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Abstract

We document changes to the pattern of technology shocks and their propagation
in post-war U.S. data. Using an agnostic identification procedure, we show that the
dominant shock driving total factor productivity (TFP) is akin to a diffusion or news
shock and that shock transmission has changed over time. Specifically, the behavior of
hours worked is notably different before and after the 1980s. In addition, the importance
of technology shocks as a major driver of aggregate fluctuations has increased over
time. They play a dominant role in the second subsample, but much less so in the
first. We build a rich structural model to explain these new facts. Using impulse-
response matching, we find that a change in the stance of monetary policy and the
nature of intangible capital accumulation both played dominant roles in accounting for
the differences in TFP shock propagation.
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1 Introduction

The idea that stochastic shifts in the technological frontier of the economy are a main

driver of business cycles plays a central role in modern macroeconomics. Yet, the nature of

such “technology shocks” remains elusive. The question is still whether shifts in technology

trigger a response that resembles business cycles. If so, how important are such disturbances

for explaining aggregate fluctuations? Does it matter if these technological shifts are surprise

shocks or anticipated in advance?

In this paper, we take a step back and explore the role of technological shocks in answer-

ing these questions. In the spirit of Francis et al. (2014) and Angeletos et al. (2020), we

employ a VAR to identify a technology shock as the one, which maximizes the forecast error

variance of TFP at a long, but finite horizon. We show that the nature of the technology

shock, namely its incidence and propagation, differ markedly pre- and post-Great Moder-

ation. Specifically, we document three general findings over these two subsamples: (i) the

transmission of technology shocks has changed over time, (ii) the importance of technology

shocks in terms of business cycles has increased over time, and (iii) the most relevant shock

driving TFP is not necessarily a surprise shock as assumed in many models, but rather a

diffusion or anticipated shock.

We identify technology shocks for two subsamples spanning the periods 1954Q2-1983Q4

and 1984Q1-2019Q4.1 The change in the transmission of technology shocks is reflected in

the striking difference in the response of hours worked across the two subsamples: in the

first subsample hours falls on impact; in the second it rises. Yet consumption, GDP and

other aggregates rise consistently in both samples. Moreover, although the hours response

differs across samples, they co-move positively with investment, inventories, the real wage

and negatively with interest spreads in both samples. As a group, these responses change

sign over the two samples relative to the consistent rise in consumption, GDP and stock
1Splitting the sample in the early 1980s is consistent with the practice in the literature as it reflects a

widely documented break in unconditional correlation patterns in the data (see e.g. Kim and Nelson (1999)
and McConnell and Perez-Quiros (2000)). At the same time, we recognize that changes in the nature of
shock propagation may occur more gradually and consequently present robustness of our results to methods
capturing a more gradual change.
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prices over both subsamples.2 An important corollary to this finding is that evaluating

the propagation of technology shocks using long samples that straddle the 1980s may be

problematic in the context of standard linear VARs, as impulse response functions likely

show a weighted average of rather different shock transmissions.

We identify the technology shocks using a max share approach. It seeks out the shock that

“best explains” the variance in TFP at some long, but finite horizon. Identification is thus

agnostic about the presence of surprise or news components in technology shocks. Forecast

error variance decompositions show that while the identified shock explains a large and

similar share of TFP over the two periods, it explains a substantially larger share of output

variations in the second subsample than in the first. This observation is also consistent with

the prior main finding about the response of hours and other aggregates to the identified

shock and their unconditional changes in behavior. That is, the negative comovement of

hours and consumption in the first subsample makes it difficult for the shock to account for

a large proportion of business cycle activity when unconditionally hours and consumption

co-move positively.

Finally, our third and perhaps most intriguing key result is the dynamic behavior of TFP.

In each subsample TFP only rises after several periods, and then grows gradually beyond

that. This pattern is consistent with the idea of an anticipated or news shocks as in Beaudry

and Portier (2004). It is also consistent with the slow diffusion of innovation over time and

its gradual effect in raising TFP as in Comin and Gertler (2006). We thus argue that an

anticipated or a diffusion process is the dominant form of the technological shock over both

samples. Our three findings have implications for the design of structural business cycle

models to adequately resemble and analyze aggregate fluctuations for different eras.

Our key findings leave open the question whether the changing nature of technology

shocks are largely due to changes in propagation or incidence, volatility and comovement of

the shocks. In the spirit of Sims and Zha (2006), we perform the following counterfactual
2Interestingly, this connection between hours and inventories in particular is consistent with the literature

that suggests a tight relationship between these two (and other variables, e.g. spreads) and argues for them
to be assessed in conjunction.
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analysis. We construct hypothetical technology shocks for the first subsample using the

estimated VAR lag coefficients but the variance-covariance matrix estimated from the second

sample. Similarly, we construct hypothetical shocks from the polynomial lag coefficients

estimated from the second subsample, but variance-covariance matrix estimated from the

first. We find that the impulse responses are essentially unchanged, which supports the idea

that changes in the variance-covariance matrix are not driving the different results across

periods. Rather, it is changes in the VAR coefficients and thus propagation.

In the next step, we build a structural DSGE model to replicate the empirical findings

from the VAR and identify the underlying driver of the observed changes. We let our mod-

eling choices be informed by the wide-ranging literature on structural changes in the early

1980s, which has advanced explanations such as changes in the stance of monetary policy,

improved inventory management, financial innovations, and the IT revolution. Consequently,

we augment a New Keynesian framework with a banking sector and financial frictions based

on Gertler and Karadi (2011), inventory holding by firms as in Bils and Kahn (2000), intan-

gible capital as an additional input into production, which we refer to as knowledge capital,

as in Chang et al. (2002), as well as various other standard nominal and real rigidities.

We estimate the model using an impulse-response matching approach as in Christiano

et al. (2005). The model is estimated separately for each sample period, conditional on an

anticipated shock to the growth rate of non-stationary TFP designed to capture the model

equivalent of our identified technology shock. We then evaluate various candidate hypotheses

for the source of the change through the lens of the model. Our results suggest that the

change in the response of technology over time was likely some combination of a change in

the stance of monetary policy, a change in the nature of knowledge capital accumulation,

and a change in the cost of utilizing capital.

With respect to the change in the stance of monetary policy, our results suggest a move

towards tighter monetary policy in response to inflation in a Taylor-type rate-setting rule in

line with the standard findings in the literature such as Lubik and Schorfheide (2004). This

policy change affects transmission through real-interest rate effects on labor and inventory
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decisions, and a powerful channel discussed in Christiano et al. (2008) through which under

nominal wage rigidities an inflation-targeting central bank influences the path of the real

wage. With respect to the change in the nature of knowledge capital accumulation, our

results suggest a decline in the depreciation of new knowledge capital over time, causing

firms to increase labor demand as they seek to acquire valuable new knowledge capital

in the face of expanding future technology. Taking this mechanism via knowledge capital

literally, one interpretation is that firms changed the way to organize their production inputs

and accessibility of institutional knowledge, as the processes of production changed rapidly

due to the IT revolution in the last two decades of the twentieth century. Finally, we find

that an increase in the cost of utilizing capital works through general equilibrium effects

via the credit sector and affects the return to capital and thereby an associated increase in

demand for new capital.

On the empirical side, our work links to an active literature that focuses on the im-

portance of longer-run identification of technology shocks in VARs. Galí (1999) employs

long-run restrictions on labor productivity to identify technology shocks and finds a decline

in hours worked in response to a positive shock. Technology shocks account just for a very

small part of total fluctuations in output and hours worked at business cycles frequencies,

which is taken as evidence against the Real Business Cycle paradigm.3 Others including

Christiano et al. (2004), Uhlig (2004) and Dedola and Neri (2007) find the opposite result

with regards to the response of hours worked and the importance of technology shocks for

aggregate fluctuations, arguably attributable to differences in the specification of hours in the

VAR. Francis et al. (2014) propose the so-called max share identification, which identifies a

technology shock as the one that maximizes the forecast-error variance of labor productivity

at some long but finite horizon. In particular, they show that the max share identification

outperforms standard long-run restrictions by significantly reducing the bias in the short-run

impulse responses and raising their estimation precision. Notably, they find a negative hours

response.4

3See also Shea (1998), Ramey (2005), Pesavento and Rossi (2005) and Basu et al. (2006).
4Francis et al. (2014) derive their results from a single sample using 1948Q2-2009Q4. Cardi and Restout
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We build on the insights of this debate by employing max share identification of technol-

ogy shocks. In contrast to the existing literature, we focus on two distinct subsamples which

are characterized by notable differences in unconditional time series behavior. While we use

TFP instead of labor productivity for our core analysis, we also show that our split-sample

result for hours worked holds using labor productivity instead of TFP.

Our work also connects with the news shock literature that studies anticipated shocks

to technology. Similar to the debate following Galí (1999), the response of hours worked to

identified news shocks has been a key feature of this literature. Key papers such as Barsky

and Sims (2011) and Kurmann and Sims (2021) (both with sample period 1960Q1–2007Q3),

find that hours worked do not co-move with output and consumption, but decline in response

to favorable anticipated technology shocks. Others document a broad-based expansion of

macroeconomic aggregates (e.g., Görtz et al. (2024) and Görtz et al. (2022)) who consider

1983Q1-2018Q2 and 1984:Q1–2017:Q1 samples, respectively.

We also speak to the large literature that documents differences in time series behavior

across the Great Inflation/Great Moderation samples.5 While this literature documents the

data unconditionally, we point to important changes conditional on technology shocks. Garin

et al. (2018) show that a change in the relative importance of aggregate and sectoral shocks

over time alters business cycle moments. This literature and our work has implications for

the estimation of structural models. It highlights the relevance of subsample estimation or

estimation with time varying parameters.

The remainder of the paper proceeds as follows. In Section 2, we provide VAR-based

evidence on the changing nature of macroeconomic aggregates across subsamples in response

to the dominant technological shock. Section 3 introduces the structural model which is

subsequently used to isolate the theoretical channels that drive differences in the response of

hours worked to anticipated technology shocks across subsamples. In section 4, we employ

(2024) document that the contractionary effect of surprise technology shocks on hours worked has shrunk
over time in OECD countries.

5We cannot do justice here to this extensive literature, see e.g. Stock and Watson (1999), Kahn et al.
(2002), McCarthy and Zakrajsek (2007), Galí and Gambetti (2009), Sarte et al. (2015) and Foerster et al.
(2022).
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an IRF matching procedure to estimate key parameters and then investigate in section 5 the

empirical relevance of these channels in light of the quantitative results. Section 6 concludes.

2 Changing Productivity Dynamics: Empirical Results

We provide VAR-based evidence on the differential behavior of macroeconomic aggregates

in response to technology shocks. Our empirical strategy relies on a parsimonious VAR

with an agnostic identification procedure over two different sub-samples. We discuss the

implications of these results and provide an initial analysis of the source of the observed

changes over each subsample.

2.1 Data and Empirical Methodology

We estimate a VAR with five variables as a baseline: TFP, GDP, consumption, hours

worked and the S&P500 stock market index. The key variable for the identification of the

shock that moves productivity is observable TFP. We use the TFP measure provided by

Fernald (2014), which is based on the growth accounting methodology in Basu et al. (2006)

and corrects for unobserved capacity utilization. GDP, consumption and hours worked serve

as our measures of economic activity, while the S&P500 captures information available to

economic agents about future macroeconomic developments. GDP, consumption and hours

worked are all seasonally adjusted and in real per-capita terms (except for hours worked

which are not deflated). All variables enter in levels, consistent with the practice in the

empirical VAR literature (e.g. Barsky and Sims (2011), Francis et al. (2014)). We use three

lags with a Minnesota prior and compute confidence bands by drawing from the posterior.6

The objective of our identification strategy is to isolate broadly-defined technology shocks

as the main driver of aggregate fluctuations. We remain largely agnostic about whether

such shocks have contemporaneous or delayed effects or whether they are anticipated or

unanticipated. Instead, our identification rests on the assumption that a distinguishing
6Appendix C provides details on the data sources and all used time series. Further details about the VAR

model, the max share identification and prior specifications are provided in Appendix A.
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feature of a technology shock is its ability to influence the behavior of the macroeconomy at

long-horizons. We implement this idea by using the max share methodology as suggested

in Francis et al. (2014), who maximize the forecast error variance share of a productivity

measure at a long but finite horizon.7

We consider a horizon h to be 10 years. We use TFP as the target variable for identifying

this shock, namely the one that best-explains TFP at a long horizon. The identification

allows us to remain agnostic about the type of technology shock being identified (anticipated

vs. surprise), and does not require us to make the strong identification assumption that TFP

is completely exogenous at all horizons and comprised of just surprise and news shocks.8

There is wide agreement in the literature that aggregate time series behavior in the US

changed in the early 1980s, separating the Great Inflation from the Great Moderation. There

is less agreement as to the underlying drivers of that change, whether it is due to structural

changes of the US economy, a changed incidence of shocks, or better policymaking. Using

these observations as background, we thus frame our investigation around the two subsamples

on either side of the onset of the Great Moderation. We estimate the VAR separately for

each of two subsamples spanning the periods 1954Q2–1983Q4 and 1984Q1–2019Q4. The

specific dates are chosen based on cross-correlation patterns of several macro-aggregates in

samples before and after the mid-1980s. In particular, McConnell and Perez-Quiros (2000)

and Kim and Nelson (1999) document a structural break at the first quarter of 1984 (see

also e.g. Galí and Gambetti (2009) and Stock and Watson (1999) for further evidence on

this structural break).
7Francis et al. (2014) advance max share identification as an alternative to long-run identification such

as Galí (1999) as it avoids small-sample bias inherent to these approaches. In addition our approach is
consistent with suggestions in Uhlig (2003) and in the spirit of Angeletos et al. (2020)

8Similar to Kurmann and Sims (2021) we do not impose zero-impact restrictions to separate anticipated
from surprise shocks to technology. Arguably, this helps avoid measurement issues that may arise with a
variable like TFP in the short-run. We consider alternative specifications and identification as a robustness
check.
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2.2 New Empirical Facts: Evidence from Two Periods

Figure 1 shows impulse response functions (IRFs) to our identified technology shock with

the red and blue lines corresponding to the first and second subsamples, respectively. There

are several important points to note. First, while our agnostic shock identification does

not exclude the possibility that TFP jumps on impact, in both subsamples, the dominant

effect on TFP is one that grows over time. In particular, TFP only rises significantly with

a lag of eleven quarters and after the other variables in the VAR. This is consistent with a

diffusion-based or anticipated (news) technology shock.

