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1 Introduction
Income tax evasion is a pervasive problem. Developing countries with weak institutions

and limited enforcement resources are particularly hampered by revenue losses due to

such evasion. Existing theoretical and empirical models of tax evasion have typically

examined evasion associated with legal economic activity, where the underlying activity

itself is not socially harmful. Yet a substantial share of tax evasion is linked to clandes-

tine or illicit activities that both erode tax revenues and generate additional social harm.1

Almost by definition, income from illicit activities cannot be reported to tax authorities,

as the underlying illegal activity might be revealed. Examples of illicit activities that

remain hidden include the production of illegal drugs and the trade in illegal weapons.

In other cases, income from illicit activities could, in principle, be reported to tax author-

ities, but hiding part of this income might be more profitable. Examples include evading

regulations regarding construction (e.g., infrastructure that is not code-compliant and

hence may lead to public harm in the event of a catastrophic event like an earthquake or

a storm) or product safety. In addition, violations of environmental regulations belong

to this group. Polluting the environment is illegal, but the profits from this production

can be reported to tax authorities without revealing the illicit elements in the production

process. Although the public economics literature, such as Slemrod and Yitzhaki (2002),

has extensively analyzed the tax evasion problem, it has not yet fully explored the rela-

tionship of this issue with the incentives to engage in illegal activities and the provision

of public goods.

Suppose that an income tax is used to finance a public good. Higher tax rates sub-

1In the paper, illegal activities refer to those forbidden by law or statute. We use the term “clandestine”
or “illicit” activities to refer to practices that are socially harmful or institutionally disapproved, which
are, in addition, conducted in violation of existing regulations.
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stantially increase incentives for tax evasion and increase the relative payoffs of illicit

activities. Hence, more time will be devoted to such activities, amplifying public harm.

Consequently, an income tax needed to finance a public good must appropriately ac-

count for incentives for tax evasion and engagement in illegal activities.

The present paper has two primary purposes. The first one is to develop a micro-

founded framework that analyzes the effects of an income tax used to finance the pro-

vision of a public good on tax evasion and the allocation of time across legal and illicit

activities. The second primary purpose is to characterize constrained optimal taxes and

auditing intensity in the presence of tax evasion and illicit opportunities. In both cases,

we analyze how different institutional arrangements affect tax revenue and welfare.

This paper has two primary objectives. First, it develops a micro-founded frame-

work to analyze how an income tax, used to finance a public good, affects tax evasion

and the allocation of time between legal and illicit activities. Second, it characterizes

constrained-optimal taxes and auditing intensity in the presence of tax evasion and illicit

opportunities. In both cases, the analysis shows how alternative institutional arrange-

ments influence tax revenue and welfare.

We start with a basic model that considers identical individuals devoting a given

endowment of time to leisure, legal, and illegal activities. Income from legal and illicit

sources, net of tax payments on declared income, fines, and expenses incurred to conceal

income, is spent on a consumption good. The income tax creates an incentive to substi-

tute away from legitimate income to covert illegal income-earning opportunities outside

the ambit of income taxation. The agent incurs a concealment cost to evade taxes on

legal income or hide illegal income. The concealment costs are affected differently by

the two types of income. Furthermore, we allow for the possibility that the concealment

2

PUBLIC/OFFICIAL RELEASE // EXTERNAL



cost function may be characterized by substitutability (i.e., concealing a given amount

of legal income may become more costly due to a marginal increase in illegal income

and vice versa) or complementarity. The introduction of the general concealment cost

function enables us to explain various types of observed behavior, including why some

individuals report income accurately, while others may, in contrast, overreport their legal

earnings.

The government raises revenues from the income tax on reported income. An audit

agency collects fines on tax evasion and illegal income. The analysis considers different

possibilities about the transferability of the audit agency’s surplus (of fines over audit

costs) to the government for public good provision. The analysis first considers the case

where the audit level is exogenously given. In this environment, the government chooses

a constrained optimal income tax to balance the marginal social damage from the tax-

induced expansion of the illegal good to the net marginal social benefit from the public

good funded by the additional revenues (including taxes or any surpluses transferred

by the audit agency) associated with the higher tax rate. The analysis is then extended

to consider joint optimal choices of the tax rate and audit level.

Section 2 thoroughly reviews the related literature. While elements of tax evasion,

illegality, endogenous labor supply, income concealment efforts, adverse externalities,

and tax-financed public goods have been investigated in the literature, we are not aware

of a unified treatment of these issues within the context of second-best choice of poli-

cies.2 As we show in this paper, the interaction between different relevant distortions is

2Concealment actions are modeled in our paper through a concealment cost function. In general, con-
cealment costs represent the resources individuals expend to hide their illegal activities. These costs can
include time and effort spent on record-keeping or creating false documents to avoid detection, financial
resources used to pay for offshore accounts, bribes, or other evasion methods, and psychological costs
associated with the guilt of engaging in illegal activities or being caught. Concealment costs will likely
vary with the income hidden from each source. We will explore this relationship in detail in the following
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critically important in characterizing the constrained optimal taxes (and the departures

from efficient public good provision), highlighting the importance of a unified approach.

The general model is presented in section 3, and a benchmark central planner allo-

cation is derived in section 4. In sections 5 and 6, we analyze a stripped-down version

of the model to develop some key insights. In the baseline scenario, the government

chooses an inefficiently low tax rate (i.e., the public good is underprovided compared

to a social planner optimum) when the audit agency surplus cannot be used for public

good provision. The lack of transferability is an extreme case of deadweight losses asso-

ciated with coordination failure between different government agencies. Turning to the

other polar case of full transferability, we show that the optimal tax rate is higher and

the under-provision of the public good less severe (compared to the non-transferability

context). Indeed, we demonstrate that over-provision of the public remains a possibility

in the full-transferability case.

The level of under-provision of the public good is exacerbated as the strength of the

negative externality, measured by the per-unit incidence in the production of the illegal

good, increases. The worsening under-provision stems from the government holding

back its income tax rate in recognition of the high externality costs of a tax-induced

increase in illegal goods production. With a lower tax rate, the government’s net revenue

falls, so it cuts back on public goods provision. In this constrained environment, where

there is no feasible instrument to eliminate the public bad, the tax rate alone cannot

achieve the multiple goals of providing efficient levels of the public good and controlling

the externalities.

When we extend the analysis to allow for the audit levels to be flexible, an increase

analysis.

4
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in the detection probability increases legal income, decreases illegal income, decreases

total (legal plus illegal) income, and increases reported income. This means that if audit

levels can be adjusted upwards, the government can choose a higher tax rate to finance

a larger level of the public good, somewhat mitigating the under-provision problem. In

other words, audit probability works as a complement to the income tax rate.

Extensions of the basic model are considered in sections 7 and 8. Section 7 considers

the interdependence of concealment costs of the two types of income. Section 8.1 allows

for heterogeneity of agents to consider possible non-participation by some agents in

illicit activities. Section 8.2 allows for separate legal and illegal income audits. Section

8.3 considers alternate penalty function formulations. While some interesting departures

occur, the core insights from the basic model are largely preserved in these extensions.

Section 9 provides concluding remarks.

2 Related Literature
There is a substantial literature on tax evasion. Several papers, including Slemrod and

Yitzhaki (2002), Sandmo (2005), and Slemrod (2007), provide comprehensive overviews

of the economics of tax evasion.3 In this section, we discuss some work that overlaps

with different aspects of our analysis.

Tax evasion and the choice between legal and illegal activities. The relationship be-

tween tax evasion and the shadow economy has been extensively explored in the lit-

erature, with numerous studies highlighting the link between individuals’ choices of

participating in legal or illegal activities and their tax compliance behavior. In general,

3The paper by Allingham and Sandmo (1972) was the first to introduce a theoretical model of tax eva-
sion, analyzing how individuals decide to evade taxes and the associated costs, including the probability
of detection and penalties. Andreoni, Erard, and Feinstein (1998) discusses various aspects of tax compli-
ance and tax evasion. Although most articles deal with individual tax evasion, some approaches address
the specific challenges of tax evasion at the firm level (Chen and Chu, 2005).

5

PUBLIC/OFFICIAL RELEASE // EXTERNAL



the production of illicit goods often relies on informal markets with minimal regulation

and oversight, which facilitates tax evasion strategies. Several papers provide in-depth

overviews of how tax evasion is closely associated with underground economic activi-

ties, contributing to the shadow economy’s size; see, for instance, Schneider and Enste

(2000), Buehn and Schneider (2012) and Schneider and Enste (2013). These articles ex-

plore various reasons for tax evasion, including high tax burdens, complex tax systems,

and weak enforcement, which collectively lead to reduced government revenue, dis-

torted competition, and increased inequality. Pitt and Lee (1981) examines individuals’

choices between legal and illegal work in the context of tax evasion and provides valu-

able insights into how local economic conditions and industry-specific factors impact the

propensity for tax evasion. Friedman et al. (2000) models the determinants of individ-

ual participation in unofficial (illegal) activities and finds remarkable variations between

countries in tax evasion underscored by informal activities. Marjit and Mishra (2021)

explores how political factors can affect the design of policies addressing tax evasion in

the informal sector. In Choi and Thum (2005), corruption of government officials drives

firms into illegal, unregulated production. Bandyopadhyay and Pinto (2017) focuses on

illegal practices by firms in hiring undocumented immigrants, and examines how that

affects the constrained optimal mix of state and federal policies that combine border

enforcement measures and firm audits.

Choice between legal and illegal activities with endogenous labor supply. Early re-

search on tax evasion often assumed a fixed labor supply, restricting individuals’ ability

to adjust their labor market behavior in response to changes in the underlying model

parameters. Subsequent studies have relaxed this assumption. When labor supply be-

comes endogenous, tax policies may have unintended consequences. Studies that focus

6
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on the relationship between tax evasion and labor supply include, among others, Pen-

cavel (1979), Baldry (1979), Hillman and Katz (1984), Cowell (1985), and Tabbach (2005).

The core argument in this line of research is that the structure of the tax system can in-

fluence individuals’ decisions about how much to work, how to allocate working hours

between legal and illegal activities, and whether to evade taxes. The main conclusion

is that when labor supply decisions are endogenous, changes in the tax rate and other

model parameters have ambiguous effects on labor supply due to the interplay of income

and substitution effects.4

Tax evasion and the cost of concealing income. Concealing taxable income from tax

authorities requires dedicating wasteful real resources, including time, effort, and mon-

etary compensation to individuals or organizations facilitating this process.5 Slemrod

(1994) and Cremer and Gahvari (1994) analyze tax evasion in models that explicitly

include the cost of concealing income. Both papers conclude that the concealment tech-

nology may affect the progressivity of the tax system. Canta, Cremer, and Gahvari (2024)

show that when individuals differ in their ability to conceal income, tax evasion can in-

teract with redistributive policies in ways that reduce distortions. Bayer (2006) develops

a model in which the taxpayer and the tax authority engage in a concealment-detection

game. Using experimental methods, Bayer and Sutter (2009) focus on the excess burden

from resource waste in detection and concealment. Balafoutas et al. (2015) look at inef-

ficiencies arising from collusive behavior in markets. Unlike our paper, existing models

have typically abstracted from the costs of simultaneously concealing income from legal

4For instance, Tabbach (2005) considers the allocation of time between legal activities, criminal activi-
ties, and leisure. Individuals, as a result, may adjust along the three margins in response to changes in tax
rates and criminal returns. The impact of taxation on crime is, therefore, not always straightforward.

5The costs referred to here do not include potential penalties or stigma costs.
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and illegal activities.6

Illegal activities that produce negative externalities. It is crucial to differentiate be-

tween economic activities in informal markets to evade taxes and illegal activities that

generate negative externalities and directly harm society. Participation in illegal activities

may entail a private benefit for those directly involved but may also create broader costs

to society. For instance, Flores (2016) focuses on the optimal choice of law enforcement

policies when illegal markets create both consumption and violence-related externali-

ties. The most common examples of illegal goods that generate negative externalities

considered in the literature concern drug use and trade (Becker, Murphy, and Grossman

(2006), Mejia and Restrepo (2016)), and organized crime (Garoupa (2000)). Other illegal

activities that may generate negative externalities include cybercrime and illicit activities

that degrade the environment, such as illegal deforestation, wildlife trade, and dump-

ing (Chimeli and Soares (2017), Assunção, Gandour, and Rocha (2023)). Overall, the

discussions around externalities emphasize the need for a comprehensive public policy

approach considering the societal impacts of illegal goods production and tax evasion.

Tax evasion and the provision of public goods. The relationship between tax rates and

tax evasion becomes more complicated when public goods are considered. Tax evasion

limits the government’s revenue-raising capacity and affects the optimal provision of

public goods. The importance of including public goods in the analysis was earlier

raised by Kolm (1973) and Sandmo (1981). Falkinger (1991), and later Balestrino and

Galmarini (2003) derive conditions under which tax evasion influences the optimal level

of public goods. Several authors have explored the inverse relationship, suggesting

6The paper by Marjit, Mishra, and Mitra (2021) is somewhat related to the issue of incurring conceal-
ment costs to evade taxes. In their paper, firms use false (Sham) litigation to appeal against their stipulated
tax burden to defer tax payments. The higher return earned by investing in the informal economy com-
pensates the firms for interest-inclusive penalties in the event of an adverse court judgment.
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that taxpayer attitudes toward public goods may shape tax compliance behavior. For

instance, Cowell and Gordon (1988) state that individuals underreport income not only

to reduce tax liability but also to express dissatisfaction with public good provision.

Finally, (Besley and Persson (2013)) note that the effectiveness of tax administration, rule

of law, and political incentives, are critical determinants of a government’s ability to

affect tax compliance, and provide public goods, which ultimately, facilitate economic

development.

3 The Model
This section presents the theoretical framework, which we use in the subsequent sec-

tions 4 through 6, respectively, to describe and analyze the social planner optimum

(first-best outcome), an individual agent’s choices, and the government’s constrained

optimal choices. As discussed earlier, section 7 and sections 8.1 through 8.3 build on this

framework to examine various extensions.

Individuals. Consider a continuum of identical individuals with measure one. An in-

dividual has a unit time endowment of which ℓ units are devoted to leisure, n1 units to

the production of legal goods, and n2 units to the production of an illicit good.7 Assume

linear production functions yi = wini, wi > 0, i = 1, 2, such that the respective wage rates

in the legal and illegal sectors are set parametrically at w1 and w2, and yi also represents

an individual’s income from good i.8 The utility of leisure and work is represented by

the function h(ℓ), h ′ > 0,h ′′ < 0, where ℓ = 1− (n1 +n2).

The individual declares x ⩾ 0 as taxable income and pays an income tax tx, where

7In the model, the “illicit” good generates a private benefit but also a negative externality. A good is
legally defined as “illicit” when the negative external harm is larger than the private benefit. This issue is
further clarified in section 4 where we discuss the first-best outcome of the model.

8Qualitatively similar results are obtained with yi = yi(ni), y ′
i > 0, and y ′′

i ⩽ 0.
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the tax rate is 0 ⩽ t ⩽ 1. The total amount of unreported legal income is z = y1− x, while

the total amount of unreported income is z̃ = y1 + y2 − x.9

An individual has to incur some cost to conceal legal income (i.e., to engage in tax

evasion) and to conceal any income earned from the illegal goods sector.10 We represent

overall concealment cost as γ(z,y2) = gzz
2/2 + g2y

2
2/2 + gz2|z|y2, gz,g2 > 0.11 Further-

more, gz2 can be zero or of either sign because misreporting income from one source

could make it easier or more difficult to misreport income from another source, or the

two concealment costs may be independent of each other. The benchmark model as-

sumes independence (gz2 = 0), while section 7 allows for complementarity (gz2 < 0 ) or

substitutability (gz2 > 0 ).

Turning to the illegal good, recall that the illegality arises out of adverse social ex-

ternalities associated with the aggregate production of the good Y2 =
∫
y2(j)dj. This

externality is measured by the function Ψ(Y2) where Ψ(Y2) = Ψ0Y2, Ψ0 > 0.12

An individual derives constant marginal utility of unity from consumption of either

the legal or the illegal good in addition to the utility from leisure h(ℓ). The individual also

derives utility from the public good Φ(G) – with Φ(G), Φ ′ > 0, Φ ′(0) → +∞, and Φ ′′ < 0

9While x is assumed non-negative, z is not subject to such constraint. In principle, the government may
observe an individual’s consumption but not how income is generated. In the presence of tax evasion and
the possibility of receiving income from illicit activities, the income sources can only be verified after being
audited. So, while we allow z ≶ 0, we still restrict z̃ ⩾ 0. Otherwise, the government would immediately
realize that reported income exceeds observed consumption.

10Several papers include the cost of concealing income, e.g., Slemrod (1994). It could be assumed that,
without such concealment effort, infringements are immediately observed by the government even in the
absence of an audit.

11The cost function assumes that the cost of hiding legal and illegal income is different. This function
is flexible enough to include a wide range of relevant cases. It is assumed that the Hessian of γ(z,y2) is
positive-definite: gz > 0, g2 > 0, and gzg2 − g2z2 > 0.

12The analytics are amenable to a more general formulation with Ψ ′(Y2) > 0 and Ψ ′′(Y2) ⩽ 0. However,
the assumed linearity allows us to parameterize the magnitude of the externality by the constant Ψ0. This
parametrization is particularly helpful for simulations (presented later) where we vary the magnitude of
the harmful externality to see the corresponding effects on the endogenous variables.
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– and disutility Ψ(Y2) from the negative externality related to the illegal good. Therefore,

the individual’s utility function is u = c+ h(ℓ,n1,n2) +Φ(G) − Ψ(Y2), where c denotes

the level of private consumption of the two goods. The individual’s budget constraint

requires that c equals the income of the individual from the production of the two goods

net of tax payments, concealment (cost) related expenses, and expected fines F (defined

below). Thus, we have c = y1 + y2 − tx− γ− F, where yi = wini, and ℓ = 1− (n1 + n2).

Section 5 describes the individual’s choices of time (income) allocated to the production

of the two goods and income declared (i.e., x) or alternately income not reported (z =

y1 − x). The individual makes these choices knowing there is a probability of being

audited in which event the true income levels will be discovered and the infringements

penalized. We turn to the latter issue below which describes the different scenarios

of fines and characterizes penalties for tax evasion and participation in illegal goods

production.

