the description of the economy.

Welfare Agents’ welfare is given by expected consumption, which is equal to the

final goods producers’ output and varies by region. In general equilibrium, the ag-

gregate output of the final sector in region i, conditional on available inputs, is

Qi (Mi;χ) = ϕiβ
βLβ

i

(∑
j

χjMji

)1−β

,

and expected welfare becomes

Wi = Eχ [logQi (Mi;χ)] = log ϕi+β log β+β logLi+Eχ

[
(1− β) log

(∑
j

χjMji

)]
.

(20)

As is clear from this welfare expression, since consumers are risk-averse under log

utility, the sourcing strategy selected by the final goods producers has effects on their

welfare. Consumers benefit from diversification in firms’ sourcing strategies.15

14Similar non-linear systems of equations in wages appear in several static trade models. Note
that here, the system includes orders of intermediates, Mji, which are also equilibrium objects and
do not have a closed-form solution.

15The model can be solved under CRRA preferences, which can be parameterized to imply stronger
risk aversion and larger welfare gains from diversification.
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2.3 A Two Location Example

To gain intuition, consider a simple case with two locations. Region 1 is risky and

receives a shock χ1 < 1 with probability ρ, and region 2 is a safe location.16 Ad-

ditionally, there are no trade costs, and therefore, the optimal intermediate bundle

chosen by firms is the same in both locations.

Notice that in equilibrium it must be that pM1 < pM2 , because otherwise, the safe

location’s input is unambiguously better than the input from the risky location, and

the labor market will not clear in the risky location.17

The optimal stage 1 sourcing choices for firms from both regions i ∈ {1, 2} is

M1i : ρχ1λ
S
i Θ

S
i [χ1M1i +M2i]

−1
β+σ(1−β) + (1− ρ)λNS

i ΘNS
i [M1i +M2i]

−1
β+σ(1−β) = pM1

(21)

M2i : ρλ
S
i Θ

S
i [χ1M1i +M2i]

−1
β+σ(1−β) + (1− ρ)λNS

i ΘNS
i [M1i +M2i]

−1
β+σ(1−β) = pM2 ,

(22)

where ΘS
i = (1−β)(σ−1)

σ
Yi (χ1M1i +M2i)

− (1−β)(σ−1)
β+σ(1−β) and ΘNS

i = (1−β)(σ−1)
σ

Yi (M1i +M2i)
− (1−β)(σ−1)

β+σ(1−β) .

As discussed above, Θi is stochastic, and depends on whether or not the shock ma-

terializes in region 1. Under the monopolistic competition assumption, all firms take

these aggregates as given. Entering these shifters into the first order conditions of

the firms, we can solve for optimal orders as a function of wages:

M1i =
(1− β)(σ − 1)

σ
Yi

[
1− ρ

pM1 − χ1pM2
− ρ

pM2 − pM1

]
(23)

M2i =
(1− β)(σ − 1)

σ
Yi

[
ρ

pM2 − pM1
− (1− ρ)χ1

pM1 − χ1pM2

]
. (24)

Let wages in the less-risky region 2 be the numeraire. As intermediates are priced at

marginal cost and from the labor market clearing condition (Equation 11), a constant

fraction of labor is used in the production of intermediates, and we can show that

equilibrium wages in the risky region 1 are given by

w1 =
z1
z2

z1L1χ1 + z2L2(1− ρ(1− χ1))

z1L1(ρ+ χ1(1− ρ)) + z2L2

. (25)

16That is, E1
χ = ρχ1 + (1− ρ) and E2

χ = 1.
17The fact that in this simple case, we have an interior solution for firms in both locations does

not need to hold in general when there are multiple locations and trade costs.
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Equation 25 shows that the nominal wage in the risky location relative to the safe

one is a function of relative productivities, relative sizes, and the probability and

magnitude of the shock. This wage is increasing in relative productivity and decreas-

ing in relative population of location 1, and particularly relevant to our application,

decreasing in both the probability and the magnitude of the sourcing disruption.

2.4 Comparative Statics

For a larger number of regions, the model does not have an analytical solution, so we

first illustrate the model’s properties in a stylized 3-region setting. We assume the re-

gions are homogeneous in firm productivity ϕi, labor endowment Li, and intermediate

producer productivity zi. Trade is costly between regions with a distance elasticity

of 0.5. We assume if a shock occurs, 90% of the inputs are destroyed (χ = 0.1).

To focus on regional variation in risk, we assume the three locations are equidistant,

but risk varies across space. We assume 1
I

∑3
i=1 ρi = 0.5 and contrast costly trade

to autarky. Appendix A.4 allows for regions to vary in their distance to each other,

placing them on a straight line, but with constant risk (ρi = 0.5 for all i).

Heterogeneous risk, homogeneous distance. The left panel of Figure 1 illus-

trates the regional maps and the shock probabilities of each region in the heteroge-

neous risk case. As regions are equidistant, geography does not play a role in di-

versification. The middle panel shows the bilateral sourcing shares between regions.

The diagonal is the darkest: in the presence of trade costs, all regions source most of

their inputs from their own region, despite heterogeneous risk. However, there is clear

variation. Regions 1 and 3 (the safest regions), see the most “own sourcing.” The

riskiest region 2 diversifies the most. All regions source inputs from other regions,

with relatively larger shares from those with low risk.

The right panel shows that expected real wages across regions are negatively cor-

related with shock risk, and are highest in safest locations despite identical regional

fundamentals. The underlying mechanisms are that safer regions experience higher

labor demand for their intermediate inputs from all regions, pushing up nominal

wages. They also face a lower price index of their final goods, as they can source safer

“domestic” inputs without paying trade costs. Notice that in general equilibrium, the

wage impacts on riskier regions will modulate sourcing from them.
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Figure 1: Scenario with heterogeneous risk, homogeneous distance

Different distance between regions

(a) Shock Probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. The figures in the left panel show the probability that each region is hit by a shock, as well
as a visual representation of the geographical location of regions in space. The figures in the middle
panel consist of a 3x3 input-output matrix where the buying regions are on the vertical axis, and
the supplying regions are on the horizontal axis. Each line represents the share of inputs purchased
by a buying region from each supplying region. The right panel presents the real wages for each
region. Regions are equidistant from each other. The scales are shown to the right of each figure.

Heterogeneous risk and autarky. In the same environment, we set trade costs to

infinity, shutting down inter-regional input sourcing. Appendix Figure A1 illustrates

that in regional autarky, the riskiest region sees the lowest expected real wages, while

the safest regions see the highest expected real wages. These regions have the lowest

expected prices due to lower shock probabilities and fully domestic sourcing.

We next consider how expected real wages change across regions moving from

costly trade to autarky in Panel A, Figure 2. Interestingly, all regions see a decline in

expected real wages as they transition from autarky to trade. In this setting, there

are no gains from varieties. The primary reason for trade is to diversify risk. However,

trade is costly, so the benefits of diversification are obtained at a higher average input

price, raising regional price indices and lowering expected real wages.

The lower expected real wages under costly trade do not imply welfare losses from

trade: Panel B of the figure illustrates that there is a large decline in the volatility

of real wages under trade for all regions. Supply chain diversification lowers the

variance in final goods prices across all regions, insuring against shocks and real wage

volatility. Household welfare is the expected log quantity of the final goods bundle

consumed (Equation 20). As a result, the decline in variance of real wages contributes

positively to their welfare, offsetting the decline in expected real wages, and trade is

welfare-improving.18

18Recall, E[logX] ≈ logE[X]− cV[X]. This result depends on the assumption of log utility.
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Figure 2: Comparison between heterogeneous risk under costly trade and autarky

Different distance between regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right
panel) for the scenario with heterogeneous risk and costly trade shown in Figure 1 relative to the
scenario with heterogeneous risk and autarky shown in Figure A1. The variance of real wages is
computed across potential states of the world. Here, regions are equidistant from each other. The
scales are shown to the right of each figure.

3 Quantification

We next quantify the model. We introduce the data and setting we use for quantifi-

cation, outline our solution approach, show some patterns in the data as supporting

evidence of model mechanisms, and outline our calibration procedure. Section 4 con-

tains the results of the quantification and the climate change counterfactuals.

3.1 Data

Quantifying the model requires several sources of data. First, we require detailed data

on inter-regional sourcing shares and inter-regional trade costs, for granular regions.

The regions need to be sufficiently granular for inter-regional climate risk to be salient

to firm sourcing strategies. As bilateral sourcing data is often not available at granular

regional levels, we obtain administrative firm-to-firm data to construct these shares.

Second, we require sufficient information on production in the regions to estimate

parameters for regional productivity and obtain regional labor endowments. Finally,

we require data on sources of regional risk, with an emphasis on climate variation

across the granular regions, to quantify the role of diversification against climate risk

in the model and conduct climate change counterfactuals. We outline our data here
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and provide further details in Appendix B.

Firm-to-firm trade. Our primary data source is daily establishment-level trans-

actions (while we use the term “firm”, the data are at the granular establishment

level). These data are from the tax authority of a large Indian state with a fairly

diversified production structure, roughly 50% urbanization, and high population den-

sity. Comparing this context to others with firm-to-firm transaction data, the state

has roughly three times the population of Belgium, seven times that of Costa Rica,

and double that of Chile.

The data contain daily transactions from April 2018 to October 2020 between all

registered establishments within the state, and all transactions where one node of the

transaction (either buyer or seller) is in the state. All transactions have unique tax

identifiers for both the selling and buying establishments, and we observe the value

of the whole transaction, the value of the items being traded by 8-digit HS code, the

quantity of each item, its unit, and transportation mode.

Each transaction also reports the zip code location of both the selling and buying

establishments, which we merge with other geographic data. By law, any goods trans-

action with value over Rs.50,000 ($700) has to generate eway-bills, which populate

our data. Transactions with values lower than $700 can also optionally be registered.

As such, our network is representative of relatively larger firms, but the threshold is

sufficiently low to capture small firms too. Indeed, part of the switch away from a

traditional VAT (value-added tax) to the Goods and Services Tax (GST) regime was

to expand the tax base and include many smaller establishments. The tax base under

this GST regime includes small (as small as one worker) and large establishments.

More information is in Appendix B.1, with summary statistics in Table B1. The dis-

tribution of customers and suppliers of each firm is very similar to that documented

by Alfaro Ureña et al. (2018) for Costa Rica.

We use the data to construct the buyer-supplier network every period, the total

value of firms’ inputs purchased, and output sold. From this, we can construct gran-

ular interregional sourcing shares at the district level (there are over 600 districts in

India). To obtain a measure of real inputs and output, we use the reported quantity of

each transaction to calculate product unit values, construct price indices, and deflate

firm-level input purchases and sales.

Climate Data: We obtain grid-level data on rainfall, coastal flooding, riverine

flooding, temperature, and drought conditions. Coastal and riverine flooding are
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from the World Resources Institute’s Aqueduct Floods Hazard Map. Historical and

projected temperature and drought data are from the IPCC WG1 Interactive Atlas.

Historical temperatures are the average daily degrees centigrade in 2005 (the latest

year available for historical data). Droughts are measured with the SPI index based

on precipitation anomalies over the last 6 months. Daily rainfall data is taken from

the India Meteorological Department. For predicted rainfall, we first extract the av-

erage historical (measured in 2005) and predicted 2050 rainfall from the IPCC WG1

Interactive Atlas. We use data from the Dartmouth Flood Observatory to identify

geocoded flooding events throughout India for our reduced-form analysis. We identify

19 events of large monsoonal floods throughout India between 2018 and 2021.

Non-climate data: Elevation, ruggedness, nightlight luminosity (proxy for eco-

nomic activity), and court congestion (average delay in court days by district), are

compiled by Development Data Lab (2025). For other firm information, such as labor

shares, we use the Annual Survey of Industries (ASI), which is a nationally represen-

tative survey of manufacturing plants in India with more than ten employees.

For computational feasibility, we group the over 600 districts in India into 271

regions by grouping contiguous low-population districts.19 We calibrate our model to

these 271 super-districts.

3.2 Supporting Evidence

Prior to describing our solution approach and calibration procedure, we first show

some patterns in our data related to supplier diversification and climate risk that are

consistent with features of our model.

1: Many firms source the same product from multiple regions. We leverage

the detailed product information in our transaction data and compute the number

of districts from which a firm sources a given HS-8 product. In Table 1, Columns

1 and 2, we show that a significant fraction of firms source the same product from

multiple districts. We compute the number of districts a firm-by-HS-8 product code

pair sources from. Even with the narrowest product definition available in our data,

14.4% of firms source the same product from more than one district, and 74% of

purchases come from firms that source the product from more than one district. This

19We aggregate districts with fewer than 10000 manufacturing workers to a single district within
a state, or merge them with neighboring larger districts in their own state.
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is evidence that a significant fraction of firms are diversifying their product purchases

across narrowly defined regions. While HS-8 product codes are the narrowest available

in most microdata, some remaining product differentiation may still exist within

these categories. In columns 3 and 4, we limit the sample to HS-8 product codes

that are not differentiated, such as commodities. We find that 79% of the value

of firm-product purchases of these non-differentiated product codes come from more

than 1 district. The similarity on these patterns for product codes that are more

homogeneous suggests that our results are unlikely to be driven by heterogeneity

within HS-8 codes.20 All in all, this is suggestive that firms are diversifying input

purchases even in narrow, undifferentiated, product codes, and suggests our simple

model with diversification in a single input might be a reasonable approximation to

study diversification under risk. In Appendix Table C1, we show that the distribution

of the number of supplier-districts is very similar when we exclude likely wholesalers

and likely retailers from the analysis.21

Table 1: Share of firms that source from multiple districts

Number of supplier
districts

Share of buyers x HS-8
(all products)

Share of buyers x HS-8
(commodities)

Firms Value Firms Value

1 85.6% 25.8% 84.2% 20.5%
2-5 13.8% 42.1% 15.2% 45.7%
6-9 0.4% 13.5% 0.5% 13.4%
+10 0.1% 18.6% 0.1% 20.3%

Note. Columns 1-2 aggregate the data at the firm-by-8-digit product level, and compute the fraction
of firm-product pairs and total value that is sourced from a certain number of districts. Columns
3-4 limit the sample of firm-by-8-digit product pairs to those that are not differentiated according
to the classification proposed by Rauch (1999). Non-differentiated firm-product pairs account for
18.7% of total firm-product pairs and 36.3% of total transacted value.

