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Abstract

Cross-sectional data have proven to be increasingly useful for macroeconomic
research. However, their use often leads to the ‘missing intercept’ problem in
which aggregate general equilibrium effects and policy responses are absorbed
into fixed effects. We present a statistical approach to jointly estimate aggregate
and idiosyncratic effects within a panel framework, leveraging identification
strategies coming from both cross-sectional or time-series settings. We then
apply our methodology to study government spending multipliers (Nakamura
and Steinsson, 2014) and wealth effects from stock returns (Chodorow-Reich
et al., 2021).
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1 Introduction

Macroeconomic research increasingly relies on panel datasets encompassing heteroge-
neous regions, households, or firms. The cross-sectional variation in these datasets
allows researchers to apply microeconometric tools to credibly identify the effects of
policies or shocks. Those studies often derive their identification from differencing
out confounding aggregate variation that is common across observational units.

However, as is well recognized, the flip side of eliminating common sources of
variation through differencing or time-fixed effects is that these methods can only
uncover the idiosyncratic or local effects of policy changes net of those aggregate
effects.1 Therefore, those tools are inadequate to answer directly questions about
aggregate effects of policies. A typical response in the literature is to use estimates
based on cross-sectional variation to calibrate fully specified dynamic equilibrium
models. While informative, such strategies provide estimates of aggregate effects that
depend on the specifics of the structural model.

We propose a methodology that combines microeconometric methods that provide
identification at the idiosyncratic level with flexible time-series methods that estimate
aggregate effects without imposing strong cross-equation restrictions. In particular,
we incorporate estimates of local effects obtained from cross-sectional data into a
time series model that jointly describes the evolution of aggregate and local economic
outcomes. In effect, we unify the time-series and cross-sectional approaches to
identification, allowing for the simultaneous use of variation in both dimensions to
sharpen estimates. Furthermore, our approach makes it possible to combine the
microeconometric approach with identification assumptions more commonly used in
the time series literature, such as zero, sign and magnitude restrictions (Christiano
et al., 1999; Uhlig, 2005; Canova and Nicolo, 2002; Faust, 1998; Amir-Ahmadi and
Drautzburg, 2021; Baumeister and Hamilton, 2015) on the impact of shocks, as well
as instruments for aggregate shocks (Mertens and Ravn, 2013; Plagborg-Møller and
Wolf, 2021).2

1See Moll (2021) for an influential exposition of the problem.
2Such time-series based approaches to the identification of structural shocks have been used to

study cross-sectional effects by Chang et al. (2024); Chang and Schorfheide (2024), who directly
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As an example, consider the following stylized description of the estimation of
fiscal multipliers from cross-state variation, as in Nakamura and Steinsson (2014).
Suppose that it is known that national government spending shocks increase local
spending by more in Virginia than in Wisconsin by a known amount. By comparing
the response of the two states to aggregate government spending fluctuations, one can
therefore estimate the regional impact of government spending shocks. This method
differences out confounding aggregate effects while yielding estimates of the local
government spending multiplier. However, it does not provide per se an estimate of
the economy-wide, or aggregate, multiplier.

We develop a method to estimate the aggregate multiplier using the same iden-
tification assumptions employed in those studies. The only additional assumptions
required are standard in macroeconomic models and the time series literature: (i) that
fundamental structural shocks are uncorrelated and (ii) that the comovement across
units in the panel data are well captured by a factor model, with, in the example, one
of the factors representing an aggregate government spending shock. Identification
is then possible because the assumptions and estimates used for the cross-section
constrain the local effects of the aggregate policy shock. Within the example, a
government spending shock increases local government spending in Virginia by a
certain amount more than in Wisconsin. Also, it increases relative output in these
two regions proportionately by the amount implied by the estimated local multiplier.
Thus, observation of such comovement in the data provides information about the
shock path. As in VAR-IV models, knowledge of the effects of a shock on different
time series provides enough information to identify its trajectory. This identified
aggregate shock then provides the exogenous variation required to infer the aggregate
output multiplier. As a bonus, this same aggregate shock also helps to refine estimates
of local effects, allowing for a richer degree of heterogeneity in effects than may have
been originally possible.

From a technical standpoint, the method leverages the dimensionality reduction
afforded by factor models. Those well-established models are designed to best

model the cross-sectional distribution of interest, and Gertler and Gilchrist (2019), who take a panel
approach.
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summarize the comovement in large data sets using a relatively small number of
latent variables. By imposing this flexible, yet parsimonious structure, the factor
framework enables us to identify a large number of objects from a relatively small
number of constraints.

In practice, we perform the estimation within a single Bayesian model. In
particular, we follow Baumeister and Hamilton (2015) and impose microeconomic
identification restrictions as “soft” priors. This allows us to (i) incorporate without
strictly imposing identifying assumptions from the applied micro literature; (ii)
estimate local and aggregate effects jointly rather than sequentially, ensuring consistent
and efficient use of all available information; and (iii) use priors for the purpose of
regularization (for example, the use of a Minnesota-type prior for coefficients in our
time series model (Doan et al., 1984)).

We apply the method to two prominent studies: Nakamura and Steinsson’s (2014)
analysis of fiscal multipliers across U.S. states and Chodorow-Reich et al.’s (2021)
estimates of the effect of stock market wealth on local economies. One key difference
between the two studies is in the size of the dataset used. Nakamura and Steinsson
(2014) use annual data at the state level, whereas Chodorow-Reich et al. (2021) uses
quarterly frequency data at the county level. For the first application, we find that,
while the methodology provides a sharp estimate of the fiscal shock, it provides
relatively little information on the aggregate multiplier. In contrast, when using the
richer data in Chodorow-Reich et al. (2021), we find large and significant effects of
stock market wealth on aggregate employment and the wage bill.

Our paper is related but distinct from previous work on the missing intercept
problem in Wolf (2023), which provides results under which micro-based local effects
can be added to a macro/time-series-based estimate of the aggregate or general
equilibrium effect to arrive at the total effect at the local level. We instead leverage
micro-based estimates to jointly estimate aggregate and total local effects.

Sarto (2024) also leverages regional data to uncover aggregate effects, exploiting,
as we do, a factor structure in the data, and then combines this factor structure with
exclusion restrictions to achieve identification. Our approach is complementary in that,
rather than imposing exclusion restrictions, it directly leverages microeconometric
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estimates and connects those results to the large literature on identification in Vector
Autoregressions (VARs) and the time-series literature more generally. As we discuss in
more detail, one can combine both identification schemes in our toolkit. Furthermore,
by taking a Bayesian approach, we can express uncertainty about the different schemes,
for example, using restrictions along the lines of Sarto (2024), to center non-degenerate
priors, incorporating his identification assumptions in a flexible way.

Although the missing intercept problem is distinct from other econometric issues
related to cross-sectional multipliers discussed by Canova (2022), our approach is
general enough to not fall victim to the issues discussed in that paper (i.e., we allow
for heterogeneity across cross-sectional units). More broadly, the idea of exploiting
variation at various levels of aggregation to identify effects at the aggregate level
has recently become more popular - Gabaix and Koijen (2023) show how to exploit
variability in large cross-sectional units to derive instrumental variables. Baumeister
and Hamilton (2023) extend this idea to VAR settings. Our approach can exploit
information found in Bartik-type instruments and, as such, builds on the growing
literature studying these instruments (Bartik, 1991; Goldsmith-Pinkham et al., 2020;
Borusyak et al., 2021).

The remainder of the article is structured as follows: Section 2 describes a stylized
model economy to show how microeconometric studies deliver estimates of local
effects and how they can be used to estimate aggregate effects. Section 3 provides
a general statement of the assumptions and methodology used. It also provides a
general proposition describing how full identification of local and aggregate effects
can be obtained from a small number of linear restrictions. We use this general
characterization to discuss linkages with previous work. Section 4 lays out in detail
the general time series model that we use to take advantage of local effects to identify
aggregate effects. Sections 5 and 6 provide two applications of our approach, building
on Nakamura and Steinsson (2014) and Chodorow-Reich et al. (2021), respectively.
Section 7 concludes. The online appendix includes Monte Carlo evidence on the
performance of our approach, details of the estimation procedure, and robustness
exercises for the applications.
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2 Identification and the Missing Intercept: an Ex-

ample

To set the stage, we consider the estimation of the fiscal multiplier in a New Key-
nesian model with I regions in a monetary union indexed i ∈ {1, ..., I}. Using this
example, we describe how cross-sectional and time series variation can be exploited
simultaneously for identification. We assume for simplicity that regions are not linked
through trade, so that all spillovers between regions take place only through monetary
policy. The example is purposefully stylized, and the main insights in this section
generalize readily to other environments.

In the example, there are two driving forces: government spending (denoted by
gi,t) and household discount-rate shocks (ξi,t). Household discount-rate shocks capture
several sources of household demand fluctuations, such as wealth shocks, risk, or
sentiment about the future.3 The objective is to estimate the effect of government
spending on output. Within the model, the identification challenge emerges because
government spending may be deployed to counteract the economic effects of household
discount-rate shocks.

We lay out the model in detail in Appendix A and present here the linearized
rational-expectations solution with iid shocks (so that all forward-looking terms drop
out):4

3SeeWerning (2015) for the theoretical underpinnings of household discount-rate fluctuations.
4The model does not have lagged-dependent variables, so that in rational expectations equilibrium

all variables can be expressed solely in terms of the exogenous shocks. If shocks are iid with mean
zero, forward looking terms will also have mean zero.
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πi,t = κ

(
η
ỹi,t
yi

+ σ
c̃i,t
ci

)
, ∀i ∈ {1, ..., I} (1)

c̃i,t
ci

= ξ̃i,t −
1

σ
rt, ∀i ∈ {1, ..., I} (2)

ỹi,t = c̃i,t + g̃i,t, ∀i ∈ {1, ..., I} (3)

rt = ϕ
∑
i

1

I
πi,t (4)

where πi,t is inflation in location i at time t, yi,t is output, ci,t is consumption, and
rt is the nominal interest rate, common to all locations. The parameters η and
σ are, respectively, the reciprocals of the Frisch elasticity of labor supply and the
intertemporal elasticity of substitution, κ is a function of underlying “deep” parameters
such as the frequency of price adjustment, and ϕ is a parameter governing monetary
policy. Steady-state values are denoted by omitting the time-subscript t and tildes
denote the deviation from the steady-state value, so that ỹi,t = yi,t − yi, etc.

The first and second equations are the regional versions of the Phillips Curve
and consumption Euler equations. They are exactly as in the canonical 3-equation
New Keynesian models, except that forward-looking terms are omitted due to iid
shocks, and the Euler equation is augmented with the discount-rate shock. The third
equation represents the local resource constraints under the assumption that there
is no trade between regions. The last equation is the Taylor rule for the national
monetary authority. Since regions belong to a monetary union, the interest rate is
common for all locations.

Given sticky prices, local output is determined by local demand, given by the
right-hand side of the local resource constraint (3). Therefore, it depends on local
government spending g̃i,t and, through consumption, on the discount rate shock ξ̃i,t

and the national interest rate rt. The national interest rate, in turn, depends on
national inflation, which increases with national output and consumption through
aggregation of the Phillips curves (1).
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Bringing those elements together yields an expression for local output as a function
of local and aggregate government spending and discount rates:

ỹi,t
yi

= mlocal︸ ︷︷ ︸
=1

g̃i,t
yi

− θG
G̃t

Y
+ c̄

(
ξ̃i,t − θΞΞ̃t

)
, (5)

where G̃t =
∑

i g̃i,t is aggregate government spending expressed in deviation from
steady-state, Y is the steady-state value of aggregate output, Ξ̃t =

1
I

∑
i ξ̃i,t is the

average discount-rate, mlocal is the local multiplier, and θG and θΞ both lie between 0
and 1.5

While local output depends on local government spending directly, it also depends
on aggregate government spending indirectly through its impact on the interest rate.
The multiplier of local government spending, mlocal, is equal to 1.

Fixing local government spending, local output declines with aggregate government
spending. This is because, as aggregate government spending increases, interest rates
also increase, reducing local consumption and output.