Second, there is a striking difference in the comovement of the key aggregate variables

between the two subsamples. Whereas in the latter subsample we observe a broad-based

and positively co-moving expansion of GDP, consumption and hours worked, in the earlier

subsample hours worked fall.9 Consumption rises also in the first subsample, yet its short-

and medium-run expansion is less pronounced than that in the second subsample. For GDP

this disparity is even more apparent as output rises in the first subsample significantly only

after seven quarters. Finally, stock prices rise in both subsamples. This rise in stock prices

along with that of consumption over the two subsamples is generally consistent with a “good

news” technological expansion, despite the differential response of hours worked between the

subsamples.

Overall, we observe marked differences in the responses of the variables over the two

episodes for almost identical TFP responses. We interpret these findings as broadly consis-

tent with the view of changes in the structure of the US economy as propagation is different.

In that sense our findings contrast with Sims and Zha (2006) who argue for differences in

the shock processes between the two eras. 10

9The qualitative differences across subsamples with respect to hours worked is reflected in the labor
market overall. Consistent with the decline in hours during the first subsample, Appendix B documents
a decline in the labor force participation rate and a rise in the unemployment rate using the same VAR
specification. In contrast, for the second subsample, the labor force participation rate increases and the
unemployment rate declines.

10These impulse response functions are robust to using labor productivity as an alternative measure for
productivity. Details are documented in Appendix B. Our results are also robust to alternating the number
of lags and to variations in the max share horizon h.
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Figure 1: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

Figure 2 shows the forecast error variance decompositions for the variables in the VAR

over the two subsamples. The identified shock explains a substantial and very similar share

of variation in TFP across the two episodes reaching a peak of 60% at horizon of 10 years.

In the first subsample the shock is of substantially lower importance for fluctuations in

GDP (red lines, ranging approximately between 10-55%) than in the second subsample

(blue lines, approximately 70-85%). The increase in the shock’s importance in the second

subsample is consistent with the IRF evidence from Figure 1, where we observed stronger

shock propagation and comovement across all macroeconomic aggregates, including hours

worked. The opposite sign response of hours worked – relative to GDP and consumption

– is consistent with the notion that the technology shock in the first subsample is of lesser

importance although the range of uncertainty in the second subsample is considerable..

Figure 2: Forecast Error Variance Decomposition — share explained by the TFP
shock. First subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue).
The solid line is the median and the shaded colored areas are the 16% and 84% posterior
bands generated from the posterior distribution of VAR parameters.

In summary, the above results suggest that: (1) The importance of technology shocks has
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increased over time — as a major driver of aggregate fluctuations they play a dominant role

in the second subsample but less so in the first; (2) the transmission of technology shocks

has changed over time, especially with regards to the qualitative response of hours worked;

(3) the most relevant shock driving TFP is not necessarily a surprise shock as assumed in

many models, but rather a news or diffusion shock. We will discuss the implications of these

findings further in the next section which investigates the shock transmission in more detail.

2.3 Digging Deeper: Subsample Differences in Shock Transmission

We have documented differences in the transmission of TFP shocks over two subsamples.

We now dig deeper into potential mechanisms by considering additional variables. Figure 3

shows responses of multiple variables of interest for the transmission of TFP shocks. Subplots

in this figure are from a VAR with TFP, GDP, consumption, hours worked, the S&P 500

and one additional variable of interest at a time. The depicted response of hours is from the

VAR that includes inventories. The variables not shown are very similar to those in Figure

1.

As the figure shows there are considerable differences across the two subsamples in their

response to a TFP shock. In particular, inventories, investment and the real wage fall, and

the BAA spread rises in the first subsample, whereas in the second subsample the pattern

is reversed. In addition, there is a short-lived decline in inflation in both subsamples. The

patterns of the remaining two variables are less clear: the federal funds rate does not respond

significantly in either subsample, and capital utilization rises in the second subsample, but

its response is insignificant in the first.

Taken together, the results from Figures 1 to 3 suggest the following with regards to the

behaviour of the key variables in response to the technological shock. First, consumption and

stock prices rise and inflation falls in both subsamples. This rise in consumption and stock

prices in tandem with the delayed rise in TFP is consistent with the idea of “good news”

associated with a rise in lifetime wealth due to expected TFP growth (see e.g. Beaudry and

Portier (2006)). Moreover the short-lived decline in inflation is a widely reported response
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Figure 3: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations. Subplots are based on a VAR with
TFP, GDP, consumption, hours worked, the S&P 500 and one of the plotted variables at a
time.

to technology news shocks (see e.g. Barsky and Sims (2011) Kurmann and Sims (2021),

Görtz et al. (2022)). Second, hours worked, investment, inventories, the real wage and

the BAA spread co-move in a consistent way with each other over both samples – and

indeed, consistent with their unconditional correlations in the data – however, as a group,

their response flips between the two subsamples. In particular, as a group, these variables

respond in the short run in a “contractionary” way in the first subsample, and “expansionary”

in the second subsample. This is also consistent with the somewhat more muted response of

output in the first subsample relative to that in the second subsample, reported in Figure

1. In fact, the responses in the first period are consistent with a news shock in a standard

RBC model with standard preferences as in King and Rebelo (2000); whereas the responses

in second period can be generated from the standard news shock specification of Jaimovich

and Rebelo (2009), which use preferences that avoid the wealth effect on hours.

2.3.1 Grouping Comovement: Labor, Inventories, Investment and Credit Spreads

The second observation made in the paragraph above is suggestive of a potential connec-

tion between developments on the labor market, inventories, investment and credit spreads.

The close relationship between hours and inventories has been stressed for example by
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Maccini and Rossana (1984) and Galeotti et al. (2005), who point out the need for a joint

understanding of the dynamics of inventories and hours worked. Also Chang et al. (2009)

emphasize this point and document the comovement of inventories and employment condi-

tional on (unanticipated) technology shocks. They further stress the connection between the

sign of the employment response to technology shocks and the cost of holding inventories.

Their notion that a positive response of hours worked is more likely the less costly it is to

hold inventories, is consistent with the patterns we document in Figure 3 on inventories,

hours and credit spreads. Risk premia, such as credit spreads, have been recognised in the

literature also as a measure for the opportunity cost of holding inventories. See for example

Jones and Tuzel (2013) who document this relationship between risk premia and inventories

unconditionally and Görtz et al. (2024) who stress the importance of credit spreads as oppor-

tunity cost for inventory holdings conditional on anticipated technology shocks. Hence, the

decline (rise) in inventories shown in Figure 3 for the first (second) subsample is consistent

with a rise (fall) in their opportunity cost captured by credit spreads.

A vast body of research finds that financial markets are characterized by frictions that

lead to credit spreads and hence affect the financing of investment projects.11 In particular,

Görtz and Tsoukalas (2018) and Görtz et al. (2022) emphasize that the empirical relevance

of technology news shocks hinges crucially on the shock’s transmission being amplified by

frictions in financial markets. The responses of investment and the BAA spread shown in

Figure 3 are consistent with this finding in so far as the response of the BAA spread indicates

a much stronger transmission via financial markets in the second subsample. This and the

relaxation of credit frictions, as indicated by the decline of the BAA spread, is consistent with

the strong expansion in investment we document for the second subsample.12 In contrast, the

somewhat muted rise of credit spreads in the first subsample is indicative of tighter lending

conditions which is consistent with the somewhat less pronounced rise in investment.
11See for example Philippon (2009) and Gilchrist and Zakrajsek (2012).
12Görtz et al. (2022) stress the importance of movements in credit spreads for the propagation of anticipated

technology shocks. They show that such a favorable shock is amplified via financial markets since an
endogenous strengthening of banks’ balance sheets relaxes lending conditions associated with a decline in
credit spreads.
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Our empirical results are supported by the fact that the above literature documents

a close connection between the same variables which we find to change the sign of their

IRFs across subsamples. Changes in the nature of US business cycles during the mid-1980s

are a widely documented phenomenon. By considering two separate subsamples we take

account of this finding and avoid masking differences in shock transmission across the two

subsamples. Estimating the VAR over the entire sample (1954Q2-2019Q4) yields responses

that are similar to those of the second subsample. Details are provided in Appendix B.

2.3.2 Conditional Evidence and Unconditional Dynamics in the Data

Our sample split coincides with the end of the Great Inflation and the literature has

documented a number of structural changes in the economy that occurred around this time.

Interestingly, these structural changes would be reflected in some of those variables that we

find to depict the most substantial differences in responses across subsamples, i.e. inven-

tories, hours worked and credit spreads. McCarthy and Zakrajsek (2007) and Kahn et al.

(2002) document that significant changes in inventory dynamics occur in the mid-1980s due

to improvements in inventory management. Sarte et al. (2015) document that time-series

properties of inventories and hours have changed with the onset of the Great Moderation and

attribute this, at least partly, to variations in credit market frictions. Adrian et al. (2010)

and Jermann and Quadrini (2012) argue that the importance of the financial sector for the

determination of credit and asset prices has risen significantly from the mid-1980s. Further,

Jermann and Quadrini (2009) discuss a variety of financial innovations that were taking place

or intensified in the 1980s — including banking liberalization, and flexibility in debt issuance

through the introduction of the Asset Backed Securities market — and stress their role for

a slowdown in output volatility. Fuentes-Albero (2019) documents that contemporaneous

to the onset of the Great Moderation there was a widespread increase in the volatility of

financial variables. This literature studies the unconditional dynamics of inventories, hours

and credit spreads in relation to potential sources for the end of the Great Inflation. While

our paper does not aspire to speak to the reasons for the onset of the Great Moderation,
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we note that there might potentially be a link between the sources of structural change —

e.g. improvements in inventory management and developments in financial markets — that

have been attributed to be potential sources of the Great Moderation and our documented

changes in the transmission of technology shocks.13

2.3.3 Rolling Windows: Timing the Change

We now shed some more light into the timing of when impulse responses flip sign. For

this purpose, we estimate our VAR model over rolling windows of 119 quarters. This choice

implies that the first rolling window is consistent with our first subsample and we shift this

window forward until its end corresponds to the end of the second subsample. Figure 4

displays the maximum or minimum (whichever is larger in absolute terms) of IRF responses

within the first ten quarters.14 For hours worked, it is evident that six quarters after the

rolling window shifts beyond the end of the first subsample, the largest (in absolute terms)

median response within the first ten quarters turns positive. Once the end of the rolling

estimation window includes the year 2000 the positive response is almost always significant.

For inventories the picture is similar, although here the response flips into positive significant

territory already for a sample end at around 1994. Also investment moves very quickly from

a negative response to an insignificant one before it becomes significant and positive once

the sample end includes 1999. A similar picture is evident for the response of the BAA

spread. It becomes insignificant very soon once estimation windows move away from the first

subsample. The spread response remains insignificant somewhat longer than those of the

other variables and flips to be negative and significant once the sample includes observations

after the financial crisis.

Overall, Figure 4 shows that as soon as the sample includes observations that are con-
13Other factors that have been suggested to contribute to the end of the Great Inflation are changes in

monetary policy making and smaller shocks. While this paper does not attempt to speak to this debate on
unconditional changes in time series behavior, it is interesting to note that our results suggest that the trans-
mission of technology shocks actually resulted in larger, rather than smaller, fluctuations in macroeconomic
aggregates in response to technology shocks in the second subsample.

14In Appendix B, we report corresponding statistics for the impact responses of IRFs. Results are consistent
with those of Figure 4. The same holds for corresponding figures with a shorter window length, which are
also provided in this appendix.
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sidered part of the Great Moderation period, the negative response of hours, investment

and inventories, and the positive response of the spread become insignificant. Once samples

include more post 1984 observations the IRFs flip sign and remain in this territory. This

rolling window exercise illustrates that the findings discussed in relation to Figure 1 are not

solely related to the two specific subsamples under consideration but reflect a broader feature

in the data. It also shows that the transmission of technology shocks has been affected for

some variables by significant events — such as the financial crisis for the BAA spread and

investment, the Great Moderation for inventories, investment and hours, and the late 1990’s

technology boom for investment and hours.

Figure 4: Maximum/minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1983Q4 (119 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours worked, the
S&P 500 and one of the plotted variables at a time.

2.4 Exploring the Source of Subsample Differences: Impulse or

Propagation?

Our results above suggest that not only have technology shocks played more of a role

in accounting for aggregate fluctuations over time, but their impact on the macroeconomy

has also changed. While the former effect on its own could simply reflect some change in

a feature of the technology shock itself, the latter result however is more suggestive of a
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change in some underlying feature of the macroeconomy. We now take a first-pass at trying

to understand the reason for this change within the context of our econometric setup.

As we show in detail in Appendix A, our econometric approach considers the following

vector autoregression (VAR), which describes the joint evolution of an n×1 vector of variables

yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural shocks εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,

where C(L) = A(L)B0, εt = B−1
0 ut, and the matrix B0 satisfies B0B

′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

Thus through the lens of our structural moving-average representation in equation (3),

the subsample differences can be driven by: (i) differences in the polynomial lag matrix

A(L), (ii) differences in the variance-covariance matrix associated with εt, which in turn

results from differences in the estimates in the variance-covariance matrix Σ. We test for

this as follows: We draw from the posterior coefficient matrix based on the reduced form

VAR estimated for each of the two subsamples (we use the same seed for the random number

generator). We then identify the TFP shock for the first subsample (as outlined in Section

2.1 and Appendix A.1) using the second-subsample polynomial-lag coefficients and the first-

subsample variance-covariance matrix. Similarly, we identify a TFP shock for the second
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subsample, using the first-subsample polynomial-lag coefficients and the second-subsample

variance-covariance matrix.