Fines and penalties. The scheme of fines and penalties faced by individuals caught un-

derreporting or earning income from illegal sources plays a critical role in our analysis.

We will, therefore, consider several alternative possibilities. Expected fines depend on

both the audit probability and the penalties. Let pz and p2 be the probabilities of de-

tection of tax evasion and illegal income, respectively, while α and β are the respective

penalties for the two types of infringements. Expected fines depend on the aforemen-

tioned audit probabilities and penalties, as well as the extent of evasion of taxable income

tz = t(y1 − x) and illegal income y2. Therefore, we can represent the expected fine by F

≡ F(y1, y2, x, t, pz, p2, α, β), where the function can take any arbitrary form and may

not be continuous or differentiable. Furthermore, we assume that the function treats tax

11
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evasion of legal income and the earnings of illegal income separately.13

In principle, the penalty for misreporting legal income may differ depending on

whether taxable income was under- or over-reported. We therefore allow for the possi-

bility of a penalty αN ⩾ 0 when z < 0 and αP ⩾ 0 when z > 0.14 Assuming that t ⩾ 0, the

total expected fine is the sum of the expected fines on evaded taxes and illegal income

earned. Accordingly, the total expected fine takes the form:

F =


−pzα

Ntz+ p2βy2 if z < 0

p2βy2 if z = 0

pzα
Ptz+ p2βy2 if z > 0

, (1)

The basic model uses a simplified version of F, where a tax audit also uncovers the

extent of illegal income earned such that p = pz = p2. We extend the analysis later,

allowing pz and p2 to differ.15 We discuss next how the fine function can represent

different institutionally determined scenarios.

We assume that β ⩾ 1 such that if audited an individual’s illegal income y2 is con-

fiscated by the government, and the government also collects an additional penalty

(β − 1)y2. We describe below four likely scenarios for fines based on different values

assumed by αN and αP:

1. If there is no penalty for overreporting legal income (z < 0), then αN = 0, and the

expected fine is F = p2βy2 when z ⩽ 0, and F = pzαPtz+ p2βy2 when z > 0.16

2. If the underreporting and the overreporting of legal income are equally penalized,

13The government takes the functional form of F as given. It may choose detection probabilities p but
cannot manipulate the punishment function. For a discussion of why fines and detection probabilities
cannot be set independently, see Andreoni (1991).

14Yitzhaki (1974) extends the original Allingham-Sandmo model by assuming that the penalty is a
function of the tax evaded by the individual.

15For instance, p2 may supplement pz so that p2 = pz + p
′
2.

16Typically, αP ⩾ 1, so that if found underreporting, individuals pay the evaded tax tz plus a penalty
tz(αP − 1), proportional to the tax evaded (on the amount that exceeds legal income).

12
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then the expected fine parameter for legal income (inclusive of complete payment of

evaded taxes) is αN = αP = α > 1, such that total fine paid is F = p(αt|z|+βy2).

3. If overreported income is credited back to the individual and, in addition, the indi-

vidual is rewarded, then αN < −1. Assuming that the reward for underreporting is the

same as the punishment for overreporting, −αN = αP = α > 1, and F = pαtz+ pβy2.

4. If there is no reward for overreporting but a simple credit of the overpaid tax, then

αN = −1, and αP = α > 1.17

For ease of reference in the following analysis, it is useful to note the following

expressions for the partials of the fine function

F1 = −Fx = Fz =


−pαNt if z < 0

0 if z = 0

pαPt if z > 0

, and F2 = pβ, (2)

where the subindices denote partial derivatives. The following partials related to the

effects of policy variables are useful as well:

Ft =


−pαNz if z < 0

0 if z = 0

pαPz if z > 0

, and Fp =


−αNtz+βy2 if z < 0

βy2 if z = 0

αPtz+βy2 if z > 0

, (3)

Government budget constraint. The government collects income taxes from all individ-

uals. Total taxes are T =
∫
tx(j)dj. The government also provides a public G and runs an

audit agency.

In general, the government can target resources to detect tax evasion and engage-

ment in illegal activities, which determine the respective audit probabilities pz and p2.

17In practice, however, it can be thought that αN < 1 because the amount is typically returned, if at all,
with substantial delay.
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Increasing these probabilities is costly, and this cost is denoted by a convex function

θ = θ(pz,p2), with θz > 0 for pz > 0, and θ2 > 0 for p2 > 0. Also, we assume that θz = 0

for pz = 0, and θ2 = 0 for p2 = 0. We allow for the two types of audits to be independent

(i.e., θz2 = 0 ) or complementary (i.e., θz2 < 0). However, for clarity of exposition of our

core analysis, we assume that the same audit detects both the evasion of legal income

and the amount of illegal income, such that p = pz = p2. Under this assumption, the

audit cost function assumes a simpler form: θ = θ(p), θ ′ > 0 when p > 0, and θ ′ = 0

when p = 0. The more general form of the audit cost function is considered in section

8.2.

We assume that the audit agency’s costs have to be funded by its fine collections,

such that F ⩾ θ. Suppose there is a surplus, F > θ. In that case, there is a continuum of

possibilities, ranging from the surplus being lost in bureaucratic red tape (a deadweight

loss) to the entire surplus being transferred to the government for public good provi-

sion. Accordingly, the overall government budget constraint for public good provision

is G ⩽ T + µ[F− θ(p)], where µ = 0 captures zero transfer of surplus,18 µ ∈ (0, 1) partial

transfer of surplus, and µ = 1 full transfer of surplus from audit agency to public good

provision.19

18This case can also be viewed as the audit agency functioning entirely independently of the rest of the
government.

19Note that the analysis would not be fundamentally altered when we relax the self-financing constraint.
One might imagine a more complex political-economy setting where the audit agency’s budget increases
when more cases of tax evasion and illicit production are uncovered. Even though much more complex
in the modeling, this would technically lead to a similar budget constraint as in our self-financing setting.
Some studies, such as Slemrod and Yitzhaki (1987) and Slemrod and Yitzhaki (2002), have explored various
aspects of tax system administration, offering a rationale for considering a separate budget for the audit
agency when determining the tax rate, but more importantly, the audit probability.
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4 Social planner’s problem
In this section, we consider the solution of the social planner’s program as a benchmark.

The population of identical individuals is assumed to have unit mass such that we can

represent aggregate variables simply by their individual counterparts such that social

welfare (following a utilitarian representation) is: W =
∫
u(j)dj = c+h(ℓ) +Φ(G) −Ψ(y2),

with c = y1 + y2 −G, yi = wini for i = 1, 2, and ℓ = 1− (n1 + n2). Maximization of social

welfare given the preferences, technology, and time endowment yields the following

first-order conditions (FOC) for the first-best allocation:

y1 : 1− h
′/w1 ⩽ 0, y2 : 1− h

′/w2 −Ψ
′ ⩽ 0, G : −1+Φ ′ = 0. (4)

Consider the cases of y1 and G > 0 at the first-best social optimum, such that from

equation (4) we get h ′ = w1 and Φ ′ = 1. The former equality simply says that efficiency

requires that the marginal productivity of labor in producing y1 be equal to the marginal

utility of leisure, while the latter equality requires marginal benefit from the public good

to equal the marginal cost of its provision (in terms of the lost marginal utility of private

goods’ consumption). It is important to note here for later reference that if Φ ′(G) > 1 at

any second-best equilibrium, then the social optimization tells us that the public good is

under-provided at that equilibrium.20 Similarly, Φ ′(G) < 1 suggests over-provision at a

second-best equilibrium.

We next turn to a discussion of y2, the “illegal good”. Suppose that the relative

returns to the production of goods y1 and y2 are such that w2 > w1.21 The latter

would justify the allocation of time to the production of y2.22 Suppose, however, that

20This is because the form of the social welfare function suggests that if we hold (y1,y2) constant at the
second-best equilibrium, a small increase in public good provision will raise social welfare.

21We will maintain this assumption throughout the rest of the analysis.
22Notice that if we allow a corner solution for y2, then using h ′ = w1, the FOC for the choice of y2 yields
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the magnitude of the adverse externality Ψ0 is sufficiently large such that Ψ0 >
(w2−w1)
w2

.

This inequality suggests that for social efficiency, a government will want the complete

elimination of y2. In other words, when the externality produced by the production of

y2 is sufficiently large (relative to its productive contribution), then y2 = 0 is socially

optimal, or y2 is an “illegal good”.

However, in a second-best world characterized by high enforcement costs and dis-

tortive taxation as discussed in the following sections, the government’s capacity to re-

strict the production of illegal goods and simultaneously provide an efficient level of

public goods is limited. The central purpose of this paper is precisely to characterize

a social welfare-minded government’s constrained optimal policies and associated equi-

librium inefficiencies, keeping in mind the feasible policy instruments at hand and the

government’s budget constraint.

5 Individual Optimization: Baseline Case
For clarity of analysis and exposition, we consider the baseline case where gz2 = 0,

p = pz = p2, pαP < 1 and pβ < 1. Using the various relationships defined in section 3,

the representative individual’s utility function can be reduced to u (y1,y2, z) = y1 + y2 −

tx− F (y1,y2, z) − γ (z,y2) + h(ℓ) +Φ (G) −Ψ (Y2), with x = y1 − z and ℓ = 1− y1
w1

− y2
w2

.

An atomistic individual ignores the effects of her choice on public good provision (G)

and the adverse externality from the aggregate production of the illegal good (Ψ), such

that assuming interior solutions, the individual’s FOC’s for the choice of yi, i = 1, 2, yield

y1 : w1 (1− t) = h
′, y2 : w2 (1− pβ− g2y2) = h

′. (5)

Ψ ′ ⩾ (w2−w1)
w2

. Using the linear form Ψ(Y2) = Ψ0Y2, we have a corner solution y2 = 0 if Ψ0 ⩾ (w2−w1)
w2

.
When w2 < w1, then given that Ψ0 > 0, the corner solution always obtains. It is also evident from an
individual’s FOCs described in the next section that if w2 < w1, then in the absence of policy intervention,
there is no reason for an individual to allocate time to the production of y2.
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The first expression in (5) represents the equalization of the marginal after-tax return

from labor in the legal good to the marginal utility of leisure. The second expression

equates the return of labor from illegal production net of expected penalties and con-

cealment costs (related to illegal income) to the marginal utility of leisure.

The following FOCs characterize an optimum for z, for the cases of tax evasion (z > 0)

and overreporting (z < 0), respectively,

z > 0 : t(1− pαP) − gzz = 0, z < 0 : t(1+ pαN) − gzz = 0. (6)

Lemma 1 below proves that overreporting can be ruled out in the current modeling

environment using the different fine function possibilities discussed in section 3.

Lemma 1. Assuming that αP = α ⩾
∣∣αN∣∣ ⩾ 1, 1− pα > 0 and gz2 = 0, there must be some tax

evasion (i.e., z > 0) at any positive tax rate t > 0.

Proof. Let us first consider the possibility of over-reporting of income (i.e., z < 0). When

αN > 0 and z < 0, the left-hand-side (LHS) of the last equality in (6) is strictly positive,

so a solution z < 0 is not possible. When αN ⩽ 0,
∣∣αN∣∣ ⩽ α ⇒ αN ⩾ −α ⇒ 1+ pαN ⩾

1 − pα > 0. Therefore, even in this case, the LHS of the last equality of (6) is strictly

positive when z < 0, ruling out this solution.

Turning to non-negative values of z and using αP = α, notice that uz = t
(
1− pαP

)
−

gzz⇒ uz|z=0
= t (1− pα) > 0, such that there is always some net benefit from tax evasion

(i.e., a corner solution at z = 0 can be ruled out). Thus, the only optimum that is possible

in this environment is an interior optimum for z > 0, where the marginal benefit of tax

evasion net of expected penalty, t
(
1− pαP

)
, is equated to the marginal concealment cost,

gzz.

Given lemma 1, which ensures that z > 0, we ignore αN for the rest of the analysis
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(of the basic model). For simplicity of exposition, we use αP = α > 1. Therefore, the fine

function described in section 3 takes the form F = p (αtz+βy2). Proposition 1 describes

the solutions in his case.

Proposition 1. If gz2 = 0, then an increase in the income tax rate t will reduce legal income y1

and declared legal income x, and raise illegal income y2. Declared legal income falls by more than

legal income, so that unreported legal income, z = y1 − x, rises.

Proof. Using equations (5) and (6), we have w1(1 − t) = w2(1 − pβ − g2y2), and gzz =

t(1− pα), which yields

z =
t(1− pα)

gz
, y2 =

(1− pβ)w2 − (1− t)w1
g2w2

. (7)

From equation (5), we have h ′ (l) = w1 (1− t). We can invert the h ′ function to get

ℓ [w1 (1− t)], and then use ℓ [w1 (1− t)] = 1− (y1/w1) − (y2/w2) and the expression for y2

from equation (7) to solve for y1:

y1 = w1

(
1−

y2
w2

− ℓ [w1 (1− t)]

)
. (8)

Using equations (7) and (8) it is easy to check that:

∂y1
∂t

< 0,
∂y2
∂t

> 0,
∂z

∂t
> 0,

∂x

∂t
< 0. (9)

Note that in this case, the solution for z is determined independently of y1 and y2.

Also, when (1− pβ)w2 > w1, y2 > 0 for every 0 ⩽ t ⩽ 1. The marginal utility of income

from y2 evaluated at the FOC for y1 > 0, [w1(1− t) = h ′], is u2 = (1− pβ)w2 −w1(1−

t) − g2y2. So whenever (1− pβ)w2 > w1 and t ⩾ 0, u2 is increasing in y2 at y2 = 0. This

means that some amount of production of the illegal good is always privately profitable

in this case. Finally, note that given w1 and w2, the time allocation between leisure and
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the production of legal and illegal activities is determined only by the tax rate t, since

n1+n2 = 1− ℓ[w1(1− t)]. We denote the solutions in this case as y1 ≡ y1(t,p), y2 ≡ y2(t,p)

and z ≡ z(t,p). Substituting the solutions into the utility, we obtain the indirect utility

function v ≡ v(t,p,G,Y2).

Going back to the comparative statics with respect to t, it follows that a small increase

in the income tax rate dissuades effort allocation to the production of the legal good

and simultaneously incentivizes a higher allocation of time to the production of the

illegal good and leisure. An increase in t also increases ℓ and reduces (n1 + n2) since

∂n1
∂t + ∂n2

∂t = ∂y1
∂t

1
w1

+ ∂y2
∂t

1
w2

< 0. For subsequent reference, note that y2 and z are linear

in t, and under fairly weak assumptions about the functional form of h ′(l), y1 and x are

concave in t.

Consider next the financing of the public good based on the total revenue collected by

the government. We can show that the total revenue function T +µ [F− θ (p)] is a concave

function of t.23 Tax revenue T = tx, is a concave function of t. Since
(
dT
dt

)
|t=0

= x > 0, dTdt

is positive for sufficiently low tax rates. The penalty function F is increasing and convex

in t. However, it follows that for G (t) ≡ T + µ [F− θ (p)], G ′′ (t) < 0. Thus, G (t) is an

increasing function of t for sufficiently low tax rates.

6 Government Policy Choices
This section analyzes the government’s policy choices. We begin by obtaining the income

tax rate that maximizes welfare for given values of the audit probability. Next, we allow

the government to choose the audit probability as well. We continue with section 5’s

assumptions gz2 = 0, pz = p2 = p, pα < 1, and pβ < 1.

23All relevant derivations are included in Appendix A.1

19

PUBLIC/OFFICIAL RELEASE // EXTERNAL



6.1 Choosing the tax rate

The focus of this section is on a constrained optimal tax that is necessary to finance

the public good while keeping in mind the distortionary effect of this taxation on the

production of the two goods and on tax evasion.

It is useful to highlight at this point the inability of the tax rate to achieve multiple

objectives simultaneously. Consider the example Ψ(y2) = Ψ0y2 and w1 ⩾ w2(1 − Ψ0),

which implies that the socially optimal value of y2 is equal to zero. Suppose, however,

that (1− pβ)w2 > w1. Then, some amount of production of the illegal good is always

privately profitable as long as t is non-negative. The private incentive to produce y2

could be eliminated in this case by subsidizing the production of the legal activity y1

(i.e., a negative tax on y1).24 While this negative tax eliminates the production of the

illegal good, it will likely fail to enable the government to provide a (socially desirable)

positive amount of public goods when an income tax is the sole source of fiscal revenue.

As it is well known, a single policy instrument cannot simultaneously achieve both

goals. The optimal choice of t, therefore, has to assess the trade-offs between a higher

tax rate, which ultimately finances the public good, and the incentives to participate in

the illegal market. In what follows, unless otherwise stated, we assume (1− pβ)w2 > w1

and 0 ⩽ t ⩽ 1.

6.1.1 Analysis

The government chooses t anticipating the effect of the tax rate on atomistic individuals’

behavior to maximize the utilitarian social welfare function W ≡
∫
vdi = C +H − Γ +

Φ(G) − Ψ(Y2). As discussed earlier, the government’s budget constraint implies that

24When t ⩽ 0, the solution for z is negative, specifically z = t(1+pαN)
gz

< 0, and y2 is still the same as in

equation (7). The government can therefore set the tax (subsidy) rate t = 1− (1−pβ)w2
w1

< 0 so that y2 = 0.
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G = T + µ[F− θ(p)], T = tx, 0 ⩽ µ ⩽ 1, and F ⩾ θ(p).

For the basic analysis, we assume that the audit agency’s constraint is not binding

[i.e., F > θ(p)], such that the associated Lagrangian multiplier λ is zero.25

From the envelope theorem, ∂v/∂t = −(x + Ft), where x = y1 − z ⩾ 0. Given our

assumption here that pz = p2 = p, and given proposition 1, which states that z > 0, the

fine function presented in equation (1) reduces to F(t, z,y2) ≡ p(αtz + βy2), such that

Ft = pαz ⩾ 0. Using these facts, the FOC for the government’s optimization problem at

an interior optimum (t > 0) reduces to:

∂W

∂t
≡ −(x+ Ft) +Φ

′dG

dt
−Ψ ′∂y2

∂t
= 0, ⇒ Φ ′dG

dt
= (x+ Ft) +Ψ

′∂y2
∂t

. (10)

where the LHS of the last equation in (10) is the social benefit from the additional public

good that can be provided from the extra revenues that are collected (from taxes and

fines) from raising the tax rate. The first term on the RHS of the last equation in (10)

measures the marginal utility loss from a higher tax burden. The second RHS term

represents the utility loss from higher expected fines. The last RHS term measures the

utility loss from the negative externality associated with a tax-induced expansion of the

illegal good (from the comparative static results in (9) we have ∂y2
∂t > 0).