2: Firms that are diversifying inputs more pay higher input prices, and

also buy products from farther distances and drier regions. Focusing on

firm-product pairs at the 8-digit product level, in Figure 3a we show that firms that

20We use the product classification proposed by Rauch (1999) and exclude products classified as
differentiated. Results are robust to using alternative classifications, such as looking at products
with low differentiation as in Nunn (2007) or using the commodity classification proposed by Castro-
Vincenzi and Kleinman (2022).

21Table C2 shows that the results are consistent when looking at diversification by buyer-product
across supplier firms instead of supplier districts.
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source the same product from more regions tend to buy from suppliers that are farther

away. For instance, firm-product pairs that source from one district have an average

distance of 350km to suppliers. On the other hand, firm-product pairs with five

suppliers per product more than double the average distance, at 711km.

Figure 3b shows that firm-product pairs with more suppliers also seem to source

from less rainy districts, which is preliminary evidence that diversification might be

to mitigate climate risk. For firm-product pairs that source from one district, such

districts have, on average, 6.5mm of daily rainfall. On the other hand, for firm-product

pairs that source from five districts, such districts have, on average, 5.4mm of daily

rainfall. The 1.1mm difference in rainfall between one and five source districts is 17%

with respect to the mean. In Appendix Table C3, we show that such patterns are also

prevalent for other measures of climate risk, such as historical riverine flooding.

Finally, in Figure 3c, we show that firms that source from more districts also tend

to pay higher prices for their inputs.22 As shown in Figure 3c, firms that source

from five districts pay an average price that is almost one standard deviation higher

than firms that source from only one district. The average price paid monotonically

increases with the number of districts sourced from. This pattern is consistent with

our comparative statics, where the prices of inputs from less risky regions is higher

in general equilibrium.23

3: Supplier districts that face higher climate risk charge lower prices.

Figures 3b and 3c suggest that as buyers purchase from more suppliers, they source

from regions with lower climate risk and pay higher prices. The flip side of this

pattern is that suppliers in riskier areas might charge lower prices. To investigate this

relationship further, we estimate a regression at the buyer (j) - supplier district (d) -

product (p) level as in equation 26.

log(Price)j,d,p = α1 log(Climate risk)d + α2 log(Distance)j,d + α31(j in d)j,d+

α41(j, d in same state)j,d + γXd,p + δj + δp + ϵj,d,p ,
(26)

22To compute average prices, we first estimate a regression of log price on product fixed effects, and
standardize the residual of such regression to construct our residual price index. We then normalize
the average price for those firms that source from only one region to one.

23In Appendix Table C3, we show that these patterns are statistically significant, and remain so
within product and controlling for buyer size and supplier size. In other words, the patterns are not
driven by specific products, by larger buyers, or by supplier capacity.
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Figure 3: Supplier characteristics by number of districts sourced from

(a) Distance to suppliers (b) Average rainfall (c) Average price of inputs

Note. In the left panel, we compute the average distance between the firm and each of its suppliers
within an HS-8 product from our transaction data. We then compute the average distance across
firm-HS8-product pairs sourcing from 1 to 5 districts. In the middle panel, for each firm-HS8-product
pair, we compute the average daily rainfall at each district the firm sources from. Daily rainfall comes
from the India Meteorological Department. We compute the average across all firm-HS8-product
pairs sourcing from 1 to 5 districts. In the right panel, we compute the average price paid for inputs
for firm-HS8-product pairs sourcing from 1 to 5 districts. To construct our price index, we first run
a regression of log prices on product fixed effects and take the residual. We standardize the residual
and normalize it to 1 for firm-product pairs that source from only one district.

where log(Price)j,d,p is the log of the average price charged to buyer j for product p

by suppliers in district d. We control for the distance between j and d, indicators on

whether the buyer is in district d or the same state as district d, and a set of controls at

the product-supplier district level (Xd,p) such as the log size of all suppliers’ sales from

that district-product pair and the log of the total sales from that district. We also

include buyer and product fixed effects, so the identification of the climate variables

comes from firms that buy from multiple districts. Additionally, we include covariates

that aim to capture market power at the supplier district, such as the log of the total

number of suppliers for a given product in the district and the log of the largest

supplier market share for that product in the district.

We consider two climate risk measures: the average daily rainfall for each district

in 2019 and the historical river flooding in each district. Appendix B.2 details how

these climate variables are computed. As shown in Table 2, both climate measures

are negatively correlated with prices. The magnitudes are robust to including addi-

tional controls at the supplier-district level. A 10% increase in rainfall in a district

is associated with suppliers in those districts charging 0.11% lower prices. Similarly,
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a 10% increase in riverine flooding levels in a district is associated with 2.55% lower

prices charged by suppliers in that district. While these results cannot be interpreted

as causal, they are suggestive that riskier areas charge lower prices, which is also

consistent with equilibrium outcomes in our theory.

Table 2: Correlation between price and supplier district climate risk

Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p

Log(Avg Rainfall)d -0.0179*** -0.0112** Log(Avg River Flooding)d -0.381*** -0.255***
(0.005) (0.005) (0.026) (0.026)

N obs 991,802 991,802 N obs 996,720 996,720
Additional controls No Yes Additional controls No Yes

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j),
supplier district (d), 8-digit product (p) level. The outcome is the log average price charged by
suppliers in district d, to firm j for product p. The first and third columns control for log average
distance between j and suppliers in d, an indicator for whether j is in district d, an indicator for
whether j is in the same state as d, the log of total sales in product p from suppliers in d, the log of
total sales of suppliers in d across all products, buyer fixed effects and product fixed effects. Columns
2 and 4 include controls for the log number of suppliers for product p in d and the log market share
of the highest supplier of product p. Climate variables used are average daily rainfall in the district
in 2019 (left panel) and historical riverine flooding levels in the district (right panel).

4: Firms that face higher climate risk have more suppliers per product

and lower own-state sourcing shares. Finally, we explore whether climate risk

is correlated with a firm’s sourcing strategy. To do so, we run a firm-product level

regression, where the outcomes of interest are the log number of suppliers per product

and the share of purchases sourced from outside the state. The explanatory variables

are either the log average daily rainfall or the log average historical river flooding at

the zip-code where the firm is located. We measure such variables at the zip-code

level instead of the district level to ensure we have enough variation across firms

within our state, and that we better capture “own” climate risk for the buying firm.

Some HS-8 products might typically have more suppliers, and larger firms might have

higher sourcing shares from other regions. To eliminate such confounding variation,

we control for HS-8 product fixed effects, the log purchases of product p by firm j,

and the log total purchases of firm j.

Table 3 shows there is a positive correlation between a firm’s climate risk and its

sourcing behavior. Firms in areas with higher rainfall or river flooding tend to have

more suppliers per HS-8 product and source more from outside their state within any

given HS-8 product. This is conditional on controlling for the firm’s size and specific

products purchased. In Figure C2, we show the unconditional correlations between
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climate variables and sourcing behavior, consistent with the results in Table 3.

Table 3: Correlation between climate risk and sourcing strategy

N suppliers per
HS-8 product

Share purchases
from other states

N suppliers per
HS-8 product

Share purchases
from other states

Log(Avg Rainfall)j,p
0.0138*** 0.152*** Log(Avg River

Flooding)j,p

0.0142*** 0.0385***
(0.00186) (0.00198) (0.00263) (0.00278)

N obs 943424 943424 N obs 857339 857339

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j),
8-digit product (p) level. The outcome is the log of the number of suppliers per product (columns 1
and 3) and the share of purchases of a given product from suppliers out of state (columns 2 and 4).
The main covariates are the log of the average rainfall (left panel) and the log of historical riverine
flooding (right panel) at the zip code level. In all regressions, we control for 8-digit product fixed
effects, the log firm-level purchases of a given product, and the log total purchases of the firm.

In sum, our descriptive analysis, while not causal, provides suggestive evidence

consistent with firms diversifying inputs to mitigate climate risk, and in the process

facing a trade-off between input costs and risk.

3.3 Solution Approach

The solution to the quantitative model introduced in Section 2 requires overcoming

three computational challenges. First, the perfect substitutability across intermediate

inputs from different origins, combined with the existence of trade costs, implies that

the solution to the firms’ sourcing problem may not necessarily be interior; that is,

firms in some regions might find it optimal not to source from certain origins. Second,

finding the solution to the firms’ optimal sourcing problem involves computing a

high-dimensional expectation over 2I states of the world.24 Third, the two challenges

mentioned above are compounded by the need to find the equilibrium of the model,

which amounts to finding the vector of wages for which all markets clear.

Given a vector of wages, {wi}Ii=1, and shock probabilities, {ρi}Ii=1, we leverage

the structure of the model to solve it efficiently. The first property of the problem

described in Equation 9 is that the objective function is concave, and that the con-

straints are linear. Thus, any locally optimal point is also globally optimal, i.e., the

Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for global

optimality. These allow us to solve the firm’s problem by combining the stationarity

24There are more than 600 districts in India, but for computational feasibility, we group small
contiguous districts to create 271 regions. We implement our model for the 271 regions, so that
involves computing expectations over 2271 ≈ 1082 states of the world.
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and complementary slackness conditions to find that at the optimum, the following

condition holds with equality:

(1− β)wjLjMijE

χi

(
I∑

i=1

χiMij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

which results from multiplying the equilibrium condition in Equation 19 byMij.

This system of I equations in I unknowns defines a nonlinear complementarity

problem for which efficient numerical optimization routines exist.25 Finally, we ap-

proximate the high-dimensional expectation by using simulations, effectively solving

the following system of equations for each region:26

(1− β)wjLjMij
1

S

S∑
s=1

χ(s)
i

(
I∑

i=1

χ
(s)
i Mij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

The procedure described above yields a solution to the firms’ sourcing problem

given a vector of wages, {wi}Ii=1. To find the equilibrium wages, we manipulate the

trade balance and the optimal total intermediates expenditure conditions to derive

the following equilibrium system,

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
k

wkτki
zk

Mki({wi}Ii=1)
∀ j ∈ I,

where, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a function of

the vector of wages and model parameters. The solution to the system of equilibrium

conditions above finds the equilibrium wages conditional on a vector of probabilities,

{ρi}Ii=1. We describe how we calibrate these probabilities in the next subsection.

3.4 Calibration

We need to calibrate the following parameters and moments: the demand elasticity

(σ), labor endowments by district (Li), regional productivities (ϕi, zi), the labor share

25We solve this problem using the optimizer PATH implemented on Julia through the optimization
modeling language JuMP.

26In our estimation procedure and in the computation of counterfactuals, we use 10000 simulations.
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in the production function (β), iceberg trade costs (τij), the input disruption due to

the shock (χj) and flood probabilities (ρi).
27

First, we set the demand elasticity σ = 2 following Boehm et al. (2023). Next,

we use the ASI to obtain employment by district, which is our labor endowment,

Li. To calibrate the input disruption parameter χj, we estimate event studies using

unexpected floods and match the drop in buyer purchases from the event study.

Flood Shocks. We leverage the timing of unexpected floods to a firm’s suppliers to

examine how input purchases change in the lead-up to and right after the shock. Our

event study examines pre-trends in the lead-up to the shock, and dynamics thereafter.

The absence of pre-trends suggests that our parallel-trends identification assumption

is likely to hold, whereas the post-shock dynamics are informative of how long it takes

for firms to recover after the flood. In Appendix B.2, we explain which flood events

are used in the regressions, and in Appendix C.1, we discuss extensions.

We use the existing supplier network (in the pre-shock period) as a measure of

exposure to the disruption to study how buyers were affected when their suppliers

were hit. We examine outcomes yj,t,k,τ for firm j, in period t, and industry k, measured

in event-time (since flood) τ using the specification:

yj,t,k,τ =
x=+5∑
x=−5

[γx (Supplier Exposure)jτ + δτ,x + βxXj,τ0−1] + δj + δr,k,t + ϵj,t,k,τ (27)

In our main specification, we examine how downstream buyers are affected, where

“Supplier Exposurejτ” captures how exposed its suppliers were to each flood:

(Supplier Exposure)jτ =
N∑
i

si,j,τ,x<0 × 1 (Supplier i exposed to flood in τ) ,

where si,j,τ,x<0 is the value of purchases that firm j buys from firm i, relative to

firm j’s total purchases, over the five months before the flood. The index essentially

calculates the weighted average of the flood exposure of firm j’s sellers. A higher

value of the index implies firm j faces a higher “supplier-exposure,” as a larger share

of its purchases come from firms exposed to each of the floods.