Figure 5 shows the results of this exercise. The red shaded areas shown in the first row

are the IRFs based on the first subsample. The blue shaded areas in the second row are the

IRFs based on the second subsample. These shaded areas are congruent with those shown

in Figure 1 and are used as a point of reference. The blue dashed and dotted lines in the

first row show the median and posterior bands for the second subsample, but the shock

is identified using the first-subsample polynomial-lag coefficients and the second-subsample

variance co-variance matrix. Similarly, the red lines in the second row of Figure 5 show

the responses if the VAR is run on the first subsample and the shock is identified using the

second-subsample polynomial-lag coefficients and the first-subsample variance co-variance

matrix. It is striking from the first row that if we use subsample two data but identify

the shock using polynomial-lag coefficients that are consistent with the first subsample and

a second-subsample variance co-variance matrix, the resulting IRFs are extremely similar

to the original first subsample responses. In other words, the only difference between the

blue shaded areas in the second row and the blue dashed line in the first row is that the

latter uses the polynomial lag coefficients implied by the first subsample. This is sufficient

for the IRFs to look rather similar to those implied by the first subsample (the red shaded

IRFs). The same holds vice versa for the second row. This implies that the documented

differences across subsamples are driven to a large extent by differences in the polynomial-lag

coefficients, rather than differences in the variance co-variance matrices. This is indicative

of a role for differences in the shock’s transmission through the economy across the two

subsamples.
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Figure 5: IRF to TFP shock. The solid red (blue) line is the median and the shaded red
(blue) areas are the 16% and 84% posterior bands generated from the posterior distribution
of VAR parameters on the first (second) subsample. First subsample is subsample 1954Q2-
1983Q4, second subsample is 1984Q1-2019Q4. The blue (red) dashed and dotted lines in the
subplots in row one (two) are the median and posterior bands when running the VAR on
the second (first) subsample, but identifying the shock using the polynomial lag coefficients
implied by the first (second) subsample and the variance co-variance matrix implied by the
second (first) subsample.

3 Differences in Shock Transmission through the Lens of

a Structural Model

Our empirical results above document the changes in the response of the economy to tech-

nological shocks over time, yet the analysis remains agnostic about the underlying source of

these changes. We now use use a structural model to provide some interpretation to potential

underlying causes. As we discussed above, the extensive literature studying changes in the

structure of the macroeconomy over the 1970’s – 1990’s have suggested several important

changes over this period, including: (1) changes in inventory management (2) changes in

labour market rigidities (3) changes in monetary policy (4) emergence of the information

and communications technology (ICT) era. Our rich structural model allows us to provide

some insight into whether these potential underlying changes in the economy noted in other

contexts could also be behind the changing impact of technology.

Our structural framework is a medium scale New Keynesian model of augmented with
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inventories, a financial sector with financial frictions, and knowledge capital accumulation by

firms. We model inventories as in Lubik and Teo (2012), based on the stock-elastic demand

model of Bils and Kahn (2000), where finished goods inventories are sales-enhancing. The

financial side of the model uses the setup of Gertler and Karadi (2011). Finally, knowl-

edge capital accumulation by firms follows the approach of Gunn and Johri (2011a), Chang

et al. (2002) and Cooper and Johri (2002) whereby firms accumulate productivity-enhancing

knowledge through an internalized learning-by-doing process in labor.

Our results above focus on the response of the economy to an identified exogenous tech-

nology shock, and thus our core analysis in our theoretical model focuses on the conditional

response of the model economy to an exogenous non-stationary neutral technological shock.

Additionally, our empirical results above suggest that the dominant technological shock in

both subsamples is an anticipated or diffused shock where the 16% lower posterior band of

TFP impulse response only rises above zero in the range of 12 periods out. Thus, our exoge-

nous technological shock in the structural model takes the form of a ”news” or anticipated

shock to TFP received 12 periods in advance of the actual change in TFP.

Since we are only interested in anticipated neutral technology shock in the context of our

particular question, in our model exposition we do not include the suite of other shocks typ-

ical in such models. For balanced growth properties however we do include a non-stationary

investment-specific technological shock in addition to the neutral technology shock, such

that the model contains stochastic trends owing to both the neutral and investment-specific

technology shocks.

In the model description that follows, we describe the key components of the model, leav-

ing the details to Appendix D. Appendix D.2 details the model equilibrium and equilibrium

equation system.

3.1 Model Description

The model consists of a large number of identical infinitely-lived households, a com-

petitive intermediate goods-producing firm, a continuum of monopolistically competitive
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distributors, a competitive final goods producer, a continuum of competitive financial in-

termediaries, a competitive capital services firm, a competitive capital goods producer, a

continuum of monopolistically competitive labour unions, a competitive employment agency

and a monetary policy authority. The intermediate goods firm produces a homogeneous

good that it sells to distributors. This good is then differentiated by the distributors into

distributor-specific varieties that are sold to the final-goods firm. The varieties are ag-

gregated into final output, which then becomes available for consumption or investment.

Households are comprised of a fraction 1 − f of workers and f of bankers. Workers sup-

ply labor, bankers manage financial intermediaries, and both return their earnings to the

household. Since our particular decentralization of wage stickiness implies that choices on

consumption and hours worked are identical across households, for simplicity we will refer

to a stand-in representative household.

3.2 Households

The stand-in household’s lifetime utility is defined over sequences of consumption Ct and

hours worked Nt and is given by

E0

∞∑
t=0

βt
(
V 1−σ
t − 1

)
1− σ

, (1)

where 0 < β < 1, σ > 0. The argument Vt is given by

Vt = Ct − bCt−1 − ψN ξ
t Ft, where Ft = (Ct − bCt−1)γf F

1−γf
t−1 , (2)

is a preference component that makes consumption and labor non-time-separable and is

consistent with the balanced-growth path in a growing economy. This preference structure,

which follows Schmitt-Grohe and Uribe (2012) and is based on Jaimovich and Rebelo (2009),

nests the no-income effect structure of Greenwood et al. (1988) in the limit as the parameter

0 < γf ≤ 1 tends toward zero. The parameter 0 ≤ b < 1 allows for habits in consumption;

and ξ > 1 is related to the Frisch elasticity of labour supply.

The household enters each period with real financial securities, Bt, which serve as deposits

with the financial intermediaries, and nominal bonds, Bn
t , earning risk-free gross real rate
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of return, Rt, and risk-free gross nominal rate of return, Rn
t , respectively, receiving nominal

wage, W h
t , for supplying hours, Nh

t , to the labour union, and receiving a share of real profits

from the various other entities in the model, denoted collectively as Ππ
t . At the end of the

period, the household chooses its consumption Ct, its holdings of financial deposits Bt+1 and

nominal bonds Bn
t+1. The household’s period t budget constraint is given by

Ct +Bt+1 +
Bn
t+1

Pt
+ Tt = RtBt +Rn

t

Bn
t

Pt
+
W h
t

Pt
Nh
t + Ππ

t , (3)

where Pt is the price of the final good in terms of the nominal unit under the control of

the central bank and Tt denotes lump-sum taxes. The household’s problem is to choose

sequences of Ct, Nh
t , Bt+1 and Bn

t+1 to maximize equation (1) subject to equations (2) and

(3), resulting in standard first-order conditions.

Revenues from taxation go directly to government spending Gt, where we assume that

the budget is always balanced such that Gt = Tt. Furthermore, government spending follows

the deterministic process Gt = εgYt, where εg is a constant.

3.3 Financial Intermediaries

Our financial intermediary framework follows that of Gertler and Karadi (2011) and so

we show only the core elements here. In period t, the jth financial intermediary obtains

deposit funds, Bjt+1, from households. The intermediary uses those funds and their own

net-worth, N b
jt, to make state-contingent loans, Sbjt, to non-financial capital services firms,

such that the intermediary’s financing satisfies the balance sheet identity

qkt S
b
jt = N b

jt +Bjt+1,

where qkt is the price of the state-contingent loan. The intermediary’s net-worth then evolves

as

N b
jt+1 = Rk

t+1q
k
t S

b
jt −Rt+1Bjt+1,

where Rt+1 is the non-contingent rate paid on household deposits (determined in t), and

Rk
t+1 is the state-contingent return on loans.
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An intermediary in period t remains to be an intermediary in t + 1 with exogenous

probability θb. With probability 1-θb they have been deemed to exit, a feature that insures an

intermediary will not grow so large as to be able to self-finance all its loans. The intermediary

will continue to operate and build wealth until exiting as long as the risk adjusted premium

on making loans over borrowing is positive. The intermediary thus maximizes expected

terminal wealth, given by

V b
jt = max

{Sbjt+i,Nb
jt+1+i}

Et

∞∑
i=0

(1− θb)θibΛt,t+1+iN
b
jt+1+i,

where Λt,t+i = βi λt+i
λt

is the household’s stochastic discount factor.

The financial friction takes the form of a moral hazard/cost enforcement problem where

each period, the intermediary can divert the fraction λb of assets back to the household,

at which point the intermediary is forced into bankruptcy and the depositors recover the

fraction 1 − λb. Thus for depositors to be willing to supply funds to the intermediary, the

following enforcement constraint

V b
jt ≥ λbq

k
t S

b
jt

must hold, such that the value to the intermediary of continuing to operate is at least as

large as the value of absconding funds. Conjecturing and subsequently verifying that the

solution is linear in its balance sheets components in the form

Vjt = νbtq
k
t Sjt + ηbtNjt,

and that the leverage ratio, φbt, defined as

φbt =
qkt Sjt
Njt

,

is not dependent on intermediary-specific factors, we can then solve for νbt and ηbt. Under

the case that the enforcement constraint is binding (as in Gertler and Karadi (2011)),

φbt =
ηt

λb − νbt
,

then νbt and ηbt are given by

νbt = Etβ
λt+1

λt
Γt+1δbt+1 and ηbt = Etβ

λt+1

λt
Γt+1Rt+1,
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where Γt = 1− θb + θb(νbtφbt + ηbt) and δbt = Rk
t −Rt.

3.4 Employment Unions and Employment Agency

Our sticky-wage framework follows the decentralization of Schmitt-Grohe and Uribe

(2012) and Smets and Wouters (2007) with a continuum of monopolistically competitive

labor unions on a unit mass indexed by q ∈ [0, 1], and a competitive employment agency.

Monopolistic unions buy homogeneous labor from households, transform it into differenti-

ated labor inputs, and sell it to the employment agency who aggregates the differentiated

labor into a composite which it then sells to the intermediate goods producer. The unions

face Calvo frictions in setting their wages for each labour type — such that each period

they can re-optimize wages with probability 1− ζw — and re-set their wage according to an

indexation rule when unable to reoptimize.

Since this model component is standard, we relegate the exposition of further details to

Appendix D.1. The sticky wage framework results in an endogenous time-varying markup

µwt between the wage Wt paid by the intermediate goods firm and the wage W h
t paid to the

household, such that

µwt =
Wt

W h
t

=
wt
wht

. (4)

where wt = Wt

Pt
and wht =

Wh
t

Pt
. The dynamics of µwt is captured by a resulting equilibrium

wage Phillips curve derived from imposing equilibrium on the combination of the employment

agency and union’s problem.

3.5 Intermediate Goods Firm

The competitive intermediate goods firm produces the homogeneous good Yt with tech-

nology

Yt = (ΩtNt)
αn K̃αk

t (ΩtHt)
1−αn−αk ,
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where Ωt is a non-stationary exogenous stochastic neutral productivity process, and Ht is

the stock of intangible capital that resides within the firm and that we refer to as knowledge

capital. The growth rate gΩ
t of Ωt is given by

ln

(
gΩ
t

gΩ

)
= ρgΩ ln

(
gΩ
t−1

gΩ

)
+ ug

Ω

t , with ug
Ω

t = ε0gΩt + ε12
gΩt−12,

where ε0gΩt is an unanticipated shock and εp
gΩt−p is a news shock that agents receive in

period t about the innovation in time t+ p. The innovations ε0gΩt and ε
p
gΩt−p are assumed to

be i.i.d. and independent across time and news horizon.

Following Gunn and Johri (2011b), Chang et al. (2002) and Cooper and Johri (2002), we

assume that the stock of knowledge capital, Ht, evolves as an internalized learning-by-doing

process to capture the idea that agents acquire new technological knowledge through their

experiences in engaging labor in the production process.15 Accordingly, Ht evolves as

Ht+1 = (1− δh)Ht +H1−νh
t N νh

t , where 0 ≤ δh ≤ 1, 0 ≤ νh < 1. (5)

The accumulation equation (5) nests a log-linear specification for δh = 1, common in the

literature such as in Chang et al. (2002), Cooper and Johri (2002) and d’Alessandro et al.

(2019), but also allows for a more general linear formulation for 0 < δh < 1.

Each period the firm acquires labor, Nt, at wage, wt, from the labor market, and capital

services, K̃t, at rental rate rt from the capital services market. It then sells its output, Yt, at

real price, τt, to the distributors. Additionally, we find it convenient to define the marginal

cost of production for intermediate goods, mct = wt
MPN t

= wt
αnYt/Nt

, where MPN t is the

marginal product of labor. It then follows that the output price, τt, is equal to the marginal

cost of production, mct.

The firm’s optimization problem involves choosing Nt, K̃t and Ht+1 to maximize its

stream of profits, E0

∑∞
t=0

βtλt
λ0

Πy
t , subject to the production function and knowledge capital

accumulation equation, where Πy
t = τtYt − wtNt − rtK̃t.

15The idea of learning-by-doing, and in particular skill-accumulation through work experience, has a long
history in labor economics, where empirical researchers have found a significant effect of past work effort on
current wage earnings. Researchers have studied learning-by-doing both as a growth mechanism as in Arrow
(1962), as well as a short-run supply-side mechanism that enhances the dynamics of business cycle models,
as e.g. in Chang et al. (2002), Cooper and Johri (2002), Gunn and Johri (2011b), d’Alessandro et al. (2019)
and Görtz et al. (2022)
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3.6 Capital Producer

The competitive capital-goods producer operates a technology that combines existing

capital with new investment goods to create new installed capital. At the end of each period

it purchases existing capital, Kk
t , from the capital services firms at price q̃kt , combining it

with investment, It, to yield new capital stock, Knk
t , which it sells back to the capital services

firm in the same period at price qkt . The capital-producer faces capital adjustment costs in

the creation of new capital, and incurs depreciation in the process, so that

Knk
t = (1− δ)Kk

t + It − S
(
It
Kk
t

)
Kk
t . (6)

where S(·) is an investment adjustment cost function with the properties that in steady

state, S(·) = 0, S ′(·) = 0, and S ′′(1) = s′′ > 0, where s′′ is a parameter. With this form of

adjustment costs, the capital producer’s problem is static, whereby each period it chooses

It and Knk
t to maximize period t profits Πnk

t = qktK
nk
t − q̄ktKk

t − ΥtIt subject to equation

(6), and where Υt is a non-stationary exogenous stochastic investment-specific productivity

process.