At a constrained optimum, the government balances the social marginal gain from

greater public good provision with the aforementioned social marginal costs, where

the latter arises from the dual distortions of tax evasion and illegal goods production.

Furthermore, notice that equation (10) requires that dG
dt > 0, such that a strictly positive

constrained optimal tax rate is also Laffer-efficient. Using G (t) ≡ tx+ µ [F− θ (p)] , we

25Appendix B.1 considers a binding audit constraint (i.e., λ > 0).
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get dGdt ≡ x+ tdxdt + µ
dF
dt . Substituting the RHS of the latter equation in (10) we get

(Φ ′ − 1)(x+ Ft) = Ψ
′∂y2
∂t

+Φ ′
(
Ft − t

∂x

∂t
− µ

dF

dt

)
. (11)

Case 1: µ = 0. Recall from section 3 that µ = 0 represents the case where the audit

agency’s surplus, F− θ (p), is completely lost in the bureaucratic process involving the

transfer and is a deadweight loss. In this case, the public good is funded entirely through

tax collections. When µ = 0, dGdt ≡ x+ tdxdt , such that equation (10) reduces to

∂W

∂t
≡ −(x+ Ft) +Φ

′
(
x+ t

∂x

∂t

)
︸ ︷︷ ︸

∂G/∂t

−Ψ ′∂y2
∂t

= 0. (12)

Proposition 2. If the audit agency’s surplus cannot be transferred to the government for public

good provision (µ = 0), then the public good G is underprovided (i.e., Φ ′ > 1).

Proof. When µ = 0,

(Φ ′ − 1)(x+ Ft) = Ψ
′∂y2
∂t

+Φ ′
(
Ft − t

∂x

∂t

)
. (13)

Since x ⩾ 0, and when gz2 = 0, z > 0, then Ft = pαz > 0 [from equation (3)], ∂y2
∂t >

0, and ∂x
∂t < 0 [from the comparative static results (9)]. Thus, equation (10) implies

that at the constrained optimal tax equilibrium we have, which violates the efficiency

condition for the public good outlined in equation (4). Given that the marginal benefit

of the public good Φ ′ exceeds the unit marginal cost of provision (in terms of utility

loss from private good consumption), we have underprovision of the public good at this

constrained optimal tax equilibrium.

Case 2: µ = 1. When µ = 1, the audit agency’s surplus is fully transferred to the govern-

ment for public good provision. Does this increased revenue source act as a substitute

for taxation and reduce the tax rate, or does it have a complementary effect? In addi-
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tion, what does the optimal tax rule in the full transferability situation have to say about

the efficiency of public good provision? These questions are addressed in proposition 3

below.

Proposition 3. Suppose the audit agency’s surplus is fully transferable to the government, i.e.,

µ = 1.

(i) The optimal income tax rate is higher than under µ = 0.

(ii) If, in addition, (a) the illegal activity is “illicit” in the planner’s sense, i.e. Ψ0 ⩾ w2−w1
w2

, and

(b) the illegal activity is privately attractive at the margin, i.e. (1− pβ)w2 > w1, then the public

good is under-provided at the constrained optimum: Φ ′(G∗) > 1.

Proof. (i) Recall that F (t, z,y2) ≡ p (αtz+βy2), such that dF
dt = p

[
α
(
z+ t∂z∂t

)
+β∂y2∂t

]
> 0,

because from equation (9) we have ∂z
∂t > 0 and ∂y2

∂t > 0. Using equation (10) and the

implicit function rule to obtain

∂t

∂µ
= −

∂2W
∂t∂µ

∂2W
∂t2

= −
Φ ′ dF

dt
∂2W
∂t2

> 0, (14)

because d2W
dt2

< 0 from the second-order condition of the government’s optimization

problem. Hence, the optimal tax rate must be higher under full transferability (µ = 1)

than under no transferability (µ = 0).

(ii) When µ = 1, dGdt ≡ x+ t∂x∂ + dF
dt , such that equation (10) reduces to

∂W

∂t

∣∣∣∣
µ=1

≡ −(x+ Ft) +Φ
′
(
x+ t

∂x

∂t
+
dF

dt

)
−Ψ ′∂y2

∂t
= 0. (15)

Using dF
dt in equation (15) and reorganizing terms we get

(Φ ′ − 1)(x+ Ft) = (Ψ ′ −Φ ′pβ)
∂y2
∂t

+Φ ′
[
(1− pα)t

∂z

∂t
− t
∂y1
∂t

]
︸ ︷︷ ︸

>0

. (16)

The sign of the RHS of (16) depends on the relative magnitudes of the two terms. Note
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that pα < 1 and from equation (9) we have ∂z
∂t > 0 and ∂y1

∂t < 0 so the last term on the RHS

of equation (16) is positive. This positive second term pushes towards underprovision

of G.

Consider next the first term. Under (a) and (b), we have w1 ⩾ (1−ψ0)w2 and (1−

pβ)w2 > w1. With linear externalities, this gives Ψ0 > pβ. Therefore, Ψ0 −Φ ′pβ ⩾

pβ(1−Φ ′). Suppose, to the contrary, that Φ ′(G∗) < 1. Then 1−Φ ′ > 0, so the first RHS

term in (16) is also positive. However, LHS is negative in this case, a contradiction. Thus

Φ ′(G∗) > 1, i.e., the public good is underprovided.26

The intuition behind part (i) of Proposition 3 is the following. Recall that dG
dt ≡

x+ t∂x∂t +µ
dF
dt , such that when µ > 0, there is an additional marginal contribution (µdFdt > 0)

of the tax rate towards the funding of the public good that comes from additional fines

collected. This contribution is scaled by µ and is therefore magnified at higher values of

µ. Therefore, as would be expected, we find that a greater degree of transferability (µ)

raises the optimal tax rate.

We turn next to the reason behind part (ii). Note that two conditions are critical: (a)

the planner regards the activity as socially harmful (so it generates a negative external-

ity), and (b) individuals still find it privately profitable to engage in it despite expected

penalties. Together, these imply that the marginal social damage from illegal production

is larger than the expected fine per unit of illegal activity. In other words, each additional

unit of illegal output imposes more harm than the government recoups in revenues. As
26Note that the FOC (16) can be rewritten as

(Φ ′ − 1)

(
x+ pαz+ pβ

∂y2
∂t

)
︸ ︷︷ ︸

>0

= (Ψ ′ − pβ)
∂y2
∂t

+Φ ′
[
(1− pα)t

∂z

∂t
− t
∂y1
∂t

]
︸ ︷︷ ︸

>0

. (17)

This means that if the marginal damage from the externality exceeds the expected penalty (Ψ ′ ⩾ pβ), the
RHS is unambiguously positive, and the public good is underprovided (Φ ′ > 1). For instance, when Ψ(y2)
is linear in y2, i.e., Ψ(y2) = Ψ0 y2, this happens when Ψ0 ⩾ pβ.
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a result, when the government chooses taxes to balance public good provision against

these external costs, the first-order condition forces the equilibrium to occur at a point

where the marginal value of the public good still exceeds unity, Φ ′(G∗) > 1.

6.1.2 How does the optimal tax depend on the intensity of the externality?

We answer the question above by using the aforementioned linear form for the external-

ity, Ψ(y2) = Ψ0y2, where the parameter Ψ0 is a measure of the intensity with which the

illegal good creates the negative externality.

Proposition 4. Assuming a linear externality function and a given audit probability, the con-

strained optimal tax rate is monotonically declining in the intensity of the externality. As a result,

the provision of the public good also decreases.

Proof. The effect of a change in Ψ0 on the optimal tax rate is given by

∂t

∂Ψ0
= −

∂2W
∂t∂Ψ0

∂2W
∂t2

= −
−∂y2

∂t
∂2W
∂t2

. (18)

Using the SOC corresponding to equation (10) and noting that equation (9) ensures that

the illegal income rises with the income tax rate (i.e., ∂y2
∂t > 0), equation (18) indicates

that the optimal tax decreases with the intensity of the externality, i.e., ∂t
∂Ψ0

< 0. Note

that dGΨ0
= dG

dt
dt
dΨ0

. Since at the optimum dG
dt > 0 and ∂t

∂Ψ0
< 0, then dG

Ψ0
< 0.

By lowering the tax rate, the government trades off some benefit of public good

provision against the benefit derived from lower externalities associated with a lower

production level of the illegal good y2. Also, considering that dGΨ0
< 0, if the public good

is underprovided for relatively low levels of Ψ0, then the underprovision will become

more severe when the intensity of the negative externality becomes higher.

We present a numerical example below that traces the effects of a greater intensity of

the externality on the optimal tax rate and the other endogenous variables at the optimal
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tax equilibrium. The outcomes are summarized in Figure 1. The exercise uses yi = wini,

w2 > w1, h(ℓ) = h0ℓ
h1 , and Φ(G) = ϕ0G

ϕ1 , with ϕ0 > 0, 0 < ϕ1 < 1, and Ψ(Y2) = Ψ0Y2,

with Ψ0 > 0. In the exercise, the intensity of the negative externality becomes stronger as

Ψ0 increases.27 Also, gz2 = 0, αP = α, and µ = {0, 1}.28 Throughout the exercise, p is fixed

at p = 0.07.
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Figure 1: Solutions as a function of Ψ0 for µ ∈ {0, 1}.
Note: The first graph shows the optimal value of t for different values of Ψ0 and µ ∈ {0, 1}. The other

graphs show the values of the corresponding variables evaluated at the optimal t.
The graphs use p = 0.07, w1 = 1, and w2 = 3

2 , gz = g2 = 2, gz2 = 0.

The numerical example serves to highlight the following key points. First, as the

externality Ψ0 increases, t smoothly declines, and therefore unreported legal income

z smoothly declines. As a consequence, the level of underprovision increases as Ψ0

increases, as stated in proposition 4. Second, a lower tax rate is associated with a higher

27All the numerical exercises considered in the paper use these functional forms.
28Since in the present case z > 0, only αP is relevant.
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production of the legal good y1 and a lower production of the illegal good y2. Third,

welfare declines as Ψ0 increases. Fourth, when the surplus of the audit agency is shared

(µ = 1), the optimal tax rate t is higher. Therefore, z, and y2 are higher, and y1 and x are

lower. The level of underprovision of G is lower, and welfare is higher.29

6.2 How does the audit probability affect the optimal tax rate?

Relying only on a single policy variable, in this case, t, restricts the government’s ability

to achieve multiple goals. An additional tool for the government is allocating resources

θ to increase the effectiveness of the audit technology. In our model, the latter translates

into higher levels of p. In the subsequent analysis, we allow the government to choose

different combinations {t,p}.

The following discussion focuses first on the effect of a change in p on the individuals’

choices at a given tax rate. Next, we consider the impact of a change in p on the optimal

tax rate. Finally, we consider jointly the optimal choice by the government of the tax

rate and the audit probability and discuss the comparative static effect of a rise in the

intensity of the externality from the illegal good.

Comparative statics with respect to p. We begin by examining how an individual’s

behavior changes when p changes.30 We obtain:

∂y1
∂p

= −
w1
w2

∂y2
∂p

> 0,
∂z

∂p
< 0,

∂x

∂p
> 0. (19)

29The exercise considers parameter values such that the audit agency’s budget constraint F ⩾ θ(p) does
not bind (i.e., λ = 0 at the optimal t). However, this budget constraint will hold with equality (and
λ > 0) for sufficiently large values of Ψ0. When this happens, the tax rate is implicitly determined by
the constraint F = θ(p), and it no longer depends on Ψ0. For the parameter values used in the numerical
exercise, this tax rate is 0.08. Since the tax rate is always lower when µ = 0, F− θ(p) will hold as an equality
for a lower value of Ψ0 than when µ = 1.

30The formal derivations are included in Appendix A.2.
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In other words, an increase in the audit probability shifts production from illegal to legal

activities and induces individuals to report more income. Moreover,

∂y1
∂p

1

w1
+
∂y2
∂p

1

w2
= 0,

∂y1
∂p

+
∂y2
∂p

= −
β(w2 −w1)

g2w2
, (20)

which means that a higher p shifts labor from illegal to legal activities in the same

amount, leading to a lower overall income (y1 + y2), given w2 > w1. Additionally, note

from equations (7) and (8) that all the variables are linear in p, so the second-order

derivatives with respect to p are all zero, and the cross-partial derivatives are given by

∂2y1
∂p∂t

=
∂2y2
∂p∂t

= 0,
∂2z

∂p∂t
< 0,

∂2x

∂p∂t
= −

∂2z

∂p∂t
> 0. (21)

The audit probability does not impact the effect of the tax rate on y1 and y2. However,

it does reduce the positive impact that the tax rate has on z and the negative impact (in

absolute value) that the tax rate has on x. The higher the audit probability, the smaller is

the impact of a tax increase on the amount of misreported income. Finally, income taxes

collected by the government, T , increase linearly in p, and the budget constraint of the

audit agency, F, is concave in p.

Combinations of {t,p} for given values of unreported legal income z and illicit income

y2. A given level of z̄ > 0 can be attained with different combinations of {t,p}. Consider

the solution for z given by (7). Then the relationship between p and t for which z(t,p) = z̄,

p = p(t), is given by

∂p

∂t

∣∣∣∣
z=z̄

=
(1−αp)

αt
> 0. (22)

When t increases, unreported legal income z increases, so p needs to be raised in the

amount stated by (22) to restore the original level of z̄. In other words, the same un-

reported legal income z can be achieved with a higher tax rate as long as p is higher.
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Hence, t and p are complements. Similarly, for y2(t,p) = ȳ2,

∂p

∂t

∣∣∣∣
y2=ȳ2

=
w1
βw2

> 0. (23)

An increase in t also increases y2. To return y2 to its original level, p must therefore

increase.
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t
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z(t,p)=z
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0.3

0.4

0.5

p
y2(t,p)=y2

Figure 2: Isolevel curves z(t,p) = z and y2(t,p) = y2.

When t is the only policy variable, the government chooses a relatively low tax rate

to account for the negative externalities produced by good 2: a lower t implies a lower

y2. This, however, leads to underprovision of G. The ability to change p would allow

the government to increase t and, therefore, G. As long as the higher t is coupled with

a sufficiently high level of p, the government could keep y2 at least at the same level as

before. However, since providing p is costly, the government must balance the benefits

and costs of raising p.

How does the optimal tax rate depend on p? In general,

∂t

∂p
= −

∂2W
∂t∂p

∂2W
∂t2

, (24)

where ∂2W
∂t2

< 0. Under plausible conditions, discussed in Appendix B.2, ∂
2W
∂t∂p > 0, which

implies that ∂t
∂p > 0. In other words, by raising p, the government can increase the

optimal tax rate and reduce the severity of the underprovision of G.

The graphs in Figure 3 below show the solutions for different values of p and µ.
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Figure 3: Solutions as a function of p and µ ∈ {0, 1}.
The graphs consider the case Ψ0 > 1−

w1
w2

(Ψ0 = 3/5, w1 = 1 w2 = 3/2). The vertical red dashed line
indicates the value of p at which F− θ(p) = 0 when µ = 1, and the vertical blue dashed line the value of p

at which F− θ(p) = 0 when µ = 0.

The first graph shows the tax rate chosen by the government. The rest of the graphs

show the values of the other endogenous variables evaluated at the solution tax rate.

The numerical example highlights several observations. First, the tax rate increases as

the audit probability p increases. Second, the tax rate is higher when µ = 1 than when

µ = 0.

Third, the level of underprovision of G declines as p gets larger. To gain some in-

tuition, consider the case µ = 0 (the government relies only on income tax revenue to

finance the public good), so that G = T . Evaluated at the optimal t, an increase in p

affects T as follows:

dT

dp
= t

∂x

∂p
+

(
x+ t

∂x

∂t

)
∂t

∂p
.

A higher p directly increases reported legal income x and raises the tax collected by the

government. This higher level of p also allows the government to choose a higher tax
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rate, and its impact on tax revenue is given by ∂T
∂t = x+ t∂x∂t . Since in equilibrium, the

government chooses a tax rate such that ∂T
∂t > 0, tax revenue always increases as p rises.

When µ = 1 and F− θ(p) > 0, the government can, in principle, achieve at least the same

level of G as when µ = 0. To the extent that the starting point is a level of G such that

Φ ′ > 1, the government will choose a higher G when µ = 1, and the underprovision will

be lower in this case.

Fourth, for µ = 1, welfare is concave in p: as p increases, welfare rises, reaches

a maximum, and then declines. The policymaker can, therefore, increase welfare by

jointly increasing t and p (up to a certain point).

Fifth, raising p when it is relatively small allows the government to relax the agency’s

budget constraint F − θ(p) and increase welfare. However, increasing p is costly, so

the agency’s budget constraint eventually binds at a sufficiently large value of p, i.e.,

F− θ(p) = 0, where F is evaluated at the optimal t when the audit probability is p. When

this budget constraint binds, then the relationship between t and p becomes mechanical,

determined by the equation F− θ(p) = 0. The vertical dashed lines show the values of

p where the agency’s budget constraint is exactly met for each scenario, µ = {0, 1}. The

variables’ behavior aligns in both scenarios once p reaches a value where F− θ(p) = 0 for

µ = 1.

6.3 Choosing the tax rate and the audit probability

Suppose that the government simultaneously chooses the tax rate and the audit proba-

bility.31 As in the previous case, we focus here on the case in which λ = 0.32 We high-

lighted earlier the inability of the tax rate to achieve multiple objectives simultaneously.

31Slemrod and Yitzhaki (1987) consider a model where both t and p are choice variables in a standard
tax evasion framework.

32Appendix B.3 describes the FOC when λ > 0.
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For instance, when the government can choose both t and p, it can attain the combina-

tion {y2, z} = {0, 0} by choosing (i) {t,p} = {0, (w2−w1)
βw2

};33 or (ii) {t,p} = {1−
(α−β)w2

αw1
, 1α }.

34

However, in choosing the optimal policy combination, the government also considers

the provision of the public good G.