We include a wide range of high-dimensional fixed effects to account for con-

27Calibrating these parameters prevents us from using geographical units that are smaller than
districts, as additional data for calibration are not available for smaller areas.
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founding shocks. Firm fixed effects δj control for firm-specific time-invariant dif-

ferences; region-by-industry-by-time fixed effects δr,k,t control for district-industry-

specific shocks and any demand shocks; and flood event-time since flood fixed effects

δτ,x control for aggregate trends around the flood event that affect all firms (includ-

ing those not in the flood-exposed areas). Xj,τ0−1 contains controls for firm-demand

shocks by including the pre-period exposure to floods of consumers, interacted with

time indicators. It also includes controls for firm size-specific shocks by controlling

for purchases in the pre-period, interacted with time-since-flood indicators.

Figure 4: Effects of Floods on Purchases

(a) Downstream purchases (b) Purchases from returning suppliers

Note. Figure 4a and 4b include firm, time, event-time, and industry-district-real time fixed effects,
and log pre-period purchases-time controls. We also include firm-demand controls by including the
pre-period exposure to floods of a firm’s consumers, interacted with time dummies. Standard errors
clustered at the district level.

Figure 4a plots effects on purchases of downstream firms. Once again, the coef-

ficients in the pre-periods do not display any meaningful trends. Purchases are the

lowest at two months after the flood, dropping by 0.07 log points with respect to

the baseline period, for every one standard deviation increase in the supplier expo-

sure (SD of exposure is 0.1). We use this estimate to choose the input disruption

parameter χj, which generates a response to the incidence of a disruption within our

model that matches the drop estimated in the event study.28 Interestingly, Figure 4b

shows that affected firms return to existing suppliers (rather than switch suppliers),

which may also suggest that firms are adapting to the known risk of climate-related

28Note that we calibrate χj to the impact of the incidence of a flood. The disruption probabilities
in our model capture many sources of risk, climate- and non-climate-related, as we discuss below.
This calibration assumes all disruptions, if they occur, are as severe as the realization of flood events.
We do not have other exogenous shocks to discipline the severity of other sources of risk, but we can
readily assess robustness to alternative values of χj in the quantification.
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disruptions ex-ante.

Appendix C.1 examines a wider range of outcomes and methods. It shows these

patterns are similar if we use insights from recent advances in two-way fixed effects

methods, and estimate Local Projections-Diff-in-Diff (LP-DID) specifications or use

a binary treatment. We also illustrate responses of other outcomes, such as supplier

sales, downstream sales, and prices.

When using our standardized continuous exposure, we find that a one standard

deviation increase in exposure reduces sales by 2%. When using our binary shock

measure, we find that downstream sales decrease by 7% in the three months after the

shock for exposed firms relative to non-exposed firms while total purchases decrease

by 16%, implying for every 1% decrease in purchases, sales decrease by 0.43%. Our

fully calibrated quantitative model in Section 4 generates a good fit to these estimates.

It predicts that for every 1% decrease in purchases, sales decrease by 0.47%. Finally,

in Appendix A.5, we examine the importance of inventories in our empirical analysis.

We find that inventories are, on average, less than a month’s sales, and are not

correlated with firm sourcing behavior.

Productivities To estimate productivities by district, ϕi, and the labor share β,

we follow the production function estimation literature and use the Ackerberg, Caves,

and Frazer (2015) approach (henceforth ACF).29 We use revenues as the dependent

variable and labor, materials, and capital as production function inputs and estimate

the production function parameters and the productivities.30

Panel A of Figure 5 illustrates the estimated variation in district-level productiv-

ities. From the ACF procedure, we also get the corresponding coefficients for labor,

materials, and capital. The results are shown in the left panel of Table 4, where the

materials share is 0.81, the labor share is 0.17, and the capital share is 0.08. We

compute the labor share as β = 1 − 0.81 = 0.19. As we do not have capital in the

model, we think of the labor share as the share of capital-augmented labor, so we

29This approach requires lagged values of labor and materials as instruments, and we need a
panel of firms. However, the public version of the ASI is a cross-section of plants, which prevents
constructing a firm-level panel. As a solution, we use the waves for 2004-05, 2005-06, and 2006-07 to
construct a synthetic panel at the industry-district level. We then treat each industry-district pair
as a “firm” for the purposes of estimation.

30Once we back out the ACF productivity for each industry-district pair, we aggregate at the
region level by using weights based on the relative importance of each industry in each region. In
the few cases where productivity cannot be estimated due to missing data for smaller districts, we
assign those regions the average productivity of their closest neighbors.

30



include both capital and wage expenses into the calculations.

Figure 5: Estimated productivities and disruption probabilities

(a) Productivity (b) Model-Implied Climate Risk Profile

Note. In this figure, we plot the estimated district-level productivities (left panel) and the model-
implied district-level disruption probabilities (right panel). Productivities are estimated using the
ACF procedure as described in the text. Baseline disruption probabilities are obtained by matching
model-implied sourcing shares to the data as described in the text. The right panel plots the district-
level climate-disruption probabilities implied by the parameterized approach outlined in the text.
The scales are shown to the right of each figure.

Iceberg trade costs The iceberg trade costs τij are estimated using our transaction

data, leveraging our information on transaction-level prices. Our data is only available

if one node of the transaction lies in one particular state, but we need to back out

trade costs for each bilateral pair of districts throughout India. To address this, we

proceed in two steps. First, we use our transaction data, focus on firms in our state

that sell their goods, and aggregate the data at the seller-buyer-product-time level.

We then estimate Equation 28.

log(ps,b,t,q) = γ1 log(distances,b) + γ21(b in same state as s)s,b + δs,q,t + ϵs,b,t,q, (28)

where ps,b,t,q is the price charged by seller s to buyer b for product q at time t. For

each buyer-supplier pair, we compute the log distance between them as reported in

our transaction data. We also include an indicator variable for whether the buyer

(b) is in our state. The coefficient on distance captures how prices charged change

as distance increases. Importantly, we add seller-product-time fixed effects δs,q,t, so

effectively, the coefficients γ1 and γ2 are being identified by sellers that sell the same
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product to multiple buyers in a given time period.

The underlying assumption is that unobserved iceberg trade costs τij are propor-

tional to distance. In our data, the same seller charges different prices to different

buyers for the same product and month. We assume this variation partly depends

on unobserved iceberg costs. As we include seller-product-time fixed effects, the esti-

mates are not driven by seller-shocks (e.g., productivity) that may affect prices.

Note that iceberg trade costs conventionally include observed costs such as freight

or transportation, but additionally other unobserved costs such as contracting fric-

tions, linguistic/ethnic differences, unobserved preference shifters, etc. We assume

these are proportional to observed distance, which is common in gravity estimation.

In our data, freight costs are not required to be included in the values of goods

shipped reported, though sellers might include this. So, it is likely our iceberg trade

cost estimation might not include transportation costs. Some sellers also explicitly

separately report freight costs. As robustness, we also create an “Adjusted Price”

measure, which adds the reported freight costs. Estimates remain similar, but the

sample is much smaller as this variable is missing for many observations in the data.

The results of this regression can be found in the right panel of Table 4.

Table 4: Estimation results

Panel A: Production Function Estimation Panel B: Trade Costs Estimation

log(Sales) log(Prices,b,t,q) log(Adj. Prices,b,t,q)

log(Materials) 0.81*** log(distance from s to b) 0.0174*** 0.0186***
(0.076) (0.0001) (0.0002)

log(Workers) 0.17*** 1(b in same state as s) -0.086*** -0.0798***
(0.061) (0.0001) (0.0009)

log(Fixed Capital) 0.08
(0.063)

Number of Observations 9128 Number of Observations 65,477,898 45,338,641

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1 Panel A presents the results of the production function
estimation using the ACF procedure. The reported coefficients are for log materials, log number of
workers, and log fixed capital as calculated from the ASI. Panel B presents the results for the trade
costs estimation using our transaction data. The outcome is the log price charged by a seller in
our state (s), for a given product (q), to a buyer (b) in a given month-year period (t). The main
regressors are log distance from buyer to seller and a dummy that takes the value of 1 if the buyer
is in the same state as the seller. We control for seller-product-time fixed effects. In column 2 of
Panel B, we compute the adjusted price by adding the total transaction value and “other” reported
costs (including freight), and dividing by quantity. Other costs include additional self-reported
transportation costs not reported in the transaction value.

We then use the estimated coefficient to predict trade costs for the rest of India.
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We compute bilateral distances between district centroids and predict trade costs

between regions using the estimated coefficients γ̂1 and γ̂2. We assume that the

border effect estimated through coefficient γ̂2 is the same for all states.

Disruption probabilities. Our model implies that bilateral sourcing shares are

pinned down by district fundamentals like productivities and labor force and by bi-

lateral trade costs, as well as the vector of district-level shock probabilities. There-

fore, we can obtain the vector of shock probabilities, ρi, by minimizing the distance

between the observed sourcing shares in the data with those implied by the model.

When estimating the probabilities, we allow for spatial correlation in the realization of

disruptions, as floods or other disruptions might affect more than one district.31

The intuition of the exercise is as follows: conditional on the rest of the parameters

and moments of the model, we pick the shock probabilities of each district to minimize

the distance between the model-implied shares with the observed shares of purchases

from every district in our state to each other district in India.32 This is our baseline

approach, as it allows us to remain agnostic on the sources of risk in the model.

Instead, we can validate our model by projecting the shock probabilities on plausible

sources of risk. Appendix Figure D1 plots the estimated residuals. As an alternative

approach, we also parameterize regional risk as a function of observables, and estimate

the parameters of this function, as described below.

The underlying assumption of our baseline approach is that anything not captured

by district-level productivities and trade costs is part of the district’s risk. Of course,

in practice, such residuals do not only include flooding risk, but also many other

risk components, including institutional risk. As these residuals are obtained through

31We assume that these disruptions are generated by a binary random variable that is equal to 1
whenever a normal latent variable with mean 0 and standard deviation 1 is below a threshold equal
to Φ−1(ρi), where Φ−1 is the standard normal inverse CDF. We allow these latent variables to be
correlated across regions, where the correlation in the realizations between region i and region j is
equal to e−ζDistij , where ζ is a measure of spatial decay in this correlation. We estimate ζ in the
same routine as the probabilities, ρi.

32We do not observe the realizations of disruptions in each district, and we remain agnostic on the
sources of risk that generate disruptions. However, observed sourcing shares in the data include any
realizations of disruptions, which we treat as structural errors. Precisely, given a sourcing strategy in
each region, we generate a large number of shocks, χi, from the true distribution G (χ) ,P (χi = χ) =
ρi and compute the model-implied shock-inclusive sourcing shares. We estimate ρi by minimizing the
gap between the shares in the data and the average across model simulations, allowing for the spatial

correlation as discussed above. Formally, minρ∈[0,1]I
∑

j∈Io

(
sData
ji − 1

S
∑S

s=1 sji

(
{χs

i}
I
i=1 , ρi

))2
,

where s is a model simulation with shocks {χs
i}

I
i=1.
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a procedure similar to the model inversion common in trade models, they will also

naturally contain model mis-specification, and in particular, other motives for diver-

sification, such as love-for-variety. However, in Figure 6 and Appendix Figure D3, we

show that our estimated probabilities are significantly correlated with historical and

projected average rainfall, coastal flooding, riverine flooding, average temperature,

and dryness. In our climate counterfactuals in Section 4, we hold the component of

the estimated probabilities that is not explained by observable measures of climate

risk, which might therefore contain other unmodeled features of the data, constant

across counterfactuals.

In Table 5, we run regressions of the model probabilities on the climate variables

(historical and projected 2050) as well as other variables that could also be related

to risk. The climate variables such as daily rainfall, coastal flooding, and average

temperature are all strongly significantly correlated with the probabilities, and the

R2 of the regressions are high, around 0.32. To capture institutional features that

might affect risk, we add a district court congestion control in columns 3 and 4.

It is also well known that in a cross-section, more productive regions have lower

climate risk. Therefore, significant coefficients on climate variables might simply

be picking up the confounding regional productivity effect. While our residuals are

estimated conditional on regional productivity, to avoid such confounding, in columns

3 and 4, we additionally include our measured district productivity and nightlights

as productivity controls. The coefficients on the climate variables remain similar in

magnitude and significance. Finally in columns 5 and 6 we additionally add state fixed

effects. The results are similar. Figure D2 further shows that these probabilities do

not show a strong correlation with either the estimated productivities of the district or

the average distance to the state of our study. In our climate counterfactuals in Section

4, we use the component of the estimated residuals that is explained by Column 1 as

the climate-related risk, and hold the remainder of the residual constant. Panel B of

Figure 5 plots the implied baseline climate-disruption probabilities by district.

Notice this exercise requires solving jointly for the vector of district-level risk that

minimizes the gap between model-implied sourcing shares and data, as all bilateral

sourcing shares are equilibrium objects that depend on the fundamentals and risk of

other districts. Further, we cannot exactly match all bilateral sourcing shares in the

data; we choose a single shock probability for each district, but we observe multiple

sourcing shares for that district from all districts in our state. We therefore set up
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Figure 6: Model Probabilities and Historical Observables

(a) Avg Daily Rainfall (b) Coastal Flooding (c) Riverine Flooding

.