The growth rate gΥ
t of Υt is given by

ln

(
gΥ
t

gΥ

)
= ρgΥ ln

(
gΥ
t−1

gΥ

)
+ ε0gΥt,

where ε0gΥt is an unanticipated shock, i.i.d. and independent across time and news horizon.

3.7 Capital Services Firm

At the end of each period t the competitive capital services firm buys capital, Kt+1, from

the capital producer at price qkt , financing it with loans from the financial intermediaries in

the form of state-contingent claims, Sbt , equal to the number of units of capital, and pricing

each claim at the price of a unit of capital. At the beginning of t+ 1, the firm rents services

of the capital, K̃t+1 = utKt+1, to intermediate goods firms at price rt. At the end of the

period, the firm incurs utilization costs of a(ut+1)Kt+1Υt+1, sells the undepreciated capital

back to capital goods producers at price q̃kt+1, and pays out state-contingent profits Πk
t+1 to
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financial intermediaries, where

Πk
t+1 = qkt S

b
t − qktKt+1 + rt+1ut+1Kt+1 − a(ut+1)Kt+1Υt+1 + q̃kt+1Kt+1.

After observing the aggregate state in t + 1, the firm the faces the problem to choose ut+1

to maximize Πk
t+1, yielding the optimality condition a′(ut+1)Υt+1 = rt+1. We assume that

the function a(ut) is convex in the rate of utilization, such that a′(·) > 0, a′′(·) > 0. We also

assume that ut = 1 in steady state, and that a(1) = 0.

Letting Rk
t+1 be the state-contingent gross real return on the claims issued in t, then

Πk
t+1 = Rk

t+1q
k
t S

b
t = Rk

t+1q
k
tKt+1, such that using the firm’s optimality conditions for ut+1,

and qkt Sbt = qktKt+1, the state-contingent real return is given by

Rk
t+1 =

rt+1ut+1 − a(ut+1)Υt+1 + q̃kt+1

qkt
.

3.8 Final Goods Firm

The competitive final goods firm produces goods for sale, St, by combining distributor-

specific varieties Sit, i ∈ [0, 1], according to the technology

St =

[∫ 1

0

ν
1
θ
itS

θ−1
θ

it di

] θ
θ−1

, with νit =

(
Ait
At

)ζ
, and θ > 1, ζ > 0,

where νit is a taste shifter that depends on the stock of goods available for sale Ait. The

latter is composed of current production and the stock of goods held in inventory.16 We

assume that νit is taken as given by the final goods producer and At is the economy-wide

average stock of goods for sale, given by At =
∫ 1

0
Aitdi. The parameters θ and ζ capture,

respectively, the elasticity of substitution between differentiated goods and the elasticity of

demand with respect to the relative stock of goods.

The firm acquires each variety i from the distributors at relative price pit = Pit/Pt,

where Pt =
[∫ 1

0
vitP

1−θ
it di

] 1
1−θ is the aggregate price index. It sells the final good for use in

consumption or as an input into the production of investment goods. The firm maximizes

the profit function Πs
t = St −

∫ 1

0
Pit
Pt
Sitdi by choosing Sit, ∀i. This results in demand for Sit

16This structure follows Bils and Kahn (2000) and is standard in modeling demand for goods drawn from
inventories. It also supports a convenient decentralization of production.
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for the ith variety

Sit = νitp
−θ
it St. (7)

An increase in νit shifts the demand for variety i outwards. This preference shift is influenced

by the availability of goods for sale of variety i, which thereby provides an incentive for firms

to maintain inventory to drive customer demand and avoid stockouts.

3.9 Distributors

We follow Bils and Kahn (2000) in modeling inventories as a mechanism that helps

generate sales, while at the same time implying a target inventory-sales ratio that captures

the idea of stockout avoidance. Distributors acquire the homogeneous good Yt from the

intermediate goods firms at real price τt. They differentiate Yt into goods variety Yit at zero

cost, with a transformation rate of one-to-one. Goods available for sale are the sum of the

differentiated output and the previous period’s inventories subject to depreciation

Ait = (1− δx)Xit−1 + Yit, (8)

where the stock of inventories Xit are the goods remaining at the end of the period

Xit = Ait − Sit, (9)

and 0 < δx < 1 is the rate of depreciation of the inventory stock.

The distributors have market power over the sales of their differentiated varieties. The

ith distributor sets price pit for sales Sit of its variety subject to its demand curve (7).

Distributors face frictions in setting their prices, and as in Lubik and Teo (2012) , we assume

that the ith distributor faces convex adjustments costs in the form κ
2

[
Pit+k

π
ιp
t−1π

1−ιpPit+k−1
−1
]2

St.

Each period, a distributor faces the problem of choosing pit, Sit, Yit, and Ait to maximize

profits

Et

∞∑
k=0

βk
λt+k
λt

{
Pit+k
Pt+k

Sit+k − τtYit+k −
κ

2

[ Pit+k
π
ιp
t−1π

1−ιpPit+k−1

− 1
]2

St

}
,

subject to the demand curve (7), the law of motion for goods available for sale (8), and the

definition of the inventory stock (9), and where λt is household’s marginal utility of wealth.
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3.10 Monetary Policy

We close the model with a standard monetary policy rule where the interest rate, Rn
t+1,

is set by the monetary authority according to a feedback rule,

Rn
t+1

Rn
=

(
Rn
t

Rn

)ρr ((Πt

Π

)φπ ( Yt
Y ∗t

)φy)(1−ρr)

,

where Πt is the gross inflation rate, Π the corresponding stead state level, Y ∗t is level of output

that would preside under flexible wages and prices. The parameter ρr governs interest rate

smoothing over time; and φπ and φy control the interest rate response to deviations in

inflation and output from their respective reference points.

3.11 Understanding the Response of Hours

The primary qualitative change in the response to a technology shock evidenced in our

empirical analysis was the change in the comovement of hours worked with consumption.

Moreover, in both subsamples, productivity evolved in a diffused manner, consistent with the

interpretation of the technology shock as an anticipated or news shock. Before we confront

the model with the data to study these features, we first highlight some key mechanisms of

the model to understand the response of hours to such news shocks and frame our subsequent

analysis.

We examine the key equations of the labor market equilibrium to develop an expression

that characterizes the response of hours worked. We work with the linearizatons of the

stationary transformations of the underlying non-stationary system, and introduce wedges

into the model as stand-ins for several of the structural mechanisms in the model. The

wedges can be interpreted as endogenous equilibrium objects that represent deviations from

some reference model. Additionally, in our linearizations we focus on a “news phase” where

the model economy has received a news-shock about an increase in future TFP, but where

the TFP shock has not yet materialized, and thus the linearized shocks are all zero.
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We begin with the labor-supply equation

ξψΓtv
−σ
t nξ−1

t

ft
λ̄t

=
w̄ht
φlst
, (10)

where we define φlst as a labour supply wedge between the marginal rate of substitution on

the left-hand side and the real wage. In this model the labour supply wedge is equal to

the wage markup term resulting from the presence of sticky wages which we discuss more

below.17 Next, we write the labor demand equation as

w̄tφ
ld
t = αnτt

yt
nt
, (11)

where φldt is a labor demand wedge, equal to the knowledge capital markup wedge which we

will discuss more below, and τt is the relative price of output, which itself acts as a wedge

through its link to the inventory stocking equation. Finally, we write the production function

as

yt = (nt)
αn

(
ut
kt
gkt

)αk
φet , (12)

where φet is an efficiency wedge, equal to the input of knowledge capital in production,

h
(1−αn−αk)
t , and gkt is the growth rate of the stochastic trend in capital. Linearizing equations

(10), (11) and (12), eliminating the real wage and isolating hours-worked gives

n̂t =
1

(ξ − αn)

[
ψ̂nt − φ̂lst

]
+

1

(ξ − αn)

[
τ̂t + φ̂et − φ̂ldt + αkût + αkk̂t

]
, (13)

where “hat’s” denote percent-deviations of the transformed stationary variables from

steady state, and ψ̂nt = λ̂t + σv̂t − f̂t is a stand-in for the preference elements from the

Jaimovich-Rebelo class of preferences.

Equation (13) describes the response of hours during the news-phase when no shocks

other than the news shock are present. The terms in the first set of square brackets on

the right hand side are labor supply shifters, and those in the second set of square brackets

are labor demand shifters. Movements in the former and latter that are associated with an

increase in the response of hours will tend to lower and raise the real wage, respectively.
17Equations in this section are stationarized and lower case variables correspond to their non-stationary

upper case counterparts. Also the bar above λt and wt denote the stationarized versions of these variables.
See Appendix D.2.1 for details of the model stationarity.
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The coefficient term on both sets of brackets is a function of ξ − αn which contribute to the

relative slopes of the linearized labor supply and demand curves. Through the lens of the

model, any change in the response of hours over the subsamples must show up somehow in

the elements of this equation, and thus we use it to summarize the main possibilities for a

change in the response of hours over the two subsamples.

Preference hypothesis. In principle, a change in preferences could account for the

change in the response of hours over time, either through the parameter ξ which parame-

terizes the Frisch elasticity of labor and thus the amount of labour households are willing

to supply for a given wage, or through the stand-in variable ψ̂nt , which itself depends on

the “wealth effect” parameter γf and consumption habits parameter b. The parameter γf

is a particularly strong potential channel given the strong link between the wealth effect of

expanding technology on consumption and the comovement of hours and consumption. As

has been studied extensively in the literature, when γf is large, the standard income-effect

on leisure means that while consumption rises in response to the increase in lifetime wealth

from the increase in technology, leisure also rises, and thus consumption and hours negatively

co-move. When γf is near zero on the other hand, the income-effect on labor is minimal,

such that consumption can increase in response to an increase in wealth without implying a

corresponding drop in hours.18 While changes in preferences over time are possible, we find

large changes unlikely. Nevertheless, in our quantitative analysis, we will allow for changes

in ξ and γf , but we will restrict their range within common values used in the literature to

limit the possibility that large jumps in preferences alone explain the change in hours.

Labor market frictions hypothesis. The direct effect of changes in labor market

frictions in equation (13) work through the labor supply wedge φlst , which equals the wage

markup from the wage Phillip’s curve. This occurs through the changes in the parameter

ω in the model, which measures the Calvo probability of not being able to optimally re-set

household wages in a given period. An increase in ω would imply a more sluggish response of
18To see this most clearly, note that with γf = 0 and no consumption habits (b = 0), the stand-in variable

ψ̂nt = 0 and thus, it drops out of equation (13).
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the real wage wht facing the household, and thus a larger drop in φlst putting upward pressure

on hours worked.

Monetary policy hypothesis. A change in the stand of monetary policy in the model

impacts the response of hours through at least two main channels: the first through interac-

tion via sticky wages, and the second through the real interest rate. For the first channel, as

discussed extensively by Christiano et al. (2008), under sticky nominal wages, an inflation-

targeting central bank directly impacts the real wage markup through the impact of inflation.

Like the change in labor market frictions discussed above, this would manifest itself directly

in equation (13) through the labor supply wedge φlst . The second channel impacts equa-

tion (13) indirectly through the general equilibrium impacts of the real interest rate on the

variables in this equation, such as the preference term ψct , capacity utilization ut, and the

marginal cost of output τt through the impact of the real interest rate on inventory. For our

quantitative analysis we allow for changes in the parameters ρr, φπ, and φy of the monetary

policy rule.

Credit market hypothesis. Like the second channel of monetary policy above, changes

in credit market frictions in the model manifest themselves in equation (13) indirectly

through the general equilibrium impacts of the real interest rate on variables in this equa-

tion, as well as the impacts of the credit spread, capacity utilization ut, and choice of capital

kt. We note however that with capital predetermined on impact and sluggish in subsequent

periods relative to the other variables such as capacity utilization, variation in kt isn’t likely

to be a dominant factor in the response of hours in the initial few periods. Changes in credit

market frictions in the model occur through changes in the parameter λb, which captures

the proportion of capital a financial intermediary threatens to abscond. For our quantitative

analysis, we allow for changes in λb by estimating steady-state leverage, φb, which, based on

our model solution and partial calibration, maps directly to λb.19

Inventory hypothesis. The equilibrium optimal stocking condition in the model im-
19Due to non-linearities in the steady-state relations, estimating φb instead of λb reduces computational

complexity.
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plies that the inventory sales ratio Xt
St

is given by

Xt

St
= χ(τt, µ

x
t ), (14)

where the partial derivatives χτ (t) =
∂χ(τt,µxt )

∂τt
< 0 and χµx(t) =

∂χ(τt,µxt )

∂µxt
< 0, and where µxt is

equal to the expected discounted value of future marginal costs, µxt = (1− δx) βEt λt+1

λt
τt+1.

Faced with an increase in demand for sales triggered by the TFP news shock, distributors

can satisfy the demand by some combination of running down inventories or purchasing new

output at real price τt. The function χ(·) depends on the parameter ζ, which measures the

elasticity of demand for sales with respect to the relative stock of good varieties, and thus

changes in ζ will impact the equilibrium response of τt and the associated response of hours

in equation (13).

We note here also our empirical results suggesting that in both subsamples, hours and

inventory co-move positively, no matter how hours and consumption co-move. In terms of

equation (13), we see that all else equal, hours varies positively with the real price of output,

τt. A change in inventory management which implies meeting any increase in sales demand

with relatively more new production relative to existing stocks of inventory would drive up

the real price of output τt and thus hours worked, implying upward force on both hours and

inventories.

Knowledge capital hypothesis. The Intermediate Goods Firm’s optimal labour choice

is given by

wt = τtα
Yt
Nt

+ νhq
h
t

H1−νh
t Nνh

t

Nt

, (15)

where qht as the Lagrange multiplier on equation the knowledge capital accumulation equation

(5) and has the interpretation as the marginal value of acquiring new knowledge capital in

terms of expected future lifetime profits. qht is in turn given by

qht = βEt
λt+1

λt

{
(1− αn − αh)τt+1

Yt+1

Ht+1

+ qht+1

(
1− δh + (1− νh)

H1−νh
t+1 N νh

t+1

Ht

)}
. (16)

The presence of internalized knowledge capital in the firm’s technology adds an additional

term into the firm’s hours worked first order condition (15) that shifts labor demand. News

about future TFP increases the value of future knowledge through the impact of knowledge
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in future production according to (16), increasing the value of knowledge today, qht , shifting

out the firm’s labor demand.