To obtain the response of aggregate output to aggregate government spending,
multiply both sides of (5) by yi, add them up across i, and divide by Y :

Ỹt

Y
= magg︸︷︷︸

=(1−θG) ∈ [0,1]

G̃t

Y
+ c̄(1− θΞ)Ξ̃t, (6)

where magg is the aggregate government spending multiplier. It follows that this
spending multiplier is positive but smaller than 1. The aggregate multiplier incorpo-
rates the positive direct effects of local government spending on local output and the
negative general equilibrium effect through interest rates.

To close the model, it remains to describe the stochastic properties of the terms
g̃i,t and ξ̃i,t. In particular, local discount rates have aggregate and idiosyncratic
components

ξ̃i,t = γiη
Ξ
t + ϵξi,t

5Chodorow-Reich (2019, 2020) present environments in which the estimated local equilibrium
effects can be interpreted as bounds on the aggregate or general equilibrium effects.
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where ηΞt is an iid aggregate shock that affects all regions and ϵξi,t are local iid shocks
with mean zero. For simplicity, we assume that a “law of large numbers”, so that∑

1
I
ϵξi,t = 0and we normalize

∑
1
I
γi = 1. Then it follows that the aggregate discount

rate Ξ̃t varies with the exogenous aggregate shock ηΞt , Ξ̃t = ηΞt

Local and aggregate government spending have a similar structure, but also
respond to discount shocks:

G̃t

Y
= −αηΞt + ηGt ,

g̃i,t
yi

= βi
G̃t

Y
− αϵξi,t + ϵgi,t, (7)

where now aggregation also requires 1
I

∑
βi = 1 and, the “law of large numbers”∑

i
1
I
ϵgi,t = 0.

Equation (7) indicates that aggregate government spending leans against aggregate
demand shocks ηΞt at the rate α, and is otherwise subject to exogenous fluctuations
from aggregate shocks ηGt . The second equation indicates a similar leaning of lo-
cal government spending against local demand shocks, ϵξi,t while also allowing for
exogenous fluctuations ϵgit. Furthermore, local government expenditures gi,t are a
function of aggregate expenditures G̃t. Thus, for example, a geopolitical shock ηGt

that increases aggregate government expenditure G̃t has a local effect given by βiη
G
t .

2.1 Estimating Multipliers

With the framework in hand, we can describe different methods for estimating the
fiscal multipliers mlocal and magg, and the conditions under which they are valid.

Time series approach The more traditional approach uses time series of the
aggregate variables to estimate magg in equation (6). From inspection, it is clear why
equation (6) cannot normally be estimated simply by an OLS regression of Ỹt/Y on
G̃t/Y : the residual term c̄(1 − θ)Ξ̃t = c̄(1 − θ)ηξt correlates with the independent
variable through the feedback rule in (7). In other words, government spending reacts
to offset aggregate demand shocks that move consumption, so that a regression of
output on government spending understates the multiplier.
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As discussed in detail in Nakamura and Steinsson (2018a), the time series literature
takes two main approaches to identification. One is to impose restrictions on the
contemporaneous impact of shocks on aggregate variables to separate ηGt from ηξt .
For example, when using a Cholesky decomposition in a VAR, the researcher may
assume that ηξt does not affect G̃t contemporaneously (α = 0).

Assumption 1: TS-OLS E
[
G̃t

Y
( Ỹt

Y
−magg G̃t

Y
)
]
= 0,

where E is the expected value over all time periods t. The second approach is to search
for instruments that correlate with ηGt but not ηξt . For example, when estimating fiscal
multipliers, military spending provides a popular source of exogenous variation. That
is, given an instrument Zt correlated with G̃t/Y , the time series approach requires

Assumption 2: TS-IV E
[
Zt(

Ỹt

Y
−magg G̃t

Y
)
]
= 0.

As with any instrumental variable approach, the main difficulty is that such
instruments may be contentious. For example, as Nakamura and Steinsson (2018a)
point out, military spending may not be a valid instrument if geopolitical shocks
simultaneously affect military spending and output through channels unrelated to
government spending. In our example, geopolitical uncertainty could manifest itself
as a household discount rate shock that would reduce output, biasing the IV estimates
downward.

Cross-sectional approach A second approach is to leverage cross-sectional varia-
tion. In particular, in the context of the fiscal multiplier, Nakamura and Steinsson
(2014) use state-level variation to obtain the local effect of government spending
shocks. The focus on the cross-section allows one to control for common sources
of variation through the use of time fixed-effects. For our example, subtracting the
aggregate Ỹt equation (6) from the local ỹi,t equation (5), the estimating equation
becomes

∆
ỹi,t
yi

= mlocal∆
g̃i,t
yi

+ c̄∆ξ̃i,t, (8)
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where we use ∆ to denote the difference between local and aggregate variables, so
that ∆

ỹi,t
yi

=
ỹi,t
yi

− Ỹt

Y
and so on.

Taking out time-effects is helpful if the aggregate discount rate shock ηξt affects
demand in all regions similarly (γi = 1 ∀i). The differencing of aggregate variables
eliminates the confounding variation in ηξt from equation (5). To see this most clearly,
write the regressor ∆g̃i,t/yi and the error term ∆ξ̃i,t in equation (8) as a function of
shocks:

∆
g̃i,t
yi

= (βi − 1)ηGt − (βi − 1)αηξt − αϵξi,t + ϵGi,t

∆ξ̃i,t = (γi − 1)ηξt + ϵξi,t

With γi = 1, ηξt drops from the residual ∆ξ̃i,t, eliminating a source of correlation
with the regressor ∆ g̃i,t

yi
. OLS is still biased, though, if local fiscal authorities react to

local discount rate shocks (α ̸= 0), in which case the local discount-rate shock εξi,t
will lead to co-movement in ∆

g̃i,t
yi

and ∆ξ̃i,t.
To handle endogeneity resulting from local shocks, the cross-sectional approach

often relies on a “shift-share” instrument, constructed by multiplying a measure of
βi−1 by G̃t/Y . Given equation (7) the instrument Zi,t = (βi−1) G̃t

Y
can be expressed

in terms of shocks as

Zi,t = (βi − 1)
(
−αηΞt + ηGt

)
Note that, by construction, the instrument does not depend on local shocks ϵξi,t,

allowing it to capture variation that is orthogonal to those. With this instrument,
the IV estimator of the multiplier is

m̂cross−section =
cov

(
∆

ỹi,t
yi
, (βi − 1) G̃t

Y

)
cov

(
∆

g̃i,t
yi
, (βi − 1) G̃t

Y

) = mlocal − c̄ασ2
Ξ

α2σ2
Ξ + σ2

G

cov(γi, βi)

var(βi)
(9)
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where σ2
G and σ2

Ξ are, respectively, the variances of ηGt and ηΞ.
Note that the estimator requires βi to be heterogeneous across regions. Otherwise,

the instrument lacks cross-sectional variance and cannot be relevant. This leads to
the first identification assumption:

Assumption 3: CS-1 βi is either known or has been estimated, and var(βi) > 0

The estimator recovers the local multiplier mlocal = 1 in the special case mentioned
above where local discount factors are affected in the same way by the aggregate shock
ηΞt (γi = 1 ∀i). More generally, it is valid if those local effects are uncorrelated with
the local exposure to aggregate government spending, cov(γi, βi) = 0. The condition
for validity can be written more generally as

Assumption 4: CS-2 E[GtEt[βi(yi,t −mlocalgi,t)]] = 0

where the expectation operation in the interior conditions on time t information and
takes the average across cross-sectional units i, while the outer expectation takes
the average across time-periods. To mitigate the possibility that this may not hold,
studies following this methodology may add controls to absorb variation in local
exposures.

While useful for many purposes, the procedure cannot recover the aggregate
multiplier magg = mlocal − θG. This is because in the methodology above, the term
θGGt is absorbed by time effects and cannot be estimated. This constitutes the
missing intercept problem.

Combining cross-sectional and time-series variation The methodology laid
out in this paper seeks to combine cross-sectional and time-series variation to identify
the aggregate multiplier 1 − θG. We can write the system in vector form as (see
Appendix A for details):

wi
t = Biηt + ϵ̃it for i ∈ {1, ..., I} (10)

wagg
t = Baggηt
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where wi
t = {∆g̃i,t/yi,∆ỹi,t/yi}′, wagg

t = {G̃t/Y, Ỹt/Y }′ collect the observed variables,
ηt = {ηGt , ηΞt }′, and ϵit = {ϵ̃gi,t, ϵ̃

y
i,t} collect reduced-form residuals, which are linear

combinations of the idiosyncratic structural shocks ϵGi,t and ϵξi,t. The matrices Bi and
Bagg collect the parameters and, in particular,

Bagg
Y,ηG

= maggBagg
G,ηG

, Bi
Y,ηG = mlocalBi

G,ηG , (11)

where Bagg
Y,ηG

is the entry of Bagg capturing the impact of ηG on Y etc. The multipliers
refer to the relative impact of the government spending shock ηGt on output as
compared to government spending itself.

From (10), it is apparent that ∆git, ∆yit, G̃t/Y and Ỹt/Y have a factor structure.
That is, they are determined by a small number of aggregate shocks ηGt and ηΞt

that simultaneously affect values in several regions, with region-specific loadings
(Bi

G,ηG , B
i
Y,ηG etc), as well as idiosyncratic shocks ϵ̃yit and ϵ̃git.

Identification is possible given information on Bi
G,ηG and Bi

Y,ηG . The logic is similar
to the one found in the IV-based identification of shocks in structural VARs. First,
econometric theory makes clear that given a large enough panel, one can estimate
the systematic part of w̄t, given by

w̄i
t = Biηt

As the number of regions I increases, w̄i
t is consistently estimated. For the heuristic

discussion that follows, we assume that we have an accurate measure of w̄i
t.

The key identification challenge is that the observables w̄i
t are functions of unob-

served shocks ηt. To see the identification problem, note that, given any conformable
orthogonal matrix H,

w̄i
t = BiH−1︸ ︷︷ ︸

B̃i

Hηt︸︷︷︸
η̃t

∀i,

so that if ηt contains more than one element we can construct infinitely many shock
series η̃t and shock loadings B̃i that will deliver the same w̄i

t in sample and have the
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same first and second moments in population. The same arguments hold for the
aggregate series wagg

t . It is the same challenge faced in the structural VAR literature.
As in that literature, the challenge can be met by adding structure to Bi.

We can borrow that structure from the assumptions made in the cross-sectional
approach:

Assumption 5: P-1 Assumption 3 holds so that the shock ηGg has heterogeneous
impact on ∆g̃i,t/yi proportional to βi − 1: Bi

g,ηG/B
agg
G,ηG

= βi − 1

Assumption 6: P-2 Assumption 4 holds, so that asymptotically Bi
y,ηG/B

i
G,ηG ≡

mlocal = m̂cross−section

The assumptions 5 and 6 are the same as needed for the relevance and validity
of the instrument used in the cross-sectional approach. Thus, the conditions that
allow for identification of the local multiplier also allow for identification of ηGt . Those
conditions are, in fact, more than enough for the identification of ηGt . This is because
the collection of all Bi’s has more elements than the number of shocks collected in
the vector ηt.6

The last step is to recognize that a credible estimate of ηGt can be used as an
instrument (Zt) conforming to assumption 2, as it is orthogonal to the residual in the
aggregate Yt equation. This is, of course, again analogous to structural VARs - once
one has enough restrictions in an impact matrix to identify aggregate shocks, one can
likewise estimate the effects of those shocks on endogenous variables.

By combining the cross-sectional and time-series variation in the example, it is
therefore possible to estimate the missing intercept using the same identification
assumptions as for the cross-sectional approach. We now discuss how this operates in
a more general setting.