The FOC for the tax rate has already been outlined in equation (10). Turning to

the choice of the audit probability, notice that using the envelope theorem, we have

∂v/∂p = −Fp = −(αtz+βy2) < 0, such that the FOC for the audit probability reduces to

∂W

∂p
= −Fp +Φ

′t
∂x

∂p
−Ψ ′∂y2

∂p
+Φ ′µ

(
dF

dp
− θ ′

)
. (25)

The FOC for p depends on several different effects of the audit probability p on the

relevant endogenous variables. These effects are:

(i) Reduced individual income: Individuals earn less because they are more likely to

be penalized for tax evasion or the production of illegal goods (represented by the

first term, −Fp < 0).

(ii) Increased public good provision: A higher p also discourages tax evasion, leading

to more reported income and higher tax revenue for the government. This addi-

tional revenue can then be used to fund a greater provision of the public good

(second term).

(iii) Reduced negative externality: As a higher p discourages illegal activities, the neg-

ative externality associated with those activities goes down (third term). This is a

social benefit.
33Note that p < 1 requires β > (w2−w1)

w2
> 0, but this is trivially satisfied since we already assumed that

β > 1.
34Note that t > 0 requires β

α >
(w2−w1)

w2
> 0, and t < 1 requires α > β. Since α > 1, 0 < p < 1 in this case.
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(iv) Impact on the audit agency budget: The higher p also affects the audit agency’s

budget. While it might lead to more penalty fees collected, it also comes with

higher operational costs (fourth term). The impact on providing the public good

ultimately depends on the extent of transferability of these resources, which is

parameterized by µ ∈ [0, 1]).35

Ultimately, the government will choose the policy combination {t,p} that satisfies

equations (10) and (25). Consider different cases depending on the value of µ.

Case 1: µ = 0. It follows that,

∂W

∂p
≡ −Fp +Φ

′t
∂x

∂p
−Ψ ′∂y2

∂p
= 0 ⇒ Φ ′t

∂x

∂p
−Ψ ′∂y2

∂p
= Fp. (26)

The LHS describes the positive impact of a higher p on utility. First, a higher p directly

increases taxes collected by the government since individuals report a higher income.

The latter tends to increase G . Second, it decreases y2 and, as a result, the negative

externalities. At the same time, a higher p negatively affects utility as shown on the

RHS: disposable income declines since individuals pay higher fines for misreporting

legal income and for producing the illegal good y2. The fine, per se, is not a social cost

but simply a transfer from the individual to the audit agency. However, due to µ = 0,

these transfers cannot be used for productive purposes and are therefore lost to society.

Case 2: µ = 1. In this case,

∂W

∂p
= 0 ⇒ Φ ′

(
t
∂x

∂p
+
dF

dp
− θ ′

)
−Ψ ′∂y2

∂p
= Fp. (27)

35As highlighted by Slemrod and Yitzhaki (1987) in a somewhat different framework, increasing the
audit probability (or enforcement efforts) requires a larger amount of resources (such as hiring auditors).
Instead of focusing on the revenue generated by the change in p, which is merely a transfer from indi-
viduals to the agency, they claim the optimal approach should balance the social benefit of reducing tax
evasion with the actual enforcement costs.
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Compared to the previous case with µ = 0, now a higher p affects the government’s

revenue by affecting the collection of penalty fees, dFdp , and by the cost of increasing p, θ ′.

The net impact of p on G is therefore ∂G
∂p =

(
t ∂x∂p +

dF
dp − θ

′
)

. We can rewrite (27) as

∂W

∂p
≡ (Φ ′ − 1)Fp +Φ

′
(
t
∂x

∂p
− θ ′

)
−Ψ ′∂y2

∂p
. (28)

It follows, from (16), that Φ ′ > 1 when p = 0, hence, the first term is positive. The second

term is positive as ∂x
∂p > 0 and θ ′(0) = 0. Also −Ψ ′ ∂y2

∂p > 0 for all p. As a result, at p = 0,

∂W
∂p > 0.

When µ = 1, the optimal policy combination {t,p} satisfies

−(x+ Ft) +Φ
′ (x+ t∂x∂t )−Ψ ′ ∂y2

∂t

−Fp +Φ ′t ∂x∂p −Ψ
′ ∂y2
∂p

=
dF
dt

dF
dp − θ

′ . (29)

While dF
dt > 0, the function [F− θ(p)] is concave in p. Figure 3 shows that evaluated at the

audit probability p that maximizes welfare, d[F−θ(p)]dp is negative. This means the optimal

p is larger than the one that maximizes [F− θ(p)].

Effect of Ψ0 on {t,p}. How does the intensity of the negative externality affect the op-

timal combination {t,p}? We showed earlier that when the audit probability is fixed,

an increase in the intensity of the negative externality generated by the production of

y2 decreases the optimal tax. We can similarly show that if t is fixed, an increase in

the intensity of the negative externality entails an increase in p. As before, suppose the

externality is Ψ(y2) = Ψ0y2, Ψ0 > 0.

Lemma 2. Assuming a linear externality function and a fixed tax rate, a rise in the intensity of

the externality will increase the audit rate.

Proof. If t is kept constant, then

∂p

∂Ψ0
= −

∂2W
∂p∂Ψ0

∂2W
∂p2

= −
−∂y2
∂p

∂2W
∂p2

> 0. (30)
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since ∂2W
∂p2

< 0, due to the SOCs, and ∂y2
∂p < 0 from equation (19).

Recall, however, that t and p are complements. From equation (18), a higher Ψ0 tends

to reduce t, so the complementarity will tend to pull p down. If the direct effect of Ψ0

shown in equation (30) dominates the cross effect of t on p, then p will rise. Similarly,

from equation (30), a higher Ψ0 tends to increase p. The complementarity will tend to

push t up. Therefore, if the direct effect of Ψ0 on t dominates the cross effect from a

change in p, then the optimal tax rate will fall as Ψ0 rises. The following proposition

summarizes this result.

Proposition 5. Assuming that direct effects dominate cross effects, a rise in the intensity of the

externality will reduce the tax rate but raise the audit rate.

Proof. See Appendix B.4.

Figure 4 graphically shows how the solutions change as Ψ0 increases. These solutions

are compared to the scenario where the audit probability is held constant, in this case,

at a relatively low level.
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Figure 4: Solutions as a function of Ψ0.
Note: The exercise assumes gz2 = 0 and µ = 1. The gray dotted line shows the solutions when the audit

probability is fixed at p = 0.04. The red vertical dotted line shows the value of Ψ0 at which the audit
agency’s budget constraint binds, i.e., F− θ(p) = 0.

Based on this exercise, a few remarks are worth emphasizing. First, as Ψ0 increases,

p increases, and t decreases. Second, as this happens, individuals switch from illegal to

legal activities, and reported income x increases. Third, lower tax rates and higher audit

probabilities increase the fiscal pressure on the budget constraint, and the provision of

the public good shrinks. Fourth, for sufficiently large values of Ψ0 (in the example, when

Ψ0 ⩾ 0.91), the budget constraint of the audit agency starts to bind at the optimal levels

of t and p. Further increases in Ψ0 that reduce the optimal tax rate would require a

corresponding decrease in p to satisfy the audit agency’s budget constraint F− θ(p) =

0. Finally, suppose that the audit probability is kept constant at a relatively low level

(p = 0.04 on the graph). As Ψ0 increases, the difference in welfare between the optimal

combination {t,p} and the welfare when p is fixed also increases. This is driven by the

fact that the optimal p increases as Ψ0 increases. If the audit probability were fixed at a
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relatively large p (not shown in the graph), then the difference in welfare would decrease

as Ψ0 increases.

7 General Concealment Function
Consider the concealment function introduced earlier γ(z,y2) = gzz2/2+g2y22/2+gz2|z|y2,

with gz,g2 > 0, and gz2 ̸= 0.36 While the analysis thus far focused on gz2 = 0, we now

allow gz2 to be positive or negative. For now, we maintain the assumption αN = αP = α,

i.e., over and underreporting of legal income are equally penalized.37 The concealment

isocost curves of γ(z,y2) for gz2 < 0,gz2 = 0, and gz2 > 0 are depicted in Figure 5.
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Figure 5: General concealment function. Different values of gz2.

The figure shows undeclared legal income z on the horizontal axis and illicit income

y2 on the vertical axis. The concealment costs increase as we move outwards. When

gz2 = 0 or gz2 > 0, a larger |z|, for a fixed y2, always increases the concealment cost.

However, when gz2 < 0, it is possible to observe a situation in which a slight increase in

|z| lowers the concealment cost so that the same cost can be attained with a higher y2.

By considering a more general concealment function, we can rationalize a broader

36A full analysis of this case, along with all formal derivations, is provided in the Online Supporting
Appendix C.

37We examine the implications of relaxing this assumption in section 8.3.
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range of individual behaviors, including instances where individuals have no incentive

to misreport or even overreport legal taxable income. Additionally, we can better un-

derstand the intricate interdependence between the ability to evade taxes and income

generation from illegal sources.38

7.1 Individual Optimization

How does the individual optimization problem change in this context, considering that

now z can be negative, positive, or zero? The following proposition characterizes the

solutions depending on the sign of gz2.

Proposition 6. The solutions to the individual optimization problem, for given tax rates t, can

be characterized as follows: (1) Suppose gz2 = 0: If t > 0, then z = zP and y2 = yP2 ; (2) Suppose

gz2 > 0: If 0 < t ⩽ tP, then z = 0 and y2 = y02. If t > tP, then z = zP and y2 = yP2 ; (3) Suppose

gz2 < 0: If 0 < t ⩽ tN, then z = zN and y2 = yN2 or z = zP and y2 = yP2 . If t > tN, then z = zP

and y2 = yP2 . The solutions yP2 , zP,yN2 , zN, y02, and the threshold tax rates tN and tP are defined

as follows:

yP2 =
−gz2A

P + gz∆

H
> 0, yN2 =

gz2A
N + gz∆

H
> 0, y02 =

∆

g2w2
> 0, (31)

zP =
g2A

P − gz2∆

H
> 0, zN =

g2A
N + gz2∆

H
< 0, (32)

where AP ≡ (1−αp)tw2, AN ≡ (1+αp)tw2, ∆ ≡ [(1− pβ)w2 − (1− t)w1], and

tP =
gz2[(1− pβ)w2 −w1]

(1−αp)g2w2 − gz2w1
⩾ 0, tN =

−gz2[(1− pβ)w2 −w1]

(1+αp)g2w2 + gz2w1
⩾ 0. (33)

Proof. See Online Supporting Appendix C.

A few observations are worth highlighting. First, the tax rates tN and tP are the tax

rates at which unreported legal income z changes from zero to positive (tP when gz2 > 0)

38The technical details of this section can be found in the Online Supporting Appendix C.
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or from negative to positive (tN when gz2 < 0). These threshold tax rates and the sign

and magnitude of gz2 are crucial for characterizing individuals’ behavior and, therefore,

the optimal level of t. Of course, when gz2 = 0, tN = tP = 0. Moreover, tN and tP are

functions of p and gz2, a factor that plays a crucial role in the subsequent analysis.

Second, when gz2 > 0, individuals will never choose a negative z. A negative z

would imply over-reporting legal income, which increases both tax liability and the cost

of hiding illegal income. It follows that in this case, individuals will report at most

their entire legal income (z ⩾ 0). Specifically, when the tax rate is low enough (t < tP),

individuals report their entire legal income (z = 0). At low tax rates, the potential benefits

from evading taxes on legal income are small relative to the direct cost of misreporting

legal income and the additional cost it imposes on hiding illegal income. When the

tax rate becomes sufficiently large (t > tP), individuals will choose z > 0 (i.e., z = zP),

meaning they will underreport their legal income.

Third, when gz2 < 0, z and y2 are complements in the sense that increasing one of

them decreases the cost of concealing the other. In this case, zP > 0 is a solution to the

individual optimization problem for all 0 ⩽ t ⩽ 1. However, when 0 < t ⩽ tN, zN can

also be a solution. When this is the case, the function z exhibits a discrete jump at t = tN.

That is, z = zN ⩽ 0 for 0 ⩽ t ⩽ tN and z = zP > 0 for tN < t < 1. The behavior of z affects

other variables y1, y2, and x, impacting the welfare function, which will also show a

jump at t = tN. Thus, when determining the optimal tax rate, it’s essential to consider

that the highest welfare might be achieved at this non-differentiable point in the welfare

function.
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7.2 Optimal policy choices

In the case of the general concealment function, the analysis can get fairly complicated

when gz2 ̸= 0, because of the possibility of non-differentiability at tN and tP. Hence, we

summarize the findings about optimal policy choices here while moving the details of

the analysis to the Online Supporting Appendix C.

Optimal t for different values of p. The analysis in this case should also account for

the fact that a change in p simultaneously shifts the curves and affects the threshold tax

rates tN and tP, as explained earlier.39 The outcomes, which depend on the sign of gz2,

can be summarized as follows.

When gz2 > 0, the conclusions are qualitatively similar to the baseline case of gz2 = 0.

When gz2 < 0, the optimal tax rate may be achieved at a point in the welfare function

that is non-differentiable. For instance, consider the outcomes when the solution is given

by {y1,y2, z} = {yN1 ,yN2 , zN}.40 In this case, the optimal tax rate declines as p increases for

small values of p. The reason is that at these values of p, the optimal tax rate is t = tN and

individuals choose z = zN = 0. Since ∂tN

∂p < 0, there is a negative relationship between the

audit probability and the optimal tax rate for small values of p. As p reaches a sufficiently

large value, the audit agency’s budget constraint becomes binding. At this value of p,

the tax rate t is fully determined by the constraint F− θ(p) = 0. An increase in p beyond

this point would require the government to increase t to satisfy the constraint. Since

this implies t > tN, then individuals choose {yP1 ,yP2 , zP}. The optimal tax rate, therefore,

discretely switches from t = tN to a value of t where the slope of the welfare function is

zero. Further increases in p raise the optimal t.

39Figure C.7 in the Online Supporting Appendix C.4 shows the optimal tax rates (and associated values
of the endogenous variables) for different values of p and gz2.

40Figure C.9 in the Online Supporting Appendix C.4 compares the two solutions obtained when gz2 < 0.
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Optimal t for different values of Ψ0. We next consider how the strength of the external-

ity, Ψ0, influences the optimal tax rate and related variables. We analyze this relationship

while keeping the audit probability p constant and considering different values of gz2.

When gz2 ⩾ 0, the qualitative conclusions of the baseline model hold. However, if

gz2 < 0, the optimal tax rate may exhibit a discontinuous jump at low levels of Ψ0. For

higher values of Ψ0, the tax rate stabilizes at t = tN. Specifically, when Ψ0 is small, the

optimal tax rate exceeds tN, leading individuals to choose {yP1 ,yP2 , zP}. As Ψ0 increases,

the government reduces t, which in turn lowers y2. Once Ψ0 surpasses a critical value,

welfare is maximized at t = tN, where a discontinuity in the welfare function occurs.

This pattern persists for larger Ψ0, with the optimal tax rate remaining at tN. Moreover,

if p is set at a higher level, t still declines as Ψ0 increases, but the optimal tax rate is

higher, and the discontinuity occurs at a larger Ψ0 due to the binding budget constraint

of the audit agency.41

Optimal combination of t and p for different values of Ψ0. When the government

selects the optimal {t,p} policy combination, the variables respond similarly across all

values of gz2 to changes in Ψ0: as Ψ0 rises, t tends to decrease and p tends to increases

(at least as long the audit agency’s budget constraint does not bind.).42 Figure C.14 in

the Appendix illustrates how all variables react to changes in Ψ0.

8 Extensions
This section explores extensions to the baseline model, incorporating new dimensions

that affect the optimal tax rate and enforcement policies. We first introduce an extensive

margin decision, allowing individuals to choose whether to engage in illegal activities.

41See Online Supporting Appendix C.4 for additional details.
42The details of the analysis are explained in the Online Supporting Appendix C.4.2.
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Next, we examine how differing detection probabilities for evaded and illegal income

impact optimal policy. We then analyze the role of alternative penalty structures, show-

ing how they influence tax rates and enforcement effectiveness.

8.1 Extensive Margin

Suppose an individual decides whether to engage in illegal activities (extensive margin)

and allocates time to each activity (intensive margin).43 We model this decision using a

random utility framework. An individual who does not engage in illegal activities has

indirect utility ṽo = vo(t,p,G,Y2) + εo, where

vo(t,p,G,Y2) = max
{y1,z}

{y1 − tx+ h(ℓ) − (gz/2)z
2 − pαtz+Φ(G) −Ψ(Y2), ℓ = 1−n1}. (34)

Here, x = y1 − z and n1 = y1/w1. The solutions, denoted yo1 and zo, follow from Lemma

3 in the Online Supporting Appendix D.1.

If an individual engages in illegal activities, the corresponding solutions y1,y2, and

z come from Proposition 1, with indirect utility ṽ = v(t,p,G,Y2) + ε. The random terms

εo and ε follow independent Gumbel distributions, leading to the share of individuals

engaging in illegal activities σ =
exp(v)

exp(v)+exp(vo) . As a result, aggregate illegal activity is

given by Y2 = σy2.

Comparing the solutions in each case reveals that individuals engaged in both legal

and illegal activities allocate less time to legal production than those solely in legal work.

As a consequence, their reported legal income is also lower. In addition, individuals who

participate in illegal activities experience a higher overall utility than those who engage

solely in legal activities. The formal proof of these results is provided in the Online

Supporting Appendix D.1.

43The complete analysis and formal derivations are included in the Online Supporting Appendix D.1.
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8.2 Probability of Detection Differs by Type of Income

Previously, an increase in p allowed the government to detect both tax evasion and illegal

income. Now, suppose detection differs: evaded income is detected with probability pz

and illegal income with probability p2. Assuming gz2 = 0, individuals choose a positive

level of z, and we set αP = α. The solutions in this case are y2 =
w2(1−βp2)−(1−t)w1

g2w2
, and

z =
t(1−αpz)

gz
. Since pz affects only z and p2 influences y2, the changes in declared income

x are ∂x
∂pz

= αt
gz
> 0, and ∂x

∂p2
= βw1

g2w2
> 0. The effectiveness of pz in increasing reported

income grows with t, while p2’s effect remains unchanged. When t is low, p2 is more

effective, but for sufficiently large t, pz dominates.