This manifests itself directly in equation (13) as a decrease in the labor demand wedge,

φldt as the firm increases hours today in order to increase future knowledge capital, thus

lowering its markup and current profits in the present in order to increase profits in the

future. In our quantitative analysis we study changes in knowledge capital accumulation in

the model occur through changes in the parameters δh, the depreciation rate of knowledge

capital, and νh, the elasticity of labor in the production of new knowledge.

Other channels. A change in the steady state elasticity cost of adjusting capacity

utilization, εu a
′′(u)
a′(u)

u, directly impacts equation (13) through its impact on ut. We can gain

additional insight by using the linearized form of the capital services firm’s first-order con-

dition for utilization, r̄t = δ′(ut) and the Intermediate Goods Firm’s first-order condition for

capital services r̄t = (1− α)τt
yt

ut
kt
gkt

to eliminate ut in equation (13), resulting in

n̂t =
1

(ξ − χuαn)

[
ψ̂nt − φ̂lst

]
+

1

(ξ − χuαn)

[
ˆχuτ t + χuφ̂

e
t − φ̂ldt + (1 + χu(αk − 1))αkk̂t

]
,

(17)

where χu = 1−εu
1−εu−αk

, where we can see that the primary role of capacity utilization in the

model is to increase the elasticity of the other components of labour demand.20 In addition

to the direct effect, a change in the cost of utilizaton can impact equation (17) indirectly

through the general equilibrium impacts of the real interest rate due to the influence of the

cost of utilization on the return to capital and thus real interest rate.

In additional to the cost of utilization, a change in the cost of adjusting investment

or capital, s′′, impacts equation (17) indirectly through the general equilibrium impacts of

the real interest rate on variables in this equation, working through the credit sector by

influencing the price of capital and thus the return on capital.
20We note that the relative price of capital, qkt does not play a role here as an independent shift factor for

utilization, as in Greenwood et al. (1988) or Jaimovich and Rebelo (2009). Unlike in those models where the
cost of utilization is incurred within the capital accumulation equation and this in terms of units of capital,
in this model decentralization with separate financial, capital services and production sectors that subdivide
this overall capital accumulation process, the utilization cost is incurred in terms of consumption units as in
Christiano et al. (2005).
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4 Quantitative Approach

We now detail our approach for quantitatively studying how the model might account for

the changes in the response to technology shocks that we documented earlier in the empirical

section. The approach is a hybrid of calibration, econometric and counterfactural exercises

designed to illuminate candidate channels that could explain the changes in response across

subsamples.

As in the empirical section, we break the sample data into two subsamples, 1954Q2-

1983Q4 and 1984Q1-2019Q4, as an approximation for gradual or more abrupt structural

change over that period. We then estimate a subset of the model parameters independently

over the two subsamples, allowing the remaining subset of the parameters to remain fixed

over both subsamples. Our estimation for each subsample follows the approach of Christiano

et al. (2005) such that the parameters are estimated by minimizing a measure of the dis-

tance between the model and empirical impulse response functions, conditional on a single

structural shock in the model that corresponds to the shock identified in the empirical VAR.

We use the results of the estimation over the two subsamples to highlight the key parameter

changes, and then perform counterfactual exercises to explore the potential role of each key

parameter in the change in impulse responses over the two subsamples.

4.1 Estimated and Fixed Parameters

The parameters that we estimate and that will be the focus of our analysis correspond to

the parameters highlighted in our analytical analysis in Section 3.11 as being potentially im-

portant for the response of hours worked. Let ϑ = (ξ, γf , εu, s
′′, ζ, δx, δh, νh, ρΩ, φπ, φy, ρr, κ, ζw, φb)

be the vector of these parameters. Then let ψ(ϑ) be the mapping from ϑ to the first ten

elements of the model impulse response functions for the target variables consumption (C),

output (Y ), hours worked (N) and investment (I), and ψ̂ be the median of the estimated

posterior distribution of the corresponding empirical impulse response functions. For each
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of the two subsamples, we then estimate ϑ as the solution to the problem

Ji = min
ϑi

[
ψ̂i − ψ(ϑi)

]′
V −1
i

[
ψ̂i − ψ(ϑi)

]
, (18)

where Vi is a weighting matrix, and i = 1, 2 denotes the first or second subsample. We

construct Vi using the variances of the posterior distribution of empirical impulse response

functions along the diagonal for each subsample.

As discussed above, the estimated parameters in ϑ directly affect the response of hours

worked to technology shocks. The remaining model parameters are held fixed at constant

values over both subsamples. The calibration is standard and we report the calibrated values

in 1 in Appendix E.1.

4.2 Impulse Response Functions

We now presents the results of the impulse response function matching as well as a series

of counterfactual experiments.

Figure 6 shows the model impulse response functions resulting from the matching exercise

above. The first and second rows in the figure show the impulse response functions based

on estimates from the first and second subsamples respectively. In the first row (second),

the red (blue) solid line and shading indicate the empirical VAR median and 16% and 84%

posterior bands respectively for the posterior distribution of VAR parameters for the first

(second) subsample. The red (blue) dashed line is the model IRF obtained from the IRF

matching procedure over this period.

The figure shows that the estimation procedure over the two subsamples captures the

primary nature of the change in the empirical response over the two subsamples: in the

model IRFs like in the empirical IRFs, consumption rises in both samples, whereas hours

and investment fall in the first subsample and rise in the second. For the vast majority of

the periods, the theoretical IRFs lie within the posterior bands of the empirical VAR.
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Subsample 1: 1954Q2-1983Q4.

Subsample 2: 1984Q1-2019Q4.

Figure 6: VAR and model based IRF to permanent productivity shock: IRF match
target variables C,Y,N,I. Red (blue) solid line is the median VAR estimate on the first
(second) subsample and the shaded areas are the 16% and 84% posterior bands generated
from the posterior distribution of empirical VAR parameters. Red (blue) dashed (dash-
dotted) line is model IRF to 12 period ahead news shock using IRF-matching procedure on
the first (second) subsample. The units of the vertical axes are percentage deviations.
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4.3 Parameter Estimates

Table 2 in Appendix E.2 shows the estimated values from the impulse response function

matching exercise. We draw attention to some key insights.

First, the point estimates of the inventory taste shifter curvature ζ, the labor elasticity

in knowledge capital parameter νh, the Taylor rule output parameter φy, the Taylor rule

smoothing parameter ρr, and the wage rigidity parameter ζw are constant over the two

subsamples. This suggests that a change in these parameters was not likely a factor in the

change in the response to technology shocks over the two samples. We will refer to this

group of parameters as “Group A” parameters.

The point estimates of the remaining parameters change to varying degrees over the

two subsamples. Thus any combination of these Group B of parameters could potentially

account for the change in the response to technology over the two subsamples. We will refer

to this group of parameters as “Group B ” parameters.

We note that while the change in the point estimate of the “Wealth elasticity parameter”

is very modest over the subsamples, models tend to be very sensitive to this parameter,

and so we cannot discount its role by magnitude of the change alone. Nevertheless, the

point estimates of this parameter are very small in both subsamples, implying nearly “zero

income effect” on labour supply, consistent with very small values found in studies applying

Bayesian estimation techniques to structural models, as in e.g. Schmitt-Grohe and Uribe

(2011) and Görtz et al. (2022). Small values of this parameter are typically relevant in

models where comovement of hours worked and consumption is important, as in many news-

shock models, which is interesting given that in our empirical results hours-worked and

consumption positively co-move in the second sample but negatively co-move in the first.

Whether the change in the estimate of a particular Group B parameter plays a significant

role depends on both the magnitude of the change in the estimate as well as the model’s

sensitivity to changes in that particular parameter. To assess this more, we next study the

model’s sensitivity to changes in these Group B parameters changes.
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4.4 Counterfactual Experiments

The above discussion suggests that changes in all or some subset of the Group B param-

eters could potentially account for the change in the response to technology shocks over the

two subsamples. Was the empirical change in the response of the IRFs due to change in a

combination of underlying factors – captured in the model by a change in multiple parame-

ters – or could a few factors (parameters) have been dominant? We now qualitatively explore

this question through the lens of the model, examining the role of each of the key parameter

changes through counterfactual experiments to determine if one or a small subset of these

factors were dominant. To do this, we follow one of two experiments to study the potentially

role of each parameter in Group B to individually account for the change in the IRF: (1) we

set all Group B parameters to their point estimates obtained from subsample one, and then

one-at-a-time we change each parameter value to its subsample two point estimate; or, (2)

we set all Group B parameters to their point estimates obtained from subsample two, and

then one-at-a-time we change each parameter value to its subsample one point estimate.

Whether we use experiment (1) or (2) for a given parameter depends on the following

rule: use experiment (1), unless the change in the parameter under consideration causes an

indeterminacy or instability in the model, in which case, use experiment (2).

Figure 7 shows the results of this exercise for parameters assigned to experiment 1, and

Figure 8 shows the results for parameters assigned to experiment 2. In both figures, in each

panel, the blue solid line and shading indicate the median and 16% and 84% posterior bands

respectively for the posterior distribution of VAR parameters for the second subsample, and

the blue dash-dotted line is the model IRF obtained from the IRF matching procedure over

this same period (i.e. the blue shading and blue dash-dotted line in each panel reproduces

the blue shading and dash-dotted line of Figure 6). In both figures, the red dashed line

in each panel is the model IRF obtained from the IRF matching procedure over the first

subsample, and the blue dash-dotted line is the model IRF obtained from the IRF matching

procedure over the second subsample (i.e. the red dashed line and blue dash-dotted line

correspond to the same in Figure 6). In Figure 7, the black dotted line in each panel is then
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the counterfactual model IRF using all parameters values obtained from the IRF matching

procedure over the first subsample, except for the parameter in question where the value

is set to the value obtained form the IRF matching procedure over the second subsample

(i.e. with no counterfactual change in the parameter of question, the black dotted line would

coincide exactly with the red dashed line). In other words, the dotted black line shows the

extent to which the single parameter change in question can shift the model IRF from the

red dashed line to the blue dash-dot line. In contrast in Figure 7, the black dotted line in

each panel is the counterfactual model IRF using all parameters values obtained from the

IRF matching procedure over the second subsample, except for the parameter in question

where the value is set to the value obtained form the IRF matching procedure over the first

subsample.

Beginning with Figure 7, if a given parameter has the potential to account for a significant

portion of the change in the response of the IRFs between the two subsamples, we would

expect the dotted black line to move the IRF further away from the dashed red line and

towards the dash-dotted blue line (in other words, the change in a given parameter from its

subsample one to subsample two point estimate moves the IRFs closer to the subsample two

matched IRF). First, focusing on the response of hours worked, we can see from Panels 1, 3

and 4 that the change in Frisch elasticity parameter ξ, capital adjust cost parameter s′′, and

TFP growth process parameter ρΩ respectively actually move the black dotted in the wrong

direction (i.e. further away from the subsample two matched IRF). We interpret this as

suggesting that these three parameters are not likely a factor in the change in the response

to technology shocks over the two samples. Next, the change in the price adjustment cost

parameter κ, and the steady state leverage parameter φb move the blacked dotted line in

the right direction, however, the magnitude of the change in the response of the IRFs is

very small. We thus interpret this as suggesting that these two parameters are not likely

important factors in the change in the response to technology shocks over the two samples.

The remaining two parameters in this figure – the utilization cost parameter εu and the

Taylor rule inflation parameter φπ – move the response of hours worked substantially and in

39



the right direction, suggesting that both of these parameters may be factors in the change

in the response to technology shocks over the two samples.

Turning to Figure 8, if a given parameter in this figure has the potential to account for

a significant portion of the change in the response of the IRFs between the two subsamples,

we would expect the dotted black line to move the IRF further away from the dash-dotted

blue line and towards the dashed red line (in other words, the change in a given parameter

from its subsample two to its subsample one point estimate moves the IRFs closer to the

subsample one matched IRF). Focusing again on the response of hours worked, both the

change in the wealth elasticity parameter, γf , and the inventory depreciation parameter, δx,

move the black dotted line in the wrong direction, away from the red dashed line, suggesting

that these two parameters are not likely important factors in the change in the response to

technology shocks over the two samples. The change in the knowledge capital depreciation

parameter δh on the other hand moves the black dotted line substantially in the correct

direction towards the red cashed line, suggesting that this parameter may be factor in the

change in the response to technology shocks over the two samples. Interestingly, the change

in this parameter even causes the response of hours worked to overshoot the matched IRF,

attesting to the model sensitivity to changes in this parameter.

Overall, our results from this exercise suggest that changes in the nature of knowledge

capital accumulation through the depreciation parameter δh, tighter monetary policy in

response to inflation (φπ) and an increase in the cost of utilization (εu) all potentially con-

tributed to the change in the response of technology shocks over the two subsamples.

5 Re-Visiting the Model-Based Hypotheses

With our evidence in hand from the various model-based exercises above, we can now

circle back to the potential model-based hypotheses concerning the sources of the change in

the response to technology shocks that we outlined in Section 3.11.

Preference hypothesis. Our estimates suggest that the wealth effect parameter γf
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Panel 1: Frisch elasticity parameter, ξ, counterfactual: 1.65→ 1.33.

Panel 2: Utilization cost, εu, counterfactual: 0.067→ 0.17.

Panel 3: Capital adjustment cost, s′′, counterfactual: 0.21→ 0.067.

Panel 4: TFP growth process persistence, ρΩ, counterfactual: 0.40→ 0.65.

Panel 5: Taylor rule inflation, φπ, counterfactual: 1.1→ 2.42.

Panel 6: Price adjustment cost, κ, counterfactual: 99.9→ 42.2.

Panel 7: Steady state leverage, φb, counterfactual: 3.5→ 6.0.