6Technically, the covariance of w̄i
t has rank equal to the dimensionality of ηt
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3 Identification in a Generalized Framework

We consider a general abstract model economy, which we can apply to a wide range
of economic environments. The main assumptions we retain from above is that the
model allows for a linear representation in which all endogenous variables can be
expressed as functions of exogenous shocks, and that the model admits a factor
structure in the forecast errors. In particular, we consider the generalized version
of Equation (10) where variables are now written in deviation from their previously
expected values. This modification, acknowledges that parts of the vector wi

t may be
persistent and concentrates attention on the innovations:

∆w̃i
t = Biηt + ϵit (12)

w̃agg
t = Baggηt + ϵaggt , for i ∈ {1, ..., I} and t ∈ {1, ..., T}

where we use tildes to denote innovations that are uncorrelated over time, so that
∆w̃i

t = ∆wi
t − Et−1∆wi

t and so on. Moreover, ∆wi
t is a K × 1 vector of unit-specific

variables expressed in deviations from aggregates and wagg
t is a N ≥ K vector of

aggregate variables, including aggregations of the variables in wi
t. As in the example,

ηt is a R < IK dimensional vector of iid shocks affecting aggregates and all units,
whereas ϵit are unit specific shocks, potentially correlated across variables within but
not across units.7

Thus, for each of I idiosyncratic units, the model tracks K unit-specific variables
such as output, expenditures, or prices. Those can be combined into an equal number
of aggregate variables, to which we can add aggregate-only variables such as policy
interest rates, national government spending, or stock price indices.

A model as in (12) can typically be derived as the reduced form of a linearized
7Relative to the example in the previous section, we now also introduce the corresponding N

- dimensional residual vector ϵaggt shock at the aggregate level. Note that in the absence of ϵaggt ,
innovations to aggregate variables are spanned by the common factors ηt. This would introduce
stochastic singularity if R < N . Moreover, the case R = N would imply that, conditional on the
impact matrix Bagg, regional data would not play a role in determining the estimated time series of
structural shocks.
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structural model (see Appendix B).8 To determine the objects of interest, we divide
the vector wi

t (and the corresponding parts of wagg
t ) into subvectors collecting outcome

variables (yit, Yt) and policy variables (git, Gt), so that wi
t = {(yit)′, (git)′}′ and wagg

t =

{(Yt)
′, (Gt)

′}′. Those labels are derived from the economic model structure underlying
(12) and incorporate the assumption that policy makers choose git and affect yit as a
result. The main focus is on the effect of the policy variables (git, Gt) on the outcome
variables (yit, Yt).

Such a causal impact can in principle be assessed within the model if we split the
vector of exogenous shocks ηt into subvectors ηYt and ηGt , so that ηt = {(ηYt )′, (ηGt )′}′,
with ηGt collecting the policy shocks of interest. Given the equation describing how
policies depend on shocks, ∆g̃ik,t = Bi

ηYk ,gk
ηyk,t + Bi

ηGk ,gk
ηGk,t + ϵigk,t, where Bi

ηYk ,gk
and

Bi
ηGk ,gk

are, respectively, the elements of Bi determining the effect of ηYk,t and ηGk,t
on ∆g̃ik,t, the main identification challenge is that the shocks in ηGt are generally
unobserved and need to be differentiated from ηYt .

Denote the element of Bi encoding the effect of a shock to the kth element of git
and G to the jth element of yit by Bi

ηGk ,yj
and analogously for effects on elements of git,

Yt or Gt. With this notation and assumptions in place we can define the main object
of interest as

1. Local multiplier of the jth element of yi to the kth element of gi in unit i:

mi,local
yj ,gk

=
Bi

yj ,η
G
k

Bi

gk,ηG
k

,

2. Aggregate multiplier of the jth element of Yt to the kth element of Gt : magg
Yj ,Gk

=
Bagg

Yj,η
G
k

Bagg

Gk,ηG
k

3. Shocks to Gt: ηGt

As discussed in Section 2, in factor models individual factors are not identified
because different linear combinations of factors and their loadings are observation-
ally equivalent. Identification of the objects of interest thus require adding a priori

8With ϵaggt , aggregate variables are not spanned solely by the factors ηt, which implies a constraint
on how they enter in the idiosyncratic equations. We discuss this in more detail in Appendix B
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restrictions. Fortunately, the factor structure implies that number of required restric-
tions can be much smaller than the number of objects of interest. This is possible
because the factor structure reduces the comovement in the system to a relatively
small number of factors, allowing for identification with a parsimonious number of
restrictions.

In particular, Proposition 1 below shows that if ηt is R-dimensional, one can find
an appropriate rotation and identify the full set of local and aggregate mutlipliers
by setting set of R < IK +N restrictions on the effects of a shock ηkt on observed
variables:

Proposition 1 (Point identification of a single IK +N -dimensional loading column
from R < IK+N linear restrictions ). Consider the static R-dimensional factor model
Zt = Bηt + ϵt with Zt ∈ RIK+N , B ∈ R(IK+N)×R and ηt

i.i.d.∼ N (0, IR), independent of
ϵt. In the context of equation system (12), Zt = [w̃agg′

t ∆w̃1′
t . . .∆w̃I′

t ]
′. Fix a known

matrix Q ∈ Rm×(IK+N) (with m ≥ R) and suppose that we know

QB(k) = c ∈ Rm,

where B(k) is the kth column of B. Define M := QB ∈ Rm×R.
If rank(M) = R at the true B (i.e., M has full column rank), then B(k) is point

identified: for any orthogonal H such that (B̃, η̃t) = (BH ′, Hηt) also satisfies B̃(k) = c,
one must have B̃(k) = B(k).

Proof. See appendix C.

Given the vector of effects of shock ηkt on observables, B(k), one can then recover
both the full vector of local effects and the aggregate effect from its elements following
the formulas in the definition of the objects of interest.

The restrictions on B(k) can take several forms. At their simplest, they can be
direct assignments of values to elements of B(k). More subtly, they can apply to
ratios of pairs of elements. Thus, assumptions such as 5 or 6 in the example can be
imposed on the unit-level elements of B(k) to obtain the elements associated with
the aggregate equations. Other possibilities include restrictions on aggregate effects
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themselves, or on averages of unit-level effects (so long as enough of those averages
are available). Alternatively, Sarto (2024) imposes exclusion restrictions on the direct
impact of particular shocks on certain variables (for example, shocks to outcome
variables yit only affect treatments git indirectly through responses of git to yit etc.)
that discipline the values of B.

We now turn to identification results for ηkt . This requires separating ηkt both
from the other elements of ηt and from the unit-level shocks ϵit. Thus, an estimate
can generally not be obtained from information about the matrix of coefficients B

alone. Given a vector of observables Zt, we seek instead to estimate η̂t = KZt, where
the coefficient matrix K solves the least-square problem:9

min
K

E(ηt −KZt)
′(ηt −KZt).

Taking into account that the data Zt and the states are independently and
identically distributed over time, this approach is equivalent to a Kalman filter
(Hamilton, 1994), with K being the Kalman gain.10 Proposition 2 highlights that
only partial knowledge of the state space system is required to estimate one row of K
and, in that way, obtain an estimate of ηkt . This may not a priori seem to be a given,
as other shocks may have correlated effects on individual units.

In particular, we show that, given the kth column of B, B(k), the kth shock ηk,t

can indeed be identified, as shown in the following proposition, proven in Matthes
and Schwartzman (2023):

Proposition 2 (Matthes and Schwartzman (2023), Proposition 1). Consider the
state-space representation implied by the system in proposition 1 augmented with the
trivial state equation that the unobserved shocks are the states. The least squares
estimate of ηk,t based on current and past observables depends only on the kth column
of B (B(k)), and the covariance matrix of Zt, regardless of initial conditions for the

9η̂t is equal to Etηt under Gaussianity.
10We can solve this population regression problem because of our knowledge of the state space

system for Zt as described in Proposition 1, which allows us to compute population second moments
that in turn give us all objects that we need to solve this least squares problem.
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state.11

Proof. See Matthes and Schwartzman (2023).

Proposition 2 shows that one can obtain a reasonable estimate of ηt given knowledge
of a vector B(k). It remains to show conditions under which that estimate converges
to the truth. In particular, the key condition is that the number of cross-sectional
observations is large I → ∞. We show this in a further proposition in Matthes and
Schwartzman (2023), which we repeat here:

Proposition 3 (Matthes and Schwartzman (2023), Proposition 2). Suppose the
state-space system described in proposition 1 satisfies the assumptions in Section 4 of
Bai and Ng (2008). Suppose further that the sample size is large in the time dimension
(T → ∞). The estimation error disappears as the cross-sectional dimension I → ∞.

Proof. See Matthes and Schwartzman (2023).

We now turn to additional objects of interest and connect those to what is
estimated in the literature:

Impulse Response Functions The multipliers above only apply to innovations,
but in a more general dynamic setup one may be interested into multipliers calculated
at different time intervals, that is, one may be interested in

mi,local
yj ,gk,h

=

∂(yij,t+h−Et−1yij,t+h)

∂ηGk,t

∂(gik,t+h−Et−1gik,t+h)

∂ηGk,t

, and magg
Yj ,Gk,h

=

∂(Yj,t+h−Et−1Yj,t+h)

∂ηGk,t

∂(Gk,t+h−Et−1Gk,t+h)

∂ηGk,t

11The least squares problem that the estimates of the state η̂t = KZt (which is equivalent to Etηt
under Gaussianity) solve is

min
K

E(ηt −KZt)
′(ηt −KZt),

where K is the coefficient matrix, or, equivalently, the Kalman gain, as this approach is equivalent
to the Kalman filter (Hamilton, 1994), taking into account that the data Zt and the states are
independently and identically distributed over time. We can solve this population regression problem
because of our knowledge of the state space system for Zt as described in Proposition 1, which
allows us to compute population second moments that in turn give us all objects that we need to
solve this least squares problem. Proposition 2 highlights that only partial knowledge of the state
space system is required to estimate one row of K.
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Much of the literature relies on local projection methods, which impose their own
set of constraints. In particular, as pointed out by Canova (2022), the literature often
assumes that unit-level effects are homogeneous. In the next section, we use instead
a VAR-based approach where we allow for unit-level heterogeneity in the responses.

Partial and General Equilibrium Effects Wolf (2023) examines a class of struc-
tural general equilibrium consumption-savings models, where individual consumption
of individual i satisfies a non-linear relationship of the general form

cit = c(Θt, η
G
t , ϵ̃y,t)

where Θt is a vector of economy-wide of endogenous aggregates, ηt is either government
spending or a shock, and c() is the function mapping exogenous shocks and aggregate
variables into cit.

Wolf (2023) decomposes the effects of given shock ηG as

dcit
dηGt

=
∂c

∂ηGt︸︷︷︸
partial equilibrium

+
∂c

∂Θt

∂Θt

∂ηgt︸ ︷︷ ︸
general equilibrium

The first term is the partial equilibrium effect, capturing the direct effect of
the shock if all other feedbacks are kept constant, and the second effect is a gen-
eral equilibrium effect, capturing the effect of the shock through those equilibrium
feedbacks.

Wolf (2023) shows that, under certain conditions, one can estimate the partial
equilibrium effect using the cross-sectional approach, so that, translating to the
terminology of the current framework, it follows that

mlocal =
∂c/∂ηgt
∂g/∂ηGt︸ ︷︷ ︸

partial equilibrium
multiplier

, and magg = mlocal︸ ︷︷ ︸
partial equilibrium

multiplier

+ magg −mlocal︸ ︷︷ ︸
general equilibrium

multiplier

The missing intercept problem is then one of finding the general equilibrium
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component. Wolf (2023) establishes conditions for the estimation of the missing
intercept using a two-part approach. In particular, he shows that if private and public
spending shocks have symmetric effects on equilibrium variables, then one can use
aggregate public spending shocks to estimate general equilibrium effects.

Local spillovers Chodorow-Reich (2020) distinguishes between local, aggregate,
and “all regions” effects. The local and aggregate effects correspond, respectively,
to mlocal and magg in our example. The “all regions” effect calculates the effect of
a local shock to single region i aggregated across all regions, i ∈ {1, ..., I}. This is
generally not the same as the local multiplier because of potential spillovers between
regions through trade or other channels. As shown by Chodorow-Reich (2020), if
those spillover effects are symmetric, they are differenced out in the comparison
between units, still allowing for correct identification of the local effects.12

The general framework laid out in equation (10) can also accommodate spillovers
from a subset of local shocks by treating those as factors ηt to be included in the
model. As such, the framework can control for confounding effects coming from such
spillovers.