(d) Std Precipitation Index (e) Average Temperature

Note. We plot the estimated probabilities against historical climate observables. In Figure 6a, we
correlate the probabilities with the average daily rainfall in 2019 (we plot log p

1−p on the x-axis).
Figures 6b and 6c use historical coastal and riverine flooding respectively. Figure 6d correlates
the probabilities with the standardized precipitation index, a measure of dryness. In Figure 6e,
we correlate the probabilities with average temperature. A more detailed definition of each of the
variables can be found in Appendix D.1.

a minimum distance estimator that aims to match the average sourcing shares for

each origin district observed across all destination districts in our data. In practice,

we match all the bilateral sourcing shares in the data well (Figure 7). As external

validation, the right panel of Figure 7 shows that our model also matches the data

on sales shares well, which are untargeted moments.33

Robustness Our baseline approach has the benefit of remaining agnostic about the

sources of disruptions firms face. However, it requires estimating a disruption proba-

33We estimate a mean (median) probability of a climate-related disruption of 0.31 (0.30).
While our estimated probabilities might seem high, available evidence from Indian busi-
nesses suggests that supply chain disruptions are a key concern. For instance, PwC’s 26th
Annual Global CEO Survey in late 2022 found that 50% of India CEOs were concerned
about supply chain disruptions (https://www.pwc.in/assets/pdfs/research-insights-hub/
immersive-outlook-3/paradigm-shift-in-supply-chain-management.pdf). Further, these es-
timates are from a static model, and therefore do not have a natural interpretation in the context
of the time period over which a disruption might materialize.
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Table 5: Regression of model probabilities on observables

Historical Projected (2050) Historical Projected (2050) Historical Projected (2050)

Daily Rainfall 0.104*** 0.0566*** 0.0981*** 0.0440*** 0.0321 0.0212
(0.0264) (0.0182) (0.0215) (0.0137) (0.0276) (0.0139)

Coastal Flooding 1.455*** 1.418*** 2.126*** 1.824*** 3.066*** 1.956***
(0.543) (0.311) (0.665) (0.390) (0.576) (0.337)

Riverine Flooding 0.287 0.359 0.216 0.468* 0.471 0.591
(0.337) (0.295) (0.341) (0.276) (0.334) (0.362)

Avg SPI -0.155 -0.0444 -0.0936 0.000400 -0.350** 0.0552
(0.182) (0.114) (0.158) (0.0969) (0.170) (0.177)

Avg Temperature 0.0519*** 0.0669*** 0.0595*** 0.0700*** 0.0852*** 0.0712**
(0.0175) (0.0188) (0.0177) (0.0181) (0.0322) (0.0310)

Terrain Controls Y Y Y Y Y Y
Institutional Controls N N Y Y Y Y
Productivity Controls N N Y Y Y Y
State Fixed Effects N N N N Y Y

N 271 271 271 271 271 271
adj. R-sq 0.322 0.313 0.339 0.323 0.367 0.356

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We estimate regressions of the inverse logit of the
estimated model probabilities on observables. In columns 1, 3, and 5 climate variables used are
measured with their historical values. In columns 2, 4, and 6 climate variables used are measured
with the projected values for 2050. Terrain controls include average elevation and ruggedness,
institutional controls include mean court congestion, and productivity controls are average nighttime
luminosity and our measure of local TFP. Observables are in levels. A more detailed definition of
each of the variables can be found in Appendix D.1.

bility for each district, which is a large number of parameters. As an alternative, we

assume that the disruption risk in each district is a function of observables, including

the climate and alternative variables in Table 5. We then estimate the coefficients

of this function to minimize the distance between model-implied and observed sourc-

ing shares. This has the advantage that we restrict the number of parameters to

be estimated to 11. However, as we do not observe all sources of risk, there will be

more unexplained variation. Panel A of Figure E7 illustrates district-level disruption

risk implied by this approach. Unsurprisingly, as the observable risk measures were

correlated with the “agnostic” risk from our baseline approach, the results of the

parameterized approach are also correlated with our baseline. Appendix E.1 outlines

this approach in more detail, and presents all our quantitative results under this al-

ternative approach. Our main conclusions remain unchanged. Appendix Table D1

summarizes our model calibration.
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Figure 7: Sourcing shares: Model vs. Data

(a) Input Shares (b) Output Shares

Note. In this figure, we plot the sourcing shares in the data against the model. The red line is
a 45-degree line. In the left panel, we plot the input sourcing shares. We target average sourcing
probabilities from our state’s districts to the rest of the districts, but we do not force anything to
match the particular sourcing shares of each district. The left panel plots each individual district’s
input shares. The right panel shows sales shares, which are entirely untargeted. The R2 of the left
panel without the outlier is 0.50 and of the right panel is 0.79 without its outlier.

4 Quantitative Results

We first show that the model delivers a strong negative relationship between shock

probabilities and relative nominal wages (and real wages) in the cross-section. Figure

8 shows that both nominal and real wages are negatively correlated with shock prob-

abilities, as we would expect. These results quantitatively validate the key trade-off

in the model between sourcing risk and input costs and illustrate the baseline distri-

butional consequences of risk: higher-risk regions are poorer in real terms. In Figure

D4, we also show that the price index and the variance in real wages are negatively

correlated with the shock probabilities.

Probabilities and sourcing shares. To illustrate the rich heterogeneity in bilat-

eral sourcing patterns and disruption probabilities in the quantitative model, we focus

on one district, Kolkata, in Figure 9. The left panel illustrates the spatial correla-

tion of disruption probabilities between Kolkata and other districts. The right panel

shows the sourcing shares of Kolkata from other districts. Firms diversify, but sourc-

ing strategies depend on geography – they source more from relatively geographically

closer areas than, say, the far south of India. Firms also source from districts less

spatially correlated with their own. Notice that the sourcing patterns include several

37



Figure 8: Shock probabilities and wages

(a) Nominal Wages (b) Real Wages

Note. In this figure, we plot model-derived nominal (left panel) and real wages (right panel) against
the estimated shock probabilities. Figure D4 further plots the price index and the variance in real
wages against the shock probabilities.

zeros in equilibrium.

Figure 9: Spatial correlation and sourcing shares: Kolkata

Note. In this figure we plot the estimated spatial correlation in disruption probabilities with other
districts for Kolkata (left panel) and the sourcing shares of Kolkata district with all other districts
(right panel).

Shock propagation Our framework can also be used to assess the effect of disrup-

tions ex-post for aggregate welfare. In Panel A of Figure 10, we show, for each origin

district, the impact of a disruption in that district on the real wages of all other dis-

tricts (including itself). We use the size of the labor force in each district to compute

the weighted average of the effect. The impact of a realized disruption in a district
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on the rest depends on the affected district’s importance as a supplier. The effects

vary widely by district, with shocks that materialize in lower-risk or more productive

districts that are more important as sourcing locations, having larger welfare conse-

quences. While the “own” effect of the shock is important, a large component (62.6%

on average) of the aggregate welfare changes happens through the propagation of the

shock (Panel B of the figure). Here, we plot the aggregate welfare changes caused by

the incidence of a disruption in each origin district, excluding the own effect. Finally,

Panel C illustrates the number of districts that experience a welfare decline when an

origin district experiences a disruption.

Figure 10: Shock Propagation

(a) Weighted Average Wel-
fare Change

(b) Weighted Average Wel-
fare Change in Other Regions

(c) Number of regions with
Welfare Decline > 1%

Note. In Panel A, for each district, we compute the impact a materialized disruption has on the real
wages of all other districts (including itself). We then use the labor force in each district to calculate
the weighted average of the impact. Panel B removes the own-impact in real wages of a disruption
to isolate the “propagation” effect to other districts. Panel C reports the number of districts that
experience a welfare decline when the district experiences a disruption.

4.1 Trade Counterfactuals

We compare welfare in the calibrated model to regional autarky and free trade.

Throughout, we decompose the welfare effects on the changes in expected real wages

and their volatility, capturing the first- and second-moment effects in the model.

Expected welfare under baseline and autarky. The comparative statics in

Section 2 show that with identical regional fundamentals, calibrated trade costs, and

independent disruption probabilities, expected real wages are lower for all regions

with costly trade than in autarky, and their variance is also lower. To assess the
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quantitative relevance of this mechanism in the calibrated model with varying regional

fundamentals, estimated trade costs, and disruption probabilities that are spatially

correlated, we compute the difference in expected real wages in the baseline model

with the model-implied expected real wages given the same regional fundamentals,

disruption probabilities, and infinite trade costs.

Figure 11 illustrates the spatial variation of expected real wages in the baseline

model and the autarky counterfactual. On average, expected real wages are 3.1%

higher in autarky than in the baseline model. The variance of real wages is 9.2%

higher in autarky, validating the quantitative relevance of the main comparative stat-

ics exercises. Overall, autarky is welfare-decreasing for all regions. Welfare decreases

on average by 7.3%, as the change in volatility more than offsets the gain in log ex-

pected real wages. 0.74% of districts see real wage declines, unlike in the comparative

statics, where all regions had higher real wages in autarky.

Expected welfare under baseline and free trade. In contrast, Figure 11 shows

that expected real wages are higher for all regions under a free trade counterfactual,

and their volatility is lower, so the welfare gains from free trade are large. To im-

plement free trade in our quantitative exercise, we set the iceberg trade costs to 1

between all districts. Under free trade, expected real wages are, on average, 5.9%

higher than in the baseline, whereas the variance of real wages is 2.8% lower. Welfare

is on average 8.9% higher, and no district is worse off under free trade.

4.2 Climate Change Counterfactuals

We next study the implications of varying climate risk. We estimate the share of

our model-implied shock probabilities that can be explained by climate-risk-related

variables such as rainfall or floods. Through the lens of our model, these probabilities

capture the risk firms assign to each district. However, as discussed above, the risk

associated with each region can be due to climate risk, as well as other regional

characteristics such as infrastructure or governance. In this section, we highlight the

implications of changing climate risk by holding all other sources of risk constant,

and varying only the climate risk of each region relative to the baseline.

To discipline how climate risk changes, we proceed as follows: First, we regress

the inverse logit transformation of our probabilities on historical measures of rainfall,

coastal flooding, riverine flooding, temperature, and the SPI presented in Figure 6.
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Figure 11: Quantitative results

Panel A: Baseline

(a) Expected Welfare (b) Log Expected Real Wages (c) Variance of Real Wages

Panel B: ∆ in Autarky

(d) Expected Welfare (e) Log Expected Real Wages (f) Variance of Real Wages

Note. Panel A shows welfare, expected real wages and their variance in the baseline calibrated model.
Panel B shows percentage changes in these variables under the autarky counterfactual relative to
the baseline scenario. The maps for change under free trade can be found in Appendix D6

Second, we use the estimated coefficients, shown in Column 1 of Table 5, to pre-

dict the counterfactual disruption probabilities in 2050 for our five climate measures,

while holding constant the unexplained variation in these probabilities. This method

illustrates how the probabilities would change if climate variables evolve as predicted

in the RCP 4.5 scenario of the Intergovernmental Panel on Climate Change (IPCC).

Panel A of Figure 12 illustrates how these probabilities change across space in

our main counterfactual. As the figure clearly illustrates, there is wide variation

in changes in climate risk, with the northeast and parts of the west coast seeing

large increases in risk, while the central part of the country sees decreases in risk.
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Figure 12: Counterfactuals: Climate Risk Increase

(a) A: ∆ in Probabilities (b) B: ∆ in Welfare

(c) C: ∆ Input Prices and Probabilities (d) D: ∆ and Initial Welfare

Note. In this figure, we plot the change in probabilities of climate risk (panel A), the change in
welfare (panel B), the relationship between the change in input prices and changes in probabilities
change in expected real wages (panel C), and the relationship between the change in welfare in the
counterfactual and the welfare at baseline when climate risk increases as described in Section 4.2.

On average, risk increases by 1.1 percentage points. Panel B illustrates the change

in expected welfare in this counterfactual. Welfare on average decreases by 2.01%.

There is wide spatial variation, with a range of 3.11pp, and some of the less risky

regions see welfare gains. 62.73% of districts see real wage declines.

To understand the mechanisms at work, Panel C shows how changes in district

supplier prices correlate with changes in district risk. Input prices offered by interme-

diate firms from the district decrease the most for districts experiencing the largest

increases in risk. This negative terms-of-trade effect arises from the decline in nominal

wages in these risky regions in equilibrium.34

Panel D illustrates the change in welfare, and relates it to the initial district wel-

34Recall input prices pi =
wi

zi
. Effectively, the nominal wages in risky regions are decreasing, by

more than the increase in risk as firms diversify away from riskier regions.
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fare. This highlights the distributional consequences of climate change in our quan-

tification: the change in welfare is positively correlated with initial welfare. In other

words, initially well-off regions see relative welfare improvements following climate

risk increases, while initially worse-off regions see welfare declines. A key quantita-

tive finding is that here, sourcing diversification of firms amplifies the effects of climate

risk increases. Climate risk will not only subject riskier regions to increased shocks,

but also to a decrease in real wages as firm supply chains become less reliant on these

regions.35 Table 6 summarizes the quantitative results across counterfactuals.