Figure 7: IRFs to 12 period out permanent TFP news shock. Blue solid line (shaded blue
areas) is the median (the 16% and 84% posterior bands generated from the posterior distribution) of empirical
VAR parameters using data on 1984Q1-2019Q4. Blue dash-dotted line is model IRF using IRF-matching
procedure on data sample 1984Q1-2019Q4. Red dashed line is model IRF using IRF-matching procedure
on data sample 1954Q2-1983Q4. Black dotted line is counterfactual model IRF using all parameter values
obtained from IRF matching procedure on first subsample except for parameter in question which is set
to second subsample value. The units of the vertical axes are percentage deviations.
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Panel 1: Wealth elasticity parameter, γf , counterfactual: 0.0038→ 0.0051.

Panel 2: Inventory depreciation, δx, counterfactual: 0.001→ 0.0075

Panel 3: Knowledge capital depreciation, δh, counterfactual: 0.3→ 0.15.

Figure 8: IRFs to 12 period out permanent TFP news shock. Blue solid line (shaded blue
areas) is the median (the 16% and 84% posterior bands generated from the posterior distribution) of empirical
VAR parameters using data on 1984Q1-2019Q4. Blue dash-dotted line is model IRF using IRF-matching
procedure on data sample 1984Q1-2019Q4. Red dashed line is model IRF using IRF-matching procedure
on data sample 1954Q2-1983Q4. Black dotted line is counterfactual model IRF using all parameter values
obtained from IRF matching procedure on second subsample except for parameter in question which is
set to first subsample value. The units of the vertical axes are percentage deviations.
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and the disutility of working parameter ξ changed over the subsamples, yet our experiments

suggest that changes did not move the IRF responses in the correct direction. Thus our

results suggest that a change in preferences was not likely a dominant source of the change.

Labor Market Frictions Hypothesis. Our estimates suggest a high degree of wage

rigidities that did not materially change over both subsamples. While this rigidity is a key

propagation mechanism, the lack of a change suggests that a change in labor market frictions

where likely not a source of the change in the impact of technology.

Monetary Policy Hypothesis. Our results suggest that a change in monetary policy

between the two subsamples was a likely contributor to the change in the impact of technol-

ogy, in the form of tighter monetary policy in response to inflation through the parameter

φπ. As outlined in Section 3.11, an inflation targeting central bank can, under sticky nominal

wages, impact directly the real wage markup through inflation. The documented increase

in φπ in the second subsample implies that, relative to the first subsample, a given positive

labor demand shock has a larger impact on hours worked as small jumps in inflation, under

sticky nominal wages, imply a lower responsiveness of real wages.

Credit Hypothesis. Our estimates suggest a change in the steady state leverage pa-

rameter φb over the two subsamples, yet our experiments suggest the magnitude of change

in the response of the IRFs was not material. Thus a change in credit market frictions over

time was not likely a source of the change in the impact of technology.

Inventory Hypothesis. Our estimates suggest the inventory taste shifter curvature, ζ,

was constant over the two samples, and while the estimate of the inventory depreciation pa-

rameter, δx, changed over the subsamples, the magnitude of the change did not transmit into

material changes in IRFs. Thus a change in inventory management practices as evidenced

through these parameters was not likely a source of the change in the impact of technology.

Knowledge Capital Hypothesis. Our results suggest that changes in the nature

of intangible capital accumulation was a likely contributor to the change in the impact of

technology over time through the knowledge capital depreciation parameter δh. Taking this

modeling mechanism literally, one interpretation is a change in the way firms learned about
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organizing the inputs into production as the processes of production changed rapidly heading

into the information and technology revolution of the 1980’s and 1990’s. Taken more broadly,

the effect can be seen to be symptomatic of the emergence of a labor-demand side wedge

that feeds into an efficiency wedge in production.

We can link our finding to the discussion of model elements in Section 3.11. In antici-

pation of higher future TFP, the future and current value of knowledge capital rises which

primes firms to build up a higher knowledge capital stock. As knowledge capital is accu-

mulated as a by-product of working, this implies higher labor demand. We estimate the

knowledge capital depreciation parameter δh to decline from the first to the second subsam-

ple. This lower depreciation in the second subsample implies that it is less costly to build

up knowledge capital well in advance of the time when the anticipated higher TFP actually

materializes, allowing for a larger accumulation of knowledge capital via an expansion in

hours worked.

Other channels. Our results suggest that an increase in the cost of utilizing capital, εu,

contributed to the change in the response to technology shocks. While we do not offer a direct

intuitive interpretation of this change related to actual real world events that transpired over

the period, we note that within the model context, the cost of utilization has a direct impact

on the return to capital through the banking sector, which has powerful propagation effects

in the model through the interest rate. In this case, the increase in the cost of utilization over

the subsamples resulted in a higher steady state return to capital in the second subsample

relative to the first, perhaps reflective in a reduced form way of developments within capital

and credit markets over the period.

6 Conclusion

Technology shocks play an important role in our understanding of aggregate fluctuations.

Dis-satisfaction with the idea and plausibility of unexpected technology shocks, especially

negative shocks, led researchers in the early 2000’s to study whether technology could still
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play a role in the absence of surprise shocks and technological regress. Beaudry and Portier 

(2006) showed how a business cycle boom-bust could result in such an environment when 

the driving impulse was changes in expectations about future positive shifts in technology 

rather than surprise changes in technology itself.

In this paper we add to the literature attempting to understand the role and importance 

of technology shocks. We take an agnostic view of the presence of surprise versus anticipated 

shocks, using a well-established empirical identification t hat s eeks t o b est a ccount f or the 

variation in TFP at some far out but finite h orizon. Rather than using a  s ingle s ample as 

much of the work to date, we split our sample at the onset of the Great Moderation and 

study each sample independently. Our results suggest that the qualitative response of TFP 

is consistent with a dominant anticipated or diffusion shock, that the importance of TFP 

shocks has increased over the sub-samples, and that the transmission of the shocks into the 

broader economy has changed.

This change in the transmission is manifested most clearly in the response of hours 

worked: hours falls in the first subsample, but rises in the second, despite consumption and 

stock prices rising consistently in both subsamples. Moreover, despite its differential response 

over the two subsamples, hours co-varies in a consistent way with investment, inventories, 

the real wage, and the credit spread over both subsamples.

We then add to the theoretical literature to study the source of the changes in the response 

of technology through the lens of a rich structural model. We use both an IRF matching 

procedure and model experiments to evaluate various different hypotheses for the change. Our 

results suggest that the change in the response of technology over time was likely some 

combination of a change in the stance of monetary policy, a change in the nature of intangible 

capital accumulation, and a change in the cost of utilizing capital.
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Appendix

A Details on the VAR Model

This appendix provides details on the VAR model, shock identification and prior speci-

fications.

A.1 VAR-Based Identification of Technology Shocks

We consider the following vector autoregression (VAR), which describes the joint evolu-

tion of an n× 1 vector of variables yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural errors εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,

where C(L) = A(L)B0, εt = B−1
0 ut, and the matrix B0 satisfies B0B

′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

We identify the technology shock using the max share methodology as suggested in

Francis et al. (2014) who maximize the forecast error variance share of a productivity measure

at a long but finite horizon. Following Kurmann and Sims (2021), we use TFP as the measure

for productivity. The max share methodology identifies productivity variations in the long

run. The absence of any short run restrictions makes our applied identification robust to

cyclical measurement issues of technology. Note that the methodology does not make a prior
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assumption on whether technology reacts to the shock only with a lag or not.

Mechanically, we identify the technology shock by finding a rotation of the identification

matrix B̃0, which maximizes the forecast error variance of the TFP series at some finite

horizon. In this, we follow the max share approach of Francis et al. (2014). Specifically, the

h-step ahead forecast error is given by:

yt+h − Et−1yt+h =
h∑
τ=0

Aτ B̃0Dεt+h−τ .

The share of the forecast error variance of variable i attributable to shock j at horizon h is

then:

Vi,j (h) =
e′i

(∑h
τ=0 Aτ B̃0Deje

′
jD
′B̃′0A

′
τ

)
ei

e′i

(∑h
τ=0AτΣA

′
τ

)
ei

=

∑h
τ=0 Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0 Ai,τΣA
′
i,τ

,

where ei denotes a selection vector with one in the i-th position and zeros everywhere else.

The ej vector picks out the j-th column of D, denoted by γ. B̃0γ is therefore an n×1 vector

corresponding to the j-th column of a possible orthogonalization and can be interpreted as

an impulse response vector.

The max share approach chooses the elements of B̃0 to make this restriction on forecast

error variance share hold as closely as possible. This is equivalent to choosing the impact

matrix so that contributions to V1,2(h) are maximized. Consequently, we choose the second

column of the impact matrix to solve the following optimization problem:21

arg max
γ

V1,2(h) =

∑h
τ=0Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0Ai,τΣA
′
i,τ

, s.t. γγ′ = 1.

We restrict γ to have unit length to be a column vector of an orthonormal rotation matrix

of the Choleski decomposition of the reduced-form variance covariance matrix.
21The optimization problem is written in terms of choosing γ conditional on any arbitrary orthogonalization

B̃0 to guarantee that the resulting identification belongs to the space of possible orthogonalizations of the
reduced form.
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A.2 Specification for the Minnesota Prior in the VAR

We estimate the VAR using a Bayesian approach. The prior for the VAR coefficients A

a standard Minnesota prior as commonly used in the literature. It is of the form

vec (A) ∼ N
(
β, V

)
,

where β is one for variables in the baseline specification which are in log-levels, and zero for

hours. The prior variance V is diagonal with elements,

V i,jj =


a1

p2 for coefficients on own lags
a2σii
p2σjj

for coefficients on lags of variable j 6= i

a3σii for intercepts

where p denotes the number of lags. Here σii is the residual variance from the unrestricted

p-lag univariate autoregression for variable i. The degree of shrinkage depends on the hyper-

parameters a1, a2, a3. We set a3 = 1 and we choose a1, a2 by searching on a grid and selecting

the prior that maximizes the in-sample fit of the VAR, as measured by the Bayesian Infor-

mation Criterion.22

B Additional VAR Evidence

This section provides some additional empirical evidence that corroborates the results

presented in the main body.

Labor Market Responses. Figure 9 shows that the subsample differences in hours

worked documented in Section 2.2 are also present if we replace total hours worked with

its components, the labor force participation rate and the unemployment rate. Consistent

with the decline in hours-worked documented for the first subsample, Figure 9 documents

a decline in the labor force participation rate and a rise in the unemployment rate. For
22The grid of values we use is: a1 = (1e-4:1e-4:9e-4, 0.001:0.001:0.009, 0.01:0.01:0.1, 0.1:0.1:1), a2 =

(0.01,0.05,0.1,0.5,1,5). We consider all possible pairs of a1 and a2 in the above grids.

54



the second subsample, the rise in hours-worked comes along with a rise in the labor force

participation rate and a decline in the unemployment rate.

Figure 9: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

An Alternative Measure for Technology. Figure 10 shows impulse responses to a

shock that maximizes the share of variance explained in labor productivity as in Francis

et al. (2014). This shows that responses in Figure 1 are robust to using labor productivity

instead of TFP as an alternative measure for productivity. In particular, also when using

this measure for productivity we observe an expansion in GDP, consumption and stock

prices that is more pronounced in the second subsample. Importantly hours work continue

to decline in the first subsample and rise in the second subsample. An important difference

between Figures 1 and 10 is that labor productivity responds strongly in the first subsample.

This is consistent with findings in Francis et al. (2014) and Kurmann and Sims (2021) who

flag this is due to a short-run capital deepening effect: the capital to labor ratio is driven

up by the fall in hours-worked which in turn boosts labor productivity on impact relative to

the more gradual rise in TFP documented in Figure 1.

Responses to anticipated and unanticipated technology shocks. Figure 11 shows

impulse responses to an anticipated (first row) and unanticipated TFP shock. These two
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Figure 10: IRF to shock that maximizes variation in labor productivity. First
subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue). The solid line is
the median and the shaded colored areas are the 16% and 84% posterior bands generated from
the posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations.

shocks are jointly identified as common in the news shock literature (see e.g. Barsky and

Sims (2012), Ben Zeev and Khan (2015), Görtz et al. (2022)). Related to our baseline

identification, we recover the news shock by maximizing the variance of TFP at the 40

quarter horizon, but impose a zero impact restriction on TFP conditional on the news shock.

This scheme identifies the anticipated shock as the one that explains TFP fluctuations in

the long run, but doesn’t move it on impact. At the same time, the unanticipated shock is

identified as the disturbance that can affect TFP on impact and its identification corresponds

to a simple Cholesky identification with TFP ordered first.

The anticipated shock shown in the top row, exhibits very similar dynamics to those

shown in Figure 1 in the main body. Notably, hours worked decline in the first subsample

but rise in the second subsample. The surprise shock shown in the bottom row results for

the first subsample in an insignificant response of GDP, consumption and stock prices and

a decline in hours worked. In the second subsample the surprise productivity shock triggers

an expansion in GDP, consumption and the stock market and a mild decline of hours worked

on impact.

The Fernald (2014) series is arguably the best estimate for TFP available. Yet, mea-

suring TFP is notoriously difficult and the Fernald (2014) estimate is only an imperfectly

cleansed version of the Solow residual (Kimball et al. (2006)). The literature argues that it

is particularly the high frequencies, rather than low frequencies, which may be impaired by
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measurement error and this hence affects the identification with the zero impact restriction

much more than our baseline identification which solely relies on long-run restrictions (see

e.g. Kurmann and Sims (2021)).

Figure 11: IRF to jointly identified anticipated (top row) and unanticipated (bot-
tom row) productivity shocks. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

Responses over the Entire Sample. Figure 12 shows the responses to a technology

shock over the whole sample (1954Q2-2019Q4). All macroeconomic aggregates increase

strongly and instantaneously in response to the shock. We also observe a rise in stock prices

and a decline in credit spreads, so that these impulse responses resemble those documented

in Figures 1 and 3 for the second subsample. Particularly the decline in hours-worked and

inventories as well as the rise in credit spreads that we document for the first subsample is

not evident when we estimate a VAR over the entire sample.

Robustness for Rolling Window Analysis. Figure 13 shows the median and pos-

terior bands of impact responses for selected variables over different samples. Results are

consistent with those in Figure 4 in the main body which shows the most extreme response

within the first ten quarters. For hours, inventories and investment, it is evident that im-

pact responses move away from the negative territory over the rolling window analysis. On

impact the BAA becomes negative particularly once the window includes the time around
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Figure 12: IRF to TFP shock. Entire sample 1954Q2-2019Q4 . The solid line is the
median and the shaded areas are the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations.

the financial crisis.