Heterogeneous Exposure Sarto (2024) (equation 3) starts from an economic
model of the form

yi,t = Ci
G,yGt + Ci

g,y∆gi,t + B̄i
yηt + ϵ̃iy,t,

where Ci
G,y, Ci

g,y and B̄i
y are vectors of coefficients, and the coefficients of B̄i

y are set
such that the aggregate policy shocks ηGt are excluded from the equation. Sarto (2024)
differentiates between three types of elasticities: micro-local (Ci

g,y), micro-global
(Ci

G,y) and macro, obtained from aggregating the equation above. With homogeneous
micro-global elasticity Ci

g,y, the micro-local elasticity corresponds to mlocal, whereas
the micro-global elasticity equals to magg. With heterogeneous global elasticity the

12Moreover, Chodorow-Reich (2020) distinguishes between spillovers and endogenous reactions of
“aggregate” treatments, such as interest policy. Here we include endogenous response of monetary
policy as one potential source of spill-over.
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relationship is given by

mi,local =
Ci

G,y −magg

Bi
g,ηG

+ Ci
g,y,

That is, the local effect of ηGt incorporates both the local, partial-equilibrium effect and
the difference between the global and aggregate effects, normalized by the local effect
of the aggregate shock, Bi

g,ηG . Note that the local effect then conflates the partial
equilibrium effect of local shocks estimated by Wolf (2023) with the heterogeneous
exposure to that shock encoded in Bi

g,ηG . Sarto (2024) is able to estimate the local
elasticity Ci

g,y separately from the global elasticity Ci
G,y by adding structure to the

local idiosyncratic shocks ϵ̃i,t.

4 Time Series Model

We now describe the full time-series model, which generalizes the model in Matthes
and Schwartzman (2023). This allows one to handle more general environments than
the one discussed so far. First, it encompasses dynamic environments by allowing for
lagged dependent variables. More generally, one may be concerned about errors in the
elements of BηG obtained from microeconometric studies. We introduce a framework
that incorporates persistence, heterogeneous responses to aggregate shocks across
cross-sectional units, and imperfect knowledge of the constraints on Bi implied by
Assumptions 5 and 6.13 It protects against misspecification or estimation error in the
relevant entries of Bi and Bagg by using existing information to establish a prior that
we use for Bayesian inference, rather than imposing those dogmatically on either the
aggregate or idiosyncratic effects of this shock.

The model provides a flexible data-generating process that jointly describes micro-
and macroeconomic dynamics. It consists of a block for aggregate data and blocks
for idiosyncratic units such as localities, sectors, etc. In both levels of aggregation,
we use variants of Vector Autoregressive (VAR) models. The blocks are linked via

13In practice, our approach jointly estimates parameters for the entire system at once.
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aggregate variables and structural shocks, allowing for rich patterns of comovement
while remaining parsimonious in terms of parametrization.

As before, for each of I idiosyncratic units, we track K unit-specific variables.
Those can be aggregated into an equal number of aggregate variables, to which we
add aggregate-only variables, for a total of N ≥ K aggregate variables. The model
explains those variables in terms of R aggregate shocks with R << I as well as shocks
specific to each aggregate or idiosyncratic variables. We now describe the aggregate
and idiosyncratic blocks in detail.

Block 1: Aggregate

The aggregate block can be written, in vector form, as

Xagg
t = µagg +

L∑
l=1

Aagg
l Xagg

t−l +Baggηt + εt, (13)

where Xagg
t is an N dimensional vector collecting observed aggregate endogenous

variables, ηt ∼ N(0, I) is a R dimensional vector of unobserved aggregate shocks
with entries (where we allow for N ≥ R), and εt ∼ N(0,Σagg) collects other
shocks affecting aggregate variables as well as measurement error. The aggregate
block features L lags. µagg, Aagg

l and Bagg are conformable vectors and matrices
of parameters to be estimated. Bagg captures effects of structural shocks on
aggregate variables on impact.

Block 2: Idiosyncratic

For each idiosyncratic unit i, the idiosyncratic block can be written, in vector
form, as

X i
t −Xagg

t = µi +
Lagg∑
l=1

Ai
lX

agg
t−l +

Lreg∑
l=1

Ci
lX

i
t−l +Biηt + εit, i = 1, · · · , I (14)
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where X i
t is a K-dimensional vector including the idiosyncratic endogenous

variables, and εit ∼ N(0,Σi) is assumed to be independent across idiosyncratic
units and independent of any shock at the aggregate level, though not necessarily
across variables within idiosyncratic units. Lagg and Lreg denote the number of
lags of aggregate and idiosyncratic variables. µi, Ai

l, Ci
l and Bi are conformable

vectors and matrices of parameters.
Although we assume here for simplicity that the variables in Xagg

t are the direct
aggregate counterpart of the local variables in X i

t , we can easily accommodate
more aggregate variables.a Spillovers across regions occur due to aggregate shocks
ηt or contemporaneous and lagged aggregate variables Xagg

t .
aIn that case we simply need to modify the left-hand side of Equation (14) to be Xi

t−SXagg
t ,

where S is a selection matrix that selects those observables that we can measure both at the
aggregate and local levels.

4.1 Alternative Representations

Before turning to the details of the estimation, it is useful to give two alternative,
equivalent representations of our model. Those are useful because they connect our
work to frameworks that may be more familiar to the reader.

Representation 1: A Factor Model

We first define the vector of all idiosyncratic variables as

Xt = [X1
t
′
X2

t
′
. . . XN

t

′
]′

Then we can stack all idiosyncratic equations to arrive at the following expression:

Xt =


1

1
...
1


I×1

⊗Xagg
t + µX +

Lreg∑
l=1

ÃX
l Xt−l +

Lagg∑
l=1

C̃agg
l Xagg

t−l +BXηt + εXt (15)
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where ⊗ denotes the Kronecker product, and ÃX
l is a sparse and block-diagonal

matrix, whereas C̃agg
l and BX are dense matrices. Our model thus has a factor

structure at the idiosyncratic level, with factors being given by current and
lagged aggregate variables as well as aggregate shocks.

The second representation is a restricted VAR, which we discuss next.

Representation 2: A Restricted VAR

We first define the vector of all variables as

Zt = [Xagg
t

′X ′
t]
′

Then we can stack all equations to arrive at the following expression:

Zt = µZ +

max(Lagg ,Lreg ,L)∑
l=1

AZ
l Zt−l +BZηt + εZt︸ ︷︷ ︸

wZ
t

(16)

where wZ
t is the overall forecast error and AZ

l are sparse matrices. This expression
is derived by inserting the aggregate dynamics from equation (13) into each
idiosyncratic set of equations (14).

4.2 Bayesian Estimation

We estimate the model via Bayesian methods, exploiting the Gibbs sampler. We
use priors so that the conditional posteriors are all known in closed form, exploiting
our assumption of Gaussian shocks and making the estimation reasonably fast. In
particular, the prior for BZ , which encodes our identification assumptions, is assumed
to be Gaussian. Posterior approximation algorithms such as the Gibbs sampler are
inherently recursive, slowing down estimation. However, as we will discuss next, the
parameters for each region can be drawn in parallel, making the estimation of this
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model feasible even in large cross sections.
When discussing the applications, we provide guidance on how to choose reason-

able default priors that can serve as a benchmark for further exploration. This is
particularly important for parameters governing the effects of shocks (Bi and Bagg),
as there is no standard prior choice already present in the literature. We detail the
Gibbs sampler algorithm in Appendix D and test the ability of the approach to
identify the objects of interest under different conditions using a Monte Carlo exercise
in Appendix E.

Since we use non-degenerate priors for the impact matrices, our approach will
technically only set-identify objects of interest. However, with a large cross-section of
variables for which we use these priors, the amount of additional uncertainty due to
having set identification is small (Amir-Ahmadi and Drautzburg, 2021; Matthes and
Schwartzman, 2023).

4.2.1 Prior on Aggregate Effect

The effect of ηG on the corresponding policy variables can be formulated in terms of
the proportion of its variance that it explains. We use this through the applications
to set priors on that effect. In particular, for each policy variable Xagg

G,t we suppose
that a fraction θ of the variance of Xagg

G,t is explained by the shock that we identify.
Given that ηGt has a unit variance, our prior mean for Bagg

G,ηG
is

E
[
Bagg

G,ηG

]
= (θΣ̃agg

G,G)
1/2 (17)

where Σ̃agg
G,G is the variance for the one-step forecast error of the policy variable

obtained by estimating a version of our aggregate block using ordinary least squares
(OLS). We describe the other priors when we discuss each application.

4.2.2 Incorporating Standard Macroeconomic Identification Schemes

As mentioned above, our model can easily incorporate more standard macroeconomic
identification schemes since it has a (restricted) VAR representation. In particular,
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information on the sign and magnitudes of the impact effects of shocks on aggregates
can be incorporated via priors on BZ , similar to Baumeister and Hamilton (2015).14

Zero restrictions can be incorporated (or at least approximated) via tight priors
on specific elements of BZ . This insight also provides an avenue for incorporating
instruments for the macroeconomic shock itself (Mertens and Ravn, 2013; Plagborg-
Møller and Wolf, 2021) by including the instrument as an aggregate variable and
using zero restrictions as described in Plagborg-Møller and Wolf (2021).

5 Application #1: Nakamura and Steinsson (2014)

Nakamura and Steinsson (2014) lever regional variation in defense spending to estimate
local (or “open economy relative”) government spending multipliers, which they use
to inform dynamic equilibrium models. We use their data not only directly estimate
to aggregate multiplier, but also infer total multipliers for each US state, which our
model allows to be heterogeneous.

5.1 Data and Model Specification

We consider a bivariate system for both aggregate and regional blocks: Xagg
t = (Yt, Gt)

′

and X i
t = (yit, g

i
t)

′ where y and g represent output and military spending, respectively.
As in Nakamura and Steinsson (2014), these two variables are defined as the two-year
difference of the corresponding raw variable normalized by output.

Yt =
Y level
t − Y level

t−2

Y level
t−2

, Gt =
Glevel

t −Glevel
t−2

Y level
t−2

, yit =
yi,levelt − yi,levelt−2

yi,levelt−2

, git =
gi,levelt − gi,levelt−2

yi,levelt−2

All of the data is taken directly from the replication package made available by
Nakamura and Steinsson (2014). In particular, we stick with their choice of two-year
differences. We thus end up with annual data spanning from 1967 to 2006 for 51
states. Variables with a level superscript denote real (deflated by national CPI), per

14Approximate sign restrictions at longer horizons can be incorporated by specific choices on the
lag coefficients in the model, as discussed in Baumeister and Hamilton (2015).
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capita variables.
We estimate the model with a lag length of 2 for both the aggregate and state-level

blocks and include R = 3 aggregate shocks in our estimation.

5.2 Identification via Priors

In this section, we describe our priors, with a particular focus on those priors that are
directly relevant for identifying the fiscal multiplier and that encode our identification
assumptions. For standard VAR-type parameters, we use Minnesota priors Doan
et al. (1984), as is common in the literature. The priors except for the relevant entries
of BZ are common across the two applications that we present in this paper. The
response of the aggregate variables to this shock is represented by the column of Bagg

corresponding to the government spending shock ηG, Bagg
ηG

= (Bagg
Y,ηG

, Bagg
G,ηG

)′ and the
response of idiosyncratic variables is Bi

ηG = (Bi
ηG,y, B

i
ηG,g)

′ where, as before, Bi
y,ηG is

the reduced form effect of the shock ηG to variable y in unit i etc.
Table A-1 in Appendix F summarizes the prior distributions of the parameters

involved in the aggregate and regional blocks, respectively.