Table 6: Model Counterfactuals: Summary

Counterfactual ∆ in Welfare ∆ in log Expected Real Wages ∆ in Real Wage Volatility % districts
Avg. change Range Avg. change Range Avg. change Range Real wage declines

Baseline risk
Autarky -7.29 2.92 3.10 1.87 9.25 3.99 0.74%
Free Trade 8.94 2.30 5.92 1.70 -2.84 0.96 0.00%

Alternative risk
Climate change -2.01 3.11 -1.96 3.10 0.15 0.13 62.73%
∆ in Rainfall and Flood Risk Only -0.24 3.52 -0.25 3.46 0.06 0.13 25.09%
∆ in Temperature and SPI Risk Only -1.76 2.69 -1.72 2.64 0.06 0.13 86.72%

Note. This table shows statistics of the distribution of percentage changes between the baseline sce-
nario with current climate risk and costly trade and other scenarios, weighted by district population.
Range refers to the interquartile range.

Decomposing the effects of climate change adaptation. As a final exercise,

we decompose the change from our baseline economy to the counterfactual economy

with increased climate risk into three components

∆Wi = Wi(G
′,Mi(G

′,w′))−Wi(G
′,Mi(G

′,w))︸ ︷︷ ︸
G.E. Effect

(29)

+Wi(G
′,Mi(G

′,w))−Wi(G
′,Mi(G,w))︸ ︷︷ ︸

P.E. adaptation

+Wi(G
′,Mi(G,w))−Wi(G,Mi(G,w))︸ ︷︷ ︸
Direct effect of climate change

,

where X ′ refers to the changed climate risk scenario. The direct effect captures the

effect of changing climate risk, without firm adaptation. In practice, we start in the

baseline equilibrium, but simulate a model where shocks are drawn from the new dis-

tribution with changed climate risk. Agents’ beliefs in this step of the decomposition

are not rational, as they have climate “myopia”. The P.E. effect considers the effect

35This is not a mechanical result, but rather, depends on the spatial distribution of climate risk,
the initial equilibrium, and the IPCC predictions for which areas get riskier. If initially higher welfare
areas saw larger changes in predicted climate risk, they would not see relative welfare increases.
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Figure 13: Distributional Implications of Climate Change Adaptation

Note: This figure plots the terms in 29, binning regions into 50 bins. The x-axis orders regions by
their change in disruption probabilities. The red bars show direct effects, blue bars show the P.E.
effects, and green bars show the G.E. effects.

of firm adaptation to the climate risk in partial equilibrium, holding all prices fixed.

Finally, the general equilibrium effects allow for equilibrium price adjustment.

Figure 13 contains the results. The red bars show the direct effects of changing

climate risk, which are heterogeneous across regions. The blue bars have the wel-

fare effects of partial equilibrium adaptation to new risk. Holding prices fixed, such

adaptation is always beneficial, even for regions with increased risk. For some dis-

tricts, the P.E. term offsets the increased direct risk. The green bars show the general

equilibrium effects on prices. Regions facing the largest increases in disruption risk

experience significant welfare declines due to general equilibrium price adjustments.

As firms across all regions reduce demand for their inputs, wages fall, compounding

welfare losses beyond the direct impact of rising risk. These regions fare worse than

they would if firms were myopic and did not adapt to the heightened risks.

Robustness and extensions. In addition to our main climate counterfactual, we

also consider scenarios where only rainfall and flood risk, or only temperature changes

and SPI changes occur. Table 6 summarizes the results. While in both cases aver-

age welfare declines and there is wide spatial variation, under the scenario of only

temperature/SPI changes, 86.72% of districts see real wage declines, while with only

rainfall/flood risk increases, 25.09% of districts see real wage declines.

Appendix E estimates two alternative models and conducts the counterfactuals.

We first consider a model where the district probabilities are obtained from projec-
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tions on climate-related variables, as discussed in Section 3.4. Second, we consider

a model where the input bundle is CES and so features love-for-variety effects, with

a substitution elasticity of 3.1 (Peter and Ruane, 2023). Table E3 summarizes the

results for these two alternative models. Strikingly, the two models deliver very sim-

ilar implications for the climate counterfactuals, in terms of the welfare declines and

spatial variation.

Appendix A.5 shows that mean and median product-level inventories are less than

a month’s sales and that inventories are not correlated with the prevalence of multi-

sourcing. While inventories and multisourcing would appear to be alternative strate-

gies for risk mitigation, in our data, it appears firms are systematically choosing

multisourcing. We note that our calibrated model without inventories implies that

sales decline less than inputs upon the incidence of a shock. Equation (8) illustrates

that the partial elasticity of firm profits to delivered inputs is (1−β)(σ−1)
β+σ(1−β)

. Quantita-

tively, given our parameter calibration, this implies that sales fall by 47% of the fall

in inputs, which is very similar to the 44% drop observed in the event studies.

5 Conclusion

Climate risk is an escalating global challenge with substantial projected economic

consequences. A critical channel of adaptation is how firms restructure their supply

chains in response to perceived climate threats. This paper develops a new model of

firm sourcing under risk where firms face a trade-off between mitigating supply chain

risk through diversification and incurring higher input costs. We quantify the model

using several granular sources of data, and document descriptive patterns in the data

consistent with the theory.

Our quantitative results reveal that firms’ sourcing responses play a dual role: on

the one hand, diversification significantly dampens the impact of climate risk on ag-

gregate welfare, particularly by reducing output volatility. On the other hand, these

adaptations exacerbate spatial inequality—regions increasingly exposed to climate

shocks also experience declines in real wages, as general equilibrium effects reallo-

cate demand away from them. Thus, supply chain adaptation offers macroeconomic

resilience but can amplify differences in regional outcomes.
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Supplemental Online Appendix

A Theory Appendix

A.1 Equilibrium Definition

An equilibrium of this economy is a set of state-contingent consumption, {qi(ω,χ)}χ∈G(χ),

and final-good labor demand plans,
{
ℓGi (ω,χ)

}
χ∈G(χ)

, intermediate goods producers

labor demands,
{
ℓIi
}
, an allocation of input orders, {Mji}j∈I,i∈I , and a vector of prices

and wages,
{
wi(χ), p

G
i (ω,χ),Pi(χ), p

I
i

}
i∈I,χ∈G(χ)

such that:

1. Given prices and wages, the representative consumer of each location maximizes

its utility.

2. Given prices and wages, firms in each location maximize expected profits.

3. Labor and goods Markets clear state by state∫
ω∈[0,1]

ℓGi (ω,χ) + ℓIi = Li ∀i ∈ I,χ ∈ G(χ)

qi(ω,χ) = ϕi

(
ℓGi (ω,χ)

)β∑
j=1

χjMji

1−β

∀ω ∈ [0, 1] , i ∈ I,χ ∈ G(χ)

∑
j

τijMij = ziℓ
I
i ∀i

4. Trade is balanced state by state∑
j

pMj τjiMji =
∑
j

pMi τijMij ∀i ∈ I,χ ∈ G(χ)

A.2 Proofs

Proposition 1: Proof. Since the cost of materials is linear in Mji and the con-

straints are conventional (linear) non-negativity constraints, it suffices to show that

the expected operating profits function Eχ (π(M i;χ)) is concave in the vector M i.

The expectation operator preserves the concavity of π(M i;χ) which is the only thing

required to prove. The concavity of ex-post profits, π(M i;χ), follows from the fact

that (1−β)(σ−1)
β+σ(1−β)

< 1.
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Lemmas 1 and 2: Proof. Conditional on some state of the world, χ, ex-post

aggregate profits are given by,

∫
ω∈[0,1]

πi(ω;χ)dω =

∫
ω∈[0,1]

pi(ω;χ)qi(ω;χ)− wi(χ)ℓi(ω;χ)−
∑
j

pMji (χ)Mji(ω)

 dω.

Using the assumption of a unit mass of homogenous firms in a region, ex-post ag-

gregate profits are then

πi(χ) = pi(χ)qi(χ)− wi(χ)ℓi(χ)−
∑
j

pMji (χ)Mji.

where pi(χ)qi(χ) corresponds to aggregate revenues from the final goods sector,

wi(χ)ℓi(χ) are payments to labor by final goods producers, and
∑

j p
M
ji (χ)Mji is

total expenditure on intermediate inputs.

As final goods firms are monopolistically competitive and the final goods aggre-

gator is CES, standard algebra shows that revenues minus labor costs are a constant

fraction of aggregate income:

pi(χ)qi(χ)− wi(χ)ℓi(χ) =
β + σ(1− β)

σ
Yi(χ).

From goods market clearing and trade balance, it is easy to show that aggregate

income is equal to the aggregate revenues of the final goods producers, Yi (ω) =

pi(χ)qi(χ). Plugging this expression in the equation above, we get an aggregate

labor demand equation as a function of wages and aggregate income,

ℓi(χ) =
β(σ − 1)

σ

Yi(χ)

wi(χ)
.

Turning to expenditure in intermediates inputs, multiplying the first order condi-

tions defined in Equation 10 by Mji, and adding up across origins j, we obtain:

Eχ

λi(χ)

Θi(χ)

∑
j∈I

χjMji


(1−β)(σ−1)
β+σ(1−β)

−
∑

pMji (χ)Mji


 = 0.

We can then plug the expression for Θi(χ) and for the stochastic discount factor
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λi(χ) =
1

Yi(χ)
to simplify the expression above as:

Eχ

[
1

Yi(χ)

(
(1− β)(σ − 1)

σ
Yi(χ)−

∑
pMji (χ)Mji

)]
= 0.

Trade balance and zero profits for intermediate goods producers imply that
∑

pMji (χ)Mji =∑
pMij (χ)Mij = wi(χ)ℓ

I
i . Thus,

Eχ

[
(1− β)(σ − 1)

σ
− wi(χ)

Yi(χ)
ℓIi

]
= 0.

Imposing labor market clearing, it must be that ℓi(χ) + ℓIi = Li for all states of

the world. Jointly, with the aggregate demand equation, it follows that

Li − ℓIi =
β(σ − 1)

σ

Yi(χ)

wi(χ)
,

which in turn, implies that

Eχ

[
(1− β)(σ − 1)

σ
− β(σ − 1)

σ

ℓIi
Li − ℓIi

]
= 0 =⇒ ℓIi = (1− β)Li

=⇒ ℓi(χ) = βLi ∀i ∈ I,χ ∈ G(χ).

This means that equilibrium aggregate profits are equal to

πi(χ) = pi(χ)qi(χ)− wi(χ)ℓi(χ)−
∑
j

pMji (χ)Mji

=
β + σ(1− β)

σ

σ

β(σ − 1)
wi(χ)ℓi(χ)− wi(χ)(1− β)Li

= wi(χ)Li

[
β + σ(1− β)

σ − 1
− (1− β)

]
=

wi(χ)Li

σ − 1
.

Finally, from the budget constraint, Yi(χ) = wi(χ)Li + πi(χ). Combining these

expressions, we can show that

Yi(χ) =
σ

σ − 1
wi(χ)Li.
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Lemma 3: Proof. Let labor in region 1 be the numeraire. We prove that wages

in each location i, wi, are deterministic by showing that labor market clearing must

occur at the time of producing intermediates.

By backward induction, after intermediate inputs have been produced, final goods

producers in each region face an inelastic residual labor supply equal to L̄i. Aggregate

labor demand in each region is given by,

LD
i (χ) =

 Yi(χ)

ϕi

(∑
j∈I χjMij

)1−β
pi(χ)


1
β

,

where final goods’ prices can be written as

pi(χ) =

[
β(σ − 1)

σ

]−β

ϕ−1
i

∑
j∈I

χjMij

−(1−β)

wi(χ)
βYi(χ)

1−β.

If we plug the expression for prices, in the aggregate labor demand equation, and

simplify we get that,

LD
i (χ) = βLi

Crucially, aggregate labor demand by final goods producers does not depend on the

realization of the shocks, χ. However to clear the labor market in each location the

wage rate needs to be such that the residual labor supply that final goods’ producers

face, L̄i, is equal to their inelastic labor demand. The wage rate is set ex-ante when

intermediate good production takes place and is independent of the realization of the

shocks. As a corollary, this implies that the wage rate, wi(χ), aggregate profits πi(χ)

and aggregate income Yi(χ) are all deterministic.

A.3 The Planner’s Problem

This appendix describes the solution to the planner’s problem in our economy. We

demonstrate that the first order conditions to the planner’s problem coincide with the

equilibrium conditions in our model as described by Equation 19 for the vector of wel-

fare weights for which trade balance is satisfied. Hence, the competitive equilibrium

of the economy described in Section 2 is efficient.

The planner seeks to maximize a weighted sum of expected utilities with prefer-

ences described in Equation 1 with welfare weights, αi. The technologies to produce
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intermediates goods and final goods are described by:

qi (ω,χ) = ϕiℓi (ω)
β

(∑
j

χjMji(ω)

)1−β

Mi = ziℓi =
I∑

j=1

τijMij,

where, crucially the inputs, Mji (ω), are independent of the realization of the shocks.

Since final good varieties within each region i are identical, the social planner’s prob-

lem can be written as follows:

max
Mi,ℓ

F
i ,ℓMi

I∑
i=1

αiEχ

log
ϕi

(
ℓFi
)β (∑

j

χjMji

)1−β
 (30)

s.t Li = ℓFi + ℓMi [Wi]

ziℓ
M
i =

I∑
j=1

τijMij [pMi ].