We next examine how the externality strength Ψ0 affects the optimal policy mix

{t,pz,p2} under different audit cost structures: (i) independent costs (θz2 = 0) and (ii)

complementary costs (θz2 < 0). The optimal values are compared between an uncon-

strained scenario (pz ̸= p2) and a constrained scenario (pz = p2 = p). We showed earlier

that in the constrained case, the optimal audit probability increases with Ψ0. In the

unconstrained case, for scenario (i), an increase in Ψ0 leads to a decrease in pz and an

increase in p2, shifting the policy focus toward stricter monitoring of illegal income. In

case (ii), where audit costs are complementary, both pz and p2 increase with Ψ0. Notably,

when Ψ0 is low, the tax rate is lower in the unconstrained scenario than in the constrained

one, indicating that greater flexibility in audit allocation allows for reduced reliance on

taxation.44

8.3 Alternative Penalty Functions

We finally compare different penalty functions F that impose distinct penalties on mis-

reported legal income depending on whether z > 0 or z < 0: (i) αN = αP = α (baseline

44Detailed derivations are provided in the Online Supporting Appendix D.2.
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case); (ii) αN = 0, αP = α (no penalty for overreporting); (iii) αN = −α, αP = α (reward

for detected overreporting); and (iv) αN = −1, αP = α (reimbursement of overpayment).

We analyze how changes in the intensity of the negative externality Ψ0 influence the

optimal tax rate while keeping audit probability p fixed. In cases where gz2 < 0, the

alternative penalty functions become relevant since overreporting (z < 0) may occur.

These penalty structures affect both the threshold tax rate tN and the responsiveness of

z to changes in t when z < 0. Online Supporting Appendix D.3 provides detailed graphs

illustrating these relationships.

In summary, when Ψ0 is sufficiently large, penalty functions (ii), (iii), and (iv) enable

the government to impose higher tax rates than in the benchmark case (i). The ranking

of optimal tax rates follows: tN(i) < t
N
(ii) < t

N
(iv) < t

N
(iii). These alternative penalty schemes

also enhance audit agency revenue and overall welfare. The key insight is that allowing

credits for overreported income can improve welfare in cases where z < 0 occurs. While

higher tax rates lead to an increase in illegal good production (y2), the additional tax

revenue strengthens public good provision, resulting in net welfare gains.

9 Conclusions
A major contribution of this paper is to unify different related strands of the literature

on optimal income taxes, tax evasion, provision of public goods, and containment of

public “bads”. While the framework of the paper applies to any nation, the substitution

possibilities between legal income and effort expended on illicit production are espe-

cially pertinent for poorer nations with inadequate infrastructure to enforce the “rule of

law”. For example, we find that a lower audit probability encourages expansion of the

illegal sector at the expense of the legal sector and raises tax evasion. Also, at a lower

audit probability, the marginal evasion effect of a change in the income tax rate is larger,
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limiting the government’s ability to raise the income tax rate to fund the public good

adequately. Consequently, nations with poorer enforcement infrastructure are likely to

suffer from inadequate public good provision and over-provision of the public bad.

A key factor of our analysis is the strength of the negative externality of the illegal

good. The larger the strength of this negative externality, the greater the damage that the

income tax does in terms of spurring the production of the illicit good. Accordingly, our

baseline model finds a monotonic negative relationship between the constrained optimal

tax rate and the strength of the externality.

Another insight gleaned from our baseline model is the importance of coordination

between branches of the government, such that when the surplus of the audit agency can

be seamlessly transferred to the government for public good provision, the optimal tax,

the provision of the public good, and the welfare are all higher compared to a situation

where such coordination is not possible. In addition, we show that when it is possible to

optimally choose the audit probability, the inefficiencies arising out of the dual problems

of tax evasion and the illegal market are somewhat mitigated.

The extensions considered in the paper throw further light on the main findings.

Overall, the results in alternate settings align with the baseline model except for the

case of complementarities in the concealment cost function, where multiple solutions

may arise. Depending on the solution the economy is in, one obtains a negative or zero

relationship between the optimal tax rate and the strength of the negative externality

of the illegal good. Another extension considers heterogeneity among individuals who

determine their participation (extensive margin) and effort (intensive margin) in the illicit

market and finds that the income tax affects the two margins in the same direction –

preserving the qualitative messages of our baseline model.
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Finally, we note that we have had to make some limiting assumptions for focus and

tractability. For example, we do not explicitly consider some possible general equilib-

rium interactions where policies can differentially distort relative prices (evasion may be

less costly in some sectors than others) in different sectors. We have also abstracted from

consideration of the impact on corporate behavior, where tax evasion can cause compa-

nies to alter their structure or operations by setting up financial subsidiaries or operating

in tax havens. The latter consideration is critical when one considers the possibility of

footloose organizations in an international setting, where enforcement or tax policy in

one country can drive agents to another country, requiring international coordination to

achieve global allocative efficiency. Such related issues remain on our agenda for future

research.
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Technical Appendix

A Section 5 – Individual Optimization: Baseline Case
A.1 Comparative statics with respect to the tax rate
An increase in t decreases the return to the production of the legal good, incentivizing
the production of the illegal good and the underreporting of legal income. Formally, the
comparative statics for t are

∂y1
∂t

=
w21
h ′′ −

w1
w2

∂y2
∂t

< 0,
∂y2
∂t

=
w1
g2w2

> 0,
∂y1
∂t

1

w1
+
∂y2
∂t

1

w2
=
w1
h ′′ < 0, (35)

∂z

∂t
=

(1−αp)

gz
> 0,

∂x

∂t
=
∂y1
∂t

−
∂z

∂t
=
w21
h ′′ −

w21
g2w

2
2

−
(1− pα)

gz
< 0. (36)

Moreover, under the present assumptions,

εz,t ≡
∂z

∂t

t

z
= 1, εy2,t ≡

∂y2
∂t

t

y2
=

tw1
w2(1− pβ) − (1− t)w1

< 1. (37)

While y2 and z are linear in t (i.e., ∂
2y2
∂t2

= ∂2z
∂t2

= 0), for y1 and x it follows that

∂2y1
∂t2

=
∂2x

∂t2
=
w31h

′′′

(h ′′)3
. (38)

Throughout the analysis, we assume h(ℓ) ′′ < 0 and h(ℓ) ′′′ > 0.45 When this is the case,
both y1 and x are concave in t, i.e., ∂

2y1
∂t2

= ∂2x
∂t2

< 0.
For future reference, taxes collected by the government T = tx are a concave function

of t:
d2T

dt2
= 2

∂x

∂t
+ t
∂2x

∂t2
< 0. (39)

Therefore, for low values of t, ∂T∂t > 0, and for high values of t, ∂T∂t < 0. Moreover, the
penalty function F is increasing and convex in t:

dF

dt
= 2pαz+ pβ

w1
g2w2

=
2pαt(1− pα)

gz
+ pβ

w1
g2w2

> 0,
d2F

dt2
=
2pα(1− pα)

gz
> 0. (40)

This means that the government, by increasing the tax rate, can increase revenue since

45For the most frequently used functions h(ℓ), h(ℓ) ′′′ > 0. For example, when h(ℓ) = h0ℓ
h1 , h0 > 0,

0 < h1 < 1, h ′(ℓ) = h0h1ℓ
h1−1 > 0, h ′′(ℓ) = −h0h1(1 − h1)ℓ

h1−2 < 0, h ′′′(ℓ) = −(2 − h1)h
′′(ℓ)/ℓ > 0.

Similarly when h(ℓ) = h0Log(ℓ).
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the collected penalties will be higher. Finally, note that

d2T

dt2
+
d2F

dt2
= 2

∂x

∂t
+ t
∂2x

∂t2
+ 2pα

∂z

∂t
= 2

∂y1
∂t

− 2(1− pα)
∂z

∂t
+ t
∂2x

∂t2
< 0. (41)

A.2 Comparative statics with respect to the audit probability
Formally, the comparative statics for p are given by:

∂y1
∂p

=
βw1
g2w2

= −
w1
w2

∂y2
∂p

> 0,
∂y1
∂p

1

w1
+
∂y2
∂p

1

w2
= 0,

∂y1
∂p

+
∂y2
∂p

= −
β(w2 −w1)

g2w2
< 0,(42)

∂z

∂p
= −

αt

gz
< 0,

∂x

∂p
=
∂y1
∂p

−
∂z

∂p
> 0. (43)

In other words, an increase in the audit probability shifts production from illegal to
legal activities and induces individuals to report more income. Note, however, that
when w2 > w1, total production (y1 + y2) declines. Note that

εz,p ≡
∂z

∂p

p

z
=

−αp

1−αp
< 0.

Moreover,
∂2y1
∂p∂t

=
∂2y2
∂p∂t

= 0,
∂2z

∂p∂t
= −

α

gz
< 0,

∂2x

∂p∂t
= −

∂2z

∂p∂t
> 0. (44)

The audit probability does not impact the effect of the tax rate on y1 and y2. However,
it does reduce the positive impact that the tax rate has on z and the negative impact (in
absolute value) that the tax rate has on x. This means that when the audit probability is
higher, the same increase in twould have a smaller impact on the amount of misreported
income.

Finally, the tax function is linear in p,

∂T

∂p
= t

(
βgzw1 +αg2tw2

g2gzw2

)
> 0,

∂2T

∂p2
= 0,

and the function F− θ(p) is concave in p:

∂[F− θ(p)]

∂p
=

β[w2(1− 2pβ) −w1(1− t)]

g2w2
+

(1− 2pα)αt2

gz
− θ ′,

∂2[F− θ(p)]

∂p2
= −

2[β2gz + (αt)2g2]

g2gz
− θ ′′ < 0.

Specifically, when p = 0, [F− θ(p)] = 0, and ∂[F− θ(p)]/∂p > 0. Suppose θ = (θ0/2)p
2,

with θ0 > 0, and let

0 < p∗ =
αg2t

2w2 +βgz[w2 − (1− t)w1]

2w2(α2t2g2 +β2gz + θ0g2gz/2)
< 1.
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Then, when p = 2p∗, F = 0, and F reaches a maximum at p = p∗.

B Section 6 – Policy Choices
B.1 Choosing the tax rate: Analysis
Suppose the central government maximizes W ≡

∫
vdi wrt t, or W = C+H− Γ +Φ(G) −

Ψ(Y2) with respect to t, where C ≡
∫
cdi, H ≡

∫
h(ℓ)di, Γ ≡

∫
γ(z)di, Φ(G) ≡

∫
Φ(G)di,

Y2 ≡
∫
y2di, T =

∫
txdi, subject to

G = t(y1 − z) + µ[F− θ(p)], 0 ⩽ µ ⩽ 1, with F ⩾ θ(p) [λ]. (45)

Using the envelope theorem, ∂v/∂t = −(x+ Ft), where x = y1− z ⩾ 0 and Ft = pαz ⩾ 0.
The FOC for t is

∂W

∂t
≡ −(x+ Ft) +Φ

′dG

dt
−Ψ ′∂y2

∂t
+ λ

dF

dt
= 0,

= −(x+ Ft) +Φ
′
(
x+ t

∂x

∂t

)
−Ψ ′∂y2

∂t
+ (Φ ′µ+ λ)

dF

dt
= 0. (46)

The FOC can also be written as

Φ ′
(
x+ t

∂x

∂t

)
+ (Φ ′µ+ λ)

dF

dt
= (x+ Ft) +Ψ

′∂y2
∂t

,

(Φ ′ − 1)(x+ Ft) = Ψ
′∂y2
∂t

+Φ ′
(
Ft − t

∂x

∂t
− µ

dF

dt

)
− λ

dF

dt
. (47)

Suppose µ = 1, and the constraint is binding at the optimal t (λ > 0). Since in this
case F = θ(p), then the government does not receive any additional resources from the
audit agency. Therefore, the binding budget constraint F = θ(p) plays a key role in
determining t.

B.2 Discussion: How does the optimal tax rate depend on the audit

probability?
In general,

∂t

∂p
= −

∂2W/∂t∂p

∂2W/∂t2
, (48)

where ∂2W/∂t2 < 0 and

∂2W

∂t∂p
= −

(
∂x

∂p
+
dFt

dp

)
+Φ ′′dG

dp

dG

dt
+Φ ′ d

2G

dtdp
−Ψ ′′∂y2

∂p

∂y2
∂t

−Ψ ′ ∂
2y2
∂t∂p

+ λ
d2F

dtdp
. (49)
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When gz2 = 0, the following results hold:

∂2y2
∂t∂p

= 0, (50)

∂y2
∂t

∂y2
∂p

= −
βw1

g22w2
< 0, (51)

∂x

∂p
+
dFt

dp
=

∂x

∂p
+ pα

∂z

∂p
+αz =

2tα(1−αp)

gz
+
βw1
g2w2

> 0, (52)

dG

dp
=

αt2

gz
+
tβw1
g2w2

+ µ

(
dF

dp
− θ ′

)
, (53)

d2G

dtdp
=

2αt

gz
+
βw1
g2w2

+ µ

[
2tα(1− 2pα)

gz
+
βw1
g2w2

]
. (54)

Additionally, if µ = 1,

∂2W

∂t∂p
=

d2G

dtdp
−

(
∂x

∂p
+
dFt

dp

)
+Φ ′′dG

dp

dG

dt
+ (Φ ′ − 1)

d2G

dtdp
−Ψ ′′∂y2

∂p

∂y2
∂t

+ λ
d2F

dtdp
. (55)

Note that
d2G

dtdp
=

4tα(1− pα)

gz
+
2βw1
g2w2

> 0, (56)

d2G

dtdp
−

(
∂x

∂p
+
dFt

dp

)
=

2tα(1− pα)

gz
+
βw1
g2w2

> 0. (57)

Suppose λ = 0 and Φ ′ > 1. Then, all the terms in the previous expression are posi-
tive except for the third one. It follows, for example, that when Φ ′′ is relatively small,
∂2W/∂t∂p > 0, which implies that ∂t/∂p > 0. In other words, by raising p, the govern-
ment can increase the tax rate and reduce the severity of the underprovision of G, as
shown in the graphs in the text.

The impact of p on T and [F− θ(p)] considering that the optimal t depends on p can
be expressed as follows:

dT

dp
= x

∂t

∂p
+ t

(
∂x

∂t

∂t

∂p
+
∂x

∂p

)
= t

∂x

∂p
+

(
x+ t

∂x

∂t

)
∂t

∂p
,

and
d[F− θ(p)]

dp
= β

(
y2 + p

∂y2
∂p

)
+αt

(
z+ p

∂z

∂p

)
− θ ′(p)︸ ︷︷ ︸

(i)

+αpz
∂t

∂p︸ ︷︷ ︸
(ii)

.

First, the function T is concave in t. For tax rates on the efficient side of the Laffer curve
(i.e., tax rates such that x + t∂x∂t ), it follows that ∂T

∂p > 0. Second, the function F − θ(p)
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is concave in p and reaches a maximum when expression (i) is equal to zero. When p
positively affects t, however, the maximum is reached at a higher level of p, since (ii) is
positive.

B.3 Choosing the tax rate and the audit probability
Suppose the government chooses both the tax rate and the audit probability. Consider
the FOC for p. Using the envelope theorem, ∂v/∂p = −Fp, we obtain

∂W

∂p
≡ −Fp +Φ

′∂G

∂p
+ λ

(
dF

dp
− θ ′

)
−Ψ ′∂y2

∂p
= 0, (58)

= −Fp +Φ
′
[
t
∂x

∂p
+ µ

(
dF

dp
− θ ′

)]
+ λ

(
dF

dp
− θ ′

)
−Ψ ′∂y2

∂p
, (59)

= −Fp +Φ
′t
∂x

∂p
−Ψ ′∂y2

∂p
+ (Φ ′µ+ λ)

(
dF

dp
− θ ′

)
. (60)

Suppose that µ = λ = 0. Then, the optimal policy combination {t,p} satisfies

−(x+ Ft) +Φ
′ (x+ t∂x∂t )

−Fp +Φ ′t ∂x∂p
=

∂y2
∂t
∂y2
∂p

= −
w1
βw2

< 0. (61)

When µ = 1, the optimal policy combination {t,p} satisfies

−(x+ Ft) +Φ
′ (x+ t∂x∂t )−Ψ ′ ∂y2

∂t

−Fp +Φ ′t ∂x∂p −Ψ
′ ∂y2
∂p

=
dF
dt

dF
dp − θ

′ . (62)

While dF
dt > 0, the function F− θ(p) is concave in p.

B.4 Proof of Proposition 5
Proof. By differentiating the FOCs with respect to Ψ0, we obtain

∂t

∂Ψ0
= −

1

D

(
WtΨ0

Wpp −WpΨ0
Wtp

)
= −

Wpp

D

(
WtΨ0

+
∂t

∂p

∣∣∣∣
p exog.

WpΨ0

)
, (63)

∂p

∂Ψ0
= −

1

D

(
WpΨ0

Wtt −WtΨ0
Wtp

)
= −

Wtt

D

(
WpΨ0

+
∂p

∂t

∣∣∣∣
t exog.

WtΨ0

)
, (64)

where Wtt < 0, Wpp < 0, Wtp > 0 (under the conditions discussed in Section B.2),
WtΨ0

< 0, WpΨ0
> 0, and D ≡ WttWpp − (Wtp)

2 > 0. The signs of ∂t
∂Ψ0

and ∂p
∂Ψ0

depend
on the signs of the expressions within the brackets in (63) and (64), respectively (since
−Wtt

D > 0 and −
Wpp

D > 0). The first term in (63), WtΨ0
, captures the direct impact of Ψ0 on

the marginal utility of t, which is negative. The second term captures the indirect effect
on t through the impact of Ψ0 on p. The expression WpΨ0

describes the effect of a change
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in Ψ0 on the marginal utility of p, which is positive, and ∂t
∂p

∣∣∣
p exog.

the impact of a change in

p on t when p is assumed exogenously determined, which is positive when Wtp > 0, as
described in expression (22). When the first term, the direct effect, dominates the second
term, the indirect effects, ∂t

∂Ψ0
is negative. A similar reasoning applies to ∂p

∂Ψ0
.
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C Section 7 – General Concealment Function
C.1 Proof of Proposition 6
Proof. In general, the FOCs at an interior solution for y1, z and y2 are given by:

y1 : (1− t) − h ′

w1
= 0 ⇒ w1(1− t) = h

′, (1)

z < 0 : (1+ pα)t− gzz+ gz2y2 = 0 ⇒ gzz = (1+ pα)t+ gz2y2,

z = 0 :
(1+ pα)t+ gz2y2 > 0

(1− pα)t− gz2y2 < 0
⇒

(1+ pα)t > −gz2y2

(1− pα)t < gz2y2
,

z > 0 : (1− pα)t− gzz− gz2y2 = 0 ⇒ gzz = (1− pα)t− gz2y2,

(2)

and

y2 :


z < 0 : (1− pβ− g2y2 + gz2z) −

h ′

w2
= 0 ⇒ w2(1− pβ− g2y2 + gz2z) = w1(1− t),

z = 0 : (1− pβ− g2y2) −
h ′

w2
= 0 ⇒ w2(1− pβ− g2y2) = w1(1− t),

z > 0 : (1− pβ− g2y2 − gz2z) −
h ′

w2
= 0 ⇒ w2(1− pβ− g2y2 − gz2z) = w1(1− t).