5.2.1 Priors on Bi

The key step in our identification methodology is to use prior information obtained
from econometric studies using fixed-effects to impose priors on Bi

y,ηG and Bi
g,ηG . To

establish priors on the sensitivity of regional spending to the aggregate spending shock
Bi

g,ηG , we adopt the baseline method used by Nakamura and Steinsson to construct
their instrument. First, we estimate the first-stage regression15,

git = biGt + ai + dt + εit, i = 1, · · · , N,

The estimated coefficient b̂i is used to inform the prior mean of Bi
ηG,g after being

rescaled by the effect of the government spending shock on aggregate government
15Note that bi here corresponds to βi − 1 in the model in Section 2. ai denotes a unit fixed effect

and dt denotes a time fixed effect.
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spending. Specifically, we set

E[Bi
g,ηG ] = b̂iE[Bagg

G,ηG
],

where E here refers to the mean of the prior distribution for each parameter.
In the baseline specification described above, the regression does not include

the same controls as our time series model, which also controls for lags of the
relevant variables. Below we discuss that our findings are robust to an alternative
specification where this regression does include the same control variables. For the
second specification, we use the average ratio between state spending and state output
for the first five years of the sample, a shift-share setup.16

We further set the prior for the effect of the government spending shock on local
output Bi

ηG,y as

E[Bi
y,ηG ] = m̂local−NSE[Bi

g,ηG ],

where m̂local−NS is the local multiplier estimated by Nakamura and Steinsson (2014)17

In both cases, we set the prior standard deviation for Bi
g,ηG and Bi

y,ηG to half the
absolute value of the prior mean. The intention here is that we use a prior that is
informative enough to inform the local multiplier, but we do not want to make it
dogmatic.

5.2.2 Priors on Bagg

To set the prior on Bagg
G,ηG

we follow the procedure delineated in Section 4.2.1 and
choose the prior mean for Bagg

G,ηG
so that ηG accounts for a fraction θ of the variance of

innovations to G, as estimated via OLS. We then choose θ to maximize the marginal
likelihood of the estimated model.

16The shift-share structure is treated as a robustness check in Nakamura and Steinsson (2014).
However, as pointed out in Ramey (2020), the shift-share specification gives a larger first-stage F
statistic, so we find it useful to study both specifications here.

17m̂local−NS = 1.43 for the baseline specification. The values for these multipliers are specification-
specific and given in Appendix G.1.4.
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To set the prior on the aggregate effect of the government shock on output we
draw on the by now extensive literature on the topic. Specifically, we set the prior
distribution of BY,ηG and prior standard deviation for BG,ηG to match the range of
estimates for the fiscal multiplier in the literature.18 We target a median for the
prior of the spending multiplier of 0.8 with a 90% interval of 0.5-1.5. This range is
motivated by our reading of the existing literature – three representative examples are:
Ramey (2019): “The bulk of the estimates across the leading methods of estimation
and samples lie in a surprisingly narrow range of 0.6 to 1.”, Nakamura and Steinsson
(2018b): “Estimates between 0.5 and 1.0–which is where most of the more credible
estimates based on US data lie–.... ”, and Barnichon et al. (2021): “Unfortunately,
despite intense scrutiny the range of estimates for the government spending multiplier
remains wide–between 0.5 and 2–...”. The priors for the effects of other aggregate
shocks on both aggregate and regional variables are Gaussian with a mean of 0 and a
large standard deviation of 10. Details on priors for other parameters that are not
directly relevant for the identification of structural shocks can be found in Appendix
F.19

5.3 The Aggregate Government Spending Multiplier

Before turning to our benchmark results, a useful question to answer is “How much
could we learn from our aggregate data and standard time series methods alone?”.
If we want to use aggregate data alone, there are many macro-based identification
schemes that we could use. For simplicity, and because it fits well with our benchmark
specification in a way we describe below, we first estimate a VAR on our aggregate
data using the same Minnesota prior that we use in our full model, and use a simple
Cholesky-type recursive identification scheme with government spending ordered first.
This identifies the government spending shock as the forecast error of government
spending. The resulting 90 percent posterior interval centered at the median is
(−0.33, 5.71), with a median of 2.70. It is safe to say that with our annual dataset we

18Specifically, we draw magg = Bagg
Y,ηG/B

agg
G,ηG one million times from the prior distribution for

different values of prior parameters until we hit our target moments for the fiscal multiplier.
19We generate 100,000 draws from our posterior, of which we discard the first 50,000.

30



cannot learn anything useful from aggregate data alone.20

Table 1 instead summarizes the results for the case with the prior based on the
first-stage regression in Nakamura and Steinsson (2014) and our full model with
different prior-based identification schemes. For the case where we use the full
identification scheme described above, the marginal likelihood is maximized at θ = 1,
which means that all variation in the forecast error of government spending comes
from the government spending shock, in line with the recursive identification scheme
we used for the aggregate-only VAR.

The first column shows the prior distribution for magg derived from the literature.
The prior mean is 0.8. With 68% probability the multiplier is between 0.53 and 1.18,
and with 90% between 0.38 and 1.55. The prior distribution places a probability of
28% on the multiplier being greater than 1.

The second column shows what we obtain if we estimate the model without
applying the priors to the local effects. In that case, as in the Cholesky benchmark
above, the data add virtually no new information to the prior, and the posterior
remains unchanged.

The third column examines what happens if we add information on the sensitivity
of local to aggregate government spending used to construct the instrument. This
information proves relevant, increasing the posterior mean by 5 percentage points,
and the probability of multiplier being greater than one to 34%.

The last column (our baseline) also applies informative priors to the local multi-
pliers. This information is again relevant, raising the posterior mean by an additional
6 percentage points (thus 11 percentage points above the prior). It also significantly
reduces the span of the 90% probability range for the multiplier from 1.65-0.4=1.25
to 1.41-0.46=0.95. The probability of the multiplier being larger than 1 increases
further to 0.37.

20We intentionally want an apples-to-apples comparison here. If a researcher only used aggregate
data, it is safe to say that they would use data at a higher frequency, which we cannot do because
we also want to use state-level data.

The exact identification scheme for aggregate-only VAR turns out to be less important - we find
even wider posterior bands if we, for example, use a time-aggregated version of the military news
series of Ramey and Zubairy (2018).
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(1) (2) (3) (4)
Prior Posterior Posterior Posterior

magg

0.80 0.80 0.85 0.91
(0.38, 1.55) (0.37, 1.53) (0.40, 1.65) (0.46, 1.41)
[0.53, 1.18] [0.52, 1.17] [0.56, 1.25] [0.63, 1.20]

Prob(magg > 1) 0.28 0.28 0.34 0.37
θ 1.00 0.25 1.00

Informative Bi
y prior No No Yes

Informative Bi
g prior No Yes Yes

Table 1: Results based on Nakamura and Steinsson (2014) first-stage regression. 90%
posterior bands are in parentheses, and 68% bands are in square brackets. Results
with Informative prior for Bi

y represent our benchmark results.

These qualitative results are robust to using the shift-share results instead to
inform our prior, as shown in Table 2. Both point estimates of the aggregate multiplier
and the estimated probability of the multiplier being greater than 1 are now larger,
with an 18 percentage increase in the probability relative to the prior or the case
with uninformative local priors (as seen in Table 1)21

21Our multiplier estimate implicitly averages over different monetary policy regimes that could
have been in place during the sample, so they are not inconsistent with the takeaways in Nakamura
and Steinsson (2014). Similarly, we use a linear model. If nonlinear effects are important for
government spending multipliers, as argued by Barnichon et al. (2021), then again we estimate an
average multiplier.
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(1) (2)
Posterior Posterior

magg

0.90 0.97
(0.41, 1.71) (0.49, 1.52)
[0.59, 1.32] [0.68, 1.29]

Prob(magg > 1) 0.39 0.46
Log MDD -7208.78 -7292.27

θ 1.00 1.00
Informative Bi

y No Yes
Informative Bi

g Yes Yes

Table 2: Results based on Nakamura and Steinsson (2014) shift-share setting. 90%
posterior bands are in parentheses, and 68% bands are in square brackets.

5.3.1 Robustness

We now highlight various alternative specifications we have explored to get a sense
of how robust our results are. In particular, we are interested in robustness in two
dimensions: (i) data sources/transformations, and (ii) prior specifications. Tables
with the detailed results for each specification can be found in Appendix G.

First, we investigate how sensitive the results are to alternative data transformation.
We use output-weighted averages of regional data for aggregates rather than equally
weighted averages in Table (A-2). Results are virtually unchanged. We also take
1-year differences rather than 2-year differences for the data, shortening the horizon
for the multiplier. We find that, whereas the posterior mean of the multiplier is
smaller, sticking closer to the prior mean of 0.8, the use of cross-sectional data is
informative in that it consistently tightens the interval around the posterior mean
(Table A-3).

One concern readers might have is that the Nakamura and Steinsson (2014) first-
stage regression does not use the same control variables that we include in our model.
To confront this possible issue, we estimate a new version of their first-stage regression
that includes the same variables on the right-hand side as our regional VAR block
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(table A-4), we add lagged dependent variables to the first-stage regression used to
estimate the effect of federal spending on local spending, so as to make it consistent
with the main regression specification. Interestingly, allowing for controls leads to a
larger update of the multiplier towards one.

We further investigate the role played by loosening the aggregate prior (Tables
A-6 and A-7). We find that the estimated path for ηgt remains highly correlated with
the original estimate (see Table A-9), but the posterior bands around the aggregate
multipliers increase significantly. This confirms that, while the estimated shock is
robustly estimated, the information content of the estimated shock for the estimation
of the aggregate multiplier is relatively modest given the short sample and annual
data. The first row of table A-9 shows that the sectoral priors add substantial
information about the path of the shock, since the estimated shock is otherwise
only weakly correlated. Otherwise, under all alternative specifications retaining the
two-year horizon, the estimated path for ηgt remains highly correlated with the original
estimate, indicating that the method can robustly estimate ηgt .

Finally, we investigate the role of two features of our benchmark prior: the
standard deviation of the priors on local effects and the choice of θ (the fraction
of the variance of government spending accounted for by the shock). Table A-8
shows how the estimates change if we bring the prior uncertainty about local effects
to zero, effectively asserting perfect certainty about local effects. This brings the
posterior estimate of the aggregate multiplier very close to 1. Figure A-5 shows the
aggregate multiplier for different degrees of prior precision for these local effects. Not
surprisingly, the aggregate multiplier decreases as we become less certain about the
local effects. The estimated multiplier is similarly sensitive to the choice of θ (Figure
A-6 ), but most of the changes occur for values of θ associated with a marginal data
density significantly below the benchmark.
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6 Application # 2: Chodorow-Reich, Nenov, and

Simsek (2021)

As a second application, we revisit Chodorow-Reich et al. (2021). Their focus is
on the effect of a change in stock market wealth on the real economy, in particular,
the effect on the local labor market (payroll and employment). They interpret their
results through a regional model economy where news about future productivity
affects stock market wealth and, through it, the consumption of stock holders.

6.1 Empirical Specification and Data

The main empirical specification in the paper is

∆i
t−1,t+hy = γhs

i
t−1r

i
t−1,t + Γ′

hx
i
t−1 + εit−1,t+h (18)

for county i and quarter t at horizon h, where ∆i
t−1,t+hy is the change in either local

employment or wage rate from t− 1 to t+ h, sit−1 is a measure of local stock market
wealth normalized by the local wage bill, and rit−1,t is the return on the area-specific
stock portfolio. The return on the local portfolio is calculated as

rit−1,t = βi
tR

m
t−1,t + (1− βi

t)R
f
t−1,t

≈ βi
tR

m
t−1,t

(19)

where Rm
t−1,t is the aggregate stock market return, Rf

t−1,t is the national risk-free rate,
and βi

t is the county-specific beta, tying local portfolio return to the return on the
stock market. They estimate this specification by local projections using OLS.

To construct βi
t the authors use the relationship between market beta and age from

Barber and Odean (2000), and the county age-wealth distribution. Their specification
also uses a vector of controls xi

t−1, including various fixed effects. We refer the reader
to their paper for further details.