Figure 13: Impact IRF responses to a TFP shock for rolling windows. First rolling
window sample is 1954Q2-1983Q4. The window is shifted up to 2019Q4. We display the
median (red dot) and the 16% and 84% posterior bands generated from the posterior distri-
bution of VAR parameters. The units of the vertical axes are percentage deviations. Subplots
are based on a VAR with TFP, GDP, consumption, hours-worked, the S&P 500 and one of
the plotted variables at a time.

Figures 15 and 14 show statistics corresponding to those in Figure 4 in the main body.

They show for each rolling window the maximum or minimum IRF (whichever is largest in

absolute terms) within the first ten quarters to a TFP shock for rolling window. Figures 15

and 14 differ from the one depicted in the main body in that they consider a shorter rolling

window of 90 and 100 quarters, respectively, instead of 119 quarters.
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Figure 14: Maximum/minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1979Q1 (100 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours-worked, the
S&P 500 and one of the plotted variables at a time.

Figure 15: Maximum/Minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1976Q3 (90 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours-worked, the
S&P 500 and one of the plotted variables at a time.
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C Data Sources and Time Series Construction

This section provides an overview of the data used to construct the observables. All the

data transformations we have made in order to construct the dataset used for estimating the

various VAR specifications and they enter in levels. The majority of the raw data described

below were retrieved from the Federal Reserve of St.Luis FRED database. The exceptions

are the TFP and utilization data series which is from Fernald (2014) at the Federal reserve

bank of San Francisco, and the data on market yield and the BAA spread which are from

the Federal reserve board and Bloomberg.

Data Sources. We describe the exact source of each data series below.

Gross domestic product, current prices: U.S. Bureau of Economic Analysis, Gross Domes-

tic Product [GDP], retrieved from FRED, Federal Reserve Bank of St. Louis; https :

//fred.stlouisfed.org/series/GDP .

Gross Private Domestic Investment, current prices: U.S. Bureau of Economic Analysis,

Gross Private Domestic Investment [GPDI], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/GPDI.

Real Gross Private Domestic Investment: U.S. Bureau of Economic Analysis, Real Gross

Private Domestic Investment [GPDIC1], retrieved from FRED, Federal Reserve Bank of St.

Louis; https : //fred.stlouisfed.org/series/GPDIC1.

Personal Consumption Exp.: Durable Goods, current prices: U.S. Bureau of Economic Anal-

ysis, Personal Consumption Expenditures: Durable Goods [PCEDG], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDG.

Real Personal Consumption Exp.: Durable Goods: U.S. Bureau of Economic Analysis, Real

Personal Consumption Expenditures: Durable Goods [PCEDGC96], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDGC96.

Personal Consumption Expenditures: Services, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Services [PCES], retrieved from FRED, Fed-
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eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCES.

Real Personal Consumption Expenditures: Services: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Services [PCESC96], retrieved from FRED, Fed-

eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCESC96.

Personal Consumption Exp.: Nondurable Goods, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Nondurable Goods [PCEND], retrieved from

FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEND.

Real Personal Consumption Exp.: Nondurable Goods: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Nondurable Goods [PCENDC96], retrieved from

FRED, Federal Reserve Bank of St. Louis;

https : //fred.stlouisfed.org/series/PCENDC96.

Real Private Nonfarm Inventories: U.S. Bureau of Economic Analysis [A373RX1Q020SBEA],

retrieved from FRED, Federal Reserve Bank of St. Louis;

https : //fred.stlouisfed.org/series/A373RX1Q020SBEA.

Civilian Noninstitutional Population: U.S. Bureau of Labor Statistics, Population Level

[CNP16OV], retrieved from FRED, Federal Reserve Bank of St. Louis;

https : //fred.stlouisfed.org/series/CNP16OV .

Non-farm Business Sector: Compensation Per Hour: U.S. Bureau of Labor Statistics, Non-

farm Business Sector: Compensation Per Hour [COMPNFB], retrieved from FRED, Federal

Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/COMPNFB.

Non-farm Business Sector: Hours of All Persons: U.S. Bureau of Labor Statistics, Nonfarm

Business Sector: Hours of All Persons [PRS85006031], retrieved from FRED, Federal Re-

serve Bank of St. Louis; https : //fred.stlouisfed.org/series/PRS85006031.

Effective Federal Funds Rate: Board of Governors of the Federal Reserve System (US), Ef-

fective Federal Funds Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/FEDFUNDS.

Implicit GDP deflator: U.S. Bureau of Economic Analysis, Gross Domestic Product: Im-

plicit Price Deflator [A191RI1Q225SBEA], retrieved from FRED, Federal Reserve Bank of
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St. Louis; https : //fred.stlouisfed.org/series/A191RI1Q225SBEA.

10 year treasury yield: The market yield on U.S. Treasury securities at 10-year constant

maturity are available from the Federal Reserve Board H.15 database.

The BAA yield is Moody’s Bond Indices Corporate BAA obtained from Bloomberg.

The real S&P 500 index is obtained from Robert Shiller’s website:

http : //www.econ.yale.edu/ shiller/data.htm.

The utilization adjusted TFP data and the series for capacity utilization can be accessed at

www.frbsf.org/economic− research/economists/jfernald/quarterly_tfp.xls.

The raw data are transformed as follows for the analysis. Consumption (in current

prices) is defined as the sum of personal consumption expenditures on services and personal

consumption expenditures on non-durable goods. The times series for real consumption is

constructed as follows. First, we compute the shares of services and non-durable goods in

total (current price) consumption. Then, total real consumption growth is obtained as the

chained weighted (using the nominal shares above) growth rate of real services and growth

rate of real non-durable goods. Using the growth rate of real consumption we construct a

series for real consumption.

Real output is GDP derived by dividing current price GDP with the GDP deflator and

the Civilian Noninstitutional Population measure. Similarly for hours-worked, consumption,

investment and hourly wages (defined as total compensation per hour). All these series, as

well as the real inventory measure are expressed in per capita terms using the series of non-

institutional population, ages 16 and over. The nominal interest rate is the effective federal

funds rate. The BAA spread series is the difference between the BAA yield and the 10 year

treasury yield.
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D Additional Theoretical Model Details

D.1 Labor Unions and Employment Agency

Labor unions acquire homogeneous labor, Nh
t , from the household at wage W h

t , differen-

tiate it into labor types Nqt, q ∈ [0, 1], where Nh
t =

∫ 1

0
Nqtdq, and then sell the differentiated

labor to the employment agency for wage, Wqt. The unions have market power, and can thus

choose the wage for each labor type subject to the labor demand curve for that labor type. In

particular, the unions face Calvo frictions in setting their wages, such that each period they

can re-optimize wages with probability 1− ζw. A union that is unable to re-optimize wages

re-sets it according to the indexation ruleWqt = Wqt−1

(
Πt−1g

y
t−1

)ιw
(πgy)1−ιw , 0 ≤ ιw ≤ 1,

where Πt = Pt/Pt−1 and Π is its steady state, where 0 ≤ ιw ≤ 1, and where gyt =
Xy
t

Xy
t−1

is the

growth rate of the stochastic trend in output, Xy
t . A union that can re-optimize its wage in

period t chooses its wage W ∗
qt to maximize

Et

∞∑
s=0

ζswβ
sλt+sPt
λtPt+1

[
W ∗
qt(Π

s
k=0(Πt+k−1g

y
t+k−1)ιw(πgy)1−ιw)−W h

t+s

]
nqt+s,

subject to the demand curve for Nqt.

The employment agency acquires each qth intermediate labor type Nqt, q ∈ [0, 1], at

wage Wqt from the labor unions, and combines the differentiated labor into a composite Nt

according to

Nt =

[∫ 1

0

Nνw
qt dq

] 1
νw

, 0 < νw ≤ 1.

The agency sells the composite labor to the intermediate goods producers for wage Wt. The

agency chooses Nqt ∀q to maximize profits WtNt−
∫ 1

0
WqtNqtdq, yielding a demand function

nqt for the qth labor type,

Nqt =

[
Wqt

Wt

] 1
νw−1

Nt,

and wage index Wt, given respectively by

Wt =

[∫ 1

0

W
νw/(νw−1)
qt dq

] (νw−1)
νw

.
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D.2 Model Equilibrium, Stationary and Solution Method: Baseline

Model

For variables related to the Distributors and the Final Goods Firms, under the Rotemberg

style price adjustment costs, in a symmetric equilibrium all firms choose the same price P ∗t

every period, and thus, Pit = P ∗t ∀i, such that

Pt =

[∫ 1

0

νit(P
∗
t )1−θdi

] 1
1−θ

= P ∗t ,

and implying that Pit
Pt

= 1 ∀i. Furthermore, Yit = Y ∗t , Ait = A∗t , Xit = X∗t , and Sit = S∗t

∀i. It then follows that Yt =
∫ 1

0
Y ∗t di = Y ∗t , At =

∫ 1

0
A∗tdi = A∗t , Xt =

∫ 1

0
X∗t di = X∗t .

Integrating over the taste shifter then yields∫ 1

0

νitdi =

∫ 1

0

(
Ait
At

)ζ
di =

1

Aζt

∫ 1

0

Aζtdi = 1,

and

St =

[∫ 1

0

ν
1
θ
itS
∗
t

θ−1
θ di

] θ
θ−1

= S∗t .

For variables related to the labor sector, the fraction 1−ζw of unions given the opportunity

to adjust wages through the Calvo mechanism will choose wage Wqt = W ∗
t . The remaining

fraction of non-adjusting unions will remain with the previous period’s wage, indexed for

inflation. The aggregate wage is then given recursively by

Wt =
[
(1− ζw)W ∗

t

νw
νw−1 + ζw

(
Wt−1

(
πt−1g

y
t−1

)ιw
(πgy)1−ιw) νw

νw−1

] νw−1
νw

.

Substituting in the demand function for Nqt into Nh
t =

∫ 1

0
Nqtdq yields Nh

t = ∆w
t Nt,

where ∆w
t is a wage dispersion term, given by

∆w
t =

∫ 1

0

(
Wqt

Wt

) 1
νw−1

dq,

which can then be expressed without heterogeneity and recursively as

∆w
t = W

1
1−νw
t

[
(1− ζw)W ∗

t

1
νw−1 + ζw

(
Wt−1

(
πt−1g

y
t−1

)ιw
(πgy)1−ιw) 1

νw−1

]
.

For the various asset and credit variables, equilibrium in the capital goods market implies

that Knk
t = Kt+1 and Kk

t = Kt, and equilibrium in the deposts market implies that Bt+1 =
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∫ 1

0
Bjt+1dj. Nominal bonds are in zero net-supply such that Bn

t = 0. Since leverage

φbt =
qkt Sjt
Njt

=
ηt

λb − νbt
is not dependent on intermediary-specific factors, then we can express the aggregate quantity

of intermediated assets Sbt and aggregate net worth N b
t as qkt Sbt = φbtN

b
t . Finally, the capital

producer’s state contingent payment contract implies Sbt = Kt+1.

Starting with the representative household budget constraint, and substituting in the

various profits that flow to the household, as well as equilibrium labour and asset market

flows, we obtain the aggregate resource constraint

Ct + ΓtIt +Gt = St − a(ut)KtΥt −
κ

2

[
πt

π
ιp
t−1π

1−ιp
− 1

]2

St. (19)

The resulting equilibrium model system consists of a symmetric competitive equilibrium as

a set of stochastic processes {Ct, Vt, It, Gt, Tt, St, Yt, Nt, ut, Jt, Kt+1, Bt+1, N
b
t+1, Z

b
t , φbt, ηt, νbt,

Γt, δbt, Xt, At, µ
x
t ,Wt,W

h
t ,W

∗
t , rt, Rt+1, R

k
t+1, q

k
t , q̃

k
t , τt, µ

f
t , λt, Pt,Πt}∞t , given initial conditions

and exogenous stochastic processes, and where µft , and λt respectively denote the multipliers

on the definition of Ft and the household budget constraint.

In the following, we list these equations and detail how to transform the non-stationary

system, which is driven by stochastic trends, into a stationary counterpart amenable to

solution and estimation.