(3)

As before, once we obtained y2, the FOC w1(1− t) = h ′(ℓ) determines y1, given that ℓ =
1−(n1+n2), and n1+n2 = y1/w1+y2/w2. This means that y1 = 1−h′−1[w1(1− t)]− w1

w2
y2.

The solutions are obtained as follows. Suppose that z < 0. Then, using the first
equation of (2) and the first equation of (3) we solve for {y2, z} = {yN2 , zN}. Suppose that
an individual chooses z > 0. Then, using the third equation of (2) and the third equation
of (3), we can solve for {y2, z} = {yP2 , zP}. Finally, suppose that z = 0. Then, using the
second equation of (2) and the second equation of (3), we obtain the solution {y2, z} =
{y02, 0}.
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The Hessian matrix (when z is positive or negative) is

H =


h ′′/w21 h ′′/w1w2 0

h ′′/w1w2 h ′′/w22 − g2 −sign(z)gz2

0 −sign(z)gz2 −gz

 , (4)

and the SOCs for a maximum satisfy |H1| < 0, |H2| > 0, and |H| ≡ h ′′(gzg2 − g
2
z2)/w

2
1 < 0.

Throughout the analysis, we assume (1− pβ)w2 > w1 > 0, which implies that y2 > 0
for all t.

The solutions depend on the threshold tax rates tN and tP. First, tN is the tax rate
at which zN = 0, and tP is the tax rate at which zP = 0. Different cases arise depending
on the gz2 value. If gz2 = 0, tN = tP = 0. When gz2 > 0, tP > 0 (and tN < 0), and when
gz2 < 0, tN > 0 (and tN < 0).

Consider some preliminary analysis:

• Note that all variables are linear in t. This means that the behavior of zN and zP

with respect to t can be characterized by their intercepts at t = 0 and their slopes,
∂zN

∂t and ∂zN

∂t .46

• When gz2 > 0:

▶ zN(0) > 0 and ∂zN

∂t > 0. This means that zN < 0 can never be a solution.

▶ zP(0) < 0. Therefore, a sufficient condition for zP > 0 to be a solution is ∂zP

∂t > 0

and this happens when (1−αp)g2w2 − gz2w1 > 0. In this case, zP > 0 holds for
t > tP.

▶ In sum, given that γ(y2, z) is strictly convex (i.e., gzg2 > g2z2), we need (1 −

αp)g2w2 − gz2w1 > 0 when gz2>0 so that zP > 0 could be a solution. If gz2 > 0,
zP would be negative at low values of t (for instance, at t = 0), which means
that zP cannot be a solution. Hence, ∂z

P

∂t > 0 is needed for zP to be positive at
a sufficiently high value of t (specifically t > tP).

• When gz2 < 0

46Note that zN(0) =
gz2[(1−βp)w2−w1]

(gzg2−g2
z2)w2

, ∂zN

∂t =
g2w2(1+αp)+gz2w1

w2(gzg2−g2
z2)

, and zP(0) = −gz2[(1−βp)w2−w1]

(gzg2−g2
z2)w2

, ∂zP

∂t =

g2w2(1−αp)−gz2w1

w2(gzg2−g2
z2)

. It follows that zN(0) + zP(0) = 0.

2

PUBLIC/OFFICIAL RELEASE // EXTERNAL



▶ zN(0) < 0. Therefore, a sufficient condition for zN < 0 to be a solution is
∂zN

∂t > 0. This happens when (1+ αp)g2w2 + gz2w1 > 0. In this case, zN < 0

holds for 0 ⩽ t < tP.

▶ zP(0) > 0 and ∂zP

∂t > 0. This means that zP > 0 can be a solution for t > 0.

▶ zN < 0 when t = 0, so zN can be a solution. The slope ∂zN

∂t determines how
zN changes when t changes, and the sign of this slope depends on the sign of
(1+αp)g2w2+gz2w1. In other words, for tN > 0 to exist when gz2 < 0, we need
(1+αp)g2w2 + gz2w1 > 0.

▶ The condition (1 + αp)g2w2 + gz2w1 > 0 holds when g2 > −gz2 since (1 +

αp)w2 > w1 is always true. If the direct cost of increasing y2 is greater than or
equal to the direct cost of increasing z, i.e., g2 ⩾ gz, then (1+αp)g2w2+gz2w1 >

0, since gzg2 > g2z2 (by strict convexity of γ(z,y2)).

Note that when t = 0, yN = yP. This is not true for z. Suppose t = 0 and gz2 > 0,
then zN cannot be a solution since zN < 0. Suppose gz2 < 0, then zN < 0 and zP can be a
solution at t = 0.

While the solutions depend on several parameters, the sign of gz2 is key.
Case (1): gz2 = 0. Shown before.
Case (2): gz2 > 0.
If gz2 > 0, then z < 0 cannot be a solution. From (2), note that if z < 0, then gzz =

(1+ pα)t+ gz2y2. However, when gz2 > 0, it follows from this last equation that z > 0,
which is a contradiction. This means that when gz2 > 0, either z = 0 or z > 0.

If gz2 > 0 and t > tP, then z > 0. For z > 0 to be a solution, we need gzz = (1− pα)t−

gz2y2 > 0, or z = [(1− pα)t− gz2y2]/gz > 0 (since gz2 > 0, (1− pα) > 0 ). Moreover, for
zP > 0, we need t > tP.

If gz2 > 0 and 0 < t ⩽ tP, then z = 0. When t = 0, 0 > −gz2y2 and 0 < gz2y2, so that z = 0.
If t > 0, (1+ pα)t > −gz2y2 always holds, but (1− pα)t < gz2y2 only holds for sufficiently
low levels of t. Specifically, since when z = 0, y2 = y02 = [w2(1− pβ) −w1(1− t)]/(g2w2),
it follows that (1− pα)t < gz2y2 ⇔ t ⩽ tP.47

Case (3): gz2 < 0.

47Note that if gz2 > 0, then tN < 0. For tP > 0, we need (1−αp)g2w2 > gz2w1.
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When gz2 < 0, tN > 0 (and tP < 0). In this case, zN and zP can be solutions for specific
values of t. Specifically, if t < tN, z = zN < 0 or z = zP > 0. At t = 0, zN =

gz2[(1−βp)w2−w1]

w2(gzg2−g
2
z2)

<

0 and zP =
−gz2[(1−βp)w2−w1]

w2(gzg2−g
2
z2)

> 0. For this to happen, (1−βp)w2 −w1 > 0.

Since ∂zN

∂t > 0, z
N increases with higher values of t and zN = 0 at t = tN. Also, zP > 0

for t > 0. When t ⩾ tN, zN ⩾ 0, so zN cannot be a solution.
When t = tN, zN = 0, and zP =

−2g2gz2[(1−βp)w2−w1]

(g2gz−g
2
z2)(gzw1+(1+αp)gz2w2)

> 0, so at tN z jumps from 0

to zP.

Remarks
A few observations are worth highlighting. First, the tax rates tN and tP are the tax rates
at which unreported legal income z changes from zero to positive (tP when gz2 > 0) or
from negative to positive (tN when gz2 < 0). These threshold tax rates and the sign and
magnitude of gz2 are crucial for characterizing individuals’ behavior and, therefore, the
optimal level of t. Of course, when gz2 = 0, tN = tP = 0.48 Figure C.1 shows how tN and
tP depend on gz2: when |gz2| increases, both tN and tP increase.

48When gz2 > 0, for zP > 0 to be a solution, we need (1− αp)g2w2 − gz2w1 > 0. If this condition is
satisfied, tP is positive and ∂zP

∂t > 0. Note that when t = 0, zP < 0, which cannot happen. This means that
for zP > 0, the slope ∂zP

∂t needs to be positive. If this is the case, the line zP crosses the horizontal axis at
t = tP < 1, and zP > 0 for t > tP (as long as tP < 1). Intuitively, an increase in t directly increases the
marginal utility of z by (1−pα) > 0. An increase in z raises the marginal cost of hiding illegal income. The
increase in t also directly increases the marginal utility of y2 by w1

w2
> 0. A higher y2 also entails a higher

marginal cost of hiding y2. Since gz2 > 0, then a higher level of z (respectively, y2) increases further the
marginal cost of hiding y2 (respectively z). When (1− αp)g2w2 − gz2w1 > 0 the benefits of increasing z
as a result of the increase in t dominate the direct and indirect costs of hiding z and y2. When gz2 < 0,
for tN > 0, the condition (1+ αp)g2w2 + gz2w1 > 0 needs to hold. Note that when gz2 < 0, if t = 0, then
zN < 0. When the condition (1+αp)g2w2 + gz2w1 > 0 is satisfied, ∂zN

∂t > 0, and when t = tN (considering
that 0 ⩽ tN < 1), zN would be zero. A similar intuition as in the case gz2 holds in this case as well.
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Figure C.1: tN and tP as a function of gz2, for different values of p.

Second, the figure also shows that changes in p also affect tN and tP. In general, ∂t
N

∂p

and ∂tP

∂p cannot be unambiguously signed. However, note that ∂tN

∂gz2
< 0 and ∂2tN

∂gz2∂p
> 0

evaluated at gz2 = 0 , which means the function tN rotates counterclockwise around
gz2 = 0. It follows then that a higher p reduces tN. When gz2 > 0, ∂tP

∂gz2
> 0 and the sign

of ∂2tP

∂gz2∂p
evaluated at gz2 = 0 is the same as the sign of the expression (α− β)w2 − αw1.

Therefore, when α and β do not differ too much from each other, ∂2tP

∂gz2∂p

∣∣∣
gz2=0

will tend to

be negative, which means the function tP rotates clockwise around gz2 = 0. As a result,
an increase in p reduces tP. Figure C.1 illustrates precisely this latter situation.

Third, when gz2 > 0, individuals will never choose a negative z. A negative z would
imply over-reporting legal income, which increases both tax liability and the cost of
hiding illegal income. It follows that in this case, individuals will report at most their
entire legal income (z ⩾ 0). Specifically, when the tax rate is low enough (t < tP),
individuals report their entire legal income (z = 0). At low tax rates, the potential benefits
from evading taxes on legal income are small relative to the direct cost of misreporting
legal income and the additional cost it imposes on hiding illegal income. When the
tax rate becomes sufficiently large (t > tP), individuals will choose z > 0 (i.e., z = zP),
meaning they will underreport their legal income.

Fourth, when gz2 < 0, z and y2 are complements in the sense that increasing one of
them decreases the cost of concealing the other. In this case, zP > 0 is a solution to the
individual optimization problem for all 0 ⩽ t ⩽ 1. However, when 0 < t ⩽ tN, zN can also
be a solution. Here, the function z exhibits a discrete jump at t = tN. That is, z = zN ⩽ 0

for 0 ⩽ t ⩽ tN and z = zP > 0 for tN < t < 1. The behavior of z affects other variables y1,
y2, and x, impacting the welfare function, which will also show a jump at t = tN. Thus,
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when determining the optimal tax rate, it’s essential to consider that the highest welfare
might be achieved at this non-differentiable point in the welfare function.

C.2 Comparative static analysis
How are individuals’ choices affected by changes in t and p? The impact of changes in
t and p on {y1,y2, x, z} and welfare is more complicated in the present case, particularly
because the functions may become nondifferentiable at tN and tP, depending on the
specific assumption on gz2.
Comparative static analysis for t. The comparative static results in this case are given
by

∂yN2
∂t

=
[gzw1 + (1+αp)gz2w2]

(g2gz − g
2
z2)w2

,
∂zN

∂t
=

[gz2w1 + (1+αp)g2w2]

(g2gz − g
2
z2)w2

, (5)

∂yP2
∂t

=
gzw1 − (1−αp)gz2w2

(g2gz − g
2
z2)w2

,
∂zP

∂t
=

(1−αp)g2w2 − gz2w1

(g2gz − g
2
z2)w2

, (6)

∂y02
∂t

=
w1
g2w2

> 0. (7)

Moreover,

g2
∂yP2
∂t

+ gz2
∂zP

∂t
=
w1
w2

> 0, g2
∂yN2
∂t

− gz2
∂zN

∂t
=
w1
w2

> 0. (8)

This means that, in each case, if one of the slopes is positive (negative), the other has to
be negative (positive). In all cases,

∂y1
∂t

1

w1
+
∂y2
∂t

1

w2
=
w21
h ′′ < 0, (9)

or equivalently ∂(n1+n2)
∂t < 0, so the overall amount of work (in either legal or illegal

activities) goes down as t increases.
Under the assumptions stated in Proposition 6, both zN and zP increase as t increases,

i.e., ∂z
N

∂t > 0 and ∂zP

∂t > 0 for t > tN and t > tP, respectively. In general, however, the signs

of ∂y
N
2
∂t and ∂yP2

∂t depend on gz2.

If gz2 > 0, then ∂yN2
∂t > 0 and the sign of ∂yP2

∂t is ambiguous.49 However, it follows that

when gz2 is sufficiently small, i.e., 0 < gz2 < gzw1
(1−αp)w2

, ∂y
P
2
∂t ⩾ 0. Otherwise, ∂y

P
2
∂t ⩾ 0. Note

that when gz2 > 0, z is zero for t ⩽ tP, which means that a higher level of t within that
range does not affect z.

49If gz2 > 0, then ∂yN
2

∂t > 0, but yN2 cannot is not a solution in this case.
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If gz2 < 0, then ∂yP2
∂t > 0, and the sign of ∂yN2

∂t is ambiguous. When |gz2| is sufficiently

large, specifically, −gz2 > gzw1
(1+αp)w2

, then ∂yN2
∂t < 0. Otherwise, ∂y

N
2
∂t ⩾ 0.

The following example illustrates the previous results. Figure C.2 shows the solution
values of z, y1, y2, x and W for different tax rates t and values of gz2. The figure considers
the two solutions that may arise when gz2 < 0. The column on the left shows the results
when {z,y2} = {zN,yN2 }, and the column on the right when {z,y2} = {zP,yP2 }. The threshold
tax rates tN and tP affect how the variables respond to changes in t. In all cases, it is
assumed that |gz2| is small enough so that ∂y2∂t > 0.
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Figure C.2: Solutions {z,y1,y2, x,W} for different tax rates t and several values of gz2.
Note: The two columns show the two different solutions that arise when gz2 < 0. The column on the left

shows the solutions when z = zN for t < tN, and the right shows the solutions when z = zP for t < tN.
The vertical lines represent the values of tN and tP (tN = 0.14 and tP = 0.20 in this exercise).

A relevant consideration for determining the optimal value of t is that when gz2 < 0
and the solution is {y1,y2, z} = {yN1 ,yN2 , zN}, the maximum welfare could be reached at
t = tN, a non-differentiable point on the welfare function.
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Comparative static analysis for p. The comparative static results for p are as follows:
∂y1
∂p

= −
w1
w2

∂y2
∂p

,

∂y2
∂p

=
(tαgz2 −βgz)

(g2gz − g
2
z2)

,
∂y02
∂p

= −
β

g2
< 0,

∂zN

∂p
= −

∂zP

∂p
=

(tαg2 −βgz2)

(g2gz − g
2
z2)

,

∂xN

∂p
=

−αt(gz2w1 + g2w2) +β(gzw1 + gz2w2)

w2(g2gz − g
2
z2)

,

∂xP

∂p
=

−αt(gz2w1 − g2w2) +β(gzw1 − gz2w2)

w2(g2gz − g
2
z2)

,

∂x0

∂p
=
w1β

w2g2
> 0.

In general, it follows that when gz2 < 0, ∂y1
∂p > 0 and ∂y2

∂p < 0, for both solutions yN2
and yP2 . Moreover, ∂zN

∂p > 0, ∂zP

∂p < 0. This means that while ∂xP

∂p > 0, the sign of ∂xN

∂p

is ambiguous. However, when gz2 > 0, the signs of all the derivatives are ambiguous.
Specifically, the sign of ∂zP

∂p is given by the sign of (βgz2 − tαg2). When gz2 is sufficiently
large, then ∂zP

∂p > 0 for all t. When gz2 is small, the sign also depends on t: if t is small,
∂zP

∂p > 0, and if t is large, ∂z
P

∂p < 0.
Combining changes in t and p. It follows that

∂2y1
∂p∂t

= −
w1
w2

∂2y2
∂p∂t

, (10)

∂2y2
∂p∂t

=
αgz2

(g2gz − g
2
z2)

,
∂2y02
∂p∂t

= 0, (11)

∂2zN

∂p∂t
= −

∂2zP

∂p∂t
=

αg2

(g2gz − g
2
z2)

> 0, (12)

∂2xN

∂p∂t
=

−α(gz2w1 + g2w2)

w2(g2gz − g
2
z2)

,
∂2xP

∂p∂t
=

−α(gz2w1 − g2w2)

w2(g2gz − g
2
z2)

,
∂2x0

∂p∂t
= 0. (13)

In terms of cross-partial derivatives, it follows that ∂
2zP

∂p∂t < 0 for all gz2. The other results
depend on the sign of gz2.

When gz2 < 0, ∂2zN

∂p∂t > 0, ∂2y1
∂p∂t > 0, and ∂2y2

∂p∂t < 0. As a result, the sign of ∂2xN

∂p∂t is
ambiguous. However, since ∂2zP

∂p∂t < 0,
∂2xP

∂p∂t > 0.