We are interested in inferring the impact of stock market wealth on national
employment and wage bill. Therefore, the aggregate variables include quarterly

35



growth of the aggregate employment and payroll, the aggregate return on wealth
St−1R

m
t−1,t and the controls using interactions between stock holdings St−1 and the

5-year Treasury bond, a national index of house prices and the growth to national
labor income and noncorporate business income.22 The regional variables xi

t include
the regional counterpart of the aggregate variables listed above (employment and
wage bill are measured at the county-level at a quarterly frequency using QCEW
data), and predicted employment growth based on industry composition (a Bartik
shift-share measure).23

6.2 Identification via Priors

We denote the element of η representing the stock-market wealth shock by ηr. This
can be viewed, as in Chodorow-Reich et al. (2021), as stemming from stock market
fluctuations that are disconnected from current labor market conditions, such as
news and uncertainty shocks in environments without wealth effects on labor supply,
or non-fundamental shock to asset pricing due to bubbles or changing liquidity
conditions. Hence, the response of the aggregate wage bill, employment and stock
market wealth are, respectively, represented by the first column of Bagg, which we
call Bagg

ηr = (Bagg
L,ηr , B

agg
WL,ηr , B

agg
SR,ηr)

′ and the response of idiosyncratic variables is
Bi

ηr = (Bi
ℓ,ηr , B

i
wℓ,ηr , B

i
sr,ηr)

′.
As before, for standard VAR-type parameters, we use Minnesota priors Doan et al.

(1984). Except for the priors in the elements of BZ described below, the priors are
summarized in table A-1.

6.2.1 Regional Priors

Prior on Bi
sr,ηr. We put an informative prior on the effect of ηrt on sit−1r

i
t−1,t −

St−1Rt−1,t. If we interpret ηrt as a shock to the stock market return Rm
t−1,t, then its

22We calculate aggregate St−1R
m
t−1,t by taking a wage-bill-weighted aggregate of local sit−1r

i
t−1,t.

23When constructing Xi
t − Xagg

t for the Bartik shift-share method, we subtract the national
employment growth.
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impact on region i’s wealth/income ratio will be proportional to sit−1β
i
t−1, the ratio

of stock market wealth to income multiplied by the region-specific βi
t−1. Since this

varies little over time, we set E[Bi
sr,ηr ] to be proportional to the average value for

sit−1β
i
t−1 − St−1β

agg
t−1 over the first 5 years, with βagg

t =
∑

j s
j
t/Stβ

j
t the national beta

of stock market portfolios on stock returns. In particular, we set

E[Bi
sr,ηr ] = S iE[Bagg

SR,ηr ], (20)

where the county specific scaling S i is defined as the time average for the first five
years of the sample of sit−1β

i
t−1−St−1β

agg
t−1

St−1β
agg
t−1

. The denominator of this fraction adjusts for
the fact that the impact of a shock to stock market returns on aggregate wealth is
proportional to St−1β

agg
t−1.

Prior on Bi
ℓ,ηr and Bi

wℓ,ηr. From (18) with h = 0 estimated using the replication
package made available by Chodorow-Reich et al. (2021), we obtain γ̂0 for log
employment and the wage bill.24 The prior mean of Bi

ℓ,ηr in the employment equation
and Bi

wℓ,ηr in the wage bill equation are given by the corresponding γ̂0 multiplied by
the prior mean of Bi

sr,ηr described above. The prior standard deviation is again half
the absolute value of the prior mean.

Prior on Other Elements of the First Column of Bi. We impose a prior mean
of zero, and a prior standard deviation that is 2.5 times the prior mean of Bi

sr,ηr .

6.2.2 Aggregate Prior

For all elements of Bagg, we assume a large prior standard deviation, 10.0. The
prior mean is zero except for Bagg

SR,ηr , the contemporaneous response of stock market
wealth to the identified shock. Following the strategy in the government multiplier
application, we first estimate a VAR with only aggregate variables to obtain the
variance-covariance matrix Σ̃agg. The prior mean of Bagg

SR,ηr is chosen to be θ(Σ̃agg
SR,SR)

1/2

where θ is a constant between 0 and 1. We report here the estimation results for
24The regional-level estimate of γ0 is −0.103 for employment and 0.411 for wage bills.
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θ = 0.25 and those for θ = 0.5 and θ = 0.75 in Appendix H.25

6.3 Response of Employment and Wage Bills

To be consistent with the object of interest in the original paper, we report

γagg
h =

Cumulative IRF of Employment or Wage at Horizon h

IRF of Stock Market Wealth at Impact

Thus, we obtain the percentage change in employment or wages given an initial
impact of stock market wealth equal to 1% of the local wage bill. The results are
presented in Figure 1. The wealth shock generates large, significant, and sustained
increases in employment and wage bill. The initial impact is on the wage bill, but
employment eventually catches up.

Based on their multi-region structural model, Chodorow-Reich et al. (2021)
calibrate lower bounds of percentage changes in aggregate employment and wage
when there is no monetary policy response. In the absence of a monetary policy
reaction, aggregate employment increases at least 1.3 percent after two years, and the
aggregate wage increases at least 3.2 percent after two years. The posterior median
of the response from the VAR at horizon h = 7 is 2.67 percent for employment and
1.67 percent for the wage bill. The wage bill growth is below the value implied by the
theory laid out in Chodorow-Reich et al. (2021), implying that employment reduces
due to the monetary policy in response to the shock to stock return. The response of
employment to the stock return shock, however is so strong that it remains above
the theory-implied value even in the presence of a monetary policy response. Finally,
note that the posterior mean for the growth in wages per worker is in fact negative,
as the wage bill grows below employment. However, the posterior error bands are
wide enough to include zero, as we show in Table 4.

25Calculating the MDD in this instance is much more computationally costly since, compared to
the government spending application, we include more variables and there are over 2,500 regions.
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Figure 1: Cumulative responses of employment and wage bill to stock market wealth.
Grey bands correspond to 90% probability ranges.

CRNS lower bound Posterior median estimates

γemployment,agg
7

1.29 2.67
[1.22, 4.24]

γwage bill,agg
7

3.23 1.67
[0.74,2.68]

γwage bill,agg
7 − γemployment,agg

7

— -0.98
[-2.62,0.58]

Table 3: γagg
7 for various variables.

Table 4: Aggregate effects of stock market wealth. CRNS lower bound refers to the
bound calculated by Chodorow-Reich et al. (2021) under the assumption that there
is no monetary policy response to the stock market shock. Values in square brackets
denote 68% probability range for the posterior estimates.

The estimated shock for different values of θ is very correlated with the baseline,
as we show in Table A-10. The point estimates for the coefficients are generally lower,
but fall well within the 68% probability range for the baseline estimates.26

26Table A-11 shows that making the priors on the regional shock impact uninformative leads to
very wide error bands.
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7 Conclusion

We have presented an econometric framework that can jointly leverage identification
strategies from the applied microeconometric toolkit, and identification assumptions
from the macro/time series literature. As such, it exploits both time series and cross-
sectional variation to identify aggregate macroeconomic effects as well as idiosyncratic
effects of identified shocks.

We apply the method to two well-known applications, the Nakamura and Steinsson
(2014) paper on government spending multipliers and the work by Chodorow-Reich
et al. (2021) on wealth effects from stock returns on local economic conditions.
The results from the two applications highlight the potential and limitations of
exploiting micro-level variation to identify aggregate objects of interest. In both
applications, the method provides information on underlying macroeconomic shock
processes. However, the limited time-series variation in the dataset from Nakamura
and Steinsson (2014) implies that even with a well-identified shock, it is hard to
improve much on aggregate effect estimates from the existing literature. In contrast,
the richer dataset in Chodorow-Reich et al. (2021) allows for a sharp estimate of
aggregate effects.

The method is suited to estimate the impact of recurring macroeconomic shocks.
In the case of one-off shocks such as the housing net-worth shock generated by the
global financial crisis and studied by Mian et al. (2013) and Mian and Sufi (2014),
one could use information on the measured effect on multiple variables to constrain
factor loadings for generic and recurring analogues. This could be a fruitful direction
for future applications of the method.
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Appendix For "Estimating The Missing Intercept"

A Stylized Model Details

Each region i ∈ {1, · · · , I} is inhabited by a representative household with population
mass Ni = 1/I and featuring separable preferences over consumption and leisure.

E
∞∑
t=0

eξi,tβt

[
(ci,t)

1−σ − 1

1− σ
− χ

ℓ1+η
i,t

1 + η

]
, (A-1)

where ℓi,t is employment per worker in region i at time t and ci,t is their consumption
and ξi,t is a region-specific discount-rate shock.

Households maximize (A-1) subject to the intertemporal budget constraint

Pi,tci,t +
Bi,t

1 + rt
= Pi,twi,tℓi,t +Bi,t−1 − Ti,t,

where, for each region i, time t, Pi,t is the nominal price level, wi,t is the real wage,
Bi,t are one period nominal bonds, rt is the (net) nominal rate of interest on bonds
purchased at time t and Ti,t are net taxes or transfers to residents of region i. Regions
are in a monetary union, so that the nominal interest rate rt is the same for all i.

Household maximization implies the labor supply relation and Euler equation:

χℓηi,tc
σ
i,t = wi,t, eξi,tc−σ

i,t = β(1 + rt)Et
eξi,t+1

1 + πi,t+1

c−σ
i,t+1

where πi,t+1 = Pi,t+1/Pi,t − 1 is the inflation rate between periods t and t+ 1. The
discount shock ξi,t tilts the consumption Euler equation, leading to consumption
fluctuations.

Production follows the conventional structure in New Keynesian models. In
every location, firms produce one of a continuum of varieties (indexed v). They hire
household labor at the real wage rate wi,t, and transform it one for one into output
yi,t(v) = ℓi,t(v), with ℓi,t(v) the quantity of labor used to produce variety v in region
i at time t and local labor market clearing implying

∫
v
ℓi,t(v)dv = ℓi,t. Firms have

1



monopoly over the particular variety of goods that they produce. They sell those
varieties to household that aggregate them into their consumption basket according

to the Dixit-Stiglitz preferences, ci,t =
[∫

yi,t(v)
ϵ−1
ϵ

] ϵ
ϵ−1

.

Firms set nominal prices for extended periods as in Calvo (1983). Since labor is
their only input, they set prices to be a discounted average of future expected nominal
wage rates, with the discounting augmented by the probability of prices remaining in
place between periods 1− θ, with θ denoting the frequency of price changes.

In this stylized example, regions are not connected through trade, so local pro-
duction is used either as part of local consumption or local government expenditure
(gi,t).1 The local resource constraints are

yi,t = ci,t + gi,t

Taking a linear approximation around the steady-state and doing the usual
derivations we obtain for each region i, time period t:

πi,t = κ

(
η
ỹi,t
yi

+ σ
c̃i,t
ci

)
+ βEtπi,t+1, (A-2)

c̃i,t
ci

− ξ̃i,t = − 1

σ
(rt − Etπi,t+1) + Et

(
c̃i,t+1

ci
− ξ̃i,t+1

)
(A-3)

ỹi,t = c̃i,t + g̃i,t, (A-4)

where ỹi,t = yi,t − yi denote the deviation of output yi,t from its steady-state value,
yi and analogously for other variables and κ is increasing in the frequency of price
change θ

The monetary authority targets average inflation across regions. ϕ > 1, so that
the Central Bank follows the Taylor principle: if inflation rises, the nominal interest
rate rises more than one-for-one.

In the system of equations above, the driving variables are the deviations of
1Allowing for trade-linkages would allow for different wedges between local and aggregate effects

- we leave this out for simplicity.
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local government spending g̃i,t and the discount rate shock ξ̃i,t from their respective
steady-state values, with output, consumption, inflation and interest rates reacting to
those. We solve for a rational expectations equilibrium where g̃i,t and ξ̃i,t are iid over
time, so that Etg̃i,t+1 = Etξ̃i,t+1 = 0 at all t irrespective of the state of the economy.
Given that the system lacks any lagged dependent variable, deviations of endogenous
variables from steady-state are also iid with mean zero in equilibrium.

Assuming that the steady-state consumption share of output is the same in all
locations, we have that ci/yi = C/Y ≡ c̄, where Y and C are, respectively, the
steady-state values of aggregate consumption and output.

Then using the euler equation to substitute out consumption from the resource
constraint:

ỹi,t
yi

=
g̃i,t
yi

+ c̄

(
ξ̃i,t −

1

σ
rt

)
, (A-5)

That is, output increases with local government spending gi,t and local discount shock
ξi,t, but declines with the national interest rate rt set by monetary policy. With some
additional steps, one can find the interest rate as a function of aggregate government
spending and discount factors, defined as G̃t ≡

∑
i g̃i,t and Ξ̃t ≡

∑
i
1
I
ξ̃i,t:

rt =
ηϕκσ

σ + (σ + ηc̄)ϕκ

G̃t

Y
+

(σ + ηc̄)ϕκσ

σ + (σ + ηc̄)ϕκ
Ξ̃t.