For each region i, let Wi be the Lagrange multiplier corresponding to the labor

endowment resource constraint, and pMi the Lagrange multiplier on the intermediate

goods resource constraint. The first order conditions associated with the planner’s

problem are:

Mji : αi(1− β)Eχ

χj

(∑
j

χjMji

)−1
 ≤ τjip

M
j ∀ i, j

ℓFi : αiβ
(
ℓFi
)−1

= Wi ∀ i

ℓMi : pMi =
Wi

zi
∀ i

After manipulating the FOCs, we can find the welfare weights that satisfy trade

balance. First, by adding the first order conditions for Mji across different origins it

is easy to see that,

(1− β)αi =
∑
j

τjip
M
j Mji. (31)

Second, from combining the expression above and first order conditions for the amount
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of labor allocated to the final goods sector, we get:

Wiℓ
F
i∑

j τjip
M
j Mji

=
β

1− β
. (32)

Third, from the expression for pMi and the intermediate goods resource constraint, it

must be that:

Wiℓ
M
i =

J∑
j=1

τijp
M
i Mij, (33)

which, for the case of balanced trade, implies

Wiℓ
M
i =

J∑
j=1

τjip
M
j Mji. (34)

Thus, one can substitute Wiℓ
M
i in Equation 32 to get both the share of the labor

endowment allocated to the final goods sector and the welfare weights for which the

allocations of the planner’s problem coincide with the decentralized solution,

Wiℓ
F
i

WiℓMi
=

β

1− β
=⇒ ℓFi = βLi =⇒ αi = WiLi.

Finally, plugging these weights in the first order condition for Mji, it is easy to

note that this condition is the same as the optimality equilibrium condition in the

competitive equilibrium described in Section 2:

Mji : (1− β)WiLiEχ

χj

(∑
j

χjMji

)−1
 ≤ τjip

M
j ∀ i, j (35)

The solution to this problem entails finding the values for Mji and Wi for which this

system of first order conditions is solved. For example, notice that using the system of

defined by Equation 35 and the intermediate inputs resource constraint, one can find

the optimal solution to the planner’s problem. Alternatively, one can use Equation

31, trade balance and Equation 35 to write an equivalent system to the one we use

in our decentralized economy.
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A.4 Additional Results: Comparative Statics

Heterogeneous risk and autarky. We maintain the scenario in Section 2.4 but

raise trade costs to infinity, shutting down inter-regional input sourcing. Figure A1

illustrates that while the probabilities of shocks remain the same as the heterogeneous

risk with trade case above, bilateral sourcing mimics a no-risk case. However, the

impact on expected real wages is very different. The riskiest region sees the lowest

expected real wages, while the safest regions see the highest expected real wages, as

they have the lowest expected prices due to the lowest shock probabilities and fully

domestic sourcing.

Figure A1: Scenario with heterogeneous risk and infinite trade costs

(a) Shock probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where trade costs are set to infinity. The figure in the left
panel show the probability that each region is hit by a shock, as well as a visual representation
of the geographical location of regions in space. The figure in the middle panel consist of a 3x3
input-output matrix where the buying regions are in the vertical axis and the supplying regions are
in the horizontal axis. Each line represents the share of inputs purchased by a buying regions from
each supplying region. The right panel presents the expected real wages for each region. The scales
are shown to the right of each figure.

Homogeneous risk, heterogeneous distance. Figure A2 illustrates the bilateral

sourcing shares when the risk of shocks in each region is ρ = 0.5. Firms now face a

trade-off: as shocks are independent across regions, they can reduce the probability of

input disruptions by sourcing from multiple regions. On the other hand, sourcing from

other regions is costly, given trade costs. As a result, firms still largely source inputs

from their own regions, but also diversify by sourcing some inputs from geographically

closer regions where trade costs are lower. The figure illustrates that this higher

demand for inputs from more central regions in equilibrium results in higher expected

real wages in these regions. These more central regions also diversify their risk the

most by participating in interregional sourcing. Note that the expected price index

in more central regions is, therefore, lower in equilibrium, as firms from these regions
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pay less in trade costs for inputs and better diversify risk.

Figure A2: Scenario with homogeneous risk, heterogeneous distance

(a) Bilateral Sourcing Shares (b) Real Wages

Note. The figures in the left panel consist of a 3x3 input-output matrix where the buying regions
are on the vertical axis, and the supplying regions are on the horizontal axis. Each line represents
the share of inputs purchased by a buying region from each supplying region (column). The figures
in the right panel presents the real wages for each region, as well as a visual representation of the
geographical location of regions in space. The regions are in a straight line, such that the regions
have different distances between each other. The scales are shown to the right of each figure.

A.5 Inventories - descriptive evidence

In Section C.1, we argue that our model without inventories estimates that a 1%

decrease in purchases implies a 0.47% decline in sales, which is close to the empirically

estimated 0.43% decline in sales. This suggests that while firms might use strategies

other than multi-sourcing to protect themselves from shocks, we can approximate the

overall sales impact without explicitly incorporating other channels.

We investigate how important inventory holdings are in India. While we do not

observe inventories directly in our data, we compute measures at the product level

using two alternative approaches. First, we use the 2014-5 Annual Survey of Industries

(ASI) to compute, for each HS-4 product, the average months of inventory held by

firms. We divide the closing value of finished goods by the average monthly sales to

measure average inventory/sales. Second, we use our transaction data to compute

the average gap in terms of months between two consecutive purchases of each HS-4

product. Products that are purchased on average with larger gaps will have more

accumulated inventories than those with more frequent purchases.

A first thing to note is that the levels of inventories for most products in the data

are quite low. According to the average months of inventory held from the ASI, the
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Figure A3: Product-level inventories and multisourcing, by product

(a) Avg months of inventory held (b) Avg months between purchases

Note. In both figures, the horizontal axis plots the share of firms that we observe sourcing a product
from at least two suppliers during 2019. In the left panel, the vertical axis measures the average
months of inventories held for each product, as computed from the ASI. The vertical axis in the right
panel, computes for each product the average number of months between consecutive purchases as
measured from our transaction data.

mean across products in 0.91 months of inventory. The 75th percentile is 0.96, which

reinforces that for most product, firms hold less than one months of inventory. In

Figure A3, we correlate both measures with the fraction of firms that multisource

a given HS-4 product computed from our transaction data. As shown in the figure,

both measures show that there is no correlation between how much a product is multi-

sourced and the level of inventory holdings. While inventories might be a relevant

strategy for some products, they don’t seem to be substitutes or complements to

multi-sourcing for our firms.

B Data Appendix

B.1 Details on the Firm-to-Firm Data

We illustrate a stylized example of our establishment-level networks data in Figure B4.

As the diagram shows, we observe all transactions where one node of the transaction

is within the state. This includes all transactions between establishments within the

state (the yellow lines), any inflows from or outflows to the rest of the country (the

blue lines), and all international imports and exports (the green lines).

The data report value and quantity of traded items, so we can construct unit values.

ix



Figure B4: Stylized Example of Establishment-Level Network

Notes: Stylized example of establishment-level data. The upper half represents the country, and

upper left quadrant represents the state in question. The data includes all transactions within the

state, and all transactions where one node of the transaction (either buyer or seller) is in the state.

To do this, we aggregate values and quantities at the four-digit HS/month/transaction

level, and then construct implied unit values. We can then collapse the data at the

4-digit HS/month level to construct average unit values, the number of transactions

between each seller and buyer pair, and the total value of the goods transacted. This

is the foundation of the firm-to-firm dataset we use in the analysis. Additionally,

we can aggregate these data to the buyer level, which we use in our reduced-form

section. Table B1 summarizes our primary variables of interest using this dataset. In

Table B2 we present statistics on the number of buyers per supplier and suppliers per

buyer. Despite differences in region sizes, the distribution of firms follows closely the

one documented by Alfaro Ureña et al. (2018) for Costa Rica.

B.2 Other Datasets and Dataset Construction

Aggregation: In the calibration exercise, for computational feasibility, we group

the over 600 districts in India into 271 regions by grouping contiguous low-population

districts.36 We calibrate our model to these 271 regions.

Climate Data: In Section 3.4, we use multiple sources to correlate our model im-

plied probabilities with observables related to supply chain disruption risk. We con-

sider five climate-related measures: rainfall, coastal flooding, riverine flooding, tem-

perature, and drought conditions. Our climate data is available for grid areas that

36We aggregate districts with fewer than 10000 manufacturing workers to a single district within
a state, or merge them to neighboring larger districts in their own state.
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Table B1: Summary Statistics for Main Variables

Outcome Mean p25 p50 p75

Separation Rate (%) 30.9 0 16.67 52.78
Entry Rate (%) 74.06 0 50 106.67
Net Separations (%) -43.12 -70 0 0
Real Input Value (log) 14.91 12.48 14.55 16.96
Real Sales (log) 16.33 13.57 16.05 18.66
Avg. Supplier Size (millions of rupees) 106.42 9.65 34.04 127.49
Avg. Supplier Outdegree 43.04 3.3 10.97 31.99
Share Purch. Lgst. Supplier (%) 52.39 31.06 47.84 71.82
Number Products 12.05 3 7 14
Share Purch. Diff. Prod. (%) 60.19 21.25 72.78 97.81
Supply Chain Depth 32.32 28.15 31.46 36.35
Number Suppliers 12.35 3 7 14
Avg. Distance (km) 486.71 97.13 251.65 712.75
Share Purch. Non-Home State (%) 38.54 0 24.42 78.48

Note. Summary statistics for key outcomes to describe the network calculated in December
2019-February 2020. Number of firms included in calculations: 136,562.

Table B2: Distribution of buyers and suppliers

Mean SD 10th 25th 50th 75th 90th 95th 99th

N suppliers per buyer 8.0 23.6 1 1 3 8 18 29 72
N of buyers per supplier 16.3 55.3 1 1 4 12 36 65 194

N supplier districts per buyer 3.5 4.4 1 1 2 4 7 11 21
N buyer districts per supplier 3.1 3.0 1 1 2 4 7 10 14

Note. We calculate network characteristics for the year 2019. The top two rows compute the
number of buyers per supplier and suppliers per buyer. The bottom rows compute the number
of supplier districts per buyer and number of buyer districts per supplier.

are much more detailed than our 271 regions. We use shape files to overlay our re-

gions to the available maps and calculate the average measure of the climate variables

within each of our regions. Coastal and riverine flooding are taken from the World

Resources Institute’s Aqueduct Floods Hazard Map. Historical flooding is defined as

present-day meters of flooded area. Projected flooding is the 2050 expected meters

of increase in flooded areas. We use 10-year floods and the RCP 4.5 as our baseline

projection.

Historical and projected temperature and drought data is taken from the IPCC

WG1 Interactive Atlas. Historical temperatures are the average daily degrees centi-

grade in 2005 (the latest year available for historical data). Droughts are measured
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Figure B5: Monsoonal rain floods, 2018-2020

Note: The figure plots the geographic coverage of all large floods that occurred between 2018 and
2020, as described in the Dartmouth Flood Observatory.

with the SPI index based on precipitation anomalies over the last 6 months. A lower

SPI corresponds to more severe drought conditions. Both temperature and SPI are

observed monthly, and we take the average across 12 months to get a value for the

gridcell in 2005. Projected data for 2050 is calculated assuming a risk scenario of

RCP 4.5 and using a risk model of NOAA global circulation model and the Swedish

Meterological and Hydrological Institute’s local circulation model.

Daily rainfall data is taken from the India Meteorological Department and mea-

sured in millimeters. We take the average across all days in 2019 for each district.

For predicted rainfall, we first extract the average historical (measured in 2005) and

predicted 2050 rainfall from the IPCC WG1 Interactive Atlas, using the same settings

as for temperature. We then compute the change for each district between 2005 and

2050, and apply the implied yearly change to update the 2019 values to 2050.

We use data from the Dartmouth Flood Observatory to identify geocoded flooding

events throughout India for our event study analysis. As shown in Figure B5, we

identify 19 events of large monsoonal floods throughout India between 2018 and 2021.

For our event study analysis, we limit the set of floods to those that occurred outside

of our state, for which we have at least 3 months of data before and after the flood, and

where at least 200 buyers in our state transacted with affected suppliers the period

before the flood. These restrictions leave us with seven large flood events, which we

use in our event study analysis of how floods affect purchases and sales.

Non-climate variables: Our non-climate data mostly come from the Socioeco-

nomic High-resolution Rural-Urban Geographic Platform for India (SHRUG). Ele-
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vation is defined as the average elevation in meters of each district while terrain

ruggedness is the Terrain Ruggedness Index expressing elevation differences between

adjacent pixels. The nightlights luminosity index aims to capture economic activity

by detailed regions. Finally, court congestion is taken from the Development Data

Lab and measures the average delay in days for the courts in each district.

Other Firm Data: To calibrate the model for India as a whole, we complement our

transaction data with the Annual Survey of Industries (ASI), which is a nationally

representative survey of manufacturing plants in India with more than ten employees.

We primarily use the wave of 2006-7 since it is the last year for which the ASI has

publicly available district identifiers, and more recent years cannot be used at the

district level to calibrate a spatial model.