When gz2 > 0, ∂2y1
∂p∂t < 0 and ∂2y2

∂p∂t > 0. Since ∂2zN

∂p∂t > 0, ∂2xN

∂p∂t < 0. However, since
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∂2zP

∂p∂t < 0, the sign of ∂
2xP

∂p∂t is ambiguous.
Note that changes in p also affect the threshold values tN and tP. For instance,

suppose that gz2 > 0. Then, given that ∂2zP

∂p∂t < 0, the curve z(t) rotates clockwise, and tP

declines.
Combinations of {t,p} for given values of z and y2. As we did previously, we exam-
ine how different combinations of (t,p) can be used to achieve fixed levels of z and y2.
Understanding this relationship is crucial when considering scenarios where the gov-
ernment can set both t and p. The relationship between t and p along z̄ and ȳ2 may be
defined by correspondences rather than functions, depending on gz2.

Suppose that gz2 > 0. In this case, individuals chose z ⩾ 0. A given level of z̄ > 0 can
be attained with different combinations of (t,p). Consider the solution for zP shown in
(32). Then the slope of the relationship between p and t for which zP(t,p) = z̄ > 0, i.e.,
p = p(t), is given by

∂p

∂t

∣∣∣∣
zP=z̄

=
−[(1−αp)g2w2 − gz2w1]

(βgz2 −αtg2)w2
. (14)

Similarly, for y2(t,p) = ȳ2,
∂p

∂t

∣∣∣∣
yP2=ȳ2

=
gzw1 − (1−αp)gz2w2

(βgz −αtgz2)w2
. (15)

In both cases, the slopes can be either negative or positive depending on the magnitudes
of gz2 and t.

Since (1−αp)g2w2 > gz2w1 for all gz2 (which implies that ∂z
P

∂t > 0), the sign of ∂p
∂t

∣∣∣
zP=z̄

depends on the sign of (βgz2−αtg2). When t is sufficiently low, specifically, t < βgz
αgz2

, the
slope is negative; when t > βgz

αgz2
, the slope changes to positive.

Moreover, when ∂yP2
∂t > 0, the numerator of ∂p

∂t

∣∣∣
yP2=ȳ2

is positive. This means that when

t is sufficiently low, specifically, t < βgz
αgz2

, the slope is positive; when t > βgz
αgz2

, the slope is

negative. The opposite outcomes are obtained when ∂yP2
∂t < 0, which tends to occur when

gz2 is large.
Additionally, when gz2 > 0, z can also be zero. In particular, z = 0 for all combinations

{t,p} that satisfy {t > 0,p > 0, t ⩽ tP(p)}. Moreover, in this case ∂p
∂t

∣∣∣
yP2=ȳ2

= w1
βw2

, the same

expression as in (23).
Figure C.3 shows two possible outcomes that may arise in this case.
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Figure C.3: gz2 > 0: z(t,p) = z.

The graph on the left shows a case in which gz2 is relatively small. For low values of
t, ∂p

∂t

∣∣∣
zP=z̄

< 0, so t and p are “substitutes”. When t is large enough, the slope becomes
positive, so they are “complements”.50 The graph on the right shows a case in which gz2
is relatively large. For the relevant values of t, t and p are “substitutes”, or ∂p

∂t

∣∣∣
zP=z̄

< 0.51

This means that an increase in t increases z, so p needs to go down to reach the original
level of z. The figures also describe the set {t,p} for which there is no tax evasion or z = 0
(the gray area).

Things are more complicated when gz2 < 0, since z can be either negative, zero, or
positive, and multiple solutions may be observed. For z > 0, using gz2 < 0 in expressions
(14) and (15), it follows that ∂p

∂t

∣∣∣
zP=z̄

> 0 and ∂p
∂t

∣∣∣
yP2=ȳ2

> 0.

For z < 0:
∂p

∂t

∣∣∣∣
zN=z̄<0

=
gz2w1 + (1+ pα)g2w2

(βgz2 −αtg2)w2
< 0,

∂p

∂t

∣∣∣∣
yN2 =ȳ2

=
gzw1 + (1+αp)gz2w2

(βgz2 −αtg2)w2
. (16)

Since (1+ αp)g2w2 + gz2w1 > 0, then ∂p
∂t

∣∣∣
zN=z̄

< 0. The sign of ∂p
∂t

∣∣∣
yN2 =ȳ2

depends on the

sign of ∂y
N
2
∂t : if ∂y

N
2
∂t > 0(< 0), then ∂p

∂t

∣∣∣
yN2 =ȳ2

< 0(> 0).

The graphs in Figure C.4 show the relationship z(t,p) = z for gz2 < 0. The graph on
the left shows the case in which z = zN when t ⩽ tN, and the graph on the right shows
the case in which z = zP when t ⩽ tN.

50Specifically, this happens when t > βgz2
αg2

, as shown in the Online Supporting Appendix C.2.
51For instance, if β ⩾ α and g2 ⩾ gz2, the t would need to be greater than one for the slope to change

sign.
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Figure C.4: gz2 < 0: z(t,p) = z.
LEFT: z = zN when t < tN. RIGHT: z = zP when t < tN.

When z > 0, t and p are complements. This means that an increase in t requires an
increase in p to maintain the same level of z̄ (in other words, ∂p

∂t

∣∣∣
zP=z̄

> 0). However,
when z̄ < 0 (as depicted in the left-hand graph), t and p have an inverse relationship.
Numerical example. The following graphs illustrate some of the comparative static re-
sults discussed previously. Figure C.5 shows the solutions z, y1, y2, x and W for different
tax rates t, audit probabilities p, and values of gz2. The first column shows the solutions
for gz2 > 0. The second column considers the two solutions that may arise when gz2 < 0.
The solid lines describe the outcomes when {z,y2} = {zN,yN2 }, and the dotted lines the
outcomes when {z,y2} = {zP,yP2 }. The threshold tax rates tN and tP, which depend on
p, affect how the variables respond to changes in t. All cases assume that |gz2| is small
enough so that ∂y2∂t > 0.
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gz2 > 0: low gz2 > 0: high gz2 < 0
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Figure C.5: Solutions {z,y1,y2, x,W} for different tax rates t and different values of p.
Note: The first and second columns show the solutions for different values of gz2 > 0. The third column

presents the two different solutions for gz2 < 0: the solid lines are the solutions when {y1,y2, z} =
{yN1 ,yN2 , zN} for t < tN; the dotted lines are solutions when {y1,y2, z} = {yP1 ,yP2 , zP} for t < tN. The vertical

lines represent the values of tN and tP in each case.

The following observations are worth noting. First, a change in p simultaneously
affects the threshold values tP and tN and shifts the curves y1,y2, z, x and W. Suppose
that gz2 > 0. Then, an increase in p decreases tP and the slope ∂zP

∂t .52 Consider the two
cases for gz2 > 0 (first and second columns of Figure C.5). When gz2 > 0 is small (first

52Recall that from the comparative static analysis ∂2zP

∂t∂p < 0.
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column of Figure C.5), the curve zP rotates at a low tax rate; when gz2 is sufficiently large
second columns of Figure C.5), such rotation occurs at a high tax rate. Note that to the
extent that t < tP, z = 0, a change in p does not affect z. While, in general, the signs of
∂yP1
∂p and ∂yP2

∂p are ambiguous, when βgz > 0αgz2,
∂yP2
∂p < 0 and ∂yP1

∂p > 0.53 As a result, a
higher p shifts y1 upwards and y2 downwards (in both the first and second columns).
The graph also shows that ∂2W

∂t∂p > 0, implying that the tax rate t that maximizes W is
higher when p is larger.

Second, the behavior of the variables as t changes is particularly striking when gz2 < 0
and {y1,y2, z} = {yN1 ,yN2 , zN} (solids lines in the third column of Figure C.5). All variables
exhibit a discrete jump at t = tN, including W. Such behavior is relevant when deter-
mining the optimal value of t since the maximum welfare may be reached at t = tN, a
non-differentiable point on the welfare function. Also, welfare is higher compared to the
case in which {y1,y2, z} = {yP1 ,yP2 , zP} (dotted lines) when t < tN, and they coincide, of
course, when t ⩾ tN. The tax rate at which welfare is maximized may change abruptly
for a sufficiently large p. When p is small, the optimal t equals tN, a point where W is
non-differentiable. An increase in p (in the graph, from p = 0.01 to p = 0.05) reduces tN

so the peak of W is reached at a lower tax rate. When p is increased further (in the graph,
from p = 0.05 to p = 0.10), the optimal t is larger than tN, and it is implicitly determined
by the FOC ∂W

∂t = 0. From here onward, a higher p leads to a higher optimal t.

C.3 Comment on multiple solutions/local optima
Suppose that gz2 < 0. For given values of G and Y2, the individual’s utility evaluated
at {y1,y2, z} = {yP1 ,yP2 , zP} is greater than or equal to the individual’s utility evaluated at
{yN1 ,yN2 , zN} when 0 ⩽ t ⩽ tN, or uP ≡ u(yP1 ,yP2 , zP) ⩾ u(yN1 ,yN2 , zN) ≡ uN for 0 ⩽ t ⩽ tN.
Recall that when t > tN, the solution is always z = zP. First, note that uN = uP when
t = 0 or t = tN. Second,

∣∣∣∂uN∂t ∣∣∣ > ∣∣∣∂uP∂t ∣∣∣ at t = 0. This means that uP ⩾ uN for 0 ⩽ t ⩽ tN.
However, when we include the effects of t on both G and Ψ(Y0), then welfare becomes

larger when the solution is {yN1 ,yN2 , zN}, or WN ≡ W(GN, YN2 ) > W(GP, YP2 ) ≡ WP for
0 ⩽ t ⩽ tN. These results are illustrated in Figure C.6.54

53This is the case shown in the figure.
54Consider as well the comparison of welfare levels between the two solutions in Figures C.9 or C.12.
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Figure C.6: Consumption (TOP LEFT), welfare (TOP RIGHT), audit agency’s budget constraint
(BOTTOM LEFT), marginal utility of the consumption of the public good (BOTTOM RIGHT) as a

function of t when gz2 = −0.75.
The vertical line shows tN = 0.13. The black solid lines show consumption and welfare as a function of t

when {y1,y2, z} = {yN1 ,yN2 , zN}, and the dashed red line when {y1,y2, z} = {yP1 ,yP2 , zP}.
Note: The figures use Ψ0 = 0.40, p = 0.05.

The graph on the top left compares consumption levels, excluding Φ(G) and Ψ(Y2).
The graph on the top right compares overall welfare levels. The difference WN −WP > 0

when 0 < t < tN is explained by the fact that yN1 > yP1 , yN2 < yP2 , zN < 0 < zP, so
xN > xP. Overall, when {yN1 ,yN2 , zN}, the negative externality is smaller and taxes collected
(T = tx) are higher. The audit agency’s budget constraint contributes a smaller amount
of resources in this case, but to the extent that those contributions are not large (which
is the case shown in the graph), the level of G will also be larger when {yN1 ,yN2 , zN}.

C.4 Optimal policy choices
In the case of the general concealment function, the analysis can get fairly complicated
when gz2 ̸= 0, because of the possibility of non-differentiability at tN and tP. We begin by
examining how the optimal t depends on different variables, including the audit prob-
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ability p, the magnitude of the negative externality Ψ0 generated by the production of
illegal goods, and the sign of gz2. We next consider how the optimal policy combination
{t,p} is affected by Ψ0 gz2.
C.4.1 Choosing the tax rate
Solutions for different values of p. How does the optimal tax rate t depend on p? As
previously discussed, the analysis is more complicated because p simultaneously shifts
the curves and affects the threshold tax rates tN and tP. Figure C.7 below depicts the
impact of changes in p on the relevant variables.
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Figure C.7: Optimal values of t,y1,y2, z, and x, and the resulting levels of Welfare, [F− θ(p)] and Φ ′(G),
as a function p, for different values of gz2.

Note: In all cases Ψ0 = 0.40. When gz2 < 0, the figure only shows the solution for the case in which
z = zN when t < tN.

From the exercise, we can conclude the following. First, when gz2 is positive, the
conclusions are similar to those previously discussed for the case where gz2 equals zero.
Specifically, t increases gradually as p rises. Higher values of p allow the government to
raise the provision of the public good G. Also, welfare increases with p up to a certain
point and declines thereafter.

Second, when gz2 < 0, two key factors need to be taken into consideration: (i) we
should account for the possibility that the optimal tax rate may be achieved at a point
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in the welfare function that is non-differentiable; (ii) two types of solutions may arise
in this case when t < tN: (i) {yN1 ,yN2 , zN} or (ii) {yP1 ,yP2 , zP}. Figure C.7 focuses on case
(i).55 The graph shows that t declines as p increases when p is small. The reason is that
at those values of p, the tax rate chosen by the government is t = tN and zN = 0. Since
∂tN

∂p < 0, when p increase, tN goes down. As p continues to rise, it reaches a value p∗ such
that WN[tN(p∗),p∗] = maxt>tN(p∗)W

P[t,p∗], where WN denotes welfare when individuals
choose {yN1 ,yN2 , zN} and WP welfare when individuals choose {yP1 ,yP2 , zP}. A marginal
increase in p at this point triggers a discontinuous jump to an optimal tax rate t > tN.
Increases in p beyond this point tend to increase the optimal tax rate.

Specifically, figure C.7 shows that when p is about 0.07, the maximum welfare value
switches from t = tN to another in which t is the solution to ∂W

∂t = 0. To the extent
that ∂t

∂p > 0, the optimal tax rate increases when p increases further (in the figure, this
happens for values of p greater than 0.07). Figure C.8 highlights precisely this argument.
When p = 0.08, 0.09, 0.10, 0.11, welfare is maximized at t = tN; when p = 0.12, 0.13, 0.14,
welfare is maximized at a tax rate at which ∂WP

∂t = 0.
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t
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1.06
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Welfare
gz2 = -0.75
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Figure C.8: Welfare as a function of t for different values of p ∈ [0.08, 0.14] and gz2 = −0.75.
Note: The red dots indicate the maximum W for each value of p. The figures use Ψ0 = 0.33.

Figure C.9 compares how the two solutions obtained when gz2 < 0, cases (i) and (ii),
change as p increases.

55Figure C.9 compares cases (i) and (ii).
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Figure C.9: Solutions for different values of p when gz2 = −0.75.
Note: The figures use Ψ0 = 0.40.

The welfare in case (i), WN (when the solution is {yN1 ,yN2 , zN}), is always greater than
or equal to the welfare in case (ii), WP (when the solution is {yP1 ,yP2 , zP}). The result is
explained mostly by the fact that the tax rate is substantially lower, leading to a higher
level of y1 and a lower level of yN2 . Note, however, that the level of underprovision of G
in this case is much higher.
Solutions for different values of Ψ0. We now examine the relationship between the
strength of the externality Ψ0, the optimal tax rate, and the variables of interest. Through-
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out the exercise, we keep the audit probability p constant while examining solutions for
various values of gz2. Figure C.10 summarizes the results.
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Figure C.10: Solutions for different values of Ψ0, gz2 = {−0.75, 0.00, 1.00}, and p = 0.0675.
The figures consider the {yN1 ,yN2 , zN} for t ⩽ tN = 0.14. The dotted vertical lines shows Ψ0 = 1− w1

w2
= 1

3 .

If gz2 is non-negative, the conclusions of the baseline model are qualitatively retained.
As explained earlier, when gz2 = 0, z > 0, and the optimal value of t smoothly declines as
Ψ0 increases since ∂t

∂Ψ0
< 0. This means that when the negative externality gets stronger,

the government chooses a lower t, which reduces y2. Figure C.11a illustrates how the
maximum welfare changes when Ψ0 increases from 0.00 to 0.14 and gz2 = 1.00. Note that
in all cases, the highest welfare is reached at t > tP = 0.23 (shown as the dashed vertical
line in the graph).
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tN = 0.12. Solution with zN for t ⩽ tN.
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(c) gz2 = −0.75. The dotted line shows the tax rate
tN = 0.12. Solution with zP for t ⩽ tN.

Figure C.11:
Welfare as a function of t for different values of Ψ0 and gz2 = −0.75, 1.00.

Note: As Ψ0 increases, the welfare function shifts downwards. The red dots indicate the maximum at
each value of Ψ0. The figures use p = 0.0675.

Next, suppose that gz2 < 0. Recall that in this case, multiple solutions may arise
when 0 < t < tN: case (i) {yN1 ,yN2 , zN}, and case (ii) {yP1 ,yP2 , zP}. Figure C.10 focuses on
case (i). In this scenario, the optimal t exhibits a jump at Ψ0 = 0.078. When Ψ0 is small
(in figure, Ψ0 < 0.078), the optimal tax rate is greater than tN, so individuals choose
{yP1 ,yP2 , zP}. Recall that this is a point where the optimal tax rate satisfies ∂WP

∂t = 0, and, as
shown earlier, ∂t

∂Ψ0
< 0. This means that when the negative externality gets stronger, the

government chooses a lower t, which reduces y2.
When Ψ0 exceeds 0.078, the optimal tax rate jumps to tN = 0.12 and is constant

thereafter. Figure C.11b describes how this happens. As soon as Ψ0 becomes greater
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than 0.078, welfare is now maximized at t = tN = 0.12, a tax rate where the welfare
function exhibits a discontinuity. This result continues to hold for larger values of Ψ0:
welfare declines as Ψ0 increases but the maximum is still reached at t = tN. Therefore,
the optimal tax rate remains constant at t = tN for larger levels of Ψ0.56

Figure C.12 replicates the graphs shown in Figure C.10 and compares the two solu-
tions that may arise when gz2 < 0.

56If p is fixed at a higher level, t still declines as Ψ0 increases, though the optimal t is higher. In this
scenario, the discontinuity of the optimal t function (and other variables) occurs at a higher Ψ0, likely due
to a binding audit agency’s budget constraint.
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Figure C.12: Solutions for different Ψ0, gz2 = −0.75, and p = 0.0675.
The graphs compare the outcomes at the two solutions that may arise when gz2 < 0 and t ⩽ tN:

{yN1 ,yN2 , zN} (in blue) and {yP1 ,yP2 , zP} (in red).