It follows that the interest rate rises with aggregate government spending and with
the discount rate shock. Plugging this back into equation (A-5) yields an expression
for local output as a function of local and aggregate forcing terms:

ỹi,t
yi

= mlocal︸ ︷︷ ︸
=1

g̃i,t
yi

− θG
G̃t

Y
+ c̄

(
ξ̃i,t − θΞΞ̃t

)
, (A-6)

where mlocal is the local multiplier, and θG ≡ ϕκ ηC
(1+ϕκ)σ Y + ϕκ ηC

, and θΞ = ϕκ(σY+ηC)
σY+ϕκ(σY+ηC)

where both θG and θΞ lie between 0 and 1.
Comparing equations (A-5) and (A-6) one can see that, while local output depends

on local government spending directly, it also depends on aggregate government
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spending indirectly through its impact on the interest rate. The multiplier of local
government spending, mlocal, is equal to 1. Fixing local government spending, local
output declines with aggregate government spending. This is because as aggregate
government spending increases, interest rates also increase, reducing local consumption
and output.

To obtain the response of aggregate output to aggregate government spending,
multiply both sides of (A-6) by yi, add them up across i, and divide by Y :

Ỹt

Y
= magg︸︷︷︸

=(1−θG) ∈ [0,1]

G̃t

Y
+ c̄(1− θΞ)Ξ̃t, (A-7)

where magg is the aggregate government spending multiplier. It follows that this
spending multiplier is positive but smaller than 1. The aggregate multiplier incorpo-
rates the positive direct effects of local government spending on local output and the
negative general equilibrium effect through interest rates.

To close the model, we now describe the determination of g̃i,t and ξ̃i,t as functions of
exogenous shocks. In particular, local discount rate have aggregate and idiosyncratic
components

ξ̃i,t = γiη
Ξ
t + ϵξi,t

where ηΞt is an iid aggregate shock that affects all regions and ϵξi,t are local iid shocks
with mean zero. For simplicity, we make assumptions reminiscent of a “law of large
numbers”, so that

∑
1
I
ϵξi,t = 0 and

∑
1
I
γi = 1. It then follows that the aggregate

discount rate Ξ̃t varies with the exogenous aggregate shock ηΞt , Ξ̃t = ηΞt

Local and aggregate government spending have similar structure, but also respond
to discount shocks:

G̃t

Y
= −αηΞt + ηGt ,

g̃i,t
yi

= βi
G̃t

Y
− αϵξi,t + ϵGi,t (A-8)

Equation (A-8) indicates that aggregate government spending leans against ag-
gregate demand shocks ηΞt at the rate α, and is otherwise subject to exogenous
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fluctuations from shocks ηGt . Those exogenous shocks can incorporate, for example,
geopolitical considerations driving military spending. The second equation indicates
a similar leaning of local government spending against local demand shocks, ϵξi,t
while also allowing for exogenous fluctuations ϵGit . Furthermore, local government
expenditures gi,t are a function of aggregate expenditures G̃t. Thus, for example, a
geopolitical shock ηGt increasing aggregate government expenditure G̃t has a local
effect βiη

G
t .

We can write the aggregate block as

G̃t

Y
= Bagg

G,ηG
ηGt +Bagg

G,ηΞ
ηξt ,

Ỹt

Y
= Bagg

Y,ηG
ηGt +Bagg

Y,ηΞ
ηξt

where, given the example, Bagg
G,ηG

= 1, Bagg
G,ηΞ

= −α, Bagg
Y,ηG

= 1 − θG and Bagg
Y,ηΞ

=

−(1− θG)α + c̄(1− θΞ). And the regional block by

∆
g̃i,t
yi

= Bi
g,ηGη

G
t +Bi

g,ηΞη
Ξ
t + ϵ̃ig,t, ∆

ỹi,t
yi

= Bi
y,ηGη

G
t +Bi

y,ηΞη
Ξ
t + ϵ̃iy,t

where Bi
G,ηG = (βi − 1), Bi

g,ηΞ = −α(βi − 1), Bi
y,ηG = mlocal(βi − 1), Bi

y,ηΞ =

−(βi − 1)α + c̄(γi − 1) and the ϵ̃gi,t and ϵ̃yi,t are reduced form residuals satisfying
ϵ̃ig,t = −αϵξi,t + ϵGi,t and ϵ̃iy,t = (c̄− α)ϵξi,t + ϵGi,t.

B Generalized Model

A model as in (12) can typically be derived as the reduced form of a linearized
structural model. In particular, the 12 can be derived from a linearized structural
model that specifies values for innovations to outcome variables yit − Et−1y

i
t variables

as functions of policy treatments git − Et−1g
i
t and aggregates. Using hats to denote

innovations (so that ŷit = yit − Et−1y
i
t, etc), we can write

H i
yŷ

i
t = Ai

g,yĝ
i
t + Ai

G,yĝ
agg
t + Ai

Y,yŷ
agg
t + B̃i

yηt + ϵiy,t for i ∈ {1, ..., I}
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where H i
y is a matrix with the same dimensionality as ŷit and Ai

g,y, AG,y, A
i
Y,y and B̃i

y

are conformable. The model also features relationships establishing the assignment of
treatments to units, potentially also as functions of outcomes and aggregates:

ĝit = Ai
y,gŷ

i
t + Ai

G,gĝ
agg
t + Ai

Y,gŷ
agg
t + B̃i

gηt + ϵ̃ig,t,

As discussed in the text, the effects are determined in terms of the effects of
elements of ηt that enter the second block of equations but not the first.

The model also features aggregation relations and a “law of large numbers”,

1

I

∑
i

ŷit = yaggt ,
1

I

∑
i

ĝit = gaggt ,
1

I

∑
i

ϵ̃g,it =
1

I

∑
i

ϵ̃y,it = 0

Those equations constitute a linear system of equations that, given appropriate
invertibility conditions, can be solved for ŷit, ĝit, ĝ

agg
t and ŷagg as a function of shocks.

By applying the “law of large numbers” one can derive an expression as in 12, up to
the ϵaggt term in the aggregate equations which we include to facilitate the econometric
implementation (see footnote 7 above for a discussion).

Note, in particular, that although the expression in 12 is expressed in terms of
deviations from aggregates, it can be derived without assuming that Ai

Y,y = Ai
G,g = 1

are equal to 1 if ϵaggt = 0∀t, since innovations to the aggregate variables are then
spanned by the aggregate shocks ηt. We find in our applications that the contribution
of ϵaggt is small. We thank Andres Sarto for bringing up this point.

C Proof of Proposition 1

Let B̃ = BH ′, so B̃(k) = BH ′ek, where ek is a conformable selection vector. Using
the condition QB̃(k) = QB(k) = c, we obtain

QBH ′ek = QBek ⇐⇒ M(H ′ek − ek) = 0.
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by the definition of M . Since rank(M) = R (full column rank) by assumption,
ker(M) = {0}, hence H ′ek = ek. Therefore B̃(k) = (BH ′)ek = Bek = B(k), proving
point identification.

D The Gibbs Sampler Algorithm

In summary, our Gibbs sampler draws from the following conditional posteriors,
building on Matthes and Schwartzman (2023):

• Conditional on the parameters in the aggregate block (µagg, {Aagg
l }Ll=1, Bagg,

Σagg) and the regional block (µi, {Ai
l}L

agg

l=1 , {Ci
l}L

reg

l=1 , Bi, Σi ∀i = 1, ..., N) ηt

can be drawn by exploiting the Kalman filter and related smoothing algorithms
for linear and Gaussian systems, based on Carter and Kohn (1994). To make
this step more numerically efficient, we follow Durbin and Koopman (2012) and
collapse the large vector of observables into a vector with the same dimension
as the structural shocks.

• Aggregate variables (µagg, {Aagg
l }Ll=1, Bagg, Σagg) conditional on regional vari-

ables and ηt can be drawn using known conditional distributions (we assume
Gaussian priors for Bagg).

• Regional variables (µi, {Ai
l}L

agg

l=1 , {Ci
l}L

reg

l=1 , Bi, Σi ∀i = 1, ..., N) conditional on
aggregate variables and ηt can be drawn using known conditional distributions
(we assume Gaussian priors for Bi). Importantly, given independent priors
across i, we can parallelize the drawing of these parameters.

E Monte Carlo

To assess the performance of our algorithm across different sample sizes N and T , we
conduct Monte Carlo simulation exercises using the posterior median from the baseline
estimation for the government spending application (reported in Table 1) as the data
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generating process (DGP)2. The prior of Bagg
g,1 and Bagg

y,1 are largely uninformative -
they are centered at the truth for convenience but the prior standard deviations are
set to be large (a value of 10). The prior mean of Bi

g,1 is equal to the truth, and its
standard deviation is half of the absolute value of mean. The corresponding mean for
the local impact on output is set to our benchmark estimate of the local multiplier
(1.43) times the mean of Bi

g,1, as in our empirical application.3 The assumption that
the regional prior is centered on the truth reflects our view that our identification
assumptions are valid, but there is substantial uncertainty. Since our aggregate prior
here is uninformative, all identification comes from the regional information. We
choose the prior distributions of the rest of the parameters to be the same as in the
empirical application.

Figure A-1: Sensitivity to the number of time series observations T (N = 51)

2When the number of regions N is different from the one in the empirical exercise (51), we
randomly generate the states using the following procedure: Let n = ⌊N/51⌋. For the 1st to 51n-th
states, we repeat the 51 states in the empirical benchmark for n times. For the (51n + 1)-th to
N -th states, we randomly draw the states from the empirical benchmark without duplication. For
example, when N = 138, two sets of the US states are included in the 1st to 102nd states, and the
remaining 36 states are drawn randomly from the observed 51 states. The selection of the states is
fixed across simulations with the same choice of (T,N).

3The standard deviation of the local output effect is set to the absolute value of the mean.
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Figure A-2: Sensitivity to the number of cross-sectional units N (T = 39).

Figures A-1 and A-2 explore the sensitivity to the sample length and the size of
the cross-section respectively. The solid blue line of the left panels represents the
median of the posterior medians from 48 simulations along with the 90% interval
constructed from those 48 medians. The dashed line represents the true value of the
parameters, which is equal to the prior mean. The right panels report the correlation
between the true and identified (posterior median) aggregate shocks. Overall, we can
see that adding longer time series helps, whereas increasing the cross-section has only
slight effect, meaning that 51 states already provide all the cross-sectional variation
that can be exploited in this application. This also mirrors our discussion in Section 5,
where the limited time-series dimension of our sample limits what one can learn about
the aggregate multiplier in the absence of an informative aggregate prior. Relative
to our benchmark findings in the Nakamura and Steinsson (2014) application, the
uninformative nature of the aggregate prior in this Monte Carlo results in substantial
uncertainty/dispersion of estimates across Monte Carlo samples, as can be seen in
the uncertainty bands constructed from the medians across our 48 samples.
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Figure A-3: Sensitivity to R (Rtrue = 3)

To investigate the sensitivity to the assumption on the number of aggregate shocks
R, we generate the sample with Rtrue = 3 and estimate the model with different
assumptions on R. Figure A-3 plots the outcome of this exercise. We can see that
once the correct number of shocks is included, increasing the number of shocks
further has no effect. This result can be used as a guide for empirical applications:
Researchers should choose to increase R until the results do not change anymore
when R is increased further.

To see how well our procedure recovers the aggregate shock of interest, we pick one
particular simulation and compare the posterior distribution of the identified aggregate
shock with the truth. With the same sample size as the empirical application (Figure
A-4), the extracted shock series keeps track of the truth very well. The true shock
series is mostly within the posterior bands even though the bands are tight.