C Empirical Appendix

In Table 1 we show that firms seem to multi-source products even within detailed

product categories. We proceed to show that such results is not driven by retailers and

wholesalers. While we cannot directly identify retailers and wholesalers in our data,

we can use the pattern of their transactions to infer firms that likely belong to those

industries. For retailers, we expect that they would sell their goods predominantly

to final consumers instead of shipping their goods to other firms. Hence, they should

show up as having zero sales in our data. For wholesalers, we expect that they

would not transform the products they buy in order to sell them. Hence, we identify

as wholesaler firms that buy and sell the same HS-4 products. Of course, these

classifications will be overestimating retailers and wholesalers, as manufacturing firms

might buy and sell the same 4-digit product or not ship goods to other firms. However,

we want to corroborate that our results are robust to excluding these firms.

From our sample in 2019, we have a total of 195,872 firms. Of those, 7,867 fall

under our classification of wholesalers and 137,574 fall under our classification of

retailer. As shown in Table C1, the distributions of regions sourced from stay fairly

constant when excluding such firms. Similarly, we show that the results are consistent

when we look at the number of suppliers per product as opposed to supplier districts.

As shown in Table C2, there is a slightly larger fraction of firms that source from more

than one supplier than when looking at sourcing from different supplier districts.

Next, we show that firms that have larger purchases of a given product are more
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Table C1: Firms that source from multiple districts (excluding wholesale and retail)

Number of districts
Share of buyers x HS-8

(all products)
Share of buyers x HS-8

(commodities)

Firms Value Firms Value

1 80.9% 21.6% 80.3% 16.9%
2 12.6% 15.4% 13.1% 13.5%
3 3.5% 11.1% 3.7% 12.0%
4 1.4% 10.0% 1.4% 12.7%
5 0.6% 5.9% 0.6% 6.3%
6 0.3% 4.5% 0.3% 4.7%
7 0.2% 4.5% 0.2% 2.8%
8 0.1% 2.9% 0.1% 3.9%
9 0.1% 3.1% 0.1% 3.1%

10+ 0.2% 21.1% 0.2% 24.1%

Note. Columns 1-2 aggregate the data at the firm-by-8-digit product level, and compute the fraction
of firm-product pairs and total value that is sourced from a certain number of districts. Columns
3-4 limit the sample of firm-by-8-digit product pairs to those that are not differentiated according to
the classification proposed by Rauch (1999). We exclude likely-retailers and likely-wholesalers from
the analysis.

Table C2: Share of firms that source from multiple suppliers

Number of suppliers
Share of buyers x HS-8

(all products)
Share of buyers x HS-8

(commodities)

Firms Value Firms Value

1 81.7% 24.5% 79.3% 19.6%
2 11.7% 17.1% 12.7% 16.0%
3 3.4% 12.7% 4.0% 13.5%
4 1.4% 8.4% 1.7% 9.1%
5 0.7% 5.2% 0.8% 5.7%
6 0.4% 4.7% 0.5% 4.7%
7 0.2% 3.0% 0.3% 2.5%
8 0.1% 2.6% 0.2% 2.1%
9 0.1% 2.5% 0.1% 2.2%

10+ 0.3% 19.4% 0.5% 24.6%

Note. In this table we look at number of supplier firms instead of number of supplier districts.
Columns 1-2 aggregate the data at the firm-by-8-digit product level, and compute the fraction of
firm-product pairs and total value that is sourced from a certain number of suppliers. Columns 3-4
limit the sample of firm-by-8-digit product pairs to those that are not differentiated according to
the classification proposed by Rauch (1999).
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likely to source from multiple regions. To see this, we rank all firm-by-8-digit HS

pairs into percentiles based on total purchases, where the higher percentiles include

the firm-product pairs with the higher purchase volume. As shown in Figure C1,

the smallest firm-product pairs tend to only source from a single supplier. However,

towards the end of the distribution, the largest firm-product pairs source, on average,

from more than one region. Firms above the 95th percentile source, on average, from

two districts, and firms in the top percentile source from four. This suggests that

larger, more productive firms are more likely to multisource.

Figure C1: Number of supplier districts by total purchases

Note. We rank all firm-product pairs into percentiles (1-100) based on the volume of total purchases
in 2019. For each percentile (in the horizontal axis), we compute the average number of districts
the firm-product pairs source from.

However, firm size does not drive the descriptive patterns shown in Figures 3a-

3c. In Table C3, we document that our descriptive patterns here are not driven by

firm size, product composition or capacity of suppliers. We run a regression at the

product-firm level as shown in equation 36.

log yj,p = β1(Firm j multisources p) + γXj + δp + ϵj,p (36)

where log yj,p is the log of the average characteristic of a firm’s suppliers such as

average distance to suppliers, rainfall of supplier districts, riverine flooding of sup-

plier districts and prices paid to suppliers. The key explanatory variable here is

1(Firm j multisources p) which is a dummy that indicates whether the firm sources
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product p from more than one district. Importantly, we control for product fixed ef-

fects, the log of total purchases by firm j, and the log average sales of suppliers.

Table C3 shows that our descriptive patterns are robust to adding these controls.

Multi-sourcers buy products from distances 76% farther than single-sourcers. They

source from districts with 2.3% lower rainfall and 1.4% lower river flooding levels.

Finally, they pay 44% higher input prices than single sourcers. Product fixed effects

help rule out that the differences between single and multi sourcers are driven by

differences in product quality. The own purchases control rules out that the patterns

are driven by differences in firm size (e.g. large firms multisource more and pay

higher prices). Finally, the control for supplier size helps us rule out that the reason

for multisourcing is that suppliers don’t have enough capacity to meet demand.

Table C3: Supplier characteristics by number of districts sourced from

Log (Distance to suppliers) Log(Daily Rainfall) Log(Historical riverine flooding) Log(Price of inputs)

1(Multisourcer) 0.760*** -0.0229*** -0.0140*** 0.441***

N 739,520 739,520 739,520 739,520
R-sq 0.327 0.271 0.124 0.545

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j), 8-digit
product (p) level. The outcome is the log average distance to suppliers (column 1), log average daily
rainfall at suppliers’ district (column 2), log average riverine flooding at suppliers’ district (column
3) and log average price of inputs (column 4). The main regressor is a dummy variable on whether
the firm sources the HS-8 product from more than one district. All regressions include HS-8 product
fixed effects and controls for log size of the firm and log average size of suppliers.
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Figure C2: Correlation between climate risk and sourcing strategy

Precipitation

(a) Number of suppliers (b) Out-of-state sourcing

Riverine flooding risk

(c) Number of suppliers (d) Out-of-state sourcing

Note. We present scatter plots of climate risk and sourcing strategies at the firm-HS8 level in 2019,
creating 50 bins based on the climate risk variable. The horizontal axis measures the log precipitation
or historical river flooding. The vertical axis measures either the log number of suppliers per product
or the share of purchases from out-of-state suppliers for a given product. The bubble size corresponds
to the total share of purchases from that bin.

C.1 Responses to Flooding Events - Additional Results.

In this Section, we delve deeper into the event-study results presented in Figure

4. We begin by studying the direct impact on suppliers in flooded areas and run

the event study equation 27, where instead of “Supplier Exposurejτ” we use “Flood

Exposurejτ” which takes a value of 1 if firm j was exposed to a flood. The firms in

this regression are suppliers located outside of our state, which supply goods to firms
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in our state.

Figure C3 plots impacts on suppliers, and shows a lack of meaningful pre-trends

in the lead-up to the flood. After the flood, there is an immediate decline in sales of

0.10 log points, which worsens until two months after the flood. After the two-month

slump, there is a quick recovery to what they were in the pre-period.

Figure C3: Sales of affected suppliers

Note. Regression includes event-time, industry-time, and firm fixed effects, and controls for pre-
period firm sales interacted with time indicators. Standard errors clustered at the district level.

In the subsequent analysis, for expositional clarity, we run difference-in-difference

specifications which we summarize in Table C4. In the top panel, we present the two-

way fixed effects specifications with continuous treatment as described below. In the

middle panel, we present the results for a binary treatment. Finally, in the bottom

panel, we present the results using the Local Projections Difference-in-Differences

(LP-DID) estimator developed by Dube et al. (2023). This last set of estimates further

accounts for issues raised by recent discussions on two-way fixed effects methods. We

begin with documenting the direct effect on suppliers in flood-hit zones, where we

examine outcomes yj,t,k,τ for firm j, in period t, industry k, and event τ .

yj,t,k,τ = α1 (Exposed to flood)jτ ×Postt,τ +
x=+5∑
x=−5

[δτ,x + βxXj,x<0]+δj+δk,t+ϵj,t,k,τ . (37)

Here, “Exposed to floodjτ” takes a value of 1 if firm j was exposed to a particular

flood. We index the months before and after flood happened by x, with x = 0 being

the month the flood τ occurs. We include a wide range of high-dimensional fixed

effects to account for confounding shocks. These include firm fixed effects δj that

control for firm-specific time-invariant differences; industry-by-time fixed effects δk,t
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that control for industry-specific shocks; and flood event-time since flood fixed effects

δτ,x that control for aggregate trends around the flood event that affect all firms

(including those not in the flood-exposed areas). We also control for firm size-specific

shocks, by controlling for sales in the five months before the flood Xj,x<0, interacted

with time-since flood indicators. In all difference-in-difference results we restrict the

post period to 3 months after the flood. Consistent with the results in Figure C3, we

find that affected sellers experience a 13% decline in sales, on average, with respect

to non-affected firms the three months after the flood occurs.

Next, we look into the effect of a flood for buyers located in our state. We use the

existing supplier network (in the 5-months leading to the flood) as a measure of the

exposure to the disruption, as described in equation C.1.

(Supplier Exposure)jτ =

N∑
i

si,j,τ,x<0 × 1 (Supplier i exposed to flood in τ) ,

where si,j,τ,x<0 is the value of purchases that firm j buys from firm i, relative to firm

j’s total purchases, over the five months before the flood. We then standardize this

index and interact it with a post flood indicator to study how buyers were affected

when their suppliers were hit. We examine outcomes yj,t,k,τ for firm j, in period t,

and industry k, measured in event-time (since flood) τ equation 38:

yj,t,k,τ = γ (Flood Exposure)jτ ×Postt,τ +

x=+5∑
x=−5

[δτ,x + βxXj,x<0] + δj + δr,k,t + ϵj,t,k,τ . (38)

The fixed effects are similar to equation 37 but we add an industry-region-time fixed

effect δk,r,t to control for local demand shocks affecting the region-industry of the

firm. In columns 2-4 of Table C4, we present the results for the outcomes of log

total purchases (column 2), log purchases of returning suppliers (column 3) and log

purchases of new suppliers (column 4). Returning suppliers are those who transacted

with the firm within 3-months before the shock, and we track the purchases from

that set of suppliers throughout time. New suppliers are defined as suppliers who

transact with the firm in a given period who have not transacted before. Difference-

in-difference results are consistent with the event studies in Figures 4a and 4b.

In column 5 of Table C4, we present the results for the outcome of buyer sales.37

37As our data does not include sales made directly to consumers, we need to impose some additional
restrictions to ensure that we focus on firms that consistently sell to other firms. We restrict the
sales sample to firms that are observed selling something to other firms every month for the last nine
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Buyers with one standard deviation higher exposure experience a decline in sales of

2% relative to buyers with average exposure. When considering the binary treatment

in the second panel, we find that firms exposed to the flood through their suppliers

experience a decline of 7% relative to firms that are not exposed.

When focusing on the result for sales with binary treatment, we find that for

every 1% decrease in the purchases for exposed buyers, sales drop by 0.44% (exposed

buyers decrease purchases by 16% and sales by 7% relative to non exposed buyers).

We compare this result to the one implied by our model which, using a back-of-the-

envelope calculation, indicates that for every 1% decline in purchases, sales decrease

by 0.47%. The close result is reassuring given that our sales result is untargeted by

our estimation process.

Table C4: Regression results on the impact of floods.

Supplier sales
Buyer Purchases -

Total
Buyer Purchases -
Returning Suppliers

Buyer Purchases -
New suppliers

Buyer Sales Input prices

Continuous treatment

Standardized exposure × 1(τ ≥ 0) - -0.05*** -0.05*** -0.03*** -0.02*** -0.009
- (0.003) (0.003) (0.01) (0.01) (0.01)

N - 1,218,663 1,160,881 606,655 468,280 1,912,563

Binary treatment

1(Exposure ≥ 0.1) × 1(τ ≥ 0) -0.13*** -0.16*** -0.24*** -0.13*** -0.07** 0.004
(0.02) (0.01) (0.01) (0.02) (0.03) (0.01)

N 1,604,955 1,218,663 1,160,881 606,655 468,280 1,912,563

Local projections with binary treatment

Difference between pooled pre and post period -0.29*** -0.17*** -0.12*** -0.15** -0.03 0.007
(0.06) (0.02) (0.03) (0.08) (0.06) (0.09)

N 742,966 897,777 829,534 130,600 413,392 716,388

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Column 1 presents the estimates for equation 37 for
suppliers affected by the floods. Columns 2-5 present the results for equation 38 different outcomes
of downstream firms. Column 6 presents a regression at the firm-product-time-event level using
unit value of inputs as the outcome. In all cases, we restrict the post period to cover up to three
months after each flood. Standard errors are clustered at the district level. The top panel presents
results for the standardized exposure. The middle panel presents the results for a binary treatment.
For supplier sales the binary treatment is whether the supplier was affected by the flood or not. In
columns 2-5 the binary treatment is whether the buyer exposure is more than 10 % of purchases. In
column 6 the binary treatment is whether the buyer-product exposure is above 10% of purchases.
We present the local projections estimates in the bottom panel, where we compute the difference
between the post and pre-treatment coefficients. We calculate standard errors for the difference
using a bootstrap with 100 repetitions.