65



The equilibrium system is as follows:

Vt = Ct − bCt−1 − ψN ξ
t Ft, (20)

Ft = (Ct − bCt−1)γf F
1−γf
t−1 , (21)

ΓtV
σ
t + µft γf

Ft
Ct − bCt−1

= λt + bβEt

{
Γt+1V

−σ
t+1 + µft+1γf

Ft+1

Ct+1 − bCt

}
, (22)

ξψΓtV
−σ
t N ξ−1

t Ft = λt
W h
t

Pt
, (23)

µft = −ψΓtV
−σ
t N ξ

t + β(1− γf )Etµft+1

Ft+1

Ft
, (24)

λt = βRn
t+1Etλt+1

1

Πt+1

, (25)

λt = βRt+1Etλt+1, (26)

rt = a′(ut)Υt, (27)

Rk
t =

rtut − a(ut)Υt + q̃kt
qkt−1

, (28)

qkt =
Υt

1− S ′( It
Kt

)
, (29)

q̃kt = qkt

[
1− δ + S ′

(
It
Kt

)
It
Kt

− S
(
It
Kt

)]
, (30)

Kt+1 = (1− δ)Kt + It − S
(
It
Kt

)
Kt, (31)

Yt = (ΩtNt)
αn K̃αk

t (ΩtHt)
1−αn−αk , (32)

Ht+1 = (1− δh)Ht +H1−ν
t N ν

t , (33)

Wt

Pt
= τtα

Yt
Nt

+ qht ν
H1−νh
t N ν

t

Nt

, (34)

qht = βEt
λt+1

λt

{
(1− αn − αh)τt+1

Yt+1

Ht+1

+ qht+1

(
1− δh + (1− νh))

H1−νh
t+1 N ν

t+1

Ht+1

)}
, (35)

rt = (1− αk)τt
Yt
utKt

, (36)

At = (1− δx)Xt−1 + Yt, (37)

Xt = At − St, (38)

τt = ζ
St
At

+ µxt

(
1− ζ St

At

)
, (39)

µxt = β(1− δx)Et
λt+1

λt
τt+1, (40)

(1− θ)St − κ
[ Πt

Π
ιp
t−1Π1−ιp

− 1
] ΠtSt

Π
ιp
t−1Π1−ιp

+ βEt
λt+1

λt
κ
[ Πt+1

Π
ιp
t Π1−ιp

− 1
]Πt+1St+1

Π
ιp
t Π1−ιp

+ µxt θSt = 0,

(41)
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Wt =
[
(1− ζw)W ∗

t

νw
νw−1 + ζw

(
Wt−1

(
Πt−1g

y
t−1

)ιw
(Πgy)1−ιw) νw

νw−1

] νw−1
νw

, (42)
∞∑
s=0

ζswβ
sλt+s
λt

Pt
Pt+s

(
νw

νw − 1

)(
Πw
t,sW

∗
t −

1

νwt+s
W h
t+s

)
Ñt+s = 0, (43)

where Ñt+s =

[
W ∗
t Πw

t,s

Wt+s

] 1
νwt+s−1

Nt+s,

and Πw
t,s =


1 for s = 0

Πs
k=1

(
Πt+k−1g

y
t+k−1

)ιw
(Πgy)1−ιw for s > 0,

qktKt+1 = N b
t +Bt+1, (44)

qktKt+1 = φbtN
b
t , (45)

N b
t = θbZb

tN
b
t−1 + ωbqktKt, (46)

Zb
t+1 = δbt+1φ

b
t +Rt+1, (47)

φbt =
ηt

λb − νbt
, (48)

νbt = Etβ
λt+1

λt
Γt+1δbt+1, (49)

ηbt = Etβ
λt+1

λt
Γt+1Rt+1, (50)

Γt = 1− θb + θb(νbtφbt + ηbt), (51)

δbt = Rk
t −Rt, (52)

Gt = εgYt, (53)

Ct + ΓtIt +Gt = St − a(ut)KtΥt −
κ

2

[
Πt

Π
ιp
t−1Π1−ιp

− 1

]2

St, (54)

Πt =
Pt
Pt−1

, (55)

Rn
t+1

Rn
=

(
Rn
t

Rn

)ρr ((Πt

Π

)φπ ( Yt
Y ∗t

)φy)(1−ρr)

, (56)

where Y ∗t is the associated level of output under flexible wages and prices.

In addition, we have laws of motion for the exogenous processes gΥ
t = Υt/Υt−1 and gΩ

t =

67



Ωt/Ωt−1 as described in the main text.

D.2.1 Stationarity and Solution Method

The model economy inherits stochastic trends from the two non-stationary stochastic

processes for Υt and Ωt. Our solution method focuses on isolating fluctuations around these

stochastic trends. We divide non-stationary variables by their stochastic trend component

to derive a stationary version of the model. We then take a linear approximation of the

dynamics around the steady state of the stationary system.

The stochastic trend components of output and capital are given by Xy
t = Υ

α∗−1
α∗

t Ωt and

Xk
t = Υ

−1
α∗Ωt, respectively, where α∗ = 1−αk. The stochastic trend components of all other

non-stationary variables can be expressed as some function of Xy
t and Xk

t . In particular,

define the following stationary variables as transformations of the above 18 endogenous

variables: ct = Ct
Xy
t
, vt = Vt

Xy
t
, it = It

Xk
t
, gt = Gt

Xy
t
, st = St

Xy
t
, yt = Yt

Xy
t
, nt = Nt, ut = ut,

ft = Ft
Xy
t
, kt = Kt

Xk
t−1

, xt = Xt
Xy
t
, at = At

Xy
t
, w̄t = wt

Xy
t
, r̄t =

Xk
t

Xy
t
rt, τt = τt, µ̄ft = (Xy

t )σ µft , q̄kt =
Xk
t

Xy
t
,

¯̃qkt =
Xk
t

Xy
t
, λ̄t = (Xy

t )σ λt, nbt =
Nb
t

Xy
t
, bbt =

Bbt
Xy
t−1

. In addition, define the two additional stationary

variables, gyt =
Xy
t

Xy
t−1

and gkt =
Xk
t

Xk
t−1

as the growth-rates of the stochastic trends in output

and capital.
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The stationary system is then given by:

vt = ct − b
ct−1

gyt
− ψN ξ

t jt, (57)

ft =

(
ct − b

ct−1

gyt

)γf (ft−1

gyt

)1−γf
, (58)

Γtv
σ
t + µ̄jtγj

ft
ct − b ct−1

gyt

= λ̄t + bβEt
(
gyt+1

)−σ{
Γt+1v

−σ
t+1 + µ̄jt+1γf

ft+1

ct+1 − b ctgyt

}
, (59)

ξψΓtv
−σ
t nξ−1

t

ft
λ̄t

= w̄ht , (60)

µ̄ft = −ψΓtv
−σ
t nξt + β(1− γf )Et

(
gyt+1

)1−σ
µ̄ft+1

ft+1

ft
, (61)

λt = βRn
t+1Etλt+1

1

Πt+1

, (62)

λt = βRt+1Etλt+1, (63)

r̄t = a′(ut), (64)

Rk
t =

r̄tut − a(ut) + ¯̃qkt
q̄kt−1

, (65)

qkt =
1

1− S ′( it
kt
gkt )

, (66)

¯̃qkt = q̄kt

[
1− δ + S ′

(
it
kt
gkt

)
it
kt
gkt − S

(
it
kt
gkt

)]
, (67)

kt+1 = (1− δ) kt
gkt

+ it − S
(
it
kt
gkt

)
kg
gkt
, (68)

yt = nαnt (k̃t/g
k
t )αk (ht)

1−αn−αk , (69)

ht+1 = (1− δh)ht + h1−ν
t nνt , (70)

w̄t = τtα
yt
nt

+ q̄ht ν
h1−νh
t nνt
nt

, (71)

q̄ht = βEt
λ̄t+1

λ̄t
(gyt+1)1−σ

{
(1− αn − αh)τt+1

yt+1

ht+1

+ q̄ht+1

(
1− δh + (1− νh))

h1−νh
t+1 nνt+1

ht+1

)}
,

(72)

r̄t = (1− αk)τt
yt

utkt/gkt
, (73)

at = (1− δx)
xt−1

gyt
+ yt, (74)

xt = at − st, (75)

τt = ζ
st
at

+ µxt

(
1− ζ st

at

)
, (76)

µxt = β(1− δx)Et
λ̄t+1

λ̄t
(gyt+1)−στt+1, (77)

(1− θ)st − κ
[ Πt

Π
ιp
t−1Π1−ιp

− 1
] Πtst

Π
ιp
t−1Π1−ιp

+ βEt
λ̄t+1

λ̄t
(gyt+1)−σκ

[ Πt+1

Π
ιp
t Π1−ιp

− 1
]Πt+1st+1

Π
ιp
t Π1−ιp

+ µxt θst = 0,

(78)
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wt =

(1− ζw)w∗t
νw
νw−1 + ζw

(
wt−1

(
Πt−1g

y
t−1

Πgy

)ιw (Πtg
y
t

Πgy

)1−ιw
) νw

νw−1


νw−1
νw

, (79)

∞∑
s=0

ζswβ
sλ̄t+s

(
Πs
k=1(gyt+k)

1−σ)
)( νw

νw − 1

)(
Π̃w
t,sw

∗
t −

1

νwt+s
wht+s

)
ñt+s = 0, (80)

where ñt+s =

[
w∗t Π̃

w
t,s

wt+s

] 1
νwt+s−1

nt+s,

and Π̃w
t,s =


1 for s = 0

Πs
k=1

(
Πt+k−1g

y
t+k−1

Πgy

)ιw (Πt+kg
y
t+k

Πgy

)−1

for s > 0,

q̄kt kt+1 = nbt + bt+1, (81)

q̄kt kt+1 = φbtn
b
t , (82)

nbt = θbzbt
nbt−1

gyt
+ ωbq̄kt

kt
gkt
, (83)

zbt+1 = δbt+1φ
b
t +Rt+1, (84)

φbt =
ηt

λb − νbt
, (85)

νbt = Etβ
λ̄t+1

λ̄t

(
gyt+1

)−σ
Γt+1δbt+1, (86)

ηbt = Etβ
λ̄t+1

λ̄t

(
gyt+1

)
,−σ Γt+1Rt+1 (87)

Γt = 1− θb + θb(νbtφbt + ηbt), (88)

δbt = Rk
t −Rt, (89)

gt = εgyt, (90)

ct + it + gt = st − a(ut)kt/g
k
t −

κ

2

[
Πt

Π
ιp
t−1Π1−ιp

− 1

]2

st, (91)

Πt =
Pt
Pt−1

, (92)

Rn
t+1

Rn
=

(
Rn
t

Rn

)ρr ((1 + Πt

1 + Π

)φπ ( yt
y∗t

)φy)(1−ρr)

, (93)

where y∗t is the associated level of output under flexible wages and prices,

gyt = gΩ
t

(
gΥ
t

)(α−1)/α
, (94)

gkt = gyt /g
Ω
t , (95)70



in addition to the exogenous processes gΥ
t and gΩ

t .

E Additional Model Results

E.1 Parameter Calibration

The parameters that we hold fixed at calibrated value over both subsamples are detailed

in Table 1 along with their calibrated values. Our choice values for this subset of param-

eters is guided by the existing literature, where we maintain comparability with Jaimovich

and Rebelo (2009) and Schmitt-Grohe and Uribe (2012) for the aspects of the news shock

mechanism and Lubik and Teo (2012) for the inventory component.

We set the household’s discount factor β to 0.9957, which is implied by the real interest

rate computed from average inflation and the federal funds rate over our sample period. We

set the elasticity of intertemporal substitution as in Jaimovich and Rebelo (2009), σ = 1,

and the consumption habits parameter b to 0.7.

On the firm side, we set the elasticity parameter in the production function to α = 0.64

as in Jaimovich and Rebelo (2009), and the degree of decreasing-returns-to-scale (DRS) to

labor and capital in production, 1− αn − αk, to 0.1, following Jaimovich and Rebelo (2009)

and Schmitt-Grohe and Uribe (2012). For the parameters related to physical capital, we fix

steady-state physical capital depreciation at δ = 0.025.

The parameters related to inventories are based on the empirical estimates in Lubik and

Teo (2012). The goods aggregator curvature parameter θ is set to 6.8, which results in a

steady-state goods markup of 10%.

For the parameters related to the banking sector, following Gertler and Karadi (2011), we

set θb, the determinant of a banker’s life horizon, to 0.972. We then set wb, the proportional

transfer to enter bankers to 0.0038, such that for a steady-state leverage ratio of 4 (which

we will estimate), the annualized steady state credit spread is about 100 basis points.

For the parameters related to the nominal side of the economy, we choose values consistent

with the literature, setting the steady state wage markup to 10%, and wage and price
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indexation to 0.5.

Finally, a number of steady-state parameter values are implied by average values in the

data, such as the (quarterly) steady-state growth rates of GDP gy and the relative price of

investment (RPI) gRPI , which we find to be 0.43 and −0.58, respectively. We also set the

steady-state government-spending ratio to output to g/y = εg = 0.18 following Smets and

Wouters (2007) and target a level of hours in steady state of 0.2, while steady-state capacity

utilization is targeted at one.

Table 1: Calibrated model parameters

Description Parameter Value

Subjective discount factor β 0.9975
Household elasticity of intertemporal substitution σ 1
Habit persistence in consumption b 0.70
DRS to N and K in production 1− αn − αk 0.1
Labor elasticity in production αn 0.64
Capital depreciation δk 0.025
Goods aggregator curvature θ 6.8
Price indexation ιp 0.5
Wage indexation ιw 0.5
Proportional transfers to entering bankers wb 0.0038
Survival rate of bankers θb 0.972
Steady state government spending over output εg(= g/y) 0.18
Steady state hours n 0.2
Steady state capacity utilization u 1
Steady state wage markup λw 1.1
Steady state GDP growth rate (in %) gy 0.42545
Steady state RPI growth rate (in %) grpi -.58203

E.2 Parameter Estimates

Table 2 shows the estimated values from the impulse response function matching exercise.

Column 3 shows the search domain for each parameter of the minimization procedure, and

columns 4 and 5 show the estimated values for the first and second subsamples respectively.
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Table 2: Estimated model parameters

Description Parameter Match 1954-1983 1984-2019
Search Bounds Point (CI) Point (CI)

Determinant of Frisch elasticity of labor supply ξ [1.2, 6] 1.65 1.33
(1.2,1.7) (1.24,1.57)

Wealth elasticity parameter (GHH/KPR pref) γf [0.001, 0.999] 0.0038 0.0051
(0.0017,0.040) (0.0049,0.019)

Elasticity of capacity utilization εu [0.01, 1] 0.067 0.17
(0.050,0.22) (0.11, 0.34)

Capital adjustment cost s′′ [0.01, 0.5] 0.21 0.067
(0.019,0.26) (0.021,0.13)

Inventory taste shifter curvature ζ [0.55, 0.7] 0.70 0.70
(0.55,0.70) (0.55,0.70)

Inventory depreciation δx [0.001, 0.05] 0.001 0.0075
(0.0010,0.05) (0.0010, 0.0028)

Knowledge capital depreciation δh [0.001, 0.3] 0.3 0.15
(0.096,0.30) (.092,0.30)

Labor elasticity in knowledge capital νh [0.001, 0.3] 0.3 0.3
(0.25,0.30) (0.094,0.30)

TFP growth process persistence ρΩ [0.001, 0.999] 0.40 0.65
(0.0010,0.53) (0.0010,0.79)

Taylor rule inflation φπ [1.1, 2.5] 1.1 2.42
(1.1,2.5) (1.1,2.5)

Taylor rule output φy [0.05, 0.1] 0.1 0.1
(0.050,0.10) (0.050, 0.10)

Taylor rule smoothing ρr [0.5, 0.95] 0.95 0.95
(0.5,0.95) (0.88,0.95)

Price adjustment costs κ [25, 300] 99.9 42.2
(25,60.9) (25,62.8)

Calvo wage parameter ζw [0.5, 0.95] 0.95 0.95
(0.5,0.95) (0.95,0.95)

Steady state leverage φb [3.5, 6] 3.5 6
(3.5,6) (3.5,6)
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