F More Information on Priors

The parameters other than Bagg and Bi are set following standard practice in the VAR
literature. The scale of the inverse Wishart distributions for the covariance matrix
of residuals is chosen on the basis of the OLS estimation of a VAR with the same
variables. To be more precise, we estimate (13) and (14) without acknowledging the
factor structure in the forecast errors and set the estimated Σ̃agg and Σ̃i (i = 1, · · · , N)
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Figure A-4: One simulated shock series along with the estimated shock and 90 percent
posterior bands for that sample. (T,N) = (39, 51). Legend gives percentiles of the
distribution of correlation between the true shock and estimated shock.

as a prior mean for the covariance matrix of the residuals. We use a small number of
degrees of freedom (10) so that this prior is not very informative.

Our prior for the aggregate response of government spending to a government
spending shock is parameterized via θ (which we choose to maximize the marginal
likelihood in the government spending application using the Geweke (1999) approach)
as follows:

E
[
Bagg

g,1

]
= (θΣ̃agg

2,2 )
1/2 (A-9)

where we assume that the aggregate government spending variable is ordered second
in the VAR estimated via OLS.

F.1 More on Minnesota Prior

Prior Mean. The prior mean is 0 for all coefficients other than the ones associated
with own first lags, which are 1.
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Prior Variance. The prior variance in the Minnesota prior is a diagonal matrix,
where the variance of the coefficient in the i-th equation associated with the l-th
order lag of j-th variable is given by

(
ϕ0

h(l)

)2

i = j(
ϕ0

ϕ1

h(l)

σj

σi

)2

i ̸= j

(ϕ0ϕ2)
2 for constants and exogenous variables

where σi and σj are the square roots of the (i, i) and (j, j) elements in the error
variance matrix. We obtain the estimate of the error variance matrix by applying
OLS to (13) and (14) without factors. The prior hyperparameters are set as ϕ0 = 0.2,
ϕ1 = 0.5, ϕ2 = 105, and h(l) = l.

For the government spending application, we adopt the following priors for the
variables not discussed in the text:
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Type of Distribution Parameters
Aggregate Block

µagg, Aagg Normal Minnesota Prior
Bagg (Elements related to shock of interest) Normal See main text

Bagg (other) Normal Mean: 0.0, Std: 10

Σagg Inverse Wishart
Scale: OLS

dof: 10
Regional Block

µi, Ci Normal Minnesota Prior
Ai Normal Mean: 0.0, Std: 0.5

Bi (Identified) Normal
Regional information

(See main text)
Bi (Unidentified) Normal Mean: 0.0, Std: 10

Σi Inverse Wishart
Scale: OLS

dof: 10

Table A-1: Prior Specifications for Aggregate and Regional Blocks

G More Results for Nakamura and Steinsson (2014)

G.1 Transformed Data

G.1.1 Output-Weighted Aggregate Data

We compute the weights of output in each state relative to the aggregate output, and
take time average of them. We construct aggregate variables by taking the weighted
average of regional variables using the averaged output weights. We estimate the
model with the alternative aggregate variables, where we find very similar posterior
to the baseline.
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(1) (2) (3)
Prior Posterior (First-Stage) Posterior (Shift-Share)

magg

0.80 0.90 0.96
(0.38, 1.55) (0.46, 1.39) (0.49, 1.49)
[0.53, 1.18] [0.63, 1.18] [0.67, 1.27]

Prob(magg > 1) 0.28 0.36 0.44
Log MDD -7273.47 -7289.41

θ 1.00 1.00
Informative Bi

y Yes Yes

Table A-2: Aggregate observables are output-weighted averages of regional data. 90%
posterior bands are in parentheses, and 68% bands are in square brackets.

G.1.2 One-year differences

We estimate the model with the one-year difference of government spending and
output.4 Specifically, we let

yaggt =
Y agg
t − Y agg

t−1

Y agg
t−1

, gaggt =
Gagg

t −Gagg
t−1

Y agg
t−1

, yit =
Y i
t − Y i

t−1

Y i
t−1

, git =
Gi

t −Gi
t−1

Y i
t−1

We follow the same strategy for choosing the prior as our baseline estimation, while the
prior for regional parameters is adjusted accordingly by re-estimating the Nakamura
and Steinsson (2014) regression with the alternative data. The one-year aggregate
multiplier is smaller than the two-year multiplier, while our estimate is still in line
with other evidence on the multiplier.

4We provide guidance on how to pick the number of aggregate shocks in Section E.
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(1) (2) (3)
Prior Posterior (First-Stage) Posterior (Shift-Share)

magg

0.80 0.74 0.86
(0.38, 1.55) (0.38, 1.15) (0.43, 1.34)
[0.53, 1.18] [0.52, 0.98] [0.60, 1.14]

Prob(magg > 1) 0.28 0.14 0.30
Log MDD -6991.57 -7020.17

θ 0.50 0.65

Table A-3: Observables based on one-year differences. 90% posterior bands are in
parentheses, and 68% bands are in square brackets.

G.1.3 Alternative First-Stage Regression

We estimate the alternative IV regression for Nakamura and Steinsson (2014) by
including lags of output and government spending.

yit = mlocalgit +
2∑

l=1

ϕgy,lg
i
t−l +

2∑
l=1

ϕyy,ly
i
t−l + αi + γt + εit

git = βigaggt +
2∑

l=1

ϕgg,lg
i
t−l +

2∑
l=1

ϕgy,ly
i
t−l + αi + γt + εit

Re-estimating our VAR model with the alternative βi and mlocal, we get the posterior
multiplier consistent with our baseline.
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(1) (2) (3)
Prior Posterior Posterior

magg

0.80 0.87 0.96
(0.38, 1.55) (0.41, 1.68) (0.49, 1.49)
[0.53, 1.18] [0.57, 1.28] [0.67, 1.27]

Prob(magg > 1) 0.28 0.36 0.44
Log MDD -7227.72 -7288.26

θ 0.30 1.00
Informative Bi

y No Yes

Table A-4: First-stage regression now includes same controls as our baseline model.
90% posterior bands are in parentheses, and 68% bands are in square brackets.

G.1.4 Local multipliers from different data transformations

We report below the local multipliers from different data transformations:

First Stage Shift share
Two-year 1.43 2.48
One-year 0.69 —

Alternative First-Stage Regression 0.63 —

Table A-5: Local multiplier estimates used to set priors, obtained by estimating the
cross-sectional regression under different data transformations. See text for details.
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G.2 Different Choice of Priors

G.2.1 Looser Aggregate Prior

(1) (2) (3)
Prior Posterior Posterior

magg

0.77 0.95 0.97
(-0.11, 3.34) (-0.09, 3.95) (0.11, 1.90)
[0.26, 1.68] [0.34, 2.04] [0.45, 1.52]

Prob(magg > 1) 0.37 0.47 0.48
Log MDD -7226.98 -7284.03

θ 0.25 1.00
Informative Bi

y No Yes

Table A-6: 90% posterior bands are in parentheses, and 68% bands are in square
brackets.

We change the prior distribution for aggregate multiplier to be looser than the baseline.
Now, the 90% prior interval includes 0 and 3. The posterior median of the multiplier
is slightly above the baseline estimate, while it comes with a wider posterior interval.
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G.2.2 Even Looser Aggregate Prior

(1) (2) (3)
Prior Posterior Posterior

magg

-0.00 28.64 2.19
(-6.31, 6.32) (-138.93, 199.42) (-1.49, 5.73)
[-1.82, 1.82] [4.94, 74.11] [0.03, 4.31]

Prob(magg > 1) 0.25 0.85 0.71
Log MDD -7229.34 -7292.88

θ 0.30 1.00
Informative Bi

y No Yes

Table A-7: 90% posterior bands are in parentheses, and 68% bands are in square
brackets.

We loosen the aggregate prior further, covering ±6.3 as the 90% interval. Standard
errors increase substantially, suggesting the role of aggregate prior in relatively short
time series like Nakamura and Steinsson (2014) data.

G.2.3 Standard deviation of local priors

We evaluate check how important local prior information is by changing the associated
standard deviation. In our benchmark, we set the standard deviations for all local
effects of government spending to half the absolute value of the corresponding mean.

We first think about the situation where an econometrician is very sure about the
regional coefficients. We estimate the model with the identical prior setting as in the
last column of Table 1, except that the prior standard deviations for Bi

g,1 and Bi
y,1

are very small: 10−7.
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(1) (2)
Prior Posterior

magg

0.800 0.978
(0.376, 1.548) (0.502, 1.509)
[0.528, 1.177] [0.686, 1.288]

Prob(magg > 1) 0.282 0.470
Log MDD -7270.9465

θ 1.0
Informative Bi

y prior Yes
Informative Bi

g prior Yes

Table A-8: Results based on Perfectly Precise Information on Local Coefficients

Figure A-5 shows what happens when we use other values than 0.5. Not sur-
prisingly, the less confident one is about the local effects, the more the aggregate
multiplier estimate converges towards the prior. Interestingly, the log likelihood is
also largest for tight priors.

Figure A-5: Changing standard deviation of prior on local effects. Left panel plots the
aggregate multiplier (median and 90 percent posterior bands), right panel plots the
marginal data density estimated via method in Geweke (1999). Dashed red vertical
line shows the benchmark value.
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G.2.4 Choice of θ

We have thus far picked θ to maximize the marginal likelihood. How much does this
matter? Figure A-6 gives an answer.

Figure A-6: Changing θ. Left panel plots the aggregate multiplier (median and 90
percent posterior bands), right panel plots the marginal data density estimated via
method in Geweke (1999). Dashed red vertical line shows the benchmark θ value.

The fit of the model increases substantially with θ = 1, as does the posterior
estimate for the aggregate multiplier.
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G.3 Correlation of Identified Shocks Across Specifications

Uninformative Bi
y and Bi

g 0.1297
(Table 1 Column 2)

Output weighted mean as aggregates
0.9988

(Table A-2 Column 2)
Alternative first-stage

0.9962
(Table A-4 Column 3)
Loose aggregate prior

1.0000
(Table A-6 Column 3)

Even looser aggregate prior
0.9998

(Table A-7 Column 3)
Certain local information

0.9934
(Table A-8 Column 2)

Table A-9: Correlation of posterior medians of estimated shocks with baseline

To see how robustly we identify the shock of interest, we compute the correlation
between the posterior median of identified shocks in our baseline estimation (Table 1
Column 4) with the one from alternative specifications. To make a fair comparison, we
do this for the specifications where we use two-year difference, the NS first-stage prior,
and informative Bi

y. We find very strong correlation across different specifications
with informative prior (i.e., excluding the first one), suggesting that the identified
shock is almost identical.
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G.4 Local Multiplier With 90 Percent Bands

Figure A-7: Median of Local Relative Multiplier with 90% Posterior Interval

H Additional results for Chodorow-Reich et al. (2021)

H.1 Different θ

We change the value of θ to be 0.5 and 0.75 (baseline: 0.25).
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θ = 0.5 θ = 0.75

βemployment
7

2.04 2.02
[0.78, 3.50] [0.80, 3.44]

βwage bill
7

1.26 1.06
[0.49,2.07] [0.33, 1.82]

βwage bill
7 − βemployment

7

-0.78 -0.95
[-2.34,0.61] [-2.48,0.38]

Correlation of Estimated Shock 0.996 0.991

Table A-10: Aggregate effects of stock market wealth. The last row shows the
correlation between the posterior median of estimated shocks and that from the
baseline.

H.2 Further Check on Local Prior

The first column imposes the prior standard deviation of Bi
ηr,· other than Bi

ηr,sR to
be large (10.0). The second column enlarges the prior standard deviation of Bi

ηr,sR as
well as others. The results make clear that for this application estimated aggregate
effects depend on both types of priors being informative.
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(1) (2)

βemployment
7

-0.34 0.68
[-6.53, 5.68] [-0.22, 2.11]

βwage bill
7

0.21 0.20
[-3.39,3.84] [-0.48, 0.99]

βwage bill
7 − βemployment

7

0.50 -0.51
[-5.98,7.21] [-2.01,0.63]

Correlation of Estimated Shock 0.764 0.747

Informative Bi
ηr,SR Yes No

Informative Bi
ηr,· other than Bi

ηr,SR No No

Table A-11: Aggregate effects of stock market wealth. The row labeled "Correlation of
Estimated Shocks" depicts the correlation between the posterior median of estimated
shocks and that from the baseline.
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