Consider case (ii). In this scenario, all the variables behave smoothly as Ψ0 changes.
The maximum welfare is reached at a tax rate that satisfies ∂WP

∂t = 0, where WP is the wel-
fare when the solution is {yP1 ,yP2 , zP}, and ∂t

∂Ψ0
< 0. Note that when Ψ0 is small, the optimal

tax rate is greater than tN, so the solutions in cases (i) and (ii) coincide. As Ψ0 becomes
sufficiently large, the optimal tax rate continues to decline smoothly when {yP1 ,yP2 , zP},
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but it discretely declines to t = tN when {yN1 ,yN2 , zN}. In the latter case, the optimal tax
rate remains at t = tN as Ψ0 continues rising. Finally, note that the two solutions can
be ranked in terms of their respective welfare levels: welfare when individuals choose
{yN1 ,yN2 , zN}, WN, is greater than welfare when individuals choose {yN1 ,yN2 , zN}, WP, for
optimal tax rates that satisfy 0 < t ⩽ tN.
C.4.2 Choosing both the tax rate and the audit probability
We now allow the government to choose the {t,p} policy combination. Using a numerical
example, we examine how this choice depends on Ψ0 for the general concealment func-
tion considered in this section. Specifically, we obtain the solutions for different values
of gz2 < 0 (when {y1,y2, z} = {yN1 ,yN2 , zN}) and compare them to the case gz2 = 0.

Using a numerical example, we examine how this choice depends on Ψ0 for the
general concealment function considered in this section. Specifically, we obtain the solu-
tions for positive and negative values of gz2 and compare them to the case gz2 = 0. When
gz2 < 0, we consider only one solution since the {t,p} policy combinations in the different
scenarios are such that t > tN.

Figures C.13a and C.13b below show the combinations of {t,p} that maximize welfare
for values of Ψ0 ranging from 0 to 1 and different values of gz2. Figure C.13c describes
the impact of those choices on the audit agency’s budget constraint.
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Figure C.13: Policy combinations {t,p} for different values of Ψ0 and gz2.

In all cases, p increases and t decreases as the intensity of the externality Ψ0 rises,
at least when the audit agency’s budget constraint is not binding. If gz2 > 0, at the
optimal combination of t and p, z > 0 since t > tP. If gz2 < 0, z = 0 at the optimal
policy combination since t = tN. When Ψ0 is sufficiently large, the audit agency’s budget
constraint F− θ(p) begins to bind.

Figure C.14 shows the outcomes for all relevant variables as a function of Ψ0.
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Figure C.14: Solutions as a function of Ψ0.
The dashed vertical line is given by Ψ0 =

(w2−w1)
w2

.

Qualitatively, the variables exhibit similar behavior for all values of gz2: as Φ0 in-
creases, t declines, and p increases. As a result, z declines and y2 declines, and y1 and x
increases. For a sufficiently large Ψ0, given that t becomes small and p large, the audit
agency’s budget constraint, [F− θ(p)] starts to bind.

Comparing the two solutions when gz2 < 0, welfare is always higher if individuals
choose {yN1 ,yN2 , zN} as opposed to {yP1 ,yP2 , zP}. The optimal audit probability is lower in
the former than in the latter case. The optimal tax rate when the solution is {yN1 ,yN2 , zN}
is always reached at t = tN; it is lower in this case compared to the case {yP1 ,yP2 , zP} when
Ψ0 is small and higher when Ψ0 is large. Overall, yN1 > yP1 , yN2 < yP2 and zN = 0 < zP.
This translates into a larger amount of reported income (xN > xP). Even though the audit
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agency may contribute fewer resources to the provision of the public good (this happens
when Ψ0 is not too large), it follows that GN > GP.
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D Extensions
D.1 Section 8.1 – Extensive Margin
Suppose an individual has to decide whether to engage in illegal activities (extensive
margin) and choose the amount of time for each activity (intensive margin).57 We for-
malize this decision through a random utility model.
D.1.1 Individuals who do not participate in illegal activities
Consider the decision of an individual who does not participate in illegal activities (y2 =
0):

max
{y1,z}

y1 − t(y1 − z) + h(ℓ) − pαt|z|− gzz
2/2+Φ(G) −Ψ(Y2), (17)

where x = y1 − z, ℓ = 1−n1, and n1 = y1/w1. In this case, unreported income z = y1 − x.
The solutions, denoted yo1 ≡ yo1(t,p) and, zo ≡ zo(t,p) =

t(1−pα)
gz

> 0, are derived in the
Lemma 3 below.

Lemma 3. The solutions of problem (17), denoted yo1 and zo, are (implicitly) given by (1− t)w1 =

h ′(ℓo), ℓo = 1−no1 and z = t(1−pα)
gz

> 0.

Proof. The FOCs for y1 and z are

y1 : (1− t) − h ′/w1 ⩽ 0, (18)

z :


t+ pαt− gzz = 0, if z < 0,
t− gzz = 0, if z = 0,
t− pαt− gzz = 0, if z > 0.

(19)

At an interior solution for y1, (1− t)w1 = h ′, so y1 is independent of α and p. Moreover,
z = t(1− pα)/gz > 0 since all the other cases cannot hold.

The indirect utility is given by ṽo = vo(t,p,G,Y2) + εo.
D.1.2 Individuals who participate in legal and illegal activities
Suppose that an individual also participates in illegal activities. In that case, the solutions
are given by y1 ≡ y1(t,p) y2 ≡ y2(t,p) and z ≡ z(t,p), derived in the proposition 1

57We still assume gz2 = 0, but the analysis can be extended for cases in which gz2 is different from zero.
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Individuals who participate in both legal and illegal activities solve

max
{y1,y2,z}

y1 + y2 − t(y1 − z) + h(ℓ) − p(αt|z|+βy2) − (gzz
2/2+ g2y

2
2/2) +Φ(G) −Ψ(Y2), (20)

ℓ = 1− y1/w1 − y2/w2, (21)

where we assumed gz2 = 0 and αP = α. We have already shown that in this case,
z = y1 − x > 0. The FOCs for y1, y2 and z (at an interior solution) are

y1 : (1− t) − h ′/w1 = 0, (22)

y2 : 1− h ′/w2 − pβ− g2y2 = 0 (23)

z : t− pαt− gzz = 0. (24)

This means that z = t(1−pα)
gz

and

(1− t)w1 = (1− pβ− g2y2)w2 ⇒ y2 =
[(1− pβ)w2 − (1− t)w1]

g2w2
. (25)

For an interior solution, we need (1− pβ)w2 ⩾ (1− t)w1 for all 0 ⩽ t ⩽ 1. The solutions
are given by y1 ≡ y1(t,p) y2 ≡ y2(t,p) and z ≡ z(t,p) (similar to those derived from
proposition 1). The indirect utility function is in this case v(t,p,G,Y2).
D.1.3 Comparing the solutions
The following proposition compares the solutions.

Proposition 7. When gz2 = 0, no1 = n1+n2, y
o
1 = y1+

(
w1
w2

)
y2, y2 > 0, zo = z, xo = x+ w1

w2
y2,

and v− vo =
[(1−pβ)w2−(1−t)w1]

2

2g2w
2
2

. If (1− pβ)w2 > w1, then y1 < yo1 < y1 + y2, xo > x, and
v > vo.

Proof. First, note that w1(1 − t) = h ′(ℓo) and w1(1 − t) = h ′(ℓ), so that ℓo = ℓ, or no1 =

n1 + n2. Second, the latter implies that (1− yo1/w1) = (1− y1/w1 − y2/w2), then yo1/w1 =
y1/w1+y2/w2. As a result, yo1 = y1+y2− [(w2−w1)/w2]y2, or yo1 = y1+ (w1/w2)y2. Since
(1 − pβ)w2 > w1 implies that w2 > w1, then y1 < yo1 < y1 + y2. Third, the solutions
with and without illegal income are the same and equal zo = z =

t(1−pα)
gz

> 0. Fourth,
yo1 − z

o = y1 + (w1/w2)y2 − z, or xo = x+ (w1/w2)y2, which implies xo > x. Substituting
the solutions in the respective utility functions and calculating the difference give v− vo.
This difference only depends on y2 since zo − z = 0 and yo1 − y1 =

w1
w2
y2 > 0.

It follows from the proposition that if (1− pβ)w2 > w1, then: (i) The production of
legal activities by those who engage in both legal and illegal activities is less than the
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legal production of those who engage only in legal activities, which is still less than the
total production from both legal and illegal activities (y1 < yo1 < y1 + y2); (ii) Individuals
who engage only in legal activities report more legal income than those who participate
in both legal and illegal activities (xo > x); and (iii) Individuals who engage in both legal
and illegal activities experience higher indirect utility than those who participate only in
legal activities (v > vo).
D.1.4 Extensive margin
An individual who only participates in legal activities is ṽo = vo(t,p,G,Y2) + εo and
the utility of someone that participates in both types of activities is ṽ = v(t,p,G,Y2) +
ε, where v(t,p,G,Y2) is the indirect utility function. The first term is a deterministic
component given by the indirect utility functions defined earlier. The terms εo and
ε are random components that vary across individuals (we suppress the subscripts to
simplify notation). The variables capture the individual’s idiosyncratic preferences for
participating (or not) in illegal activities. We assume that ε and εo are independent
Gumbel-distributed random variables.58

Given the assumptions on εo and ε, the share of individuals engaged in illicit activities
becomes

σ =
exp(v)

exp(v) + exp(vo)
,

so (1− σ) represents the share of those who decide not to participate in illegal activities.
As a result Y2 = σy2.
D.1.5 Comparative statics
How does the share of those participating in illegal activities σ change as t and p change?
This is relevant because the aggregate production of illicit activities is given by Y2 = σy2,
so changes in t affect both the extensive margin (σ) and the intensive margin y2. It
follows, as stated in the following proposition, that both margins tend to move in the
same direction when either t or p changes.

Proposition 8. An increase in t raises both the time allocated to illegal activities and the number
of individuals engaged in those activities. An increase in p has the opposite effect on both the
intensive and extensive margins.

58For convenience, we assume the Gumbel distributions have identical location and scale parameters.
In particular, the location parameter equals 0, and the scale parameter equals 1. These assumptions do not
affect our subsequent analysis in any substantial way.
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Proof. Note that
∂σ

∂t
= σ(1− σ)

(
∂v

∂t
−
∂vo

∂t

)
⇒ ∂σ

∂t
= σ(1− σ)y2

w1
w2

> 0. (26)

We showed earlier (equation (9)) that ∂y2
∂t > 0. This means that both the extensive (σ)

and the intensive (y2) margins move in the same direction when t increases so that
∂Y2
∂t = ∂σ

∂ty2 +
∂y2
∂t σ > 0. A similar argument can be used to show that ∂σ

∂p < 0,
∂y2
∂p < 0, so

∂Y2
∂p < 0.

D.1.6 Optimal tax rate
The government chooses the tax rate t that maximizes

vE = E [max{ṽ, ṽo}] = log [exp(v) + exp(vo)] + γ, subject to T + F ⩾ G,

where59

T = t[(1− σ)xo + σx] = tx+ t
w1
w2

(1− σ)y2,

F = ptα[(1− σ)zo + σz] + pβσy2 = ptαz+ pβY2. (27)

The FOC is
∂vE

∂t
≡ σ

∂vo

∂t
+ (1− σ)

∂v

∂t
= 0 ⇒ ∂v

∂t
− σ

(
∂v

∂t
−
∂vo

∂t

)
= 0. (28)

Since
(
∂v
∂t −

∂vo

∂t

)
= w1

w2
y2 > 0, then the FOC satisfies

∂v

∂t
=
w1
w2
σy2. (29)

59γ is the Euler-Mascheroni constant.
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D.2 Section 8.2 – Probability of Detection Differs by Type of income
So far, an increase in p allows the government to detect tax evasion and income generated
from illegal activities. Suppose now that the detection technology is such that evaded
income is detected with probability pz and illegal income is detected with probability
p2. Moreover, to simplify the analysis, suppose that gz2 = 0, so that individuals choose a
positive level of z (we also use αP = α). In this case,

y2 =
w2(1−βp2) − (1− t)w1

g2w2
, z =

t(1−αpz)

gz
, (30)

and y1 is implicitly defined by (1− t)w1 = h
′(1−w1/y1 −w2/y2). Note that since pz does

not affect y2, it does not affect y1 either, so ∂x/∂pz = −∂z/∂pz. Additionally, p2 does not
have an impact on z, but it does affect y2, and consequently, y1, so ∂x/∂p2 = ∂y1/∂p2 =

−w1(∂y2/∂p2)/w2. This means that

∂x

∂pz
=
αt

gz
> 0,

∂x

∂p2
=
βw1
g2w2

> 0,
∂2x

∂t∂pz
=
α

gz
> 0,

∂2x

∂t∂p2
= 0. (31)

The effectiveness of pz in terms of its ability to incentivize higher levels of reported
income x rises as the tax rate increases. However, the effectiveness of p2 does not depend
on t. When t is low (specifically, t < βgzw1

αg2w2
), p2 is more effective (i.e., ∂x/∂pz < ∂x/∂p2).

But if t is sufficiently large, then pz becomes more effective. The relative cost of each
detection technology, captured by the function θ(pz,p2), will also matter when deciding
the combination of pz and p2 that maximizes welfare.
D.2.1 Optimal policy combination of {t,pz,p2} for different levels of Ψ0
We showed earlier that if p = pz = p2 and t is fixed, the optimal audit probability p

increases as the strength of the externality gets larger, i.e., ∂p
∂Ψ0

> 0. This outcome is
partly due to the pooling of audit resources. How do the results vary if the audit agency
can separately oversee tax evasion and participation in illegal activities?

To examine how the strength of the externality Ψ0 affects the optimal policy com-
bination {t, pz, p2}, we consider two scenarios with different costs for providing audit
probabilities pz and p2: (i) θz2 = 0 and (ii) θz2 < 0. In case (i), the cost of providing
pz is independent of the cost of providing p2; in case (ii), pz and p2 are complements.
The graphs below compare the optimal values of {t,pz,p2} in the unconstrained case,
i.e., when pz and p2 are not necessarily equal, to the corresponding solutions in the
“constrained” case, i.e., when pz = p2 = p.
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Figure D.15:
LEFT: Case (i): θz2 = 0. RIGHT: Case (ii): θz2 = −2/3.

Note: The subindex “u” denotes the “unconstrained” case in which pz may differ from p2; the subindex
“c” denotes the “constrained” case in which pz = p2 = p.

The dashed black line in the graphs shows the optimal audit probability p. As ex-
plained earlier, p increases as Ψ0 increases. In case (i), where the cost of providing audit
probabilities pz and p2 is independent, an increase in Ψ0 decreases pz and increases p2,
and reduces t. This indicates that as the negative externality becomes stronger, the opti-
mal policy shifts resources from the detection of tax evasion to the monitoring of illegal
activities. In case (ii), when Ψ0 increases, both pz and p2 increase. The increase in pz

as Ψ0 gets larger is explained by the fact that higher levels of pz reduce the cost of pro-
viding p2. In both cases, the tax rates in the “unconstrained” scenario are lower than in
the “constrained” scenario for low values of Ψ0. It is important to note, however, that
when tu and tc are graphed individually (not shown in the graphs above), both tax rates
decline as Ψ0 rises.
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D.3 Section 8.3 – Alternative Penalty Functions
This section compares different functions F that penalize misreported legal income dif-
ferently depending on whether z > 0 or z < 0:

(i) αN = αP = α (the same F that we have used in the analysis thus far);

(ii) αN = 0, αP = α (no punishment for overreporting);

(iii) αN = −α, αP = α (reward for detected overreporting); and

(iv) αN = −1, αP = α (reimbursement of overpayment).

The subsequent analysis examines how changes in the intensity of the negative ex-
ternality affect the optimal tax rate, keeping the audit probability p fixed. The analysis
focuses on the case gz2 < 0 with {y1,y2, z} = {yN1 ,yN2 , zN} when t ⩽ tN. As shown earlier,
z ⩾ 0 when gz2 ⩾ 0, which means that the alternative penalty functions are relevant only
when gz2 < 0. Recall that in this case, z could be negative: there are two solutions, one
of which is z = zN ⩽ 0. Also, different values of α used in the penalty function F affect
the threshold tax rate tN, the value of t at which z = 0, and the slope ∂z

∂t when z < 0.
How does the optimal tax rate t depend on the specific penalty function? The fol-

lowing graphs summarize the results. Welfare levels and the audit agency’s budget con-
straint F− θ(p) are expressed relative to the corresponding outcomes in the benchmark
case (i) (αN = αP = α).
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Figure D.16: Optimal tax rates, illegal activities, welfare, and audit agency’s budget constraint for
different penalty functions.

All the variables are expressed relative to the benchmark case (i) (αN = αP = α = 1.1). In all cases,
p = 0.0675, gz2 = −0.75, and {yN1 ,yN2 , zN} for t ⩽ tN. The dashed vertical lines is at Ψ0 = 1− w1

w2
= 1

3 .

When Ψ0 is sufficiently large, penalty functions that use (ii) αN = 0, αP = α, (iii)
−αN = αP = α, (iii) −αN = 1,αP = α, give the government the ability to impose higher
tax rates than in the benchmark case (i). In this case, the optimal tax rates are reached at
t = tN:

tN(i) =
−gz2[(1− pβ)w2 −w1]

(1+αp)g2w2 + gz2w1
, tN(ii) =

−gz2[(1− pβ)w2 −w1]

g2w2 + gz2w1
,

tN(iii) =
−gz2[(1− pβ)w2 −w1]

(1−αp)g2w2 + gz2w1
, tN(iv) =

−gz2[(1− pβ)w2 −w1]

(1− p)g2w2 + gz2w1
.

Moreover, these tax rates can be ranked as follows: tN(i) < tN(ii) < tN(iv) < tN(iii), with the
highest tax rate chosen in case (iii).

The alternative penalty functions also allow the audit agency to collect higher (net)
revenue and attain higher levels of welfare. While the differences between cases (iii) and
(iv) are minor, the exercise shows that it still pays off to return αN > 1 when the individ-
ual overpaid. Note, however, that the alternative penalty functions induce individuals
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to choose a higher level of the illegal good y2.60

The main takeaway from this exercise is that in scenarios where individuals may
overreport legal income (i.e., in situations where z < 0 is a possible outcome), the imple-
mentation of a penalty scheme that credits taxpayers when they overpay could improve
welfare. While such a penalty function allows the government to impose higher tax rates,
which eventually leads to higher levels of the illegal good y2, the amount of resources
devoted to finance the provision of the public good rises, and overall welfare increases.

60For large enough Ψ0, the highest welfare is reached at t = tN in all cases (i) through (iv).
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