Products and input prices. An advantage of our version of the firm-to-firm trade

data is that it has detailed product codes and unit values. This allows us to examine

product-specific trades and changes in prices as a result of upstream suppliers being

months prior to the flood. We also restrict the sample to be the same as the purchases sample, so
we consider the log of 1+sales in cases where the firm is not observed selling anything that period.

xx



exposed to a shock. We first transform the data to the buyer-by-product-by-time level.

Our specification is similar to Equation 38, but with a product dimension that allows

us to include event-time, industry-district-product-time, and firm-by-product fixed

effects, along with controls for pre-period firm-by-product sales interacted with time

indicators. In column 6 of Table C4, we study the evolution of product-specific prices

for transactions that occur around the flood. While noisier, results are suggestive of

a slight increase in price levels three months after the flood when using either the

binary treatment or the local projections specification.

New advances in two-way fixed effects methods. Recent econometric advance-

ments in two-way fixed effects methods point out that staggered treatment can lead to

the negative weighting of certain disaggregated treatment effects (Goodman-Bacon,

2021). New methods developed by Callaway and Sant’Anna (2020); Borusyak et al.

(2024) provide consistent and interpretable estimates. Yet, our setting offers some

further challenges. Our “treatment” turns “off” and “on” and perhaps “on” again,

and our specifications control for various time-varying covariates, and a wide variety

of other fixed effects, making some of these new advances challenging to apply in our

setting. A new Local Projections Difference-in-Differences (LP-DID) estimator devel-

oped by Dube et al. (2023) allows us to recover interpretable estimates in a flexible

and efficient manner.

We present the results from this LP-DID estimator in the bottom panel of Table

C4, which show similar patterns. We further implement the LP-DID for the event

study analysis as well. In Figure C4b, we once again reproduce the same pattern

as before: downstream purchases fall for the first few months, and thereafter recover

by month 4. The results from the LP-DID method qualitatively resemble our main

results for all other outcomes as well. Figure C4a shows the sales of affected suppliers,

and Figure C4c contrasts existing vs. new suppliers. These patterns once again show

that sales of affected suppliers fall, and that purchases from buyers decrease from

both new and existing suppliers.
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Figure C4: LP-DID Event Studies

(a) Sales of affected suppliers (b) Downstream purchases (c) Existing vs new suppliers

Note. Event studies using the Local Projections Difference-in-Differences (LP-DID) approach, dis-
cussed in Dube et al. (2023). Figure C4a includes event-time, industry-district-product-time, and
firm-by-product fixed effects, and controls for pre-period firm-by-product sales interacted with time
indicators. Figure C4b and C4c include firm, time, event-time, and industry-district-real time fixed
effects, and demand controls and log pre-period purchases-time controls. Standard errors clustered
at the district level.

D Quantitative Appendix

Table D1: Calibrated moments

Parameter Source

Li: Labor endowments Annual Survey of Industries (ASI), 2019-20

ϕi: Region productivities Ackerberg et al. (2015) estimation (ASI, 2004-2007)

τij: Iceberg trade costs
Regression of within firm-product price on distance

between buyer and seller (Transaction data)

ρi: Shock probabilities
Minimum distance estimator using sourcing shares across

districts (Transaction data)

χi: Shock parameter
Match drop in buyer purchases

from event study (Transaction data)

β: Labor share 0.19: Ackerberg et al. (2015) estimation (ASI, 2004-2007)

σ: Demand elasticity 2: Based on Boehm et al. (2023)
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D.1 Model Probabilities - Additional Analysis

Figure D1: Estimated disruption probabilities

Note. In this figure, we plot the model-implied district-level disruption probabilities estimated using
the approach outlined in Section 3.4. The scales are shown to the right.

Figure D2: Model probabilities, Productivities and Distance

(a) Prob vs Productivities (b) Prob v Average Distance

Note. In this figure, we plot the estimated probabilities against some observables. In the left
panel, we correlate the probabilities with Log(Productivities). In the right panel, we correlate the
probabilities with the average distance to the state of our study.
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Figure D3: Model Probabilities and Projected Observables

(a) Average Daily Rainfall -
Projected 2050

(b) Coastal Flooding - Pro-
jected 2050

(c) Riverine Flooding - Pro-
jected 2050

.

(d) Standardized Precipation
Index - Projected 2050

(e) Average Temperature -
Projected 2050

Note. In this figure, we plot the estimated probabilities against 2050 projections for climate observ-
ables. In Figures D3a and D3e, we correlate the rainfall and temperature projections for year 2050
with the recovered probabilities. Figures D3b use the projected coastal flooding, while Figures D3c
correlate the probabilities with projected riverine flooding, respectively. A more detailed definition
of each of the variables can be found in Appendix D.1.

Figure D4: Model Probabilities, Price Indices and Wages

(a) Price Index (b) Real Wage Variance

Note. In this figure, we plot the model-derived price index (left panel) and real wage variance (right
panel) against the estimated disruption probabilities.
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Figure D5: Ahmadabad sourcing, Kolkata sourcing – Free Trade

Note. In this figure, we plot model sourcing shares with Free Trade for Ahmadabad district (left
panel) and Kolkata district (right panel).

Figure D6: Quantitative results - ∆ in Free Trade

(a) Expected Welfare (b) Log Expected Real Wages (c) Variance of Real Wages

Note. This figure shows welfare (Panel a), expected real wages (Panel b) and their variance (Panel
c) for the counterfactual of free trade. The figures show the percentage changes in these variables
under the free trade counterfactual relative to the baseline scenario.
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E Alternative Models

In this appendix, we consider two alternative models. First, we model risk proba-

bilities using observables in Appendix E.1. Second we consider a CES aggregator of

inputs in Appendix E.2

E.1 Projecting Probabilities on Observables

In this model, we describe an alternative estimation strategy for the disruption prob-

abilities, ρi. Instead of computing one parameter per region, we parameterize the

vector {ρi}Ii=1 on a vector of observable characteristics, Zi. This vector Zi includes

a constant term, average court delays, ruggedness, elevation, night lights, average

rainfall, average coastal flooding, average riverine flooding, and average temperature.

We include all of these variables in logs, and we add a dummy for the case in which

historical coastal flooding is positive, to allow the function to allow the function to

flexibly estimate the asymptotic behavior of the log at 0. Then, we assume that these

probabilities have the following functional form,

ρi =
eZ

′
iγ

1 + eZ
′
iγ
,

where γ is the vector of parameters that we estimate by minimizing the gap between

model-implied and the observed average sourcing shares in the data.

In Table E2, we present the estimates of the vector γ. The resulting probabilities

from this approach are shown in Panel (c) of Figure 5.

This estimation approach requires estimating fewer parameters than our baseline,

but necessitates that we take a stance on the sources of district-level risk. While the

estimation approaches are independent of each other, the estimated coefficients for

rainfall, flooding and temperature are positive, consistent with the baseline. Night-

lights have a zero coefficient, also consistent with the baseline. In contrast to the

baseline, however, courts also contribute positively to risk under this approach.

Table E2: Estimates of the Model for the Probabilities

Constant Courts Ruggedness Elevation Night Rainfall Coastal Coastal Riverine Temperature
Lights Flooding Dummy Flooding

γ -1.20 0.01 1.18 0.08 0.00 0.19 0.27 0.08 0.07 0.82
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Figure E7: Estimated Disruption Probabilities for Alternative Models

(a) Parameterized Risk (b) Finite Elasticity Model-Implied Risk

Note. We plot the model-implied district-level disruption probabilities for the alternative models.
The left panel plots the district-level disruption probabilities implied by the parameterized approach
outlined in the text. The right panel shows the district-level disruption probabilities obtained by
following the same approach as in the baseline model, but allowing a finite elasticity of substitution
across inputs of different origins. The scales are shown to the right of each figure.

E.2 A Model with Finite Elasticity Across Inputs

In this appendix, we develop a model in which we relax the assumption of perfect

substitution of inputs across different regions by allowing for a finite elasticity of

substitution, akin to an Armington model. Firms will have two incentives to source

input varieties from different regions. The first one is the diversification motive, which

is the main focus of this paper. The second incentive corresponds to love-for-variety.

The only modification to the model in Section 2 is to allow for imperfect substitution

in the aggregator of inputs in Equation 4. Thus, the expression becomes:

xi(ω) =

∑
j∈I

x
ε−1
ε

j

 ε
ε−1

.

Since this assumption is just changing the way that the received input units are

aggregated, the ex-post problem of the firm remains unchanged. Profits as a function

of the total number of inputs the firm has are:
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πi(Mi;χ) = κw
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i


∑

j∈I

[χjMji]
ε−1
ε

 ε
ε−1


(1−β)(σ−1)


1

β+σ(1−β)

,

where κ =
[
σ(1−β)+β
β(σ−1)

] [
β(σ−1)

σ

] σ
β+σ(1−β)

. The sourcing problem of the firm is to choose

Mij to maximize expected profits minus order costs

max
Mij≥0

Eχ

κw
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i


∑

j∈I

[χjMji]
ε−1
ε

 ε
ε−1


(1−β)(σ−1)


1

β+σ(1−β)

−
∑
j∈I

pMj Mji,

(39)

with first-order condition,

Eχ

χjΘi

∑
j∈I

(χjMji)
ε−1
ε


−ε+β+σ(1−β)

β+σ(1−β)

(χjMji)
− 1

ε

 ≤ pIj .

In this particular model due to an Inada condition, the solution will be interior, and

is implicitly given by (after plugging in the GE components):

Mji = (1− β)ε (wiLi)
ε (pIj )

−ε

Eχ

(
χ

ε−1
ε

j

[∑
j∈I (χjMji)

ε−1
ε

]−1
)−ε .

where

Θi = (1− β)wiLi

∑
j∈I

[χjMji]
ε−1
ε

− ε
ε−1

(1−β)(σ−1)
β+σ(1−β)

Notice that we cannot derive a closed-form solution for this expression; we can

only define it implicitly, and solve for the demand of inputs numerically.

Proposition 2 The ex-ante profit function described in Equation 39 is concave in

orders of inputs Mji.

Proof. As the cost of materials is linear in Mij and constraints are conventional

(linear) non-negativity constraints, it suffices to show that the expected profits func-
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tion Eχ (π(M ;χ)) is concave inM . The expectation operator preserves the concavity

of π(M ;χ) which is the only thing required to prove. Concavity of the CES aggre-

gator follows from the fact that it is a quasi-concave function homogeneous of degree

1. The concavity of ex-post profits, π(M ;χ), follows from the parametric restriction,
(1−β)(σ−1)
β+σ(1−β)

< 1, as the composition of concave functions is concave.

E.3 Quantitative Implications

Table E3 summarizes the baseline and counterfactuals in the two alternative models.

The insights are similar to the baseline model. In both models, autarky is welfare de-

creasing, though there is spatial heterogeneity. In the CES model, autarky decreases

welfare by two orders of magnitude more as autarky additionally implies losses from

variety as only own-region inputs can be used to produce. Free trade is welfare im-

proving in both models. Interestingly, the implications of climate risk changing are

similar in both models, despite their independent estimation and varied structure. On

average welfare decreases by 2% in the climate counterfactual in both models (2.01%

in the baseline). The fraction of districts with real wage declines is larger in the CES

model, at 86.35%, than in the projected probabilities model, at 54.98%.
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Figure E8: Counterfactuals: Climate Risk Increase – Alternative Models

Parameterized Risk Profile

(a) ∆ in Probabilities (b) ∆ in Welfare

Finite Elasticity of Substitution Across Inputs

(c) ∆ in Probabilities (d) ∆ in Welfare

Note. We plot the change in probabilities of climate risk (Panel A), and the change in welfare (Panel
B) for the model with parameterized risk. In Panel C and Panel D, we plot the change in probabilities
of climate, and the change in welfare for the model with a finite elasticity of substitution.
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Table E3: Model Counterfactuals: Summary – Alternative Models

Counterfactual ∆ in Welfare ∆ in log Expected Real Wages ∆ in Real Wage Volatility % districts
Avg. change Range Avg. change Range Avg. change Range Real wage declines

Parameterized Risk
Baseline risk
Autarky -6.79 3.75 2.54 1.31 7.14 5.97 2.58%
Free Trade 7.40 2.32 4.96 1.57 -2.42 1.32 0.00%
Alternative risk
Climate change -2.00 4.68 -2.12 4.67 -0.02 0.11 54.98%

Finite Elasticity of Substitution Across Inputs
Baseline risk
Autarky -198.96 42.01 -186.83 43.34 11.87 3.71 100.00%
Free Trade 15.33 1.08 15.33 1.07 4.25 2.45 0.00%
Alternative risk
Climate change -2.00 2.71 -1.96 2.71 0.03 0.00 86.35%

Note. This table shows statistics of the distribution of percentage changes between the baseline sce-
nario with current climate risk and costly trade and other scenarios, weighted by district population.
Range refers to the interquartile range